JPH0133530B2 - - Google Patents

Info

Publication number
JPH0133530B2
JPH0133530B2 JP56026883A JP2688381A JPH0133530B2 JP H0133530 B2 JPH0133530 B2 JP H0133530B2 JP 56026883 A JP56026883 A JP 56026883A JP 2688381 A JP2688381 A JP 2688381A JP H0133530 B2 JPH0133530 B2 JP H0133530B2
Authority
JP
Japan
Prior art keywords
steel
strength
cooling
olac
ceq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56026883A
Other languages
Japanese (ja)
Other versions
JPS57143429A (en
Inventor
Kazuaki Matsumoto
Yoshitaka Yamazaki
Koshiro Tsukada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP2688381A priority Critical patent/JPS57143429A/en
Publication of JPS57143429A publication Critical patent/JPS57143429A/en
Publication of JPH0133530B2 publication Critical patent/JPH0133530B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、溶接性に優れた50Kg/mm2以上の強度
を有する耐候性鋼の製造方法に関するものであ
り、熱間圧延終了後の鋼材をAr3変態点以上から
500〜650℃までの温度範囲を4〜25℃/secの冷
却速度で加速冷却することにより鋼板が高強度化
する原理を利用するものである。更に詳しくは加
速冷却することによる高強度化分だけ合金成分特
に炭素量が低減可能となり、これによつて溶接性
に優れた高張力鋼の製造を可能とするものであつ
て、特に本発明では上記の如き加速冷却材の強度
とその組成、冷却速度の間に良い相関があること
を見出し、この関係を利用することにより溶接性
を備えた50Kg/mm2以上の強度を有しかつ耐候性を
も有する鋼を確実に(即ち、その組成に対応する
冷却速度或いは逆にこの加速冷却速度に対応する
組成を設定することにより)製造する方法を提供
することを目的とするものである。 熱間圧延後の厚鋼板を加速冷却することにより
変態組織を制御し機械的性質を向上させる技術は
制御冷却と呼ばれ、制御圧延(Controlled
Rolling以下CRと略称する)と同時に一種の加工
熱処理であつたということができる。この制御冷
却は従来系統的な研究が少なかつたが、最近圧延
終了後に特定の温度域のみを加速冷却するいわゆ
るInterrupted Cooling法が注目されている。こ
の方法は圧延後の直接焼入法のように焼戻処理を
必要とせず一般の非調質鋼板への適用が可能であ
り、CRと組合せることにより高靭性を維持しつ
つより一層の高張力化が図られ、さらに溶接性を
はじめ各種の鋼材性能の向上も期待できる。しか
し、このような加速冷却法は既にホツトストリツ
プミルのランアウト冷却として操業的に実証され
ている技術ではあるものの、厚板圧延では実用化
に至つていないのが現状である。 発明者らのグループは、この加速冷却法の研究
を積極的に推進してきており、その成果について
は既に数々の提案をしている。又、他社において
も低温靭性に係わるもの(例えば特公昭35−4111
号、特開昭51−59717号)、加工性に係わるもの
(例えば特開昭52−17319号)、不安定延性破壊に
係わるもの(例えば特開昭54−14321号)等が提
案されている。しかしながら、このような加速冷
却材の材質に関する提案がなされていても、溶接
性並びに耐候性に関するものは皆無である。その
理由は、一つには一般的な低合金鋼における加速
冷却の効果は、変態組織をフエライト+パーライ
ト主体の組織からベーナイト+フエライト組織に
変化させることにより強度上昇を図ると共に靭性
劣化の防止を図るものであり、一方溶接性の向上
はこの強度上昇を利用して合金成分も低減するこ
とによつて得られるものであるから、その効果が
一見間接的でありかつ当然であるかの如く見られ
るためである。従来の加速冷却法の最大の欠陥
は、データの蓄積及びその解析不足のため、この
技術が十分に利用されなかつたことにあると考え
られる。即ち、熱間圧延後引続いて加速冷却し溶
接性の優れた高張力鋼材を製造するに当り、その
目的とする具体的強度ならびに溶接性を具備した
鋼を製造するための製造条件(鋼の組成ならびに
加速冷却速度の決定)を如何に設定すべきかにつ
いては未だ解明されていない。そして、溶接性を
重視すると、その鋼の含有合金元素量、炭素当量
を低く抑え過ぎる傾向となり、たとい熱間圧延後
加速冷却を行つても目的とする強度が得られなか
つたり、またこれとは逆に強度レベルに注目して
成分設計をした場合所期の強度は得られるもの
の、溶接性については芳しくない結果が得られる
という問題があつた。併も、熱間圧延後引続き加
速冷却して製造する鋼材(主として鋼板)にあつ
ては、強度は組成と冷却速度の両方の要因で変化
するものであるから、ある冷却速度で冷却した場
合に強度が不足しても、更に大きな冷却速度で冷
却すれば目標とする強度レベルのものが得られる
可能性は残されている。しかし、採用し得る冷却
速度にも設備上或いは加速冷却材の歪の問題から
自ずと制約があり、結局目標とする溶接性、強
度、耐候性等性質を具備する鋼材を製造すること
は困難であつた。 本発明は、熱間圧延後加速冷却して得られる鋼
材の強度がその組成と冷却速度の両方の要因によ
り定まるとする原理に基づきなされたもので、こ
れに溶接性に及ぼす各元素の影響をも考慮して、
y型割れ試験で代表される溶接低温割れが生じ難
くかつ耐候性の優れた50Kg/mm2以上の強度(主と
して引張り強さ50〜60Kg/mm2)を有する鋼材の製
造方法に関するものである。その要旨とするとこ
ろは、C0.03〜0.20%、Si0.6%以下、Mn0.5〜2.5
%、Cr0.1〜2.0%、Cu0.1〜2.0%、sol.Al0.005〜
0.08%を基本組成とし、必要に応じてNb0.01〜
0.1%、V0.01〜0.15%、Ti0.01〜0.15%、Ni2.0%
以下、Mo2.0%以下の一種又は二種以上を含有し
残部は鉄及び不可避不純物からなり、しかもPCM
0.22%以下(但し、 PCM=C+Si/30+Mn/20+ Ni/60+Cu/20+Cr/20+Mo/15+V/15)で、かつOL
AC Ceq(%)1/93(34.6−0.36)〔但し、 OLAC Ceq(%)=C+Mn/5+Cu/29+Ni/15.6 +Cr/7.4+Mo/3.4+Nb/0.97+V/15、 Vは冷却速度であり4〜25℃/sec〕の条件を満
足する鋼を、熱間圧延終了後Ar3点以上の温度か
ら500〜650℃までの温度範囲を上記の冷却速度
で加速冷却し、その後放冷することを特徴とする
溶接性を備えた50Kg/mm2以上の強度を有する耐候
性鋼の製造方法である。 以下、本発明について詳細に説明する。 先づ組成について説明すると、本発明において
Cの下限を0.03%としたのは、これ未満では目標
とする50Kg/mm2以上の強度が得られないからであ
り、上限を0.20%としたのはこれを超えると溶接
性を著しく損うためである。Siは固溶強化を通じ
て高強度化に有効であるが、多量の添加は溶接性
を損うので0.6%を上限とした。Mnは鋼に強度を
与えるために必要な元素であるが0.5%未満では
その効果が小さくなり、また2.5%を超えると溶
接性が著しく不良となるため0.5〜2.5%の範囲と
した。sol.Alについては鋼の脱酸には最低0.005%
を必要とするのでこれを下限とし、また0.08%を
超えるとこの効果が飽和するので0.08%を上限と
