JPS5845318A - Production of high tensile steel having weldability and >=50kg/mm2 strength - Google Patents

Production of high tensile steel having weldability and >=50kg/mm2 strength

Info

Publication number
JPS5845318A
JPS5845318A JP14250681A JP14250681A JPS5845318A JP S5845318 A JPS5845318 A JP S5845318A JP 14250681 A JP14250681 A JP 14250681A JP 14250681 A JP14250681 A JP 14250681A JP S5845318 A JPS5845318 A JP S5845318A
Authority
JP
Japan
Prior art keywords
strength
steel
cooling
rolling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14250681A
Other languages
Japanese (ja)
Inventor
Koshiro Tsukada
束田 幸四郎
Yoshitaka Yamazaki
山崎 喜崇
Kazuaki Matsumoto
和明 松本
Tomoyoshi Okita
大北 智良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14250681A priority Critical patent/JPS5845318A/en
Publication of JPS5845318A publication Critical patent/JPS5845318A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Abstract

PURPOSE:To obtain high tensile steel having high strength and weldability by melting specific low alloy steel consisting basically of C, Si, Mn, solAl to ingot, and hot rolling and acceleratively cooling the same under specific conditions. CONSTITUTION:The steel consisting 0.03-0.18% C, <=0.6% Si, 0.5-2.0% Mn, 0.01-0.08% solAl, and if necessary, 0.01-0.1% Nb, 0.01-0.15% V, 0.01-0.15% Ti, <=1.0% Cu, <=1.0% Mo, <=1.0% Ni (except copresence of Cu, Cr and copresence of Ni, Mo, Nb, V, Ti) and the balance iron and satisfying <=0.20% low- temp. cracking sensitive compsn. and >=(25.8-0.18Vc)/78 carbon equiv. of accelerative cooling material is melted to ingot. The molten metal is hot rolled at >=20% cumulative draft below the Ar3 point and 650-(Ar3-30) deg.C finishing temp. and is cooled acceleratively at 4-25 deg.C/sec for at least 80 deg.C temp. width down to >=500 deg.C; thereafter the steel is allowed to cool. Thus the high tensile steel having excellent weldability and >=50kg/mm.<2> strength is obtained.

Description

【発明の詳細な説明】 本発明け、厚鋼板の圧延後の加速冷却に関うるもので、
熱間圧延するに際してムrs変態点以下で圧下率20−
以上の圧下を加え、直ちに500℃以上の温度に至るま
での間を4〜25じ−の冷却速度で加速冷却するととで
鋼板が高強度化できることを活用し、TS(引張強さ)
501−以上で優れた溶接性を併せて具備する厚鋼板の
製造法に関するものである。即ち、本発明では加速冷却
による強化分の合金成分特に炭素量を低減させることに
よシ、溶接性の改善を図ったものであるが、具体的には
加速冷却材の強度と合金成分との間に良い相関があるこ
とを見出し、この関係を重回峰式により求め製造条件設
定に反映させることにより、例えば鋼の組成が目標成分
から若干はずれるような場合においても、近時の高精度
圧延技術、製造技術でもってこれをカバーし、製品の品
質安定性の向上を図るとともに、製造ラインの自動化を
も可能ならしめんとするものである。
[Detailed description of the invention] The present invention relates to accelerated cooling of thick steel plates after rolling,
When hot rolling, the reduction rate is 20- below the Mrs transformation point.
Taking advantage of the fact that steel sheets can be made to have high strength by applying the above reduction and immediately accelerating cooling at a cooling rate of 4 to 25 degrees until reaching a temperature of 500°C or more, TS (tensile strength)
The present invention relates to a method for producing a thick steel plate having a value of 501- or higher and also having excellent weldability. In other words, the present invention aims to improve weldability by reducing the alloy components, particularly carbon content, that are strengthened by accelerated cooling, but specifically, the relationship between the strength of the accelerated cooling material and the alloy components is By finding that there is a good correlation between The aim is to cover this issue with technology and manufacturing technology, improve the quality stability of products, and also make it possible to automate the manufacturing line.

