JPS5945729B2 - Manufacturing method of hot rolled steel for warm working - Google Patents

Manufacturing method of hot rolled steel for warm working

Info

Publication number
JPS5945729B2
JPS5945729B2 JP15609076A JP15609076A JPS5945729B2 JP S5945729 B2 JPS5945729 B2 JP S5945729B2 JP 15609076 A JP15609076 A JP 15609076A JP 15609076 A JP15609076 A JP 15609076A JP S5945729 B2 JPS5945729 B2 JP S5945729B2
Authority
JP
Japan
Prior art keywords
steel
warm
strength
working
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15609076A
Other languages
Japanese (ja)
Other versions
JPS5379716A (en
Inventor
弘 武智
彪 河野
松男 臼田
一夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15609076A priority Critical patent/JPS5945729B2/en
Publication of JPS5379716A publication Critical patent/JPS5379716A/en
Publication of JPS5945729B2 publication Critical patent/JPS5945729B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 本発明は温間加工に適した熱間圧延鋼材の製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing hot rolled steel materials suitable for warm working.

近年温間加工の採用が産業界で検討されつつあり、板材
の温間プレスがその代表例といえる。
In recent years, the industry has been considering the use of warm processing, and warm pressing of plate materials is a typical example.

温間加工をする目的は主として次のように大別される。
(イ)その1は鋼材加工時の荷重あるいはパワーの低下
および加工性向上を目的とするもので、加工時の材料温
度をほぼ一様に上昇させて、加工時の変形抵抗を低減さ
せ同時に延性を増加させることにより加工を容易にする
ものである(以下均一加熱法と呼ぶ)。
The purpose of warm working can be broadly classified as follows.
(b) Part 1 is aimed at reducing the load or power and improving workability during processing of steel materials, by increasing the material temperature almost uniformly during processing, reducing deformation resistance during processing and improving ductility at the same time. (hereinafter referred to as the uniform heating method).

(口)その2は鋼材を局部加熱することにより加工材料
内の変形抵抗に差をつげ、それによって加工時の破断防
止あるいは局部的な肉やせ(板厚減少)防止等を行なう
ものである(以下局部加熱法と呼ぶ)。
(Example) Part 2 is to increase the difference in deformation resistance within the processed material by locally heating the steel material, thereby preventing breakage during processing or preventing local thinning (reduction in plate thickness). (hereinafter referred to as the local heating method).

従来から冷間加工用として熱間圧延鋼材の開発はなされ
ているが熱間加工用としての開発はほとんどなされてい
なかった。
Hot rolled steel materials have been developed for cold working, but there has been little development for hot working.

本発明は温間加工用鋼材としての特性を付与させた熱間
圧延鋼材の製造法を提供するもので、その要旨とすると
ころは、C■0002〜0915%、Mn=0.09超
〜2950%、N=0.0020〜0.015%、およ
びNb=0.01〜0010%、V=0.01〜002
0%、Ti=0.03〜0530%のうち1種又は2種
以上を主要構成成分とするキルド鋼を溶体化処理後、熱
間圧延し、その後10℃/ see以上の平均冷却速度
で500℃以下の温度域まで強制冷却することを特徴と
する温間加工用熱間圧延鋼材の製造法。
The present invention provides a method for manufacturing hot-rolled steel materials that have properties suitable for warm working steel materials. %, N=0.0020-0.015%, and Nb=0.01-0010%, V=0.01-002
0%, Ti=0.03~0530%, the killed steel whose main constituents are one or more of Ti=0.03~0530% is solution treated, hot rolled, and then heated to 500°C at an average cooling rate of 10℃/see or higher. A method for producing hot rolled steel for warm working, which is characterized by forced cooling to a temperature range below ℃.

尚本発明で言う温間加工とは、鋼材を積極的に加熱し、
Al点以下の温度域で加工することおよび鋼材をAl点
以下の温度域まで積極的に加熱後鋼材を少なくとも青熱
脆性域以下(約300℃以下)の温度域まで冷却した後
加工することをも意味する。本発明鋼は次のような特徴
を有している。
In addition, warm working as referred to in the present invention refers to actively heating the steel material,
Processing should be carried out in a temperature range below the Al point, and after actively heating the steel material to a temperature range below the Al point, the steel material should be cooled to at least a temperature range below the blue brittle region (approximately 300 degrees Celsius or below) before processing. also means The steel of the present invention has the following characteristics.

