JPS5852423A - Manufacture of unnormalized high tensile boron steel with superior toughness at low temperature and superior weldability - Google Patents

Manufacture of unnormalized high tensile boron steel with superior toughness at low temperature and superior weldability

Info

Publication number
JPS5852423A
JPS5852423A JP14773881A JP14773881A JPS5852423A JP S5852423 A JPS5852423 A JP S5852423A JP 14773881 A JP14773881 A JP 14773881A JP 14773881 A JP14773881 A JP 14773881A JP S5852423 A JPS5852423 A JP S5852423A
Authority
JP
Japan
Prior art keywords
toughness
steel
rolling
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14773881A
Other languages
Japanese (ja)
Other versions
JPS605647B2 (en
Inventor
Kenichi Amano
虔一 天野
Chiaki Shiga
千晃 志賀
Taneo Hatomura
波戸村 太根生
Taketo Okumura
健人 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP56147738A priority Critical patent/JPS605647B2/en
Publication of JPS5852423A publication Critical patent/JPS5852423A/en
Publication of JPS605647B2 publication Critical patent/JPS605647B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a high tensile steel with superior toughness at low temp. and superior weldability by heating and rolling a steel contg. adequate amounts of B and Ti under specified conditions and by carrying out accelerated cooling. CONSTITUTION:A steel slab contg. 0.02-0.12% C, 0.03-0.60% Si, 1.0-2.5% Mn, 0.005-0.01% sol.Al, 0.01-0.10% Nb, 0.0003-0.003% B, 0.005-0.08% Ti and <=0.008% each of N and S as impurities or further contg. a specified small amount of one or more among Ni, Cu, Mo, V, Cr, Ca and a rare earth element is heated to 1,050-1,250 deg.C and rolled at a temp. in a temp. range where austenite is recrystallized and >=50% total draft. It is further rolled at Ar3-Ar3+ 150 deg.C and >=50% total draft and immediately quenched to <=600 deg.C at >=2 deg.C/sec cooling rate.

Description

【発明の詳細な説明】 この発明は、低温靭性と溶接性に優れた高張力鋼の製造
方法に関し、特にこの発明は、高い強度レベルを有する
低温靭性と溶接性に優れたボロン含有非調質高張力鋼の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-strength steel with excellent low-temperature toughness and weldability. The present invention relates to a method for manufacturing high-strength steel.

焼入れ、焼戻しなどの調質処理を施すことなく、すなわ
ち非調質で高い強度と低温靭性を有する鋼を製造する場
合にWb含有鋼を制御圧延し、その後加速冷却する方法
が知られている。
When manufacturing steel having high strength and low-temperature toughness without heat treatment such as quenching and tempering, that is, without heat treatment, a method is known in which Wb-containing steel is controlled rolled and then accelerated cooled.

ところで、ボロンは焼入性を増大する元素として焼入れ
―焼戻しなどの調質鋼において使用されてきた。非調質
鋼においても、ボロンを使用できれば炭素当量(0・q
)を上昇することなく高張力化が可能であり、その利用
方法の確立が切望されていた。しかしながら、非調質鋼
とくに制御圧延後の加速冷却のままで使用する鋼の場合
に、ボロンを使用する例は従来はとんと知られていなか
った。その理由は、非調質鋼においてはその加熱温度が
高いため、ボロンを利用するに際して、ボロンがボロン
化合物となって有効に作用しないことが指摘されている
からである。
By the way, boron has been used as an element to increase hardenability in tempered steels such as quenching and tempering. Even in non-tempered steel, if boron can be used, the carbon equivalent (0.q
), it is possible to increase the tension without increasing the tension, and there has been a strong desire to establish a method for its use. However, in the case of non-tempered steel, especially steel that is used after being acceleratedly cooled after controlled rolling, the use of boron has not been known in the past. The reason for this is that it has been pointed out that since the heating temperature of non-tempered steel is high, when boron is used, it becomes a boron compound and does not work effectively.

この点に関して、sol、ムjを0.04%以上添加し
、かつ加熱温度を低温に設定(具体的には1010〜/
/10℃)することにより、圧延後に加速冷却を行う非
調質鋼にボロンを添加した例が唯一提案されているが、
1ole人ノの添加量が0.OA%以上と高いため、溶
接熱影響部(H[)の靭性が損なわれるのみならず、溶
接金属の靭性も劣化する欠点があった。また加熱温度に
関しても、低温加熱であるため、スケールのはくり性が
悪く、スツプの表面性状ひいては製品のそれにも問題を
生じることは避けられなかった。
Regarding this point, 0.04% or more of sol and muj are added, and the heating temperature is set to a low temperature (specifically, 1010~/
The only example that has been proposed is that boron is added to non-tempered steel that is subjected to accelerated cooling after rolling (by reducing the rolling temperature to 10°C).
The amount added per 1ole is 0. Since the OA% is high, it not only impairs the toughness of the weld heat affected zone (H[) but also deteriorates the toughness of the weld metal. Regarding the heating temperature, since the heating is done at a low temperature, the peeling off of the scale is poor, and it is inevitable that problems will occur with the surface quality of the spruce and, ultimately, with the product.

この発明は、上記従来方法によるより“もさらに強度の
高い低温靭性と溶接性に優れたボロン含有非調質高張力
鋼の製造方法を提供することを目的とするものであり、
特許請求の範囲記載の方法な提供することによって前記
目的を達成することができる。
The object of the present invention is to provide a method for producing boron-containing non-temperature high-strength steel that has even higher strength, excellent low-temperature toughness, and weldability than the conventional method described above,
The above object can be achieved by providing the method described in the claims.