一般に、熱間圧延後の厚鋼板を加速冷却することにより
変態組織を制御し機械的性質を向上させる技術社、制御
冷却と呼ばれ制御圧延(ControlledRoll
ing  以下CRと略称する)と同様に一種の加工熱
処理法でめる。この制御冷却は、従来系統的な研究が少
なかったが、最近圧延終了後に特定の温度域のみを加速
冷却するいわゆるI nterrupted・Cool
lng法が注目されている。この方法は圧延後の直接焼
入法のように焼戻処理を必要とせず、一般の非−質鋼板
への適用が可能でTo如、CRと組合せることによシ為
靭性を維持しつつより一層の高張力化が図れるし、さら
に溶接性をはじめ各種の鋼材性能の向上も期待できる。
In general, a technology company that controls the transformation structure and improves mechanical properties by accelerating cooling of thick steel plates after hot rolling, is called controlled rolling.
ing (hereinafter abbreviated as CR), a type of processing heat treatment method is used. There has been little systematic research on this controlled cooling, but recently there has been research into so-called interrupted cooling, which accelerates cooling only in a specific temperature range after the completion of rolling.
The lng method is attracting attention. This method does not require tempering treatment unlike the direct quenching method after rolling, and can be applied to general non-quality steel sheets, such as To, and when combined with CR, it maintains toughness. It is possible to achieve even higher tensile strength, and it is also expected to improve weldability and various other steel material properties.

かかる冷却法は既にホットストリップミルのランアウト
冷却として操業的に利用されてはいるが、厚板圧延では
実用化には至っていない。
Although such a cooling method has already been operationally used for run-out cooling in hot strip mills, it has not been put to practical use in plate rolling.

多くの提案が公にされるようになって来たにも拘らず、
これによって溶接性を改善する提案もなされていないの
が現状である。この理由の一つは、一般的な低合金鋼に
おける加速冷却の効果は変態組織を改善せしめ強度上昇
を図ると共に靭性劣化を防止せんとするものであ夛、溶
接性の向上はこの強度上昇を利用し合金成分を低減する
ことによって得られるものであるから、その効果が一見
間接的かつ自明であるかの如く見られるためである。
Although many proposals have become public,
At present, no proposal has been made to improve weldability. One of the reasons for this is that the effect of accelerated cooling in general low-alloy steel is to improve the transformed structure, increase strength, and prevent toughness deterioration. This is because the effect can be seen as indirect and self-evident at first glance, since it can be obtained by reducing the alloy components.

さらに一つの重要な理由社、加速冷却によって浴接性に
優れた高張力銅板を製造するに当っては、その強度、溶
接性のいずれをも冶金的−合理的に満足させるような製
造条件の具体的設定がデータ蓄積”及び解析不足のため
困難であシ、従来知られることがなかったためである。
Another important reason is that when producing high-strength copper plates with excellent bath weldability by accelerated cooling, it is necessary to set manufacturing conditions that metallurgically satisfy both strength and weldability. This is because the specific settings are difficult due to lack of data accumulation and analysis, and were not previously known.

本発明は、上記の問題に鑑みてこれを解決するために開
発されたものであシ、その要旨とするところは、CQ、
03〜α18%、Siα6%以下、MnO3〜2.0−
1sotAJ!α01〜α08−を基本組成とし、必要
に応じてNbα01〜α196、VQ、01〜α155
6、T1α01〜α15嘔、Ca 1.0 %以)、C
r1.0%以下、N11.0%以下、Me 1.0 %
以下の一種又は二種以上(但し、CuとCrの共存及び
これらの共存)におけるNt、 Mat Nb + V
 、 Tt ノ一種又は二種以上の共存を除く)を含有
し残部はF・及び不可避的不純−からなシ、シかもPc
w <0−2096(但し、PCM社低温割れ感受性組
成)、かつ0LACCaqン(25,8−Q、18Ve
)/7B (但し、0LACC@q は加速冷却材脚素
当量、Vcは加速冷却時の冷却速度で4〜25℃i)を
満足する鋼を溶製し、熱間圧延においてArm点以)で
の累積圧下率を20−以上、仕上り温度を650℃〜(
Arm点−60℃)とする圧延を行い、圧延終了後50
0℃以上の温度までの少くとも80℃の温度巾にわたシ
上記冷却速度veで加速冷却し、その後放冷することを
特徴とする溶接性を備え九50 VwJ以上の強度を有
する高張力鋼の製造法である。
The present invention was developed in view of the above-mentioned problems and to solve them, and the gist thereof is: CQ,
03~α18%, Siα6% or less, MnO3~2.0-
1 sot AJ! The basic composition is α01~α08-, Nbα01~α196, VQ, 01~α155 as necessary.
6, T1α01-α15, Ca 1.0% or more), C
r1.0% or less, N11.0% or less, Me 1.0%
Nt, Mat Nb + V in one or more of the following (however, the coexistence of Cu and Cr, and the coexistence of these)
, Tt (excluding the coexistence of one or more types), and the remainder is free from F and unavoidable impurities.
w <0-2096 (However, PCM company low temperature cracking sensitive composition), and 0LACCaqn (25,8-Q, 18Ve
)/7B (However, 0LACC@q is the basic equivalent of the accelerated coolant leg, Vc is the cooling rate during accelerated cooling, and the steel that satisfies 4-25℃i) is melted, Cumulative rolling reduction rate of 20- or more, finishing temperature of 650℃ ~ (
Rolling is carried out to bring the Arm point to -60°C, and after the rolling is completed, the
A high-strength steel having a strength of 950 VwJ or more and having weldability characterized by accelerated cooling at the above-mentioned cooling rate ve over a temperature range of at least 80°C to a temperature of 0°C or more, and then allowing it to cool. This is the manufacturing method.