(イ)加工時の荷重低減を目的とする均一加熱法では、
通常青熱脆性域より高い温度域で温間加工されるが、通
常の熱間圧延炭素鋼材では、このような高い温度域で加
工すると、成形荷重が低減出来ても加工冷却後の成形物
の強度が、冷間で加工した場合に比して低下するという
欠点を有していた。
(b) In the uniform heating method, which aims to reduce the load during processing,
Normally, warm working is carried out in a temperature range higher than the blue brittle range, but when working in a normal hot rolled carbon steel material in such a high temperature range, even if the forming load can be reduced, the formed product after processing cooling will deteriorate. It had the disadvantage that the strength was lower than that when cold worked.

しかるに、本発明鋼は500〜600℃程度の高い温度
域で温間加工しても加工冷却後の強度低下は、ほとんど
なくむしろ冷間加工した場合より高い強度を保持し得る
場合すらある。
However, even when the steel of the present invention is warm-worked in a high temperature range of about 500 to 600°C, there is almost no decrease in strength after processing and cooling, and in fact, it may even be able to maintain a higher strength than when cold-worked.

また加熱保持時間を短時間にすればA1点以下の温度で
あれば上記特徴を保持しうる。(口)従来鋼では加工歪
が全く付与されない場合、加熱しても、常温での強度は
時効によって降伏点は上昇しても、引張強さは上昇しな
いが、本発明鋼では、加工歪が零であっても、加熱冷却
後の降伏点、引張強さ共に上昇する。
Furthermore, if the heating and holding time is shortened, the above characteristics can be maintained at temperatures below the A1 point. (Example) When conventional steel is not subjected to any working strain, its tensile strength does not increase even if it is heated, even though the strength at room temperature increases due to aging and the yield point increases.However, in the steel of the present invention, the working strain Even if it is zero, both the yield point and tensile strength increase after heating and cooling.

従って本発明鋼を温間加工する場合、たとえ歪が零とな
る部分があっても、その部分の強度も上昇するので温間
加工による加工歪量に余り関係なく成形物全体にわたっ
て強度が上昇するという特徴が発揮される。eつ 加
工前に加工部材の局部を加熱後冷却することによって、
その部分の強度を上昇させることが出来、加工中の変形
抵抗に差をつげることが出来る。
Therefore, when the steel of the present invention is warm worked, even if there is a part where the strain is zero, the strength of that part increases, so the strength of the entire molded product increases regardless of the amount of processing strain caused by warm working. This feature is exhibited. By heating and then cooling the local part of the workpiece before processing,
It is possible to increase the strength of that part and make a difference in deformation resistance during processing.

従ってこの変形抵抗差を有効に第1用して、破断防止あ
るいは局部的肉やせを防止することが出来る。(→ ま
た本発明鋼は青熱脆性域での強度(特に引張強さ)上昇
代も充分に大きいので局部的に青熱脆性域の温度まで加
熱して温間加工をすることによっても破断あるいは局部
的肉やせも防止出来る。
Therefore, this difference in deformation resistance can be effectively used to prevent breakage or local thinning of the meat. (→ Also, the steel of the present invention has a sufficiently large increase in strength (particularly tensile strength) in the blue brittle region, so it can be heated locally to a temperature in the blue brittle region and warm-worked to prevent breakage or breakage. Localized muscle thinning can also be prevented.

以上本発明鋼の特徴を説明したが、温間加工時の加熱温
度はA1点以下とすべきである。
Although the characteristics of the steel of the present invention have been explained above, the heating temperature during warm working should be below the A1 point.

A1点超に加熱すると本発明鋼にあっても加工歪が回復
し、温間加工後の強度が低下する危険性があり、又加工
後の靭件の点からも好ましくない。好ましい加工温度は
200〜650℃である。また加工前に局部加熱して冷
却後強度差を付与する場合の加熱温度も200〜650
℃が好ましい。加熱時間については低温では特に制限す
る必要ないが比較的長時間(数10分程度)、高温では
短時間(数分程度)とすることが好ましい。
If the steel is heated above the A1 point, there is a risk that the working strain will recover even in the steel of the present invention, and the strength after warm working will decrease, and it is also unfavorable from the viewpoint of toughness after working. The preferred processing temperature is 200-650°C. In addition, the heating temperature when applying local heating before processing to give a strength difference after cooling is 200 to 650.
°C is preferred. The heating time does not need to be particularly limited at low temperatures, but is preferably relatively long (about several tens of minutes) and short (about several minutes) at high temperatures.

