JP3823338B2 - Manufacturing method of high strength hot-rolled steel sheet - Google Patents

Manufacturing method of high strength hot-rolled steel sheet Download PDF

Info

Publication number
JP3823338B2
JP3823338B2 JP15266895A JP15266895A JP3823338B2 JP 3823338 B2 JP3823338 B2 JP 3823338B2 JP 15266895 A JP15266895 A JP 15266895A JP 15266895 A JP15266895 A JP 15266895A JP 3823338 B2 JP3823338 B2 JP 3823338B2
Authority
JP
Japan
Prior art keywords
cooling
steel sheet
rolled steel
hot
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15266895A
Other languages
Japanese (ja)
Other versions
JPH08325644A (en
Inventor
茂樹 野村
東成 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15266895A priority Critical patent/JP3823338B2/en
Publication of JPH08325644A publication Critical patent/JPH08325644A/en
Application granted granted Critical
Publication of JP3823338B2 publication Critical patent/JP3823338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、優れた伸びフランジ性を有すると共にコイル内における特性の変動が少ない、高強度と加工性の両立が要求される自動車足廻り材等の機械構造用として好適な熱延鋼板を生産性良く製造する方法に関するものである。
【0002】
【従来の技術】
連続熱間圧延によって製造されるいわゆる“熱延鋼板”は、比較的安価な構造材料として自動車を始めとする各種の産業機器に広く使用されているが、その用途にはプレス加工で成形される部材が多く、従って高強度と加工性を両立している必要がある。
特に加工性に関しては、通常、穴拡げ試験等で評価される“伸びフランジ性”が重要な指標の1つとして注目される。
【0003】
ところで、伸びフランジ性の良好な熱延鋼板の製造にはSiの添加が有効であることが知られている。例えば、特開平3−180426号公報,特開平3−219049号公報,特開平4−88125号公報には、Siのセメンタイト微細化効果を利用して熱延鋼板の伸びフランジ性を改善する方法が開示されている。
【0004】
しかしながら、上述のようにSiを添加すると、熱延鋼板のデスケ−リング性が悪化し、不均一な厚みのスケ−ルが鋼板上に残存して表面性状が悪化するばかりか、スケ−ル厚みの不均一性に起因して鋼板の冷却も不均一となり、そのためコイル内の特性変動が大きくなって歩留悪化の原因となった。
【0005】
もっとも、前記特開平3−219049号公報や特開平4−88125号公報には、熱間圧延に際しての鋼片の加熱温度を1000〜1200℃と低目に抑えてデスケ−リング性悪化の原因となるフェアライトの生成を抑制することも開示されているが、この方策による場合には低い温度で圧延がなされるために圧延荷重(圧延負荷)が大きくなるという問題があった。
【0006】
このようなことから、本発明が目的としたのは、優れた伸びフランジ性を有すると共にコイル内における特性の変動が少ない高強度熱延鋼板を歩留良く製造することができる方法を確立することである。
【0007】
【課題を解決するための手段】
前述したように、素材鋼にSiを添加するとデスケ−リング性が悪化して不均一な厚みのスケ−ルが鋼板上に残存するようになり、熱間圧延後の冷却過程でスケ−ル厚みの差に起因した不均一な冷却が生じる結果、コイル内の特性変動が大きくなる。
この冷却不均一の原因は、スケ−ルの熱伝導性が悪いためにスケ−ルが厚く残存する部分では鋼板の保有熱がスケ−ル表面にまで速やかに伝わらず、そのため該部分の表面のみが早く冷やされることとなり、その結果スケ−ルが厚く残存する部分のみが膜沸騰冷却から核沸騰領域に早く遷移し急激に冷却されることにある。
【0008】
そこで、本発明者等は、これら不均一な冷却を抑制する方法について鋭意研究を行った結果、不均一冷却の抑制には熱間圧延後に行う鋼板の冷却の殆どを冷却過程の前段で速やかに行う“前段主体の冷却”とし、かつ巻取温度を450℃以上とすることが重要であることを見出した。
即ち、本発明者等の研究により次のことが明らかとなったのである。
熱延後の冷却を“前段主体の冷却”とした場合には、冷却過程の後段での水量や水圧を減少することができるので膜沸騰冷却から核沸騰冷却への遷移温度が低温側に移行し、そのためスケ−ルむらが存在していても均一な冷却が行われるようになる。ただ、熱延後の冷却を“450℃を下回る温度域”まで実施すると、冷却過程後段の冷却を軽減しても不均一な冷却は免れられない。