次にこの発明の詳細な説明する。Next, this invention will be explained in detail.

この発明者らは、圧延後加速冷却を施す非調質鋼におい
てボロンを有効に利用する方法について研究を重ねた結
果、ボロンとチタンを適量含有せしめた鋼に適切な加熱
−圧延を施し、以後加速冷却を施すことにより上記問題
点を解決することができること、すなわちボロンを有効
に利用するための諸条件により生ずる欠点を抑制してボ
ロンを有効に利用することができることを新規に知見し
てこの発明を完成した。
As a result of repeated research on a method for effectively utilizing boron in non-tempered steel that is subjected to accelerated cooling after rolling, the inventors conducted appropriate heating and rolling on steel containing appropriate amounts of boron and titanium. We have newly discovered that the above problems can be solved by applying accelerated cooling, that is, it is possible to effectively utilize boron by suppressing the defects caused by the various conditions for effectively utilizing boron. Completed the invention.

次にこの発明を研究データにもとづいて説明する。Next, this invention will be explained based on research data.

まず圧延前の加熱温度が強度と靭性に及ぼす影響を調べ
た。
First, we investigated the effect of heating temperature before rolling on strength and toughness.

第1表に示す本発明成分範囲の鋼ノと従来鋼Jを用いて
加熱温度tt100θ〜/JjtO℃として、デ10°
Cまでに票積圧下率でji%となるまで圧延し、引続き
100℃以下で票積圧下率で41%となるまで圧延し、
最終仕上温度を790℃とした。なお仕上板厚はit、
mである。その後冷却速度を10℃/−とじて300℃
まで冷却して以後空冷した後の強度と靭性の結果を図に
示す。この図から本発明成分範囲の@/は圧延後の加速
冷却により、空冷した場合に比べてT、S、で119f
/、−以上も高張力化している。しかも靭性は劣化して
いない。さらに、加熱温度を10!0〜/、2!θ℃ま
で変化させても強度−靭性が安定していることもわかる
。一方、本発明の成分範囲でない鋼3は加速冷却により
高張力化はするものの、スラブ加熱温度は狭い範囲(1
ota〜/100℃)に限定され、1100℃以上とす
るとボロンは無効化しはじめ強度低下が着るしい。すな
わちチタンとボロンを組合せ、適切な圧延を実施したの
ち加速冷却することにより、非調質鋼でもボロンを有効
に利用して、靭性の劣化を伴なうこらべて適用加熱温度
範囲を高くとれること、およびmol、ムlの含有量を
高くする必要がないことが判明し、前述の欠点な合理的
に解決できるのである。
Using steel having the composition range of the present invention shown in Table 1 and conventional steel J, the heating temperature was set to tt100θ~/JjtO℃, and the heating temperature was set to 10°C.
By C, it is rolled until the stacking reduction rate is ji%, and then it is continuously rolled at 100°C or less until the stacking reduction rate is 41%,
The final finishing temperature was 790°C. The finished plate thickness is IT,
It is m. Then reduce the cooling rate by 10℃/- to 300℃
The figure shows the strength and toughness results after cooling to From this figure, @/ in the component range of the present invention is 119f at T and S due to accelerated cooling after rolling, compared to air cooling.
The tension is also higher than /, -. Moreover, the toughness has not deteriorated. Furthermore, increase the heating temperature to 10!0~/,2! It can also be seen that the strength-toughness is stable even when the temperature is changed up to θ°C. On the other hand, steel 3, which is not in the composition range of the present invention, can be made to have a high tensile strength by accelerated cooling, but the slab heating temperature is within a narrow range (1
When the temperature exceeds 1100°C, boron begins to become ineffective and its strength decreases. In other words, by combining titanium and boron and performing appropriate rolling followed by accelerated cooling, boron can be used effectively even in non-thermal treated steel, and the applicable heating temperature range can be increased even though this may cause deterioration of toughness. It has been found that there is no need to increase the mol and mul contents, and the above-mentioned drawbacks can be rationally solved.

したがってこの発明の構成要件の第1の要部は鋼の成分
の限定にあり、まず各合金成分の限定理由を以下に詳述
する。
Therefore, the first essential component of the present invention is the limitation of the steel components, and first the reason for the limitation of each alloy component will be explained in detail below.

0はその含有量が0.0.2−未満の場合には高強度が
得られず、かつ溶接熱影響部(以下HAZと略記)の軟
化が大きいこと、またそれがo、iコ≦以上の場合には
溶接性が害されるとともに、この発明における加熱−圧
延一一却条件では焼入組織となって靭性が害され、焼戻
し工程が必要゛となるので0.01〜0./コ≦とする
必要がある。
0 means that if the content is less than 0.0.2-, high strength cannot be obtained and the weld heat affected zone (hereinafter abbreviated as HAZ) will be greatly softened; In the case of 0.01 to 0.0, the weldability is impaired, and the heating-rolling-cooling conditions in this invention result in a quenched structure, which impairs the toughness, making a tempering process necessary. It is necessary to satisfy /ko≦.

Slは鋼の説醗を促進し、また強度を上昇させるので少
くとも0.03%以上添加する。しかしあまり多いと靭
性や溶接性が著しく損なわれるため最大でo、to%に
とどめる。
Sl is added in an amount of at least 0.03% because it promotes the hardening of steel and increases its strength. However, if the content is too large, the toughness and weldability will be significantly impaired, so it is limited to a maximum of 0.0%.