した。Cu、Crについてはこれらは耐食性及び強
度を向上させるために有効な元素であるが、0.1
%未満ではその効果が少ないので0.1%を下限と
し、溶接性及び経済性の点から上限を2.0%とし
た。Nb、V、Tiについてはこれらにいずれか一
つが0.01%以上固溶しないと強度、靭性に効果が
認められないためこれを下限とした。またこれら
はいずれも添加量が大となると溶接性を損うため
に上限を規制する必要があり、Nbは0.10%を超
えると溶接性を損うためこれを上限とし、V、
TiはNbと同一理由で0.15%を上限とした。Ni、
Moについては強度を向上させるために有効な元
素であるが、溶接性及び経済性の点から2.0%を
上限とした。 しかして、鋼材の強度は、その組成により大き
く影響され、又その組成の強度への寄与の度合は
製造条件によつて大きく変動することは周知であ
るが、発明者らは今迄知られることの無かつた加
速冷却材における強度への組成物の影響について
C、Si、Mnをはじめ各種成分を広範囲に変化さ
せた実験室溶解鋼を用い、熱間圧延終了後Ar3
態点以上から500〜650℃の温度範囲までを10℃/
secの冷却速度で加速冷却する実験を繰返し、鋼
板強度への各合金成分の寄与を重回帰分析により
求めた。 次に、上述の実験における加速冷却(熱間圧延
終了後Ar3変態点以上から500〜650℃の温度範囲
までを10℃/secで冷却する)をした場合の各合
金成分の鋼板強度への寄与を重回帰分析により求
めた結果得られた関係式を次に示す。 TS(Kg/mm2)=19+93・OLAC Ceq ……(1) 上記(1)式中でOLACはOn―Line Accelerated
Coolingの略号であり、OLAC Ceqは加速冷却材
炭素当量式であつて次式で示される。 OLAC Ceq(%)=C+Mn/5+Cu/29+Ni/15.6 +Cr/7.4+Mo/3.4+Nb/0.97+V/1.5 ……(2) 又、加速冷却材では冷却速度が重要な因子であ
り、強度への影響を調べるための第1表に示す
OLAC Ceqの異な3鋼種を用いて冷却速度を広
範囲に変化させる実験をした。
The present invention relates to a method for producing weather-resistant steel with excellent weldability and a strength of 50 kg/mm 2 or more, in which the steel material after hot rolling is heated to an Ar 3 transformation point or higher.
This method utilizes the principle that the strength of a steel plate is increased by accelerated cooling in a temperature range of 500 to 650°C at a cooling rate of 4 to 25°C/sec. More specifically, the alloy components, particularly the carbon content, can be reduced by the amount of increased strength achieved by accelerated cooling, thereby making it possible to manufacture high-strength steel with excellent weldability. It was discovered that there is a good correlation between the strength of the accelerated cooling agent as described above, its composition, and cooling rate, and by utilizing this relationship, it is possible to achieve a strength of 50 kg/mm 2 or more with weldability and weather resistance. The object of the present invention is to provide a method for reliably producing a steel having a certain temperature (i.e., by setting a cooling rate corresponding to its composition or, conversely, a composition corresponding to this accelerated cooling rate). The technology of controlling the transformed structure and improving mechanical properties by accelerated cooling of thick steel plates after hot rolling is called controlled cooling.
Rolling (hereinafter abbreviated as CR) can be said to be a type of processing heat treatment. Until now, there has been little systematic research into this controlled cooling, but recently the so-called Interrupted Cooling method, which accelerates cooling only in a specific temperature range after finishing rolling, has been attracting attention. This method does not require tempering treatment like the direct quenching method after rolling, and can be applied to general non-tempered steel sheets. By combining it with CR, it can maintain high toughness and achieve even higher toughness. It can be expected to increase the tensile strength and improve weldability and other various steel material properties. However, although such an accelerated cooling method has already been operationally proven as run-out cooling in hot strip mills, it has not yet been put to practical use in plate rolling. The inventors' group has been actively promoting research on this accelerated cooling method, and has already made a number of proposals regarding the results. Also, other companies have products related to low-temperature toughness (for example, Japanese Patent Publication No. 35-4111