しかも、上記“前段主体の冷却”を実施すると、セメンタイトの析出が抑制されるために得られる熱延鋼板の伸びフランジ性も良好となる。
【0009】
本発明は、上記知見事項等を基にして完成されたものであって
「C:0.04〜0.15%(以降、 成分割合を表す%は重量%とする),
Si: 0.4〜 2.0%, Mn: 0.7〜 2.0%, P: 0.005〜0.10%,
sol.Al: 0.004〜0.10%, S: 0.015%以下
を含むか、 あるいは更に
Ca:0.0002〜0.01%, Ti: 0.005〜0.15%, Cr: 0.1〜 1.2%
の1種以上をも含むと共に残部がFe及び不可避不純物から成る鋼片を、 1200℃を超える温度に加熱して熱間圧延を施し、 最終パス出側温度830〜940℃で熱間圧延を終了した後、 50℃/s以上の冷却速度にて540〜640℃まで冷却する第1段冷却と、 これに続く1〜5秒間の空冷を行う第2段冷却とを施し、 更に引続いて5〜30℃/sの冷却速度にて450〜550℃まで冷却を行う第3段冷却を施してから巻取ることにより、 伸びフランジ性に優れると共にコイル内特性変動の少ない高強度熱延鋼板を生産性良く安定製造し得るようにした点」
に大きな特徴を有している。
【0010】
【作用】
以下、本発明において鋼片の化学組成及び処理条件を前記の如くに限定した理由を説明する。
(A) 鋼片の化学組成
a) C
Cは高張力鋼板として必要な強度を確保するために必要な成分であるが、その含有量が0.04%未満であると必要強度の確保が困難となる。一方、Cは伸びフランジ成形時の割れの起点である炭化物の析出量を増加させるので、優れた伸びフランジ性を確保するためにはC含有量を0.15%以下に抑えなければならない。従って、C含有量は0.04〜0.15%と定めた。
【0011】
b) Si
Siは、セメンタイトの析出を遅らせ、また変態強化を促進する作用を通じて鋼板に高強度と伸びフランジ性を両立させるのに重要な元素である。更に、Siは固溶強化元素でもあり、フェライトを強化して伸びフランジを向上させる効果をも有している。そして、十分な伸びフランジ性を得るためには 0.4%以上のSi含有量を確保する必要があるが、その含有量が 2.0%を超えると溶接性や靱性の劣化を招くようになることから、Si含有量は 0.4〜 2.0%と定めた。
【0012】
c) Mn
Mnは、高張力鋼板として必要な強度を確保すると共にセメンタイトの析出を抑制するのに不可欠な成分であり、そのためには 0.7%以上を含有させる必要があるが、 2.0%を超えて含有させると溶接性の劣化を招くので好ましくない。従って、Mn含有量は 0.7〜 2.0%と定めたが、好ましくは 1.0〜 2.0%に調整するのが良い。
【0013】
d)P
Pは固溶強化を通じて鋼板の強化に寄与する成分であり、そのためには 0.005以上の含有量を確保するのが有効であるが、0.10%を超えて含有させると加工性や靱性の劣化を招くことから、P含有量は 0.005〜0.10%と定めた。
【0014】
e) sol.Al
Alは鋼の脱酸材として添加される元素であり、十分な脱酸効果を得るためにはsol.Al量で 0.004%以上の含有量を確保する必要があるが、0.10%を超える過度の添加は非金属介在物の形成につながる。従って、Al含有量をsol.Al量で 0.004〜0.10%と定めた。
【0015】
f) S
Sは鋼中のMnと結合して非金属介在物を形成する不純物元素であるので、その含有量は可能な限り低い方が良い。ただ、S含有量が 0.015%以下であれば本発明が目的とする所望特性の確保が可能となるため、S含有量の上限を 0.015%と定めたが、より好ましい範囲は 0.005%以下である。
【0016】
g) Ca,Ti及びCr
Caは、介在物の形状を調整して冷間加工性を改善する作用を有するので必要に応じて添加される成分であるが、その含有量が0.0002%未満では前記作用による所望の効果が得られず、一方、0.01%を超えて含有させると逆に鋼中の介在物が多くなりすぎて冷間加工性が劣化するようになることから、Ca含有量は0.0002〜0.01%と定めた。
また、Tiは析出強化により、そしてCrは変態強化により鋼板の強度を向上させる作用を有するので、何れもやはり必要に応じて添加される成分であるが、該作用による所望の効果を得るためには、Tiの場合には 0.005%以上の含有量を、Crの場合には 0.1%以上の含有量を確保する必要がある。しかしながら、Tiの場合には0.15%を超えて含有させてもその効果は飽和し、一方、Crの場合には 1.2%を超えて含有させると溶接性の劣化を招く。従って、その含有量はTiでは 0.005〜0.15%、Crでは 0.1〜 1.2%と定めた。
【0017】
(B) 処理条件
本発明では、熱間圧延に際しての鋼片の加熱温度は1200℃超とされる。これは、鋼中不純物を完全に固溶させて偏析するのを防ぐと共に、鋼片の変形抵抗を下げて圧延の負荷(特に粗圧延での荷重等の負荷)を軽減するために必要な処置である。
【0018】
また、熱間圧延の仕上温度は830〜940℃に調整される。これは、仕上温度が830℃未満となって未再結晶域での圧下量が多くなると、顕著なバンド状組織が生成して穴拡げ性を劣化させ、一方、仕上温度が940℃を超えた場合にはオ−ステナイト粒径が大きくなりすぎてフェライト生成量が減少し、延性が低下するからである。
【0019】