111Lはへ〇襲未満では鋼板の′強度および靭性が低
下すること、そして五ム2の軟化が大きくなるため下限
を八〇%とした。一方Knが多すぎると■2の靭性が劣
化するため上限を一1j%とした。
If 111L is less than 10%, the strength and toughness of the steel plate will decrease, and the softening of the steel plate will increase, so the lower limit was set at 80%. On the other hand, if Kn is too large, the toughness of (2) deteriorates, so the upper limit was set at -1j%.

ム1は鋼の脱酸上最低0.00に−の添加含有が必要で
あり、一方5aleムIが0.04−以上になるとHム
2の靭性のみならず溶接金属の靭性も著しく劣化する。
In order to deoxidize the steel, it is necessary to add at least 0.00 - to Mu 1. On the other hand, if 5ale Mu I exceeds 0.04 -, not only the toughness of H Mu 2 but also the toughness of the weld metal will deteriorate significantly. .

このため−on、ムjはo、ooz〜0.04θ襲とし
た。
For this reason, -on and muj were set to o, ooz to 0.04θ.

Sはo、oot%より多いと衝撃吸収エネルギー特にC
方向のそれが低下して不利であるのでSは0.00t%
以下にする必要がある。
If S is more than o, oot%, the impact absorption energy, especially C
S is 0.00t% because it is disadvantageous as it decreases in the direction.
It is necessary to do the following.

Nは0.00t%を越えて含有すると、本請求範囲のA
l e Ti量ではBがボロン窒化物となりBの焼入性
を無効とするので上限を0.00t %とした。
If N is contained in excess of 0.00t%, A in the scope of this claim
With the amount of Ti, B becomes boron nitride and the hardenability of B becomes invalid, so the upper limit was set at 0.00 t %.

この発明によれば、上記の如< Ce Si e )i
nおせる必要がある。
According to this invention, as described above
n It is necessary to let it go.

Wbは0101%より少ないと後述するように加熱時に
必要とされるHbの固溶・量を確保できず、一方0.1
0%より多いと溶接金属の靭性を劣化させるので、N)
は0.0/〜0.10%の範囲内にする必要があるO T1はBを有効に利用するためと、加熱−圧延時のオー
スナナ44粒の微細化効果による靭性向上を目的として
添加するが、o、ooz%未満では効果なく、一方0.
0t %を越えて添加するとかえって靭性が劣化するの
で0.01%以下とした。
If the Wb content is less than 0.1%, it will not be possible to secure the solid solution and amount of Hb required during heating, as will be described later.
If it is more than 0%, it will deteriorate the toughness of the weld metal, so N)
must be within the range of 0.0/~0.10% O T1 is added to effectively utilize B and to improve toughness through the effect of refining the austenan 44 grains during heating and rolling. However, it has no effect at less than o.ooz%, while at 0.0oz%.
Adding more than 0 t % would actually deteriorate the toughness, so the content was set at 0.01% or less.

Bはいうまでもな(本発明の必須成分であるが、0.0
002 %以下では効果がなく、一方0.003%を越
えて添加すると靭性が劣化する。
Needless to say, B is an essential component of the present invention, but 0.0
Addition of less than 0.002% has no effect, while addition of more than 0.003% deteriorates toughness.

さらに上記のとおりの、基本成分系のほかに、高張力化
あるいはその他の効果を達成するために必要に応じてN
i e No e Cu e V e Or + Qa
 +希土類元素(RleM )のうちから選んだ少くと
も1種を添加含有させることができる。これら元素を添
加してもこの発明の特徴は何も失われることなく、上記
諸元素の添加によりそれぞれ適正に発揮される高張力化
あるいは下記の諸効果が達成できるので有効である。
Furthermore, in addition to the basic component system as described above, N is added as necessary to achieve high tension or other effects.
i e No e Cu e V e Or + Qa
+ At least one selected from rare earth elements (RleM) can be added and contained. Even if these elements are added, none of the features of the present invention will be lost, and the addition of the above-mentioned elements is effective because it can increase the tensile strength appropriately and achieve the following effects.

次に上記成分の添加の目的と添加量を限定する理由を説
明する。
Next, the purpose of adding the above components and the reason for limiting the amount added will be explained.

N1はHAZの硬化性および靭性に悪い影響を与えるこ
となく母材の強度と靭性を向上させるので添加するが、
高価であるので八〇%を上限とした。
N1 is added because it improves the strength and toughness of the base metal without adversely affecting the hardenability and toughness of HAZ.
Since it is expensive, the upper limit was set at 80%.

OnはN1とほぼ同様の効果があるだけでなく、耐食性
も向上させるが0.20%を越えると熱間脆性を生じや
すく、鋼板の表面性状が劣化するので0.20%を上限
とする。
On not only has almost the same effect as N1, but also improves corrosion resistance, but if it exceeds 0.20%, hot embrittlement tends to occur and the surface quality of the steel sheet deteriorates, so the upper limit is set at 0.20%.

MOは圧延時のオーステナイト粒を微細かつ整粒化し、
なおかつ微細なベイナイトと!ルチンサイ)を生成する
ので強度と靭性を向上させるが、高価であるので上限を
0.sO%とした。
MO makes the austenite grains fine and regular during rolling,
Moreover, with fine bainite! Although it improves strength and toughness by producing a It was set as sO%.