上記特筆すべき効果を発揮する熱間圧延鋼材は次のよう
にして製造される。まず、本発明鋼材の化学成分はC=
0.02〜・0.15%、Mn=0.90超〜2,50
%、N一0.0020〜0.015%およびNb=0.
01〜0.10%、V=0.01〜0.20%、Ti=
0.03〜0.30%のうち1種又は2種以上を主要構
成成分とするがその限定理由は下記の゛通りである。
The hot-rolled steel material that exhibits the above-mentioned remarkable effects is manufactured in the following manner. First, the chemical composition of the steel of the present invention is C=
0.02~・0.15%, Mn=over 0.90~2,50
%, N-0.0020-0.015% and Nb=0.
01-0.10%, V=0.01-0.20%, Ti=
One or more of 0.03 to 0.30% is used as a main component, and the reasons for this limitation are as follows.

C,Nは母材強度確保および青熱脆性域以上の温度域で
温間加工しても、冷却後の強度は冷間加工に比しほとん
ど低下しないようにするためにC≧0.02%、N≧0
.0020%とする必要がある。しかしCが0.15%
超となるとNbC,TiCの溶体化が困難となること、
および温間加工性が劣下する。Nの上限値0.015%
は溶接性の点から定められた。好ましい範囲はC=0.
03〜0.13%、N=0.0020〜0.010%で
ある。さらに本発明では析出硬化型元素としてNb=0
.01〜0.10%、V=0.01〜0.20%、Ti
一0.03〜0.30%のうち1種又は2種以上添加す
る必要がある。
C and N are set at C≧0.02% in order to ensure the strength of the base metal and to ensure that the strength after cooling hardly decreases compared to cold working even when warm worked in a temperature range above the blue brittle range. , N≧0
.. It is necessary to set it to 0020%. However, C is 0.15%
When it becomes too much, it becomes difficult to dissolve NbC and TiC,
and warm workability deteriorates. Upper limit of N 0.015%
was determined from the viewpoint of weldability. The preferred range is C=0.
03-0.13%, N=0.0020-0.010%. Furthermore, in the present invention, Nb=0 as a precipitation hardening element.
.. 01-0.10%, V=0.01-0.20%, Ti
It is necessary to add one or more types from 0.03 to 0.30%.

これらの下限値は青熱脆性域以上の温度域で温間加工し
ても、冷却後の強度は冷間加工に比し、ほとんど低下し
ないようにすることおよび単なる加熱のみでも冷却後強
度を上昇させるための必要量として定められた。またこ
れらの上限値超では添加の効果が飽和するばかりでなく
、溶接性を劣下させ、また鋼を高価にする。好ましい範
囲はそれぞれNb=0.01〜0.07%、V=0.0
3〜0.15%、Ti=0.05〜0.25%である。
またTiを添加する場合はTi/ C < 4とするこ
とが好ましい。Mnは脱酸以外に熱間脆性を防止するた
めに0.15%以上必要であるが本発明では0.90%
超含有させる。
These lower limits are such that even if warm worked in a temperature range above the blue brittle range, the strength after cooling will hardly decrease compared to cold working, and that the strength after cooling will be increased even by mere heating. It was determined as the amount necessary to achieve this goal. Moreover, when these upper limits are exceeded, the effect of addition is not only saturated, but also the weldability is deteriorated and the steel becomes expensive. Preferred ranges are Nb=0.01-0.07% and V=0.0, respectively.
3 to 0.15%, Ti=0.05 to 0.25%.
Further, when adding Ti, it is preferable that Ti/C<4. In addition to deoxidizing, Mn is required to be 0.15% or more to prevent hot embrittlement, but in the present invention it is 0.90%.
Super-contain.

その理由は鋼の強度、靭性向上に加えて温間加工時の高
温域での靭性、延性を良好ならしめて、温間加工性を一
層向上させるためである。又2.50%超では鋼が高価
となり、また温間加工性も劣下する。好ましいMn量は
0.95超〜2、30%である。また本発明はキルド鋼
として製造されるが、その理由はNb、V、Tiの合金
歩留向上および優れた加工性付与にある。
The reason for this is that in addition to improving the strength and toughness of the steel, it also improves the toughness and ductility in the high temperature range during warm working, thereby further improving warm workability. Moreover, if it exceeds 2.50%, the steel becomes expensive and warm workability deteriorates. A preferable amount of Mn is more than 0.95 to 2.30%. Furthermore, the present invention is manufactured as killed steel, and the reason for this is to improve the alloy yield of Nb, V, and Ti and to provide excellent workability.