そして、熱間圧延後、50℃/s以上(好ましくは70℃/s以上)の冷却速度で540〜640℃の領域にまで第1段の急冷を施すのは、引続いて巻取温度まで実施する後段の冷却の負荷を軽減して前述したような膜沸騰−核沸騰遷移温度を低下させ、巻取温度の的中率を向上させるためであり、加えてセメンタイトの粒界への析出を抑制させるためでもある。
【0020】
この場合、第1段冷却の冷却速度が50℃/c未満であったり、第1段冷却の終点温度が640℃超であったりするとセメンタイトの粒界への析出が抑えられずに穴拡げ性が劣化する。また、この第1段冷却の終点温度が640℃超であった場合、良好な穴拡げ性が確保できる巻取温度まで冷却するには引続いて行われる空冷(第2段冷却)後の冷却(第3段冷却)の冷却速度が速くなってしまい、膜沸騰−核沸騰遷移温度が比較的高温側に移行するため島状スケ−ルに起因した不均一な冷却が起こってコイル内特性変動を免れることができない。
一方、第1段冷却の終点温度が540℃未満であるとフェライトの生成が不十分で延性が低下する。
【0021】
本発明において、第1段冷却に続いて行われる第2段冷却(空冷)は非常に重要な工程である。即ち、本発明ではバンド組織生成を抑制するために熱間圧延の仕上温度を高めた結果、オ−ステナイト粒が大きくなってフェライトが生成しにくくなるので、この第2段の空冷によってフェライトの生成を十分に行わせる必要がある。
空冷時間は1〜5秒が適当で、1秒未満では上記効果が得られず、一方、5秒を超える時間空冷を行うと結晶粒界にセメンタイトが析出してきて穴拡げ性が劣化する。なお、好ましくは空冷時間は1〜3秒とするのが良い。
【0022】
第2段冷却(空冷)の後は、引続き5〜30℃/s(好ましくは5〜20℃/s)の冷却速度で450〜550℃の巻取温度まで冷却する“第3段冷却”が実施される。
この第3段冷却において、冷却速度が30℃/sを超えたり、冷却終点温度(巻取温度)が450℃を下回ったりすると、島状スケ−ルに起因したコイル内の不均一な冷却が生じてコイル内特性変動を免れることができなくなり、歩留が悪化する。一方、この場合、冷却速度が5℃/s未満であったり、冷却終点温度(巻取温度)が550℃を上回っていると、セメンタイトの粒界への析出が生じて穴拡げ性が劣化する。
なお、第3段冷却終了後は速やかに巻取る必要がある。
【0023】
次に、本発明を実施例により説明する。
【実施例】
まず、表1に示す化学組成の鋼を転炉溶製し、連続鋳造にてスラブとした。
【0024】
【表1】

Figure 0003823338
【0025】
次いで、表2及び表3に示す条件でスラブの再加熱,熱間圧延,冷却を順次実施した後、速やかに巻取って 2.6mm厚の熱延鋼板を得た。
更に、常法に従い引続いてこの熱延鋼板に形状修正のためのスキンパスと酸洗とを施した。
【0026】
【表2】
Figure 0003823338
【0027】
【表3】
Figure 0003823338
【0028】
そして、上述のように製造された各熱延鋼板から圧延方向にJIS5号引張試験片を採取し、その機械的性質を調べた。
また、これとは別に、各熱延鋼板から採取した試験片に10%クリアランスで打ち抜いた12φ穴を60°円錐ポンチで穴拡げするという“穴拡げ試験”も実施した。
これらの結果を前記表2及び表3に併せて示す。
【0029】
表2及び表3に示される結果からは、次のことを確認できる。
即ち、本発明で規定する条件に従って製造された試験番号1〜及び試験番号16〜21に係る熱延鋼板は、何れも“優れた強度及び延性”と“100%を超える穴拡げ率”を有し、また“巻取温度で±25℃に入る高い冷却安定性(これはコイル内特性変動の少ないことを意味する)”が得られている。
【0030】
これに対して、空冷開始温度の高い試験番号10と、空冷時間の長い試験番号12と、巻取温度の高い試験番号15に係る熱延鋼板は、粒界での炭化物の析出が多く穴拡げ性が低い。
また、空冷を実施しなかった試験番号9と、空冷開始温度の低い試験番号11に係る熱延鋼板は、何れも伸びが低い。
更に、第3段冷却速度の速い試験番号13と、巻取温度の低い試験番号14に係る熱延鋼板は、スケ−ル厚みの差に起因した冷却の不均一が生じ、コイル内特性バラツキの原因となる巻取温度のバラツキが大きくなっている。
そして、Si含有量の低い試験番号22に係る熱延鋼板は、巻取温度の的中率は良いが穴拡げ性が低い。
【0031】
【効果の総括】
以上に説明した如く、この発明によれば、高強度と高伸びフランジ性を両立していてア−ムやメンバ−等の自動車足廻り部品用等として好適な熱延鋼板を提供することができる上、その製造に際しては熱間圧延後の冷却過程での温度制御が簡単なために製造歩留が非常に良好であるなど、産業上極めて有用な効果がもたらされる。[0001]
[Industrial application fields]
The present invention provides a hot-rolled steel sheet suitable for use in machine structures such as automobile undercarriage materials that have both excellent stretch flangeability and small fluctuations in characteristics in the coil and require both high strength and workability. It relates to a method of manufacturing well.