ると母材とHム2の靭性を著しく劣化させるので0.1
0%を上限とする。
If this happens, the toughness of the base material and Hmu2 will be significantly deteriorated, so 0.1
The upper limit is 0%.

(3rは微細なベイナイトやマルテンサイトを生成し強
度と靭性を向上させるが0.rO4以上の添加は溶接性
を害するので上限をo、ro%とした。
(3r produces fine bainite and martensite and improves strength and toughness, but addition of 0.rO4 or more impairs weldability, so the upper limit was set as o and ro%.

C&とiMはMllgの形態制御をしC方向の靭性向上
に効果があり、1種または両者の複合添加を行うが、そ
れぞれ。、oi%を越えるOaおよび□、i。
C& and iM control the morphology of Mllg and are effective in improving the toughness in the C direction, and either one type or a combination of both can be added, respectively. , Oa exceeding oi% and □,i.

噂を越えるRmiiの添加は鋼の清浄度を悪くし内部欠
陥の原因となるので、それぞれ上限を□、0/ %およ
びo、io囁とした。
Since adding more Rmii than is rumored would impair the cleanliness of the steel and cause internal defects, the upper limits were set to □, 0/%, and o, io, respectively.

次に、この発明の構成要件の第一の要部は加熱−圧延条
件にある。本発明においてはボロンが焼入性に有効に作
用するため、圧延条件が不適当であると、冷却後の鋼板
の組織中に粗大なベイナイトやマルテンサイトが混入し
、靭性の劣化がおこりやすい。したがってNbを含有せ
しめ、後述する適切な圧延条件で圧延を行い、冷却後の
組織に微細なベイナイトやマルテンサイトを分布させる
必要がある。スラブ加熱温度は、この理由から制限され
るが上限を1Jzo ’cとしたのは、これ以上だと加
熱時のオーステナイト粒が大きくなりすぎて、圧延によ
ってもオーステナイト粒の混粒化は避けられず、冷却後
の組織に粗大なベイナイトやマルテンサイト−が混入し
て靭性が劣化するからである。一方下限はNltのW溶
量と関係している。すなわちN塾をスラブ加熱時に!I
溶させ、圧延中に微細に析出させてオーステナイトの再
結晶を運もせ、結果としてオーステナイトの未再結晶領
域をより高温側に拡大させる必要がある。これによりオ
ーステナイトの未再結晶領域において高い累積臣下率の
圧延が可能となり、変形帯の密度が増加し、冷却前のオ
ーステナイト粒は実質的に微細化され、冷却後の鋼板は
十分な低温靭性を示す。これらの効果をもたらす加熱時
のWbの固溶量は0.0/≦以上であればよく、そのた
めの−最低の加熱温度は0量とNjlにより異なるが、
本発明の成分範囲では10!θ℃以上とすれば良い。
Next, the first essential component of this invention is the heating-rolling conditions. In the present invention, boron effectively affects the hardenability, so if the rolling conditions are inappropriate, coarse bainite and martensite will be mixed into the structure of the steel sheet after cooling, and the toughness will likely deteriorate. Therefore, it is necessary to contain Nb, roll it under appropriate rolling conditions described below, and distribute fine bainite and martensite in the structure after cooling. The slab heating temperature is limited for this reason, but the upper limit is set at 1Jzo'c because if it is higher than this, the austenite grains will become too large during heating, and mixing of austenite grains will be unavoidable even during rolling. This is because coarse bainite and martensite are mixed into the structure after cooling, resulting in deterioration of toughness. On the other hand, the lower limit is related to the amount of W dissolved in Nlt. In other words, when heating the N-juku slab! I
It is necessary to melt the austenite and cause it to precipitate finely during rolling to promote recrystallization of austenite, and as a result, to expand the unrecrystallized region of austenite to a higher temperature side. This enables rolling with a high cumulative yield rate in the non-recrystallized region of austenite, increases the density of the deformation zone, substantially refines the austenite grains before cooling, and provides the steel sheet with sufficient low-temperature toughness after cooling. show. The amount of solid solution of Wb during heating that brings about these effects may be 0.0/≦ or more, and the minimum heating temperature for this varies depending on the amount of 0 and Njl,
In the ingredient range of the present invention, it is 10! The temperature may be set to θ°C or higher.

以上の理由からスラブ加熱温度はtoso〜l−30℃
とした。
For the above reasons, the slab heating temperature is toso~l-30℃
And so.

上記条件で加熱されたスラブを、まずオーステナイトの
再結晶領域において累積圧下率でm%以上となるまで繰
返して圧延する。この累積圧下率が50%に満たないと
、オーステナイトの加ニー再結晶の繰返しによる細粒化
および整粒化が十分でない。そのため、その後の圧延−
冷却によって組織中に粗大なベイナイトやマルテンサイ
トが混入し靭性が著しく害される。しかも、この温度域
における圧延による細粒化および整粒化の不十分さは、
引続くオーステナイトの未再結晶領域での圧延によって
は補ない得ないので104以上と限定した。
The slab heated under the above conditions is first repeatedly rolled in the austenite recrystallization region until the cumulative rolling reduction reaches m% or more. If this cumulative rolling reduction ratio is less than 50%, grain refinement and grain size regulation due to repeated austenite recrystallization will not be sufficient. Therefore, subsequent rolling-
Cooling causes coarse bainite and martensite to be mixed into the structure, significantly impairing toughness. Moreover, the insufficient grain refinement and grain size grading by rolling in this temperature range,
Since it cannot be compensated for by subsequent rolling in the non-recrystallized region of austenite, it is limited to 104 or more.