次に、本発明の製造法について詳細に説明する。Next, the manufacturing method of the present invention will be explained in detail.

厚鋼板の強度は合金成分により大きく変動し、又この合
金成分の強度への寄与は製造条件により大きな影響を受
けることは知られている。そこで、本発明の発明者らは
今迄知られることの無かったγ十α2相域圧延後の加速
冷却材における強度への合金成分の影響を知るべ(C,
Si、Mnをはじめとする各種成分を広範に変化させた
実験室解解鋼を用い、ムr1点以下で20−以上の累積
圧)率により圧延し、圧延仕上り温度は(Arm点−6
0℃)以下、650℃以上とし、この圧延終了後、10
し−の冷却速度で500℃以上の温度まで少くとも80
℃の温度巾にわたシ加速冷却をする実験を繰返し、鋼板
強度への各成分の寄与を重回帰分析により求めた。その
結果、次の関係式が得られた。
It is known that the strength of thick steel plates varies greatly depending on the alloy components, and that the contribution of the alloy components to the strength is greatly influenced by manufacturing conditions. Therefore, the inventors of the present invention sought to understand the influence of alloy components on the strength of accelerated cooling materials after rolling in the γ10α2 phase region, which had not been known until now (C,
Using laboratory cracked steel in which various components such as Si and Mn were varied widely, rolling was carried out at a cumulative pressure of 20 or more with an unevenness of 1 point or less, and the finishing temperature was (Arm point -6).
0℃) or lower and 650℃ or higher, and after the completion of this rolling, 10
At least 80°C to a temperature of 500°C or higher at a cooling rate of
Experiments were repeated in which accelerated cooling was performed over a temperature range of ℃, and the contribution of each component to the strength of the steel sheet was determined using multiple regression analysis. As a result, the following relational expression was obtained.

TS(Kr/j)= 26+78・0LACC・q ・
・・・・・(1)ここで0LACC@qd加速冷却材辰
素当量式であり、次式で示される。
TS (Kr/j) = 26+78・0LACC・q・
...(1) Here is the 0LACC@qd accelerated coolant phosphorus equivalent equation, which is expressed by the following equation.

0LACC*qe) = C+ Mn15+ c”/2
9 +N’/15,6 + ”/7.4+ Meへ4+
”10.97+“/15  ・・・・・・(2)又、さ
らに加速冷却材では冷却速度が重要な因子であシ、強度
への影響を調べるため、後に示す第1表中の鋼2を用い
て冷却速度を広範に変化させる実験を行った。その結果
0LACCeq とは独立に加速冷却速度の上昇は強度
を増大させ、加速冷却速度4〜25℃、−の範囲ではル
−当りのT8上昇量は約018(−であることが判明し
た。第1図はこの場合の加速冷却速度とΔTB (但し
、ΔT8は加速冷却材のTSから同一圧延条件の圧延材
のTSを差引いたもの)の関係を示したグラフである。
0LACC*qe) = C+ Mn15+ c”/2
9 +N'/15,6 + ”/7.4+ 4+ to Me
"10.97+"/15 (2) Furthermore, since the cooling rate is an important factor in accelerated cooling materials, in order to investigate the effect on strength, steel 2 in Table 1 shown below was used. We conducted experiments in which the cooling rate was varied over a wide range. As a result, it was found that an increase in the accelerated cooling rate increases the strength independently of 0LACCeq, and when the accelerated cooling rate is in the range of 4 to 25℃, the increase in T8 per roe is about 018 (-). FIG. 1 is a graph showing the relationship between the accelerated cooling rate and ΔTB (where ΔT8 is the value obtained by subtracting the TS of the rolled material under the same rolling conditions from the TS of the accelerated cooling material) in this case.