[0002]
[Prior art]
The so-called “hot rolled steel sheet” manufactured by continuous hot rolling is widely used as a relatively inexpensive structural material in various industrial equipment including automobiles. There are many members, so it is necessary to achieve both high strength and workability.
In particular, with respect to workability, “stretch flangeability”, which is usually evaluated by a hole expansion test or the like, is attracting attention as one of the important indicators.
[0003]
By the way, it is known that addition of Si is effective for manufacturing a hot-rolled steel sheet having good stretch flangeability. For example, JP-A-3-180426, JP-A-3-219049, and JP-A-4-88125 disclose a method for improving stretch flangeability of a hot-rolled steel sheet by utilizing the cementite refinement effect of Si. It is disclosed.
[0004]
However, when Si is added as described above, the descaling property of the hot-rolled steel sheet deteriorates, the scale having a non-uniform thickness remains on the steel sheet, and the surface texture deteriorates. Due to the non-uniformity of the steel sheet, the cooling of the steel sheet also became non-uniform, and as a result, the fluctuation of the characteristics in the coil became large, causing the yield to deteriorate.
[0005]
However, the above-mentioned JP-A-3-219049 and JP-A-4-88125 disclose that the heating temperature of the steel slab at the time of hot rolling is as low as 1000 to 1200 ° C., which causes the deterioration of descaling properties. Although it is also disclosed to suppress the formation of fairylite, there is a problem that the rolling load (rolling load) becomes large because the rolling is performed at a low temperature in the case of this measure.
[0006]
For this reason, the object of the present invention is to establish a method capable of producing a high-strength hot-rolled steel sheet having excellent stretch flangeability and little fluctuation in characteristics in the coil with high yield. It is.
[0007]
[Means for Solving the Problems]
As described above, when Si is added to the material steel, the descalability deteriorates and a non-uniform thickness scale remains on the steel plate, and the thickness of the scale is reduced during the cooling process after hot rolling. As a result of non-uniform cooling due to the difference, the characteristic fluctuation in the coil increases.
The cause of this non-uniform cooling is that the thermal conductivity of the scale is poor, so that the heat retained in the steel sheet is not quickly transmitted to the scale surface in the part where the scale remains thick. As a result, only the portion where the scale remains thick is rapidly changed from the film boiling cooling to the nucleate boiling region and rapidly cooled.
[0008]
Therefore, as a result of intensive studies on the method for suppressing such non-uniform cooling, the present inventors have conducted most of the cooling of the steel sheet after hot rolling immediately before the cooling process in order to suppress non-uniform cooling. It was found that it is important to perform “cooling mainly in the previous stage” to be performed and to set the winding temperature to 450 ° C. or higher.
That is, the following has been clarified by the study of the present inventors.
If the cooling after hot rolling is “primary cooling”, the amount of water and water pressure in the latter stage of the cooling process can be reduced, so the transition temperature from film boiling cooling to nucleate boiling cooling shifts to lower temperatures. For this reason, even if the unevenness of the scale exists, uniform cooling can be performed. However, if the cooling after hot rolling is carried out to “a temperature range lower than 450 ° C.”, uneven cooling cannot be avoided even if the cooling after the cooling process is reduced.
In addition, when the “cooling of the main part of the previous stage” is performed, the stretch flangeability of the hot-rolled steel sheet obtained because cementite precipitation is suppressed is improved.