JP-A-51-59717), methods related to workability (e.g., JP-A-52-17319), and methods related to unstable ductile fracture (e.g., JP-A-54-14321) have been proposed. . However, even though proposals have been made regarding the material of such accelerated cooling materials, there are no proposals regarding weldability and weather resistance. One reason for this is that the effect of accelerated cooling on general low-alloy steels is to change the transformation structure from a ferrite + pearlite-based structure to a bainite + ferrite structure, thereby increasing the strength and preventing toughness deterioration. On the other hand, improvement in weldability can be obtained by utilizing this increase in strength and reducing alloy components, so the effect is at first glance indirect and may seem natural. This is so that you can be saved. It is believed that the biggest drawback of the conventional accelerated cooling method is that this technology has not been fully utilized due to lack of data accumulation and analysis thereof. In other words, when producing high-strength steel materials with excellent weldability by subsequent accelerated cooling after hot rolling, manufacturing conditions (steel It has not yet been elucidated how to set the composition and accelerated cooling rate. If weldability is emphasized, the alloying element content and carbon equivalent of the steel tend to be kept too low, and even if accelerated cooling is performed after hot rolling, the desired strength may not be obtained. On the other hand, if the components were designed with attention to the strength level, the desired strength could be obtained, but there was a problem in that poor weldability results were obtained. At the same time, in the case of steel products (mainly steel plates) manufactured by hot rolling followed by accelerated cooling, the strength changes depending on both the composition and cooling rate, so when cooled at a certain cooling rate, Even if the strength is insufficient, there is still a possibility that the target strength level can be obtained by cooling at a higher cooling rate. However, there are limits to the cooling rate that can be adopted due to problems with the equipment or distortion of the accelerated cooling material, and it is difficult to manufacture steel materials that have the desired properties such as weldability, strength, and weather resistance. Ta. The present invention was made based on the principle that the strength of a steel material obtained by accelerated cooling after hot rolling is determined by both its composition and cooling rate, and the influence of each element on weldability is also considered. Also, taking into consideration
The present invention relates to a method for producing a steel material that is resistant to welding cold cracking as typified by the Y-type cracking test, has excellent weather resistance, and has a strength of 50 Kg/mm 2 or more (mainly tensile strength of 50 to 60 Kg/mm 2 ). The main points are: C0.03~0.20%, Si0.6% or less, Mn0.5~2.5
%, Cr0.1~2.0%, Cu0.1~2.0%, sol.Al0.005~
The basic composition is 0.08%, and if necessary, Nb0.01~
0.1%, V0.01~0.15%, Ti0.01~0.15%, Ni2.0%
Below, it contains one or more types of Mo2.0% or less, the remainder consists of iron and unavoidable impurities, and P CM
0.22% or less (However, P CM = C + Si / 30 + Mn / 20 + Ni / 60 + Cu / 20 + Cr / 20 + Mo / 15 + V / 15) and OL
AC Ceq (%) 1/93 (34.6-0.36 V ) [However, OLAC Ceq (%) = C + Mn / 5 + Cu / 29 + Ni / 15.6 + Cr / 7.4 + Mo / 3.4 + Nb / 0.97 + V / 15, V is the cooling rate and 4 ~25℃/sec] After hot rolling, the temperature range from Ar 3 points or more to 500 to 650℃ is cooled at the above cooling rate V.