この場合AI=0.01〜0.10%添加することが好
ましい。その他に本発明の特徴を損わないかこれを補足
する意味で適宜他の元素を添加しても良い。
In this case, it is preferable to add AI=0.01 to 0.10%. In addition, other elements may be added as appropriate so as not to impair the features of the present invention or to supplement them.

例えば耐候性、耐食性向上のためNi,Cu,Crを0
.5%以下添加したり、加工性を一段と向上させるため
少量のZr,Ca,REM等添加による硫化物形態変化
も効果的である。また強度上昇のためSiを1.0%以
下あるいはMOを0.5%以下添加しても良い。その他
P,S等の不純物元素の低減も温間加工性向上に有効で
ある。上記化学成分を有する鋼は通常行なわれる方法に
よって鋼片とされた後熱間圧延されて所定の寸法形状と
される。
For example, in order to improve weather resistance and corrosion resistance, Ni, Cu, and Cr are removed.
.. It is also effective to change the sulfide form by adding 5% or less, or by adding small amounts of Zr, Ca, REM, etc. to further improve workability. Further, in order to increase the strength, 1.0% or less of Si or 0.5% or less of MO may be added. Reducing other impurity elements such as P and S is also effective in improving warm workability. Steel having the above-mentioned chemical composition is formed into a steel billet by a conventional method and then hot rolled into a predetermined size and shape.

本発明の特徴を発揮させるためには、圧延後の鋼中にN
l), V,Tiの炭窒化物をなるべく微細に、かつ少
なくとも一部はNb、V、Tiを固溶したままの状態に
することが必要である。
In order to bring out the features of the present invention, it is necessary to add N to the steel after rolling.
l) It is necessary to make the carbonitrides of V and Ti as fine as possible, and to keep at least a portion of Nb, V and Ti in solid solution.

そのためには熱間圧延の開始前でNb、V、Tiの炭窒
化物を溶体化させておく必要がある。この溶体化処理は
鋼を高温加熱保持するか或いは連続鋳造された鋼片を直
接勢間圧延することによって達成される。高温加熱保持
する場合の必要最低溶体化温度は鋼中のC量、N量等に
よって異なるが少なくとも1100℃以上で加熱する必
要がある。熱間圧延は通常行なわれるようにArg点以
上で行なわれ、その後本発明では500℃以下の温度域
まで平均冷却速度10℃/ See以上で強制冷却する
ことを強要する。その理由はNb,V,Tiの炭窒化物
の一部を微細に析出させるためかつ残部を固溶Nb,V
,Tiとして鋼中に存在させることによって温間加工温
度がより高温となっても、加工冷却後の強度低下はなく
、且つ加工歪が零であっても加熱によって冷却後の強度
が上昇するという特性を有する様になる。この場合圧延
後500℃以下好ましくは450℃以下の温度域まで強
制冷却する必要がある。またこの強制冷却に於ける平均
冷却速度も10℃/ See以上(より好ましくは15
℃/ Sec以上80℃/ Sec以下)とする必要が
ある。本発明鋼材の製造において、強制冷却後そのまま
室温まで空冷されても良くまたコイル状に捲取られて室
温まで徐冷されても良いが、ホットストリップミルでコ
イルに捲取る方が工業的価値が犬である。また上記強制
冷却終了温度は200’C以上が良く、工業的には30
0’C以上でも充分本発明の特徴は発揮出来る。以下本
発明の実施例を説明する。
For this purpose, it is necessary to solutionize the carbonitrides of Nb, V, and Ti before starting hot rolling. This solution treatment is accomplished by heating and holding the steel at a high temperature or by directly rolling a continuously cast steel billet. The required minimum solution temperature when heating and holding at a high temperature varies depending on the amount of C, N, etc. in the steel, but it is necessary to heat the steel to at least 1100° C. or higher. Hot rolling is carried out above the Arg point as usual, and then in the present invention forced cooling is forced to a temperature range of 500°C or below at an average cooling rate of 10°C/See or above. The reason is that part of the carbonitrides of Nb, V, and Ti are finely precipitated, and the rest is dissolved in solid solution Nb, V, and Ti.
, even if the warm working temperature becomes higher, there is no decrease in strength after cooling due to the presence of Ti in the steel, and even if the working strain is zero, the strength after cooling increases due to heating. It comes to have characteristics. In this case, after rolling, it is necessary to forcefully cool the product to a temperature range of 500°C or lower, preferably 450°C or lower. Also, the average cooling rate in this forced cooling is 10°C/See or more (more preferably 15°C/See)
℃/Sec or more and 80℃/Sec or less). In the production of the steel products of the present invention, after forced cooling, they may be air-cooled to room temperature as is, or they may be wound into coils and slowly cooled to room temperature, but it is more industrially valuable to wind them into coils using a hot strip mill. It's a dog. In addition, the above-mentioned forced cooling end temperature is preferably 200'C or higher, and industrially 30'C or higher is recommended.
The characteristics of the present invention can be fully exhibited even at temperatures above 0'C. Examples of the present invention will be described below.