[0009]
The present invention has been completed on the basis of the above knowledge and the like, and “C: 0.04 to 0.15% (hereinafter,“% ”representing the component ratio is“% by weight ”),
Si: 0.4-2.0%, Mn: 0.7-2.0%, P: 0.005-0.10%,
sol.Al: 0.004 to 0.10%, S: 0.015% or less, or further
Ca: 0.0002 to 0.01%, Ti: 0.005 to 0.15%, Cr: 0.1 to 1.2%
The steel slab containing at least one of the above and the balance consisting of Fe and inevitable impurities is heated to a temperature exceeding 1200 ° C. and subjected to hot rolling, and the hot rolling is finished at the final pass outlet temperature of 830 to 940 ° C. After that, the first stage cooling to 540 to 640 ° C. at a cooling rate of 50 ° C./s or more and the second stage cooling to perform air cooling for 1 to 5 seconds following this are performed. High-strength hot-rolled steel sheet with excellent stretch flangeability and little fluctuation in coil characteristics is produced by winding after winding the third stage cooling to 450-550 ° C at a cooling rate of -30 ° C / s The point that it was possible to manufacture stably with good quality. ''
Has major features.
[0010]
[Action]
Hereinafter, the reason why the chemical composition of the steel slab and the processing conditions are limited as described above in the present invention will be described.
(A) Chemical composition of billet
a) C
C is a component necessary for ensuring the strength required as a high-tensile steel plate, but if the content is less than 0.04%, it is difficult to ensure the required strength. On the other hand, C increases the precipitation amount of carbide, which is the starting point of cracking during stretch flange molding, so the C content must be suppressed to 0.15% or less in order to ensure excellent stretch flangeability. Therefore, the C content is determined to be 0.04 to 0.15%.
[0011]
b) Si
Si is an important element for achieving both high strength and stretch flangeability in a steel sheet through the action of delaying precipitation of cementite and promoting transformation strengthening. Furthermore, Si is also a solid solution strengthening element and has the effect of strengthening ferrite and improving the stretch flange. And in order to obtain sufficient stretch flangeability, it is necessary to secure a Si content of 0.4% or more. However, if the content exceeds 2.0%, weldability and toughness will be deteriorated. The Si content was determined to be 0.4 to 2.0%.
[0012]
c) Mn
Mn is an essential component for securing the necessary strength as a high-tensile steel sheet and suppressing the precipitation of cementite. For that purpose, it is necessary to contain 0.7% or more, but if it is contained more than 2.0% This is not preferable because it causes deterioration of weldability. Therefore, the Mn content is set to 0.7 to 2.0%, but it is preferable to adjust to 1.0 to 2.0%.
[0013]
d) P
P is a component that contributes to strengthening of the steel sheet through solid solution strengthening. For that purpose, it is effective to secure a content of 0.005 % or more, but if it exceeds 0.10%, workability and toughness are deteriorated. Therefore, the P content is determined to be 0.005 to 0.10%.
[0014]
e) sol.Al
Al is an element added as a deoxidizing material for steel. In order to obtain a sufficient deoxidizing effect, it is necessary to secure a content of 0.004% or more in terms of sol.Al content. Addition leads to the formation of non-metallic inclusions. Therefore, the Al content is determined to be 0.004 to 0.10% in terms of sol.Al content.
[0015]
f) S
Since S is an impurity element that combines with Mn in steel to form non-metallic inclusions, the content is preferably as low as possible. However, if the S content is 0.015% or less, it is possible to ensure the desired characteristics of the present invention. Therefore, the upper limit of the S content is set to 0.015%, but a more preferable range is 0.005% or less. .
[0016]
g) Ca, Ti and Cr
Ca is a component added as necessary because it has the effect of improving the cold workability by adjusting the shape of inclusions, but if its content is less than 0.0002%, the desired effect due to the above effect is obtained. On the other hand, if the content exceeds 0.01%, the amount of inclusions in the steel becomes excessive and the cold workability deteriorates. Therefore, the Ca content is determined to be 0.0002 to 0.01%.
In addition, Ti has the effect of improving the strength of the steel sheet by precipitation strengthening, and Cr is strengthened by transformation strengthening, so all are components added as necessary, but in order to obtain the desired effect by this action Therefore, it is necessary to secure a content of 0.005% or more in the case of Ti and 0.1% or more in the case of Cr. However, in the case of Ti, if the content exceeds 0.15%, the effect is saturated, while in the case of Cr, if it exceeds 1.2%, the weldability deteriorates. Therefore, the content is determined to be 0.005 to 0.15% for Ti and 0.1 to 1.2% for Cr.