This is a method for producing weather-resistant steel with weldability and a strength of 50 Kg/mm 2 or more, which is characterized by accelerated cooling at a temperature of 50 kg/mm 2 or more, followed by cooling. The present invention will be explained in detail below. First, to explain the composition, in the present invention, the lower limit of C is set to 0.03% because if it is less than this, the target strength of 50 kg/mm 2 or more cannot be obtained, and the upper limit is set to 0.20%. This is because if it exceeds this, weldability will be significantly impaired. Although Si is effective in increasing strength through solid solution strengthening, adding a large amount impairs weldability, so the upper limit was set at 0.6%. Mn is an element necessary to give strength to steel, but if it is less than 0.5%, its effect will be small, and if it exceeds 2.5%, weldability will be extremely poor, so it was set in the range of 0.5 to 2.5%. For sol.Al, minimum 0.005% for deoxidizing steel
is required, so this was set as the lower limit, and since this effect becomes saturated if it exceeds 0.08%, 0.08% was set as the upper limit. Regarding Cu and Cr, these are effective elements for improving corrosion resistance and strength, but 0.1
Since the effect is small if it is less than 0.1%, the lower limit was set at 0.1%, and the upper limit was set at 2.0% from the viewpoint of weldability and economical efficiency. Regarding Nb, V, and Ti, this was set as the lower limit because no effect on strength and toughness would be observed unless at least 0.01% of any one of these was dissolved in solid solution. In addition, it is necessary to regulate the upper limit for any of these substances because they impair weldability when added in large amounts.
The upper limit for Ti was set at 0.15% for the same reason as for Nb. Ni,
Although Mo is an effective element for improving strength, the upper limit was set at 2.0% from the viewpoint of weldability and economical efficiency. Although it is well known that the strength of steel is greatly influenced by its composition, and that the degree of contribution of the composition to strength varies greatly depending on manufacturing conditions, the inventors have not disclosed anything known so far. Regarding the influence of the composition on the strength of an accelerated cooling material that has no 10℃/up to a temperature range of ~650℃
The experiment was repeated with accelerated cooling at a cooling rate of sec, and the contribution of each alloy component to the strength of the steel sheet was determined by multiple regression analysis. Next, we will discuss the effect of each alloy component on the steel sheet strength when accelerated cooling (cooling at 10°C/sec from the Ar 3 transformation point or higher to the temperature range of 500 to 650°C after hot rolling) in the above experiment was performed. The relational expression obtained as a result of determining the contribution by multiple regression analysis is shown below. TS (Kg/mm 2 ) = 19 + 93・OLAC Ceq ...(1) In the above formula (1), OLAC is On-Line Accelerated
OLAC Ceq is an abbreviation for Cooling, and OLAC Ceq is an accelerated coolant carbon equivalent formula, which is expressed by the following formula. OLAC Ceq (%) = C + Mn / 5 + Cu / 29 + Ni / 15.6 + Cr / 7.4 + Mo / 3.4 + Nb / 0.97 + V / 1.5 ... (2) In addition, the cooling rate is an important factor for accelerated cooling materials, and the influence on strength is Shown in Table 1 to find out
An experiment was conducted in which the cooling rate was varied over a wide range using three different types of OLAC Ceq steel.