以上の結果から、2相域圧地後の加速冷却材においても
その圧延、加速冷却条件が上記の如く限定されていれば
、そのTSは0LACCeQと冷却速度Vc (C/5
sc)を設定すれば、次式から一義的に決定可能である
ことが分る。
From the above results, if the rolling and accelerated cooling conditions of the accelerated cooling material after two-phase regional compaction are limited as described above, its TS will be 0LACCeQ and the cooling rate Vc (C/5
sc), it can be determined uniquely from the following equation.

T8=26+78・0LACC@q十α18(%−10
)  ・・・・・・(3)この(3)式よりTSを50
(−以上の高張力鋼板を加速冷却によυ製造するには0
LACCsq及び■が次式を満せば良いことが分る。
T8=26+78・0LACC@qtenα18(%-10
) ......(3) From this formula (3), TS is 50
(To produce υ of high-strength steel plates of
It can be seen that LACCsq and ■ should satisfy the following formula.

50<26+78@OLムCC@q+α18(Vc−1
0)  ・・・−・(4)即ち、0LACCeq 2 
(25,8−α18vc)/78 −− (s)溶接性
については、基本的に祉合金成分が大きな因子であシ、
加速冷却材と従来材とで成分が同一ならば差は無いと考
えられる。従って、低温割れ感受性組成PCM値を用い
て従来材と同様に規制すればよい。本発明の対象とする
50キロ級構造用又は船体用の高張力鋼では、低温割れ
防止のための予熱を不要とすることが強く望まれており
、室温にて低温割れを防止する丸めのPCM値上Pji
値は0.20であることが知られているため、これを溶
接性付与のための規制値とした。
50<26+78@OLmuCC@q+α18(Vc-1
0) ...-(4) That is, 0LACCeq 2
(25,8-α18vc)/78 -- (s) Regarding weldability, basically the welfare alloy component is a big factor;
If the components of the accelerated coolant and the conventional material are the same, it is considered that there is no difference. Therefore, the low temperature cracking susceptibility composition may be regulated in the same manner as conventional materials using the PCM value. It is strongly desired that high-strength steel for 50 kg class structures or ship hulls, which is the object of the present invention, do not require preheating to prevent cold cracking, and therefore rounded PCM to prevent cold cracking at room temperature is highly desirable. Price increase Pji
Since the value is known to be 0.20, this was set as the regulation value for imparting weldability.

次に、成分限定の理由を述べる。Cの下限を1031i
としたのはこの種の鋼の強度を最も安価に効果的に付与
するために必要だからであり、上限を018−とじたの
はこれを超えると溶接性を著しく損うからである。Sl
は固Sm化を通じて高強度化に有効であるが、多量の添
加US接性を損うので0.6%を上限する。廊は鋼の強
度及び靭性向上に有効な鋼の基本元素として添加される
が、α5チ未満ではその効果が小さくなるためn、s%
を下限とした。又、2.0−を超えると溶接性を著しく
損うことになるため2.0%を上限とした。Atは鋼の
脱酸に最低α01嘔の−o1klが必要であることから
これを下限とし、又aotAAがα08−を超えるとこ
の効果が飽和することから008%を上限とした。
Next, the reason for limiting the ingredients will be explained. The lower limit of C is 1031i
This is because it is necessary to impart strength to this type of steel effectively at the lowest cost, and the upper limit is set at 018- because weldability will be significantly impaired if it exceeds this. Sl
is effective in increasing strength through hardening Sm, but the upper limit is 0.6% since addition of a large amount impairs US adhesion. Corrosion is added as a basic element of steel that is effective in improving the strength and toughness of steel, but if it is less than α5, the effect will be small, so n, s%
was set as the lower limit. Moreover, if it exceeds 2.0%, weldability will be significantly impaired, so 2.0% is set as the upper limit. Since a minimum of α01 -o1kl is required to deoxidize steel, At is set as the lower limit, and since this effect is saturated when aotAA exceeds α08-, the upper limit is set at 008%.