[0017]
(B) Treatment conditions In the present invention, the heating temperature of the steel slab at the time of hot rolling exceeds 1200 ° C. This is necessary to reduce the rolling load (especially the load during rough rolling) by reducing the deformation resistance of the steel slab and preventing the segregation by completely dissolving impurities in the steel. It is.
[0018]
Moreover, the finishing temperature of hot rolling is adjusted to 830-940 degreeC. This is because when the finishing temperature is less than 830 ° C. and the amount of reduction in the non-recrystallized region is increased, a remarkable band-like structure is generated and the hole expandability is deteriorated, while the finishing temperature exceeds 940 ° C. In this case, the austenite grain size becomes too large, the amount of ferrite produced decreases, and the ductility decreases.
[0019]
And after hot rolling, the first stage of rapid cooling to the region of 540 to 640 ° C. at a cooling rate of 50 ° C./s or more (preferably 70 ° C./s or more) is continued up to the coiling temperature. This is to reduce the cooling load of the subsequent stage to lower the film boiling-nuclear boiling transition temperature as described above, and to improve the accuracy of the coiling temperature, and in addition, precipitate cementite at the grain boundaries. It is also for suppressing.
[0020]
In this case, if the cooling rate of the first stage cooling is less than 50 ° C./c or the end point temperature of the first stage cooling exceeds 640 ° C., the precipitation of cementite at the grain boundary is not suppressed and the hole expandability is suppressed. Deteriorates. In addition, when the end point temperature of the first stage cooling is higher than 640 ° C., the cooling after the air cooling (second stage cooling) that is subsequently performed to cool down to the winding temperature at which good hole expansibility can be secured. The cooling rate of (third stage cooling) is increased, and the film boiling-nucleate boiling transition temperature shifts to a relatively high temperature side, resulting in uneven cooling due to island scale, resulting in fluctuations in the coil characteristics. Can not escape.
On the other hand, when the end point temperature of the first stage cooling is less than 540 ° C., ferrite is not sufficiently generated and ductility is lowered.
[0021]
In the present invention, the second stage cooling (air cooling) performed following the first stage cooling is a very important process. That is, in the present invention, as the result of increasing the hot rolling finishing temperature in order to suppress the formation of the band structure, the austenite grains become large and it is difficult to generate ferrite. Need to be fully implemented.
The air cooling time is suitably 1 to 5 seconds. If the air cooling time is less than 1 second, the above effect cannot be obtained. On the other hand, if air cooling is performed for more than 5 seconds, cementite precipitates at the crystal grain boundaries and the hole expandability deteriorates. The air cooling time is preferably 1 to 3 seconds.
[0022]
After the second stage cooling (air cooling), “third stage cooling” is performed to cool to a coiling temperature of 450 to 550 ° C. at a cooling rate of 5 to 30 ° C./s (preferably 5 to 20 ° C./s). To be implemented.
In this third stage cooling, if the cooling rate exceeds 30 ° C./s or the cooling end point temperature (winding temperature) falls below 450 ° C., uneven cooling in the coil due to the island-shaped scale will occur. As a result, fluctuations in the characteristics within the coil cannot be avoided and the yield deteriorates. On the other hand, in this case, when the cooling rate is less than 5 ° C./s or the cooling end point temperature (winding temperature) is higher than 550 ° C., precipitation of cementite at grain boundaries occurs and the hole expandability deteriorates. .
In addition, it is necessary to wind up promptly after the end of the third stage cooling.
[0023]
Next, an example explains the present invention.
【Example】
First, steel having the chemical composition shown in Table 1 was melted in a converter and made into a slab by continuous casting.
[0024]
[Table 1]
Figure 0003823338
[0025]
Next, the slab was reheated, hot-rolled, and cooled sequentially under the conditions shown in Tables 2 and 3, and then quickly wound to obtain a 2.6 mm thick hot-rolled steel sheet.
Further, the hot-rolled steel sheet was subsequently subjected to skin pass and shape pickling for shape correction in accordance with a conventional method.
[0026]
[Table 2]
Figure 0003823338
[0027]
[Table 3]
Figure 0003823338
[0028]
And the JIS No. 5 tensile test piece was extract | collected in the rolling direction from each hot-rolled steel plate manufactured as mentioned above, and the mechanical property was investigated.
Separately from this, a “hole expansion test” was carried out in which a 12φ hole punched out with a 10% clearance was expanded on a test piece taken from each hot-rolled steel sheet with a 60 ° conical punch.
These results are also shown in Tables 2 and 3 above.
[0029]
From the results shown in Tables 2 and 3, the following can be confirmed.
That is, the hot-rolled steel sheets according to Test Nos. 1 to 7 and Test Nos. 16 to 21 manufactured according to the conditions specified in the present invention all have “excellent strength and ductility” and “a hole expansion ratio exceeding 100%”. In addition, “high cooling stability within ± 25 ° C. at the coiling temperature (this means that there is little fluctuation in the characteristics in the coil)” is obtained.
