JPS60258411A - Method for working welded steel tube - Google Patents

Method for working welded steel tube

Info

Publication number
JPS60258411A
JPS60258411A JP11378684A JP11378684A JPS60258411A JP S60258411 A JPS60258411 A JP S60258411A JP 11378684 A JP11378684 A JP 11378684A JP 11378684 A JP11378684 A JP 11378684A JP S60258411 A JPS60258411 A JP S60258411A
Authority
JP
Japan
Prior art keywords
toughness
welded
weld metal
welded steel
steel tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11378684A
Other languages
Japanese (ja)
Other versions
JPH0211654B2 (en
Inventor
Tadamasa Yamaguchi
忠