第1表に示す化学成分を有する鋼を転炉で溶製し、スラ
ブとした後ホットストリップミルで第1表に示す熱延条
件に従って板厚2.7mm0熱延鋼板を製造した。
Steel having the chemical components shown in Table 1 was melted in a converter to form a slab, and then hot-rolled steel sheets with a thickness of 2.7 mm were produced in a hot strip mill according to the hot rolling conditions shown in Table 1.

なお強制冷却はホットランテーブル上でストリップを強
制冷却することによって行なった。第1表中鋼種Aは比
較鋼、鋼種B,C,Dが本発明鋼である。第2表は得ら
れた鋼板を各種条件で加工した後の常温での強度を示す
Note that the forced cooling was performed by forcing the strip to cool on a hot run table. In Table 1, steel type A is comparative steel, and steel types B, C, and D are steels of the present invention. Table 2 shows the strength at room temperature after processing the obtained steel plates under various conditions.

加工条件として圧延まま(参考値)、常温で10%の引
張歪付与、温間(600℃×30分加熱後)で10%の
引張歪付与および600℃×30分加熱(歪なし)を選
んだ。ここで温間歪付与後と冷間歪付与後の強度を比較
することによって温間加工後の強度が冷間加工後の強度
に比して上昇したか或は低下したかがわかる。第2表で
比較鋼Aは温間加工すると冷間加工の場合に比し、強度
が低下しているのに対し、本発明鋼B,CおよびDはい
ずれも冷間加工した場合の強度よりむしろ温間加工後の
強度の方が向上しており本発明の一つの効果である温間
加工後の強度が高いという特徴が明瞭に現われている。
また第2表中圧延ままの強度と600℃×30分加熱(
歪なし)の強度を比較することによって局部加熱による
強度差を利用する温間加工に対する有用性がわかるが、
比較鋼Aでは局部加熱によって降伏点が若干上昇してい
るのに対して本発明鋼C.Dでは降伏点、引張強さ共に
局部加熱すると著しく向上している。したかつて本発明
鋼は局部加熱法にも有効であることがわかる。第3表は
深絞り加工を温間で行なった場合の効果を限界絞り比の
向上代で表わしたものである。
The processing conditions were as rolled (reference value), 10% tensile strain applied at room temperature, 10% tensile strain applied warm (after heating at 600°C for 30 minutes), and heated at 600°C for 30 minutes (no strain). is. By comparing the strength after warm straining and after cold straining, it can be seen whether the strength after warm working has increased or decreased compared to the strength after cold working. In Table 2, comparative steel A has lower strength when warm worked than when cold worked, whereas inventive steels B, C, and D all have lower strength than when cold worked. Rather, the strength after warm working is improved, and the characteristic of high strength after warm working, which is one of the effects of the present invention, is clearly manifested.
In Table 2, the as-rolled strength and heating at 600°C for 30 minutes (
By comparing the strengths (without strain), we can see the usefulness for warm processing that utilizes the strength difference due to local heating.
Comparative steel A had a slightly increased yield point due to local heating, whereas inventive steel C. In case D, both yield point and tensile strength were significantly improved by local heating. It can be seen that the steel of the present invention is also effective in the local heating method. Table 3 shows the effect of warm deep drawing in terms of the improvement in the critical drawing ratio.

温間深絞り加工はブランク(円板)中のポンチ底相当部
分を約400℃に局部加熱した後深絞りした。第3表よ
りわかるように比較鋼Aは温間加工により冷間加工に比
し限界絞り比が0.i0しか向上しないのに対し、本発
明鋼は0.20以上向上しており、本発明鋼が局部加熱
法にも優れていることがわかる。
In the warm deep drawing process, a portion of the blank (disc) corresponding to the bottom of the punch was locally heated to about 400°C, and then deep drawing was performed. As can be seen from Table 3, Comparative Steel A has a critical drawing ratio of 0.0 after warm working compared to cold working. While the steel of the present invention only improves i0 by 0.20 or more, it can be seen that the steel of the present invention is also excellent in the local heating method.