Cu、 Cr+ NL Mo Id添加することによシ
固溶強化と、併せて鋼の焼入性増大に基づく組織変化を
通じて靭性を損なわずに強化が図れるが、溶接性及び経
済性の点から各々1.0−を上限とした。Nb。
By adding Cu, Cr + NL Mo Id, strengthening can be achieved without impairing toughness through solid solution strengthening and structural changes based on increased hardenability of the steel, but from the viewpoint of weldability and economic efficiency, each The upper limit was .0-. Nb.

V 、 TIは折用強化による強度上昇と、低温靭性の
改善に著しい効果があシ必要に応じて添加されるが、こ
の効果を発揮させるためにはいずれか一種が0.01%
以上添加することが必要であり、これを下限とした。こ
れらはいずれも添加量が大となるとII接性を損うので
、Nbについては上限を0.10−と、又V、Tiにつ
いては上限を各々0.15%とした。
V and TI have a remarkable effect on increasing strength through bending reinforcement and improving low temperature toughness, and are added as necessary, but in order to exhibit this effect, 0.01% of either type is required.
It is necessary to add more than 100% of the total amount, and this is set as the lower limit. Since any of these impairs II contact when added in large amounts, the upper limit for Nb was set at 0.10%, and the upper limit for V and Ti was set at 0.15% each.

次に、製造条件の限定理由を述べる。先づ熱間圧延にお
いてArm点以下での累積圧下率を2〇−以上としたの
は、これ未満では初析フェライトの加工による転位の導
入などのサブ組織が充分に発達せず、加速冷却を実施し
ても多大の効果的な高張力化が期待できないからである
。第2図はArs変態点以下の圧下率と・ΔTS (但
し、ΔTSは2相域圧延後の0LAC材のTS)の関係
を示したものである。すなわち、2相域圧延後の加速冷
却の効果は、従来材われている圧延抜空冷する場合に生
じる(圧延による)サブ組織の回復を加速冷却によシ抑
制するところにある。このサブ組織つまシは高転位密度
組織を加速冷却直前に形成発達させておくことが必9だ
からである。
Next, the reason for limiting the manufacturing conditions will be described. First, the reason why the cumulative reduction rate below the Arm point in hot rolling is set to 20 - or more is because if it is less than this, substructures such as the introduction of dislocations due to processing of pro-eutectoid ferrite will not develop sufficiently, and accelerated cooling will not be necessary. This is because even if it is carried out, it cannot be expected to effectively increase the tension. Figure 2 shows the relationship between the rolling reduction below the Ars transformation point and ΔTS (where ΔTS is the TS of the 0LAC material after rolling in the two-phase region). That is, the effect of accelerated cooling after rolling in the two-phase region is that accelerated cooling suppresses the recovery of the substructure (due to rolling) that occurs when the conventional material is air-cooled after rolling. This is because it is necessary to form and develop a high dislocation density structure immediately before accelerated cooling to form this substructure.

又、圧延仕上り温度を(Ars点−60℃)以下に限定
したのは、実施例にも示した如くこれ以上の温鼠では高
過ぎるため加速冷却を開始する以前にサブ組織の充分な
回復が行われて、加速冷却による回復抑制の効果が発揮
されないからでめシ、その下限を650℃としたのは、
これ未満ではミル負荷増大などの圧延上の困難が著しく
増大し実生産的でないこと、又空冷ままでも加工フエク
イトの回復量が減少してくるため、圧延後の加速冷却に
よる回復抑制の効果が失われる傾向にアリ、本発明の加
速冷却の本質的な効果がもはや効率的に発揮されないか
らである。
In addition, the reason why the finishing temperature of rolling was limited to below (Ars point -60°C) was because as shown in the examples, sufficient recovery of the substructure was required before starting accelerated cooling, since it would be too high if the temperature was higher than this temperature. The reason why the lower limit was set at 650°C was because the effect of suppressing recovery by accelerated cooling would not be exhibited if
If it is less than this, the difficulties in rolling such as increased mill load will significantly increase, making it unproductive, and the amount of recovery of machining fequit will decrease even with air cooling, so the effect of suppressing recovery by accelerated cooling after rolling will be lost. This is because the essential effects of the accelerated cooling of the present invention are no longer efficiently exhibited if the temperature is too high.