【表】 その結果は第1図に示す通りOLAC Ceqとは
独立に加速冷却速度の上昇はTSを上昇させ、加
速冷却速度4〜25℃/secの範囲では1℃/sec当
りのTS上昇量は約0.36Kg/mm2であることが判明
した(第1図に示すΔTSとは、加速冷却材のTS
から同一圧延条件の熱間圧延のTSを差引いたも
の)。以上の結果から加速冷却材のTSはOLAC
Ceqと冷却速度(℃/sec)を設定するならば、
次式から一義的に決定可能であることが分る。 TS=19+93・OLAC Ceq+0.36(−10) ……(3) この(3)式よりTS50Kg/mm2以上の高張力鋼板を
加速冷却により製造するにはOLAC Ceq及び
が次式を満せば良いことが分る。 5019+93・OLAC Ceq+0.36(−10) ……(4) 即ち、OLAC Ceq(34.6−0.36)/93
……(5) さらに、溶接性については基本的には合金成分
が大きな因子であり、加速冷却材と熱間圧延まま
材とが同一成分ならば差は無いと考えられる。従
つて、低温割れ感受性組成PCM値を用いて従来の
圧延まま材と同様に規制すれば良い。予熱温度50
℃にてy型割れ試験で代表される低温割れを防止
するためのPCM値は、鋼板厚25mmで低水素系溶接
棒を用いた場合0.22以下であることが確認された
ため、これを溶接性可不の判断値とした。 PCM0.22 ……(6) 但し、 PCM=C+Si/30+Mn/20+Ni/60+Cu/20+Cr/20
+Mo/15 +V/15 以上の説明によつて理解されるように、本発明
においては鋼材の組成が、単に各合金元素に規制
される含有量(例えばC:0.03〜0.20%)の上、
下限の範囲内にあればよいということではない。
即ち、その含有する各合金元素の量を上記(2)式代
入し、得られるOLAC Ceqがそのとき採用する
冷却速度との関係(5)式を満足しなければ50O
Kg/mm2未満の強度しか得られないので、その組成
は少くとも(5)式を満足するように設定するように
設定しなければならない。しかし、各合金元素の
量を余り多く含有させると(6)式が満されなくな
る。従つて、熱間圧延後加速冷却する鋼板の組成
は上限を(6)式により又下限は(5)式により規制され
るといつても過言ではない。また両式の形から分
るようにその上限は兎も角下限は加速冷却速度の
影響を受け、速度を大きくとれば鋼材における各
合金元素の含有量は多少少な目でも(5)式が満足し
得る場合がある。 次に、製造条件について説明すると、加速冷却
開始温度をAr3点以上としたのは、Ar3点より低
い温度から冷却を開始しても既にフエライトが生
成しはじめているため十分な変態組織改善効果が
期待出来ず、従つて強化が望めないからである。
又、冷却停止温度の上限を650℃としたのはこれ
より高い停止温度ではベーナイトが十分生成しな
い等変態組織改善効果が期待できず、強化が望め
ないためであり、下限を500℃としたものはこれ
より低い温度では鋼板の歪が大となり製造工程上
望ましくないからである。又、冷却速度の下限を
4℃/secとしたのはこれ以下では第1図に示す
如く十分な強化が期待できないためであり、その
上限を25℃/secとしたのは鋼板の歪が大となる
ためである。 実施例 第2表に示す組成の化学成分の供試鋼をいずれ
も250トン転炉により溶製した。鋼2〜5はPMC
値が0.16〜0.18の範囲に、OLAC Ceq値が0.30〜
0.35の範囲にある。一方、鋼1はPCM値が0.22以
下で、OLAC Ceq値が著しく低いものであり、
鋼6〜9はいずれも合金成分が高いためPCM値が
0.22を超えたものである。 第3表は製造条件と機械的性質・溶接性試験の
結果を示す。
[Table] As shown in Figure 1, the results show that an increase in accelerated cooling rate increases TS independently of OLAC Ceq, and in the accelerated cooling rate range of 4 to 25℃/sec, the amount of TS increase per 1℃/sec was found to be approximately 0.36Kg/mm 2 (ΔTS shown in Figure 1 is the TS of the accelerated coolant).
TS of hot rolling under the same rolling conditions). From the above results, the accelerated coolant TS is OLAC.
If you set Ceq and cooling rate ( V °C/sec),
It can be seen from the following equation that it can be determined uniquely. TS = 19 + 93・OLAC Ceq + 0.36 ( V -10) ... (3) From this formula (3), in order to manufacture high tensile strength steel plates with TS50Kg/mm2 or more by accelerated cooling, OLAC Ceq and V
It turns out that it is sufficient if it satisfies the following formula. 5019+93・OLAC Ceq+0.36 ( V −10) ……(4) That is, OLAC Ceq (34.6−0.36 V )/93
...(5) Furthermore, alloy composition is basically a major factor in weldability, and it is thought that there is no difference if the accelerated cooling material and the as-hot rolled material have the same composition. Therefore, the low temperature cracking susceptibility composition P CM value may be used to regulate it in the same way as conventional as-rolled materials. Preheating temperature 50
It has been confirmed that the P CM value for preventing cold cracking as represented by the Y-type cracking test at ℃ is 0.22 or less when using a low-hydrogen welding rod with a steel plate thickness of 25 mm. This value was used as a judgment value for pass/fail. P CM 0.22 ...(6) However, P CM = C + Si / 30 + Mn / 20 + Ni / 60 + Cu / 20 + Cr / 20
+Mo/15 +V/15 As understood from the above explanation, in the present invention, the composition of the steel material is simply controlled by the content of each alloying element (for example, C: 0.03 to 0.20%),
This does not mean that it is sufficient to be within the lower limit.
In other words, by substituting the amount of each alloying element contained in the above formula (2), if the obtained OLAC Ceq does not satisfy the relationship (5) with the cooling rate V adopted at that time, 50O
Since a strength of less than Kg/mm 2 can be obtained, the composition must be set so as to satisfy at least formula (5). However, if the amount of each alloying element is too large, equation (6) will not be satisfied. Therefore, it is no exaggeration to say that the upper limit of the composition of a steel plate subjected to accelerated cooling after hot rolling is regulated by equation (6), and the lower limit is regulated by equation (5). Furthermore, as can be seen from the shapes of both equations, the upper limit is affected by the accelerated cooling rate, and the lower limit is affected by the accelerated cooling rate; if the rate is set high, equation (5) will be satisfied even if the content of each alloying element in the steel material is somewhat small. You may get it. Next, to explain the manufacturing conditions, the reason why the accelerated cooling start temperature was set at Ar 3 points or higher is that even if cooling starts from a temperature lower than Ar 3 points, ferrite has already begun to form, so the transformation structure improvement effect is sufficient. This is because there is no hope for improvement, and therefore no improvement can be expected.
In addition, the upper limit of the cooling stop temperature was set at 650°C because if the stopping temperature is higher than this, bainite will not be sufficiently generated, and the effect of improving the transformed structure cannot be expected, so strengthening cannot be expected, so the lower limit was set at 500°C. This is because if the temperature is lower than this, the distortion of the steel plate becomes large, which is not desirable in terms of the manufacturing process. In addition, the lower limit of the cooling rate was set at 4℃/sec because sufficient strengthening cannot be expected as shown in Figure 1 below this rate, and the upper limit was set at 25℃/sec because the strain in the steel plate is large. This is because. Example All test steels having the chemical compositions shown in Table 2 were melted in a 250-ton converter. Steel 2 to 5 are P MC
Values range from 0.16 to 0.18, OLAC Ceq values range from 0.30 to
It is in the range of 0.35. On the other hand, Steel 1 has a P CM value of 0.22 or less and an extremely low OLAC Ceq value.
Steels 6 to 9 all have high alloy components, so the P CM value is
It exceeds 0.22. Table 3 shows the manufacturing conditions and the results of mechanical property and weldability tests.