以上本発明を詳述したが、本発明鋼材は温間加工を行な
う用途に適用した場合、従来の熱間圧延炭素鋼材で得ら
れない特性を有しており、その工業的価値は大である。
The present invention has been described in detail above, and when applied to warm working applications, the steel of the present invention has properties that cannot be obtained with conventional hot-rolled carbon steel, and its industrial value is great. .

Claims (1)

【特許請求の範囲】[Claims] 1 C=0.02〜0.15%、Mn=0.90超〜2
.50%、N=0.0020〜0.015%、およびN
b=0.01〜0.10%、V=0.01〜0.20%
、Ti=0.03〜0.30%のうち1種又は2種以上
を主要構成成分とするキルド鋼を溶体化処理後、熱間圧
延し、その後10℃/sec以上の平均冷却速度で50
.0℃以下の温度域まで強制冷却することを特徴とする
温間加工用熱間圧延鋼材の製造法。
1 C=0.02 to 0.15%, Mn=more than 0.90 to 2
.. 50%, N=0.0020-0.015%, and N
b=0.01~0.10%, V=0.01~0.20%
, a killed steel containing one or more of Ti=0.03 to 0.30% as a main component is solution treated, hot rolled, and then heated to a temperature of 50° C. at an average cooling rate of 10° C./sec or more.
.. A method for producing hot rolled steel for warm working, characterized by forced cooling to a temperature range of 0°C or lower.
JP15609076A 1976-12-24 1976-12-24 Manufacturing method of hot rolled steel for warm working Expired JPS5945729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15609076A JPS5945729B2 (en) 1976-12-24 1976-12-24 Manufacturing method of hot rolled steel for warm working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15609076A JPS5945729B2 (en) 1976-12-24 1976-12-24 Manufacturing method of hot rolled steel for warm working

Publications (2)

Publication Number Publication Date
JPS5379716A JPS5379716A (en) 1978-07-14
JPS5945729B2 true JPS5945729B2 (en) 1984-11-08

Family

ID=15620077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15609076A Expired JPS5945729B2 (en) 1976-12-24 1976-12-24 Manufacturing method of hot rolled steel for warm working

Country Status (1)

Country Link
JP (1) JPS5945729B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139626A (en) * 1980-03-31 1981-10-31 Kobe Steel Ltd Production of hot-rolled steel plate of superior strength-ductility balance
JP4609107B2 (en) * 2005-02-22 2011-01-12 Jfeスチール株式会社 Manufacturing method of high strength members

Also Published As

Publication number Publication date
JPS5379716A (en) 1978-07-14

Similar Documents

Publication Publication Date Title
JP2011144414A (en) Cold rolled steel sheet and method for producing the same
JP5094888B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
SE446883B (en) PROCEDURE FOR MANUFACTURE OF DOUBLE PLATE WITH DOUBLE PHASE STRUCTURE
EP0319590A1 (en) HIGH-STRENGTH, COLD-ROLLED STEEL SHEET HAVING HIGH r VALUE AND PROCESS FOR ITS PRODUCTION
JPH0559187B2 (en)
JP2005029889A (en) High strength low specific gravity steel sheet excellent in ductility, and its production method
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JPH0140895B2 (en)
JPH0756055B2 (en) Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability
JP3823338B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JPS58126956A (en) High-strength steel sheet with superior press workability
JPS5945729B2 (en) Manufacturing method of hot rolled steel for warm working
JP3379826B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same
JPS6254183B2 (en)
JP6410543B2 (en) Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof
JP4454117B2 (en) Method for producing Cr-containing thin steel sheet
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
JPH0353026A (en) Manufacture of ferritic stainless steel sheet having excellent heat resistance and corrosion resistance
JPH1150143A (en) Production of two phase stainless steel excellent in workability
JPH0137454B2 (en)
JPH07103423B2 (en) Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability
JPH06184637A (en) Production of steel tube for automotive exhaust system
JP2566068B2 (en) Method for manufacturing steel bar with excellent cold workability
JPS6283426A (en) Manufacture of cold rolled steel sheet for deep drawing