続いてオーステナイトの未再結晶温度領域における圧延
に移るが、この発明によればオーステナイトの未再結晶
温度領域でも低温側にあたるAr3+730℃カラムv
sAのあいだで少くともま。%の累積圧下率で圧延を行
う必要がある。本発明の成分範囲では前述のようにBが
焼入性に十分効くのでこの範囲での圧延が不適当だと加
速冷却後の組織に粗大なベイナイトやマルテンサイトが
混入して靭性が大きく劣化する。なお、オーステナイト
の再結&域からAr3 + /!0 ”Cに至る間の温
度範囲においては圧延条件を限定しないが、この間の圧
延を行っても、この発明の目的を妨げるものではない。
Next, we move on to rolling in the austenite non-recrystallization temperature range, and according to the present invention, the Ar3+730°C column v, which is on the low temperature side even in the austenite non-recrystallization temperature range.
At least well between sA. It is necessary to perform rolling at a cumulative reduction rate of %. In the composition range of the present invention, B has a sufficient effect on hardenability as described above, so if rolling within this range is inappropriate, coarse bainite and martensite will be mixed into the structure after accelerated cooling, resulting in a significant deterioration of toughness. . In addition, Ar3 + /! from austenite reconsolidation & area! Although the rolling conditions are not limited in the temperature range up to 0''C, the purpose of the present invention is not hindered even if rolling is carried out in this range.

上記圧延後加速冷却を行うが、冷却速度はバフmに満た
ないと加速冷却の効果がないのでλ℃/−以上とする。
Accelerated cooling is performed after the above-mentioned rolling, but the cooling rate is set to λ° C./− or more because the accelerated cooling has no effect if it is less than buff m.

このコ℃/g以上の冷却速度の加速冷却は600℃以下
の任意の温度まで続けるが、600℃以上で停止すると
加速冷却による強度上昇効果はほとんどないため上限は
600℃とする。一方下限は規定しないが析出硬化型の
元素を有効に利用するためにはjよ0℃前後で冷却を停
止し以後空冷しても良い。これらの理由からコ’C/ 
s以上の冷却速度で60O℃以下まで加速冷却を行う。
This accelerated cooling at a cooling rate of 0.degree. C./g or higher is continued until an arbitrary temperature of 600.degree. C. or lower, but if it is stopped at 600.degree. C. or higher, there is almost no effect of increasing strength due to accelerated cooling, so the upper limit is set at 600.degree. On the other hand, although no lower limit is specified, in order to effectively utilize the precipitation hardening element, cooling may be stopped at around 0° C. and thereafter air-cooled. For these reasons, Co'C/
Accelerated cooling is performed to 60O<0>C or less at a cooling rate of s or more.

なお冷却は圧延終了後直ちに行うことが必要であり、具
体的にはムr3点以上から冷却を開始するのが望ましい
。しかしながら、冷却開始までに時間を要して鋼板の温
度がムr3点を下廻ってもムr3−v℃までの間ならば
、その空冷時にムr3点を切ってから析出するフェライ
トの粒成長は事実上無視できるので微細化の目的は達成
できる。
Note that it is necessary to perform cooling immediately after the completion of rolling, and specifically, it is desirable to start cooling from the 3 or more points of unevenness. However, even if it takes time to start cooling and the temperature of the steel plate falls below the Mr3 point, if it is still within Mr3-v℃, the grain growth of ferrite that precipitates after the Mr3 point is reached during air cooling will not occur. Since it can be virtually ignored, the purpose of miniaturization can be achieved.

次にこの発明を実施例について説明する。Next, the present invention will be described with reference to embodiments.

実施例1 第1表に示す成分組成にそれぞれ溶製した供試香1gダ
〜6はこの発明の成分組成の範囲内にある実施例の鋼で
ある。
Example 1 Samples of 1 to 6 grams of incense melted to the compositions shown in Table 1 are examples of steel within the composition range of the present invention.

これらの各供試鋼は造塊後分塊圧延するかあるいは連続
鋳造により、必要厚みを有するスラブとなし1これらス
ラブをそれぞれ第−表に示す通りの加熱−圧延−冷却条
件で処理した。得られた鋼板の強度う靭性を測定したと
ころ第−表に示す通りであった。
Each of these test steels was ingot-formed and then subjected to blooming rolling or continuous casting to form slabs having the required thickness.1 These slabs were treated under the heating-rolling-cooling conditions shown in Table 1, respectively. The strength and toughness of the obtained steel plate were measured and were as shown in Table 1.

なお最終板厚は/1−とし、試験片は圧延直角方向に採
取し、引張試験コーマノツチの衝撃試験を行った。各鋼
板における数字1.λ、Jはそれぞれ第1表に示す副番
/1JvJの鋼を使用したことを意味し、サフィックス
のアルファベット文字は製造条件を示す。
The final plate thickness was set to /1-, test pieces were taken in the direction perpendicular to rolling, and a tensile comber notch impact test was conducted. Number 1 on each steel plate. λ and J mean that the subnumber/1JvJ steel shown in Table 1 was used, and the alphabetic characters in the suffix indicate manufacturing conditions.