【表】【table】

【表】 第2表、第3表から明らかなように、鋼1の如
き低OLAC Ceqの鋼では圧延ままは勿論のこと
熱間圧延後の加速冷却速度を25℃/sec近くまで
大きくしても(34.6−0.36)/93値がOLAC
Ceq値を上回るため50Kg/mm2以上の強度とするこ
とができない。鋼2、鋼3では低冷却速度の場合
強度は50Kg/mm2を超えないけれども冷却速度を適
切に選ぶことにより(34.6−0.36V)/93値より
もOLAC Ceq値の方が大きくなるため強度が50
Kg/mm2を超えるようになる。しかし、鋼2―ホの
如く冷却速度、組成が適切であつても冷却停止温
度が680℃と高くなると強度は50Kg/mm2を下回り、
また鋼3―ヘの如く冷却開始温度が770℃とAr3
点以下になつた場合にも矢張り強度不足となる。
また鋼9はイに示すように熱間圧延ままでは強度
が50Kg/mm2に達しないが、ロに示すように略9
℃/secの冷却速度で熱間圧延後加速冷却するこ
とにより所期の50Kg/mm2以上の強度を得ることは
できる。ただし50℃におけるy型割れ試験結果で
は割れを防止できない。 次に、第3表に示した鋼板及び第1表における
鋼A、鋼Bを熱間圧延後それぞれ略17℃/sec及
び13℃/secで加速冷却して得た所期の溶接性、
強度を有する鋼材について次の要領で耐候性試験
を行つた。 (1) 試験片寸法及び試験方法 試験片寸法:5×100×150(mm)表面仕上精
度vvv 試験方法:大気暴露試験 (ii) 試験場所、設置方法及び試験期間 試験場所:田園住宅地帯 設置方法:南面した傾斜角度30゜の試験台に
絶縁碍子を介して取付ける。 試験期間:1.5年経過後、取外し腐食減量を
調査した。 (iii) 試験結果
[Table] As is clear from Tables 2 and 3, for steels with low OLAC Ceq such as Steel 1, the accelerated cooling rate after hot rolling is increased to nearly 25℃/sec, as well as for as-rolled steels. (34.6−0.36 V )/93 value is OLAC
Since it exceeds the Ceq value, it cannot be made stronger than 50Kg/mm 2 . For Steel 2 and Steel 3, the strength does not exceed 50Kg/ mm2 at low cooling rates, but by appropriately selecting the cooling rate, the OLAC Ceq value becomes larger than the (34.6-0.36V)/93 value, so the strength can be increased. is 50
It will exceed Kg/mm 2 . However, even if the cooling rate and composition are appropriate as in Steel 2-E, if the cooling stop temperature is as high as 680℃, the strength will drop below 50Kg/ mm2 .
Also, as shown in Steel 3-H, the cooling start temperature is 770℃ and Ar 3
If it falls below this point, the tension strength will also be insufficient.
Also, as shown in A, the strength of Steel 9 does not reach 50Kg/mm 2 when hot rolled, but as shown in B, the strength is approximately 9Kg/mm2.
By performing accelerated cooling after hot rolling at a cooling rate of °C/sec, it is possible to obtain the desired strength of 50 Kg/mm 2 or more. However, the Y-shaped cracking test results at 50°C do not prevent cracking. Next, the desired weldability obtained by accelerating cooling the steel plates shown in Table 3 and steel A and steel B in Table 1 at approximately 17°C/sec and 13°C/sec, respectively, after hot rolling,
Weather resistance tests were conducted on strong steel materials in the following manner. (1) Test piece dimensions and test method Test piece dimensions: 5 x 100 x 150 (mm) Surface finish accuracy vvv Test method: Atmospheric exposure test (ii) Test location, installation method and test period Test location: Rural residential area Installation method : Mounted on a test stand facing south with an inclination angle of 30° via an insulator. Test period: After 1.5 years, it was removed and corrosion weight loss was investigated. (iii) Test results