更に、加速冷却速度を4〜25レーの範Hにしたのは、
41未満では第1図から明らかなように加速冷却による
上述のサブ組織回復抑制による充分な高張力化が期待で
きないからで4.ji)、251を超えるとこの効果が
飽和することに加え鋼板の歪が大となりatの良い形状
を持つ厚鋼板の製造が1離になるからである。
Furthermore, the accelerated cooling rate was set in the range H of 4 to 25 rays.
If it is less than 4.41, as is clear from FIG. 1, sufficient high tension cannot be expected due to the above-mentioned suppression of sub-tissue recovery due to accelerated cooling. ji), if it exceeds 251, this effect will be saturated, and the strain of the steel plate will increase, making it difficult to manufacture a thick steel plate with a shape with good at.

又、冷却停止温度を500℃以上としたのは、これ未満
では鋼板の歪が大となシ製造工程上好ましくないからで
あシ、冷却開始温度と冷却停止温度との間に80℃以上
の温度中を採ったのは、これ以下に温度間隔を小さくす
ると、サブ組織が回復して高張力化が充分に達成されな
いからでおる。
In addition, the reason why the cooling stop temperature is set to 500°C or higher is because if it is lower than this, the distortion of the steel plate becomes large and this is not preferable in terms of the manufacturing process. The reason why the medium temperature was chosen is that if the temperature interval is made smaller than this, the substructure will recover and high tension will not be achieved sufficiently.

第1!!は供試鋼の化学成分を示したものであり、第2
表は製造条件と、その製造条件によって製造された鋼の
機械的性質及0′溶接性を示したものである。
1st! ! indicates the chemical composition of the test steel;
The table shows the manufacturing conditions and the mechanical properties and 0' weldability of the steel manufactured under the manufacturing conditions.

籐2表 上記第1費における各鋼はいずれも250トン転炉によ
シ溶製したものである。鋼2〜4はPC1il値がα1
20〜α149.0LACCeqが0.290〜α61
6のものであり、いずれも本発明の限定する成分範囲を
満足するものである。鋼1はPcw値は020未満であ
る4のの0LACCeqは本発明の限定下限よシ低い鋼
である。鋼sFi合金成分が本発明の限定上限より高い
ため、PCM値が0.20を超えた鋼である。
Rattan Table 2 Each of the steels in the above first cost was melted in a 250-ton converter. Steels 2 to 4 have PC1il values of α1
20~α149.0LACCeq is 0.290~α61
6, all of which satisfy the component ranges defined by the present invention. Steel 1 has a Pcw value of less than 020, and the 0LACCeq of 4 is lower than the lower limit of the present invention. This steel has a PCM value exceeding 0.20 because the steel sFi alloy component is higher than the upper limit of the present invention.