第  コ 2人および3ムはこの発明の成分範囲をはずれている比
較例であり、また/Bはムr3〜ムr3+/j0℃での
累積圧下量、ICはオーステナイト再結晶域の累積圧下
量、/Dはスラブ加熱温度、iEは圧延後の加速冷却の
冷却停止温度、7Fは圧延後の冷却速度においてそれぞ
れこの発明の範囲を外れているものであって、これらに
対し/A#/G#/Hはこの発明による鋼板である。な
お上記の関係をわかりやすくするために第2表中にこの
発明の範囲を外れている条件のものにアンダーラインを
施した。
No. 2 and 3 are comparative examples outside the composition range of this invention, /B is the cumulative reduction at 0°C from MUr3 to MUr3+/j, and IC is the cumulative reduction in the austenite recrystallization region. , /D is the slab heating temperature, iE is the cooling stop temperature of accelerated cooling after rolling, and 7F is the cooling rate after rolling, which are outside the scope of this invention, and for these, /A#/G #/H is a steel plate according to this invention. In order to make the above relationship easier to understand, conditions outside the scope of the present invention are underlined in Table 2.

まずこの発明の成分範囲でないすなわちT1とBを添加
していない鋼板−Aは強度が十分でない。
First, steel plate-A, which does not have the composition range of the present invention, ie, does not have T1 and B added, does not have sufficient strength.

同じく本発明の成分範囲を外れている従来鋼板JA (
高ムj −B −Wb鋼)と本発明鋼板ツムを比べると
通常用いられる加熱強度でも下限にあたる1110°C
加熱では、本発明鋼板の方が同じCellでも高強度化
されている。
Conventional steel sheet JA (
Comparing the steel sheets of the present invention (high aluminum J-B-Wb steel), the heating strength is 1110°C, which is the lower limit even with the normally used heating strength.
In heating, the steel sheet of the present invention has higher strength even though the cell is the same.

次に圧延条件において、この発明の範囲をはずれている
鋼板/Bと10はこの発明による鋼板ツムに比べて靭性
が十分でなく、この発明における圧延条件の重要さがあ
きらかである。
Next, regarding the rolling conditions, the steel plates /B and 10, which are outside the scope of the present invention, have insufficient toughness compared to the steel plate TSU according to the present invention, which clearly shows the importance of the rolling conditions in the present invention.

また加熱温度がこの発明の範囲をはずれている鋼板/D
はこの発明鋼板ツムに比べて強度が十分でない。さらに
圧延後空冷した従来法による鋼板/1と加速冷却を行っ
た鋼板/Aを比べるとツムの方が強度において大きく上
廻っており、しかも靭性は同等であり、本発明の効果が
示されている。
Also, steel plate/D whose heating temperature is outside the range of this invention
The strength is not sufficient compared to the steel plate of this invention. Furthermore, when comparing the steel plate /1 produced by the conventional method, which was air-cooled after rolling, and the steel plate /A, which was subjected to accelerated cooling, the strength of TSUMU was greatly exceeded, and the toughness was also the same, demonstrating the effect of the present invention. There is.

また冷却停止温度においてこの発明の範囲をはずれてい
る鋼板/Eは加速冷却の効果がほとんどあられれていな
い。
Further, steel plate /E, whose cooling stop temperature is outside the range of the present invention, has almost no effect of accelerated cooling.

一方、この発明による鋼板ツム*/Gy/Hは何れも、
強度、靭性とも優れている。
On the other hand, all of the steel sheet Tsums*/Gy/H according to the present invention are
It has excellent strength and toughness.

すなわち本発明によれば、以上述べた実施例からもわか
るように、圧延後加速冷却を実施する非調質鋼において
もボロンを高強度化に有効に利用できた。このため低0
@11ですなわち溶接性が優れ、かつ十分な低温靭性を
備えた高張力鋼を製造できるのである。
That is, according to the present invention, as can be seen from the examples described above, boron could be effectively used to increase the strength even in non-tempered steel subjected to accelerated cooling after rolling. Therefore, low 0
@11, that is, high-strength steel with excellent weldability and sufficient low-temperature toughness can be produced.

実施例2 非調質で701qt/■尤以上のT、S、を有する、低
温靭性と溶接性の優れたj〜3コ■厚の鋼板を製造する
目的で第1表に示す成分組成の鋼ダs!e&を溶製して
スラブとしたのち第3表に示すとおりの加熱−圧延−冷
却条件を適用してコル3.2鵡厚の鋼板を製造し、強度
−靭性を測定したところ第3表に示すとおりであった。
Example 2 A steel having the chemical composition shown in Table 1 for the purpose of manufacturing a steel plate having a thickness of J to 3 cm with excellent low-temperature toughness and weldability, having T and S of 701 qt/mm or more without heat refining. Das! After melting and making a slab, a steel plate with a thickness of 3.2 mm was manufactured by applying the heating-rolling-cooling conditions shown in Table 3, and the strength-toughness was measured. It was as shown.

圧延後空冷した従来法による鋼板#B’* jB * 
4BはいづれもT、 B、が目標に達していないのに対
し、本発明によればいづれも70J9f/sll&2以
上のT、S、を有し、しかも低温靭性もすぐれている。
Steel plate #B'*jB* made by the conventional method of air cooling after rolling
4B does not reach the target T and B, but according to the present invention, all have T and S of 70J9f/sll&2 or more, and also have excellent low-temperature toughness.

さらに、第1表に示すOeqからもわかるように06g
−〜O,ダJ%のCeqでj〜31am 厚+7) ’
[’ 、S、 〉70 bit/m2鋼が非調質で製造
でき、これは工業界の常識からは画期的なものである。
Furthermore, as can be seen from the Oeq shown in Table 1, 06g
-~O, da J% Ceq j~31am thickness +7)'
[', S, 〉70 bit/m2 steel can be produced without heat refining, which is revolutionary from the common sense in the industrial world.