【表】 上表に示す通り第3表1〜9の鋼のように
Cu、Crを共存させることが耐候性向上に有効
であることが分る。 以上説明した如く、本発明によるときは溶接性
を備えしかも50Kg/mm2以上の強度を有する耐候性
鋼材を従来のように試行錯誤を繰返すことなく確
実に製造することを可能とするものであつて工業
上有意義な発明である。さらに付言すれば従来の
耐候性鋼はその目的のためにCr等の合金元素を
一定量以上含有させる必要があり、それに起因し
てy型割れ防止予熱温度として100℃以上とする
必要があつたのを、本発明によればこの予熱温度
を50℃とすることが可能になり、溶接施工上の制
約が大巾に軽減することにより溶接構造物への採
用が一段と推進される。
[Table] As shown in the table above, steels in Table 3 1 to 9
It can be seen that the coexistence of Cu and Cr is effective in improving weather resistance. As explained above, according to the present invention, it is possible to reliably manufacture a weathering steel material that is weldable and has a strength of 50 kg/mm 2 or more without repeating trial and error as in the past. This is an industrially significant invention. Furthermore, for this purpose, conventional weathering steel must contain a certain amount or more of alloying elements such as Cr, which requires a preheating temperature of 100°C or higher to prevent Y-shaped cracking. However, according to the present invention, it is possible to set the preheating temperature to 50°C, which greatly reduces restrictions on welding work, thereby further promoting its adoption in welded structures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼の加速冷却速度とΔTSの関係を示
したグラフ図である。
FIG. 1 is a graph showing the relationship between accelerated cooling rate of steel and ΔTS.

Claims (1)

【特許請求の範囲】 1 C0.03〜0.20%、Si0.6%以下、Mn0.5〜2.5%、
Cr0.1〜2.0%、Cu0.1〜2.0%、solAl0.005〜0.08%
を含有し残部は鉄及び不可避不純物からなりしか
もPCM0.22%以下(但し、PCM=C+Si/30+
Mn/20+Ni/60+Cu/20+Cr/20+Mo/15+
V/15)で、かつOLAC Ceq(%)1/93(34.6
−0.36V)[但し、OLAC Ceq(%)=C+Mn/5
+Cu/29+Ni/15.6+Cr/7.4+Mo/3.4+Nb/
0.97+V/15、Vは冷却速度であり4〜25℃/
sec]の条件を満足する鋼を、熱間圧延終了後
Ar3点以上の温度から500〜650℃までの温度範囲
を上記の冷却速度Vで加速冷却し、その後放冷す
ることを特徴とする溶接性を備えた50Kg/mm2以上
の強度を有する耐候性鋼の製造方法。 2 C0.03〜0.20%、Si0.6%以下、Mn0.5〜2.5%、
Cr0.1〜2.0%、Cu0.1〜2.0%、solAl0.005〜0.08%
を基本組成とし、更にNb0.01〜0.1%、V0.01〜
0.15%、Ti0.01〜0.15%、Ni2.0%以下、Mo2.0%
以下の一種又は二種以上を含有し残部は鉄及び不
可避不純物からなりしかもPCM0.22%以下(但
し、PCM=C+Si/30+Mn/20+Ni/60+Cu/
20+Cr/20+Mo/15+V/15)で、かつOLAC
Ceq(%)1/93(34.6−0.36V)[但し、OLAC
Ceq(%)=C+Mn/5+Cu/29+Ni/15.6+
Cr/7.4+Mo/3.4+Nb/0.97+V/15、Vは冷
却速度であり4〜25℃/sec]の条件を満足する
鋼を、熱間圧延終了後Ar3点以上の温度から500
〜650℃までの温度範囲を上記の冷却速度Vで加
速冷却し、その後放冷することを特徴とする溶接
性を備えた50Kg/mm2以上の強度を有する耐候性鋼
の製造方法。
[Claims] 1 C0.03~0.20%, Si0.6% or less, Mn0.5~2.5%,
Cr0.1~2.0%, Cu0.1~2.0%, solAl0.005~0.08%
The remainder consists of iron and unavoidable impurities, and P CM is 0.22% or less (however, P CM = C + Si / 30 +
Mn/20+Ni/60+Cu/20+Cr/20+Mo/15+
V/15) and OLAC Ceq (%) 1/93 (34.6
-0.36V) [However, OLAC Ceq (%) = C + Mn/5
+Cu/29+Ni/15.6+Cr/7.4+Mo/3.4+Nb/
0.97+V/15, V is the cooling rate, 4~25℃/
After hot rolling, the steel that satisfies the conditions of
Weldability characterized by accelerated cooling in the temperature range from 3 points or more to 500 to 650℃ at the above cooling rate V, and then left to cool, and weather resistance with a strength of 50Kg/mm 2 or more manufacturing method of steel. 2 C0.03~0.20%, Si0.6% or less, Mn0.5~2.5%,
Cr0.1~2.0%, Cu0.1~2.0%, solAl0.005~0.08%
The basic composition is Nb0.01~0.1%, V0.01~
0.15%, Ti0.01~0.15%, Ni2.0% or less, Mo2.0%
Contains one or more of the following, with the remainder consisting of iron and unavoidable impurities, and P CM 0.22% or less (However, P CM = C + Si / 30 + Mn / 20 + Ni / 60 + Cu /
20+Cr/20+Mo/15+V/15) and OLAC
Ceq (%) 1/93 (34.6−0.36V) [However, OLAC
Ceq (%)=C+Mn/5+Cu/29+Ni/15.6+
Cr/7.4+Mo/3.4+Nb/0.97+V/15, V is the cooling rate of 4 to 25℃/sec], and after hot rolling, the steel was heated to 500℃ from a temperature of 3 points or higher.
A method for producing weather-resistant steel having weldability and a strength of 50 Kg/mm 2 or more, characterized by performing accelerated cooling at the above-mentioned cooling rate V in a temperature range of up to 650° C., and then allowing it to cool.
JP2688381A 1981-02-27 1981-02-27 Manufacture of weather resistant steel with weldability and >=50kg/mm2 strength Granted JPS57143429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2688381A JPS57143429A (en) 1981-02-27 1981-02-27 Manufacture of weather resistant steel with weldability and >=50kg/mm2 strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2688381A JPS57143429A (en) 1981-02-27 1981-02-27 Manufacture of weather resistant steel with weldability and >=50kg/mm2 strength