第2表から明らかなように、鋼1の如fi 0LACC
@qが本発明の限定値よシ低い鋼では、冷却速度が25
ルーと高くても(25,8−α18 V )/7a値が
0LACCeq値を上廻シ、強度は50v−に達するこ
とができない。成分が本発明の範囲に満足する鋼2〜4
においては、2相域圧延後空冷まま又は低冷却速度では
強度が50(−をi見得ないけれども、本発明で限定す
る高冷却速度にすれば(25,8−α18 V )/7
8  値よりも0LACCeq値の方が高くなり、強度
が50(−を超える。鋼2〜6において奄、2相域圧延
を行わない圧延まま社は強度が40v−を僅かに超える
のみてあシ、2相域圧鷺後、加速冷却を行っても(鋼2
−ト)該加速冷却の温度中が80℃以下のときは、やは
り50階−以下の強度しか得られない。さらに、鋼3−
トの如く圧風仕上り温度が(Ar1点−60℃)を超え
た場合、中はjp50v−以下の強度しか得られていな
い。以上の鋼2〜4はいずれもPCM値はα20未満て
あシ、室温でのν開先拘束割れ試験で割れは全く認めら
れない。鋼5では2相域圧延後の加速冷却によシ強度は
50V−を超えるものの、PCM値が高く室温でのν開
先拘束割れ試験で割れが発生している。
As is clear from Table 2, as for steel 1, 0LACC
For steels where @q is lower than the limiting value of the present invention, the cooling rate is 25
Even if the (25,8-α18 V)/7a value exceeds the 0LACCeq value, the intensity cannot reach 50v. Steels 2 to 4 whose components satisfy the range of the present invention
In this case, the strength is 50 (-) when air-cooled after rolling in the two-phase region or at a low cooling rate (- cannot be seen, but if the high cooling rate specified in the present invention is used, the strength is (25,8-α18 V)/7
The 0LACCeq value is higher than the 0LACCeq value, and the strength exceeds 50V.For steels 2 to 6, as-rolled companies that do not perform rolling in the two-phase region have a strength of only slightly over 40V. , Even if accelerated cooling is performed after two-phase region pressure (steel 2
(g) When the accelerated cooling temperature is 80° C. or lower, the strength is still only 50 degrees or lower. Furthermore, steel 3-
When the pressure finishing temperature exceeds (Ar1 point -60°C) as shown in (g), the strength of the inside is only jp50v- or less. All of the above Steels 2 to 4 have PCM values of less than α20, and no cracks are observed in the ν groove restraint cracking test at room temperature. In Steel 5, the strength exceeds 50 V- due to accelerated cooling after rolling in the two-phase region, but the PCM value is high and cracking occurs in the ν groove restraint cracking test at room temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加速冷却速go増加に伴うΔTBの変化の関係
を示すグラフ図であり、第2図は変態点以下臣下率とΔ
T8の関係を示すグラフ図である。 代通人 弁理士 佐 藤 正 年 同 同 木村三朗 同   同  佐々木 宗 治
Figure 1 is a graph showing the relationship between changes in ΔTB as the accelerated cooling rate go increases, and Figure 2 is a graph showing the relationship between the ratio of subordinates below the metamorphosis point and ΔTB.
It is a graph figure showing the relationship of T8. Agency Masunori Sato Samura Sasaki Sasaki Sasaki Muneharu

Claims (1)

【特許請求の範囲】[Claims] Cα06〜α1896、siα6ts以下、Mnα5〜
ZO%、  molALO,01〜0.08 %を基本
組成とし、必要に応じてNbα01〜α1%、Vo、0
1〜α15−1Ti[101〜α151!、Cu1.0
%以下、Cr1.0−以下、Ni1.0%以”F、MO
l、0−以下の一種又は二種以上(但し、Cu(!:C
rの共存及びこれらの共存下におけるNi+ Mo+ 
Nb、 V 、 Tl  の一種又祉二種以上の共存を
除く)を含有し残部iFs+及び不可避的不純物からな
シ、しかもPCM<α20% (但し、PCMは低温割
れ感受性組成)、かつ0LACCeq2 (2!i8−
 G、 18 Vc)/78  (但し、0LACCe
qは加速冷1材炭素当量、vcは加速冷却時の冷却速度
で4〜25℃層)を満足する鋼をS製し、熱間圧延にお
いてArm点以下での累積圧下率を2096以上、仕上
り温度を650℃〜(krs点−60℃)とする圧延を
行い、圧電終了vk500℃以上の温度までの少くとも
80℃の温度中にわたり上記冷却速度馬で加速冷却し、
その後放冷することを特徴とする溶接性を備えた50(
−以上の強度を有する高張力鋼の製造法。
Cα06~α1896, siα6ts or less, Mnα5~
The basic composition is ZO%, molALO, 01~0.08%, and Nbα01~α1%, Vo, 0 as necessary.
1~α15-1Ti [101~α151! ,Cu1.0
% or less, Cr1.0- or less, Ni1.0% or less"F, MO
l, 0- or less (However, Cu(!:C
Coexistence of r and Ni+ Mo+ under these coexistence
(excluding the coexistence of one or more of Nb, V, and Tl), the remainder is free from iFs+ and unavoidable impurities, and PCM<α20% (however, PCM has a composition susceptible to cold cracking), and 0LACCeq2 (2 !i8-
G, 18 Vc)/78 (However, 0LACCe
q is the carbon equivalent of 1 material after accelerated cooling, and vc is the cooling rate during accelerated cooling, which satisfies the 4-25℃ layer), and the cumulative reduction rate below the Arm point in hot rolling is 2096 or more, and the finish is Rolling is carried out at a temperature of 650° C. to (KRS point -60° C.), and accelerated cooling is performed at the above-mentioned cooling rate horse over a temperature of at least 80° C. up to a piezoelectric finish vk of 500° C. or higher;
50(
- A method for manufacturing high-tensile steel having a strength of or above.
JP14250681A 1981-09-11 1981-09-11 Production of high tensile steel having weldability and >=50kg/mm2 strength Pending JPS5845318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14250681A JPS5845318A (en) 1981-09-11 1981-09-11 Production of high tensile steel having weldability and >=50kg/mm2 strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14250681A JPS5845318A (en) 1981-09-11 1981-09-11 Production of high tensile steel having weldability and >=50kg/mm2 strength