以上説明したようにこの発明の方法によれば、十分な低
温靭性を備えた高張力鋼を低いC@qで製造可能であり
、寒冷地向けのラインパイプ用素材やその他の低温靭性
の要求される溶接構造物用鋼として最適である。さらに
副次的な効果としてムr3点以上で圧延を終了できるこ
とからセパレーションの低減に効果があり、また圧延能
率の上昇に効果がある。
As explained above, according to the method of the present invention, high-strength steel with sufficient low-temperature toughness can be manufactured at low C@q, and can be used as material for line pipes for cold regions and other materials requiring low-temperature toughness. It is ideal as a steel for welded structures. Furthermore, as a secondary effect, rolling can be completed at the unevenness point of 3 or more, which is effective in reducing separation and increasing rolling efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図はスップの加熱温度が鋼板の強度と靭性に及ぼす影響
を示す図である。 特許出願人 川崎製鉄株式会社 代理人弁理士 村  1) 政  治 1→フ”zo蝋刊−刀L  (’ん)
The figure shows the influence of the heating temperature of sup on the strength and toughness of a steel plate. Patent Applicant Kawasaki Steel Co., Ltd. Representative Patent Attorney Mura 1) Politics 1 → Fu”zo Wax Publishing - Katana L ('n)

Claims (1)

【特許請求の範囲】 1、oo、oコ 〜 0.11% t  Sl 0.0
3〜0−&0 %  eM!L /−0〜J−j % 
e !Io!、AI 0.00!r 〜0.04 % 
eMla O,0/ 〜0.10%雪B O,0003
〜0−002%。 TL O,00k −0,01%を含有し、必要により
ML /、01以下t On O−k %以下e Mo
 O−’l %以下vVO−/−以下r Or O,3
%以下、c&0.0/%以下を希土類元素0.10%以
下のうちから選ばれる何れか11mまたはコ種以上を含
有し、残部1・と不可避的不純物とよりなり、前記不可
避的不純物のうちNとSはそれぞれo 、oot%以下
であるステプをiozθ〜1aso ”cに加熱した後
、オーステナイトの再結晶温度域において累積圧下率で
go%以上となるまで圧延し、引続きムr3〜ムr3 
+/!rO”Cの温度範囲内で累積圧下率で10 %以
上となるまで圧延し、その後直ちにa℃/−以上の冷却
速度で100℃以下の任意の温度まで冷却することを特
徴とする低温靭性と溶接性に優れたボロン含有非調質高
張力鋼の製造方法。
[Claims] 1, oo, oko ~ 0.11% t Sl 0.0
3~0-&0% eM! L/-0~J-j%
E! Io! , AI 0.00! r ~0.04%
eMla O,0/ ~0.10% snow B O,0003
~0-002%. TL O,00k -0,01%, if necessary ML /,01 or less t On O-k % or less e Mo
O-'l % or lessvVO-/-r Or O,3
% or less, c & 0.0/% or less, contains any 11m or more selected from 0.10% or less of rare earth elements, and the remainder consists of 1. and unavoidable impurities; After heating the step in which N and S are o and oot% or less, respectively, to iozθ~1aso''c, the step is rolled in the austenite recrystallization temperature range until the cumulative reduction rate is go% or more, and then the mulch r3 to mulr3
+/! Low-temperature toughness characterized by rolling within the temperature range of rO"C until the cumulative reduction ratio is 10% or more, and then immediately cooling to any temperature below 100°C at a cooling rate of a°C/- or more. A method for manufacturing boron-containing non-thermal high tensile strength steel with excellent weldability.
JP56147738A 1981-09-21 1981-09-21 Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability Expired JPS605647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56147738A JPS605647B2 (en) 1981-09-21 1981-09-21 Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56147738A JPS605647B2 (en) 1981-09-21 1981-09-21 Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability

Publications (2)

Publication Number Publication Date
JPS5852423A true JPS5852423A (en) 1983-03-28
JPS605647B2 JPS605647B2 (en) 1985-02-13

Family

ID=15437020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56147738A Expired JPS605647B2 (en) 1981-09-21 1981-09-21 Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability

Country Status (1)