[0030]
On the other hand, the hot rolled steel sheets according to test number 10 with a high air cooling start temperature, test number 12 with a long air cooling time, and test number 15 with a high coiling temperature have a large amount of carbide precipitation at the grain boundaries and expand the hole. The nature is low.
In addition, the hot-rolled steel sheet according to test number 9 in which air cooling was not performed and test number 11 in which the air cooling start temperature is low has low elongation.
Furthermore, in the hot-rolled steel sheet according to test number 13 having a high third stage cooling rate and test number 14 having a low coiling temperature, cooling non-uniformity is caused by the difference in scale thickness, and variations in the characteristics in the coil occur. The variation in the coiling temperature that is the cause is large.
And the hot-rolled steel sheet according to test number 22 having a low Si content has a good midpoint ratio of the coiling temperature but has low hole expandability.
[0031]
[Summary of effects]
As described above, according to the present invention, it is possible to provide a hot-rolled steel sheet that has both high strength and high stretch flangeability and is suitable for automobile undercarriage parts such as arms and members. In addition, since the temperature control in the cooling process after the hot rolling is simple in the production, the production yield is very good, and thus an extremely useful effect in the industry is brought about.

Claims (2)

重量割合にて
C:0.04〜0.15%, Si: 0.4〜 2.0%, Mn: 0.7〜 2.0%,
P: 0.005〜0.10%, sol.Al: 0.004〜0.10%, S: 0.015%以下
を含むと共に残部がFe及び不可避不純物から成る鋼片を、1200℃を超える温度に加熱して熱間圧延を施し、最終パス出側温度830〜940℃で熱間圧延を終了した後、50℃/s以上の冷却速度にて540〜640℃まで冷却する第1段冷却と、これに続く1〜5秒間の空冷を行う第2段冷却とを施し、更に引続いて5〜30℃/sの冷却速度にて450〜550℃まで冷却を行う第3段冷却を施してから巻取ることを特徴とする、伸びフランジ性に優れ、コイル内特性変動の少ない高強度熱延鋼板の製造方法。
By weight ratio: C: 0.04-0.15%, Si: 0.4-2.0%, Mn: 0.7-2.0%,
P: 0.005 to 0.10%, sol.Al: 0.004 to 0.10%, S: A steel slab containing 0.015% or less and the balance consisting of Fe and inevitable impurities is heated to a temperature exceeding 1200 ° C. and subjected to hot rolling. Then, after finishing the hot rolling at the final pass outlet temperature of 830 to 940 ° C., the first stage cooling to be cooled to 540 to 640 ° C. at a cooling rate of 50 ° C./s or more, followed by 1 to 5 seconds. It is characterized in that it is subjected to second stage cooling that performs air cooling, and then wound after performing third stage cooling that performs cooling to 450 to 550 ° C. at a cooling rate of 5 to 30 ° C./s. A method for producing high-strength hot-rolled steel sheets with excellent stretch flangeability and less fluctuations in the properties of the coil.
重量割合にて
C:0.04〜0.15%, Si: 0.4〜 2.0%, Mn: 0.7〜 2.0%,
P: 0.005〜0.10%, sol.Al: 0.004〜0.10%, S: 0.015%以下
を含み、更に
Ca:0.0002〜0.01%, Ti: 0.005〜0.15%, Cr: 0.1〜 1.2%
の1種以上を含むと共に残部がFe及び不可避不純物から成る鋼片を、1200℃を超える温度に加熱して熱間圧延を施し、最終パス出側温度830〜940℃で熱間圧延を終了した後、50℃/s以上の冷却速度にて540〜640℃まで冷却する第1段冷却と、これに続く1〜5秒間の空冷を行う第2段冷却とを施し、更に引続いて5〜30℃/sの冷却速度にて450〜550℃まで冷却を行う第3段冷却を施してから巻取ることを特徴とする、伸びフランジ性に優れ、コイル内特性変動の少ない高強度熱延鋼板の製造方法。
By weight ratio: C: 0.04-0.15%, Si: 0.4-2.0%, Mn: 0.7-2.0%,
P: 0.005 to 0.10%, sol.Al: 0.004 to 0.10%, S: 0.015% or less, and
Ca: 0.0002 to 0.01%, Ti: 0.005 to 0.15%, Cr: 0.1 to 1.2%
A steel slab comprising at least one of the above and the balance comprising Fe and inevitable impurities was heated to a temperature exceeding 1200 ° C. to perform hot rolling, and the hot rolling was completed at a final pass outlet temperature of 830 to 940 ° C. Thereafter, the first stage cooling for cooling to 540 to 640 ° C. at a cooling rate of 50 ° C./s or more, and the second stage cooling for air cooling for 1 to 5 seconds, followed by 5 to 5 ° C. A high-strength hot-rolled steel sheet with excellent stretch flangeability and little fluctuation in coil characteristics, which is wound after being subjected to third-stage cooling that cools to 450 to 550 ° C. at a cooling rate of 30 ° C./s Manufacturing method.