Publications (2)

Publication Number Publication Date
JPS57143429A JPS57143429A (en) 1982-09-04
JPH0133530B2 true JPH0133530B2 (en) 1989-07-13

Family

ID=12205671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2688381A Granted JPS57143429A (en) 1981-02-27 1981-02-27 Manufacture of weather resistant steel with weldability and >=50kg/mm2 strength

Country Status (1)

Country Link
JP (1) JPS57143429A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107779740B (en) * 2016-08-26 2019-02-26 鞍钢股份有限公司 Yield strength 700MPa grade atmospheric corrosion resistant hot rolled strip and manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626884A (en) * 1979-08-14 1981-03-16 Nippon Nohyaku Co Ltd Dihydrothiadiazines and insecticidal, miticidal, fungicidal agent containing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626884A (en) * 1979-08-14 1981-03-16 Nippon Nohyaku Co Ltd Dihydrothiadiazines and insecticidal, miticidal, fungicidal agent containing the same

Also Published As

Publication number Publication date
JPS57143429A (en) 1982-09-04

Similar Documents

Publication Publication Date Title
US5876521A (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
US5900075A (en) Ultra high strength, secondary hardening steels with superior toughness and weldability
JPS5852423A (en) Manufacture of unnormalized high tensile boron steel with superior toughness at low temperature and superior weldability
JPS6366368B2 (en)
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP5170212B2 (en) Method for producing high-tensile steel with high yield point
JP3879639B2 (en) High toughness and high yield point steel with excellent weldability and method for producing the same
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JPH0133530B2 (en)
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH1017929A (en) Production of thick 600n class steel excellent in weldability and toughness in center part of plate thickness
JP2532176B2 (en) Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties
JP3371715B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance
JP3864880B2 (en) Manufacturing method of high toughness and high yield point steel with excellent weldability
JPS5845318A (en) Production of high tensile steel having weldability and >=50kg/mm2 strength
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JP2001089816A (en) Method of manufacturing high strength hot rolled steel plate
JPS6286122A (en) Production of structural steel having high strength and high weldability
JPS643926B2 (en)
JPH0737649B2 (en) Manufacturing method of fireproof steel plate for building with low yield ratio
JPH0657371A (en) Low yield ratio fire resistant building steel excellent in weldability
JPH02209422A (en) Production of high tensile steel plate excellent in weldability and toughness
JPH0143006B2 (en)
JPH09176783A (en) High tensile strength steel excellent in weldability and atmospheric corrosion resistance and its production
JPH07207336A (en) Production of refractory steel products for building structural purpose