Country Link
JP (1) JPS605647B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067621A (en) * 1983-09-22 1985-04-18 Kawasaki Steel Corp Preparation of non-refining high tensile steel
JPS63235430A (en) * 1987-03-24 1988-09-30 Nippon Steel Corp Manufacture of tempered high-tensile steel stock excellent in toughness and weldability
JPS6455335A (en) * 1987-08-26 1989-03-02 Nippon Kokan Kk Production of high-tensile steel having low yield ratio
JPH01176027A (en) * 1987-12-29 1989-07-12 Nippon Steel Corp Manufacture of steel plate for welding construction having low yield ratio and high tensile strength
WO1999005335A1 (en) * 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
WO1999005328A1 (en) * 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
WO1999005336A1 (en) * 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
WO1999005334A1 (en) * 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels wit h superior toughness
US6056833A (en) * 1997-07-23 2000-05-02 Usx Corporation Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio
US6245290B1 (en) 1997-02-27 2001-06-12 Exxonmobil Upstream Research Company High-tensile-strength steel and method of manufacturing the same
JP2008280602A (en) * 2007-05-14 2008-11-20 Nippon Steel Corp High productivity type high-strength high-toughness steel plate and its production method
KR100946051B1 (en) 2002-12-27 2010-03-09 주식회사 포스코 Method for manufacturing the good weldability and high strength thick plate steel
CN105624555A (en) * 2016-01-20 2016-06-01 宋晓玲 High-strength and high-toughness alloy steel
CN106521314A (en) * 2016-11-09 2017-03-22 江阴兴澄特种钢铁有限公司 Completely-hardened high-toughness ultra-thick wear-resistant steel plate which is easy to weld, and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US421937A (en) * 1890-02-25 Bolster-beam journal
JPS5397922A (en) * 1977-02-08 1978-08-26 Nippon Kokan Kk <Nkk> Manufacture of non-refined high tensile steel
JPS5510092A (en) * 1978-06-27 1980-01-24 Gutehoffnungshuette Sterkrade Surging prevention method of turbo compressor
JPS55100924A (en) * 1979-01-25 1980-08-01 Nippon Steel Corp Production of high toughness bainite high tension steel plate having excellent weldability
JPS5621810A (en) * 1979-07-31 1981-02-28 Matsushita Electric Ind Co Ltd Manufacture of anisotropic oxide sintered body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US421937A (en) * 1890-02-25 Bolster-beam journal
JPS5397922A (en) * 1977-02-08 1978-08-26 Nippon Kokan Kk <Nkk> Manufacture of non-refined high tensile steel
JPS5510092A (en) * 1978-06-27 1980-01-24 Gutehoffnungshuette Sterkrade Surging prevention method of turbo compressor
JPS55100924A (en) * 1979-01-25 1980-08-01 Nippon Steel Corp Production of high toughness bainite high tension steel plate having excellent weldability
JPS5621810A (en) * 1979-07-31 1981-02-28 Matsushita Electric Ind Co Ltd Manufacture of anisotropic oxide sintered body

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626730B2 (en) * 1983-09-22 1987-02-13 Kawasaki Steel Co
JPS6067621A (en) * 1983-09-22 1985-04-18 Kawasaki Steel Corp Preparation of non-refining high tensile steel
JPS63235430A (en) * 1987-03-24 1988-09-30 Nippon Steel Corp Manufacture of tempered high-tensile steel stock excellent in toughness and weldability
JPS6455335A (en) * 1987-08-26 1989-03-02 Nippon Kokan Kk Production of high-tensile steel having low yield ratio
JPH01176027A (en) * 1987-12-29 1989-07-12 Nippon Steel Corp Manufacture of steel plate for welding construction having low yield ratio and high tensile strength
US6245290B1 (en) 1997-02-27 2001-06-12 Exxonmobil Upstream Research Company High-tensile-strength steel and method of manufacturing the same
US6056833A (en) * 1997-07-23 2000-05-02 Usx Corporation Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio
US6224689B1 (en) 1997-07-28 2001-05-01 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels with superior toughness
WO1999005334A1 (en) * 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels wit h superior toughness
WO1999005336A1 (en) * 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
WO1999005328A1 (en) * 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
US6228183B1 (en) 1997-07-28 2001-05-08 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
WO1999005335A1 (en) * 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
US6248191B1 (en) 1997-07-28 2001-06-19 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
US6264760B1 (en) 1997-07-28 2001-07-24 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
AU736035B2 (en) * 1997-07-28 2001-07-26 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
KR100946051B1 (en) 2002-12-27 2010-03-09 주식회사 포스코 Method for manufacturing the good weldability and high strength thick plate steel
JP2008280602A (en) * 2007-05-14 2008-11-20 Nippon Steel Corp High productivity type high-strength high-toughness steel plate and its production method
CN105624555A (en) * 2016-01-20 2016-06-01 宋晓玲 High-strength and high-toughness alloy steel
CN106521314A (en) * 2016-11-09 2017-03-22 江阴兴澄特种钢铁有限公司 Completely-hardened high-toughness ultra-thick wear-resistant steel plate which is easy to weld, and production method thereof

Also Published As

Publication number Publication date
JPS605647B2 (en) 1985-02-13

Similar Documents

Publication Publication Date Title
JPS5852423A (en) Manufacture of unnormalized high tensile boron steel with superior toughness at low temperature and superior weldability
JPS6155572B2 (en)
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH04285119A (en) Production of thick-walled high tensile strength steel plate excellent in toughness at low temperature
JPS58100625A (en) Production of high toughness high tensile steel plate having excellent weldability
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPS5828327B2 (en) Method for producing ultra-low carbon high tensile strength steel with extremely excellent ductility
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
KR910003883B1 (en) Making process for high tension steel
JPS6286122A (en) Production of structural steel having high strength and high weldability
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JPH06145787A (en) Production of high tensile strength steel excellent in weldability
JPS5845318A (en) Production of high tensile steel having weldability and &gt;=50kg/mm2 strength
JPS61139627A (en) Manufacture of steel plate having high yield point
JPS63140034A (en) Production of low yield ratio high tensile steel having excellent low-temperature toughness
JPS6350424A (en) Manufacture of thick high-tensile steel plate excellent in toughness at low temperature and weldability
JPH0641632A (en) Production of ni-reduced heat treated steel
JPH0215122A (en) Production of high strength and high toughness thick steel plate having excellent weldability
JPS63128117A (en) Production of unnormalized high tensile steel
JPH05105946A (en) Production of high tensile strength steel reduced in yield ratio and excellent in weldability
JPS643926B2 (en)
JPH06248336A (en) Production of 780n/mm2 class high tensile strength steel excellent in weldability and reduced in yield ratio
JPH0133530B2 (en)