Publications (1)

Publication Number Publication Date
JPS5845318A true JPS5845318A (en) 1983-03-16

Family

ID=15316924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14250681A Pending JPS5845318A (en) 1981-09-11 1981-09-11 Production of high tensile steel having weldability and >=50kg/mm2 strength

Country Status (1)

Country Link
JP (1) JPS5845318A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284521A (en) * 1985-06-12 1986-12-15 Nippon Steel Corp Production of steel plate having excellent dwtt characteristic
JP2010271090A (en) * 2009-05-20 2010-12-02 Hiyoshi:Kk Instrument and method for measuring characteristics of activated sludge
JP2011184843A (en) * 2010-03-11 2011-09-22 Hideo Kamiya Glove with pocket

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142505A (en) * 1980-04-07 1981-11-06 Olympus Optical Co Ltd Focus detecting and photometric method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142505A (en) * 1980-04-07 1981-11-06 Olympus Optical Co Ltd Focus detecting and photometric method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284521A (en) * 1985-06-12 1986-12-15 Nippon Steel Corp Production of steel plate having excellent dwtt characteristic
JP2010271090A (en) * 2009-05-20 2010-12-02 Hiyoshi:Kk Instrument and method for measuring characteristics of activated sludge
JP2011184843A (en) * 2010-03-11 2011-09-22 Hideo Kamiya Glove with pocket

Similar Documents

Publication Publication Date Title
JP5552045B2 (en) Low density steel with good stamping performance
JPS5877528A (en) Manufacture of high tensile steel with superior toughness at low temperature
JP4325998B2 (en) High-strength hot-dip galvanized steel sheet with excellent spot weldability and material stability
KR20000069212A (en) Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio
JPS59159932A (en) Production of high tensile steel plate having excellent strength and toughness
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JP3583306B2 (en) Method for producing high-strength and high-ductility cold-rolled steel sheet with improved variation in elongation in the sheet width direction
JPS61272317A (en) Manufacture of high strength austenitic stainless steel material at normal and high temperature range superior in corrosion resistance
JPS5877527A (en) Manufacture of high-strength and high-toughness steel
JPS5845318A (en) Production of high tensile steel having weldability and &gt;=50kg/mm2 strength
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JPH05117834A (en) Manufacture of hot dip galvannealed steel sheet having excellent stretch-flanging property using high strength hot-rolled original sheet
JPS62970B2 (en)
JPS6338518A (en) Production of steel plate having excellent hydrogen induced cracking resistance
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPS6350424A (en) Manufacture of thick high-tensile steel plate excellent in toughness at low temperature and weldability
JPS63109122A (en) Production of hot rolled sheet having excellent toughness
KR920000766B1 (en) Method of producing a high strength hot rolled steel sheet with an excellency toughness in low temperature
JPS643926B2 (en)
JPS5896819A (en) Production of low ni alloy steel plate having excellent low-temperature toughness
JPH0133530B2 (en)
JPH0559171B2 (en)
JPH02282420A (en) Production of hot-rolled steel sheet to be worked and thermomechanical treatment of hot-rolled steel sheet
JPH06200323A (en) Production of thick steel plate for structure excellent in low temperature toughness
JPH04308032A (en) Production of steel plate having slight difference in mechanical characteristic in thickness direction