JP15266895A 1995-05-26 1995-05-26 Manufacturing method of high strength hot-rolled steel sheet Expired - Fee Related JP3823338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15266895A JP3823338B2 (en) 1995-05-26 1995-05-26 Manufacturing method of high strength hot-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15266895A JP3823338B2 (en) 1995-05-26 1995-05-26 Manufacturing method of high strength hot-rolled steel sheet

Publications (2)

Publication Number Publication Date
JPH08325644A JPH08325644A (en) 1996-12-10
JP3823338B2 true JP3823338B2 (en) 2006-09-20

Family

ID=15545493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15266895A Expired - Fee Related JP3823338B2 (en) 1995-05-26 1995-05-26 Manufacturing method of high strength hot-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3823338B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140044931A (en) 2011-08-31 2014-04-15 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for cold-rolled steel sheet, hot-rolled steel sheet for hot-dipped galvanized steel sheet, method for producing hot-rolled steel sheet for cold-rolled steel sheet, and method for producing hot-rolled steel sheet for hot-dipped galvanized steel sheet
US11136643B2 (en) 2016-08-10 2021-10-05 Jfe Steel Corporation High-strength steel sheet and method for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090087129A (en) * 2000-12-07 2009-08-14 니폰 스틸 코포레이션 High strength hot rolled steel plate excellent in enlargeability and ductility and method for production thereof
JP5176431B2 (en) 2007-08-24 2013-04-03 Jfeスチール株式会社 Manufacturing method of high strength hot-rolled steel sheet
JP6201571B2 (en) * 2013-09-25 2017-09-27 新日鐵住金株式会社 High-strength hot-rolled steel sheet excellent in hole expansibility, elongation and welding characteristics and method for producing the same
CN109266972B (en) * 2018-12-14 2022-02-18 辽宁衡业高科新材股份有限公司 Preparation method of 1400 MPa-level heat-treated wheel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140044931A (en) 2011-08-31 2014-04-15 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet for cold-rolled steel sheet, hot-rolled steel sheet for hot-dipped galvanized steel sheet, method for producing hot-rolled steel sheet for cold-rolled steel sheet, and method for producing hot-rolled steel sheet for hot-dipped galvanized steel sheet
US11098392B2 (en) 2011-08-31 2021-08-24 Jfe Steel Corporation Hot rolled steel sheet for cold rolled steel sheet, hot rolled steel sheet for galvanized steel sheet, and method for producing the same
US11136643B2 (en) 2016-08-10 2021-10-05 Jfe Steel Corporation High-strength steel sheet and method for producing same

Also Published As

Publication number Publication date
JPH08325644A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
KR101476866B1 (en) Low density steel with good stamping capability
JPH1171635A (en) High strength and high workability cold rolled steel sheet excellent in impact resistance
TWI510637B (en) High carbon steel sheet and method for producing the same
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3823338B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP3540134B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JP7277462B2 (en) Ultra-high-strength cold-rolled steel sheet and its manufacturing method
JP2011528751A (en) Method for producing austenitic stainless steel sheet having high mechanical properties and steel sheet thus obtained
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JP3119122B2 (en) Manufacturing method of high strength hot rolled steel sheet
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3716638B2 (en) Method for producing high-tensile hot-rolled steel strip having ferrite + bainite structure
JPH0756055B2 (en) Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JPH0257634A (en) Manufacture of high-strength steel plate and heat treatment for worked product of same
JP2000256749A (en) Manufacture of high purity ferritic stainless steel sheet excellent in ridging resistance
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JPH1143725A (en) Production of high strength and high workability hot rolled steel sheet excellent in impact resistance
JPS63243226A (en) Production of cold rolled steel sheet for ultra-deep drawing having excellent resistance to brittleness by secondary operation
JPH08337817A (en) Production of ultrahigh tensile strength electric resistance welded tube excellent in hydrogen delayed cracking resistance
JP3873581B2 (en) Manufacturing method of high formability hot-rolled steel sheet
JPH04168217A (en) Manufacture of high toughness and high tensile strength hot rolled steel sheet excellent in uniformity
JPH1171636A (en) High strength and high workability hot rolled steel sheet excellent in impact resistance and material uniformity and its production
JPS586936A (en) Production of hot-rolled high-tensile steel plate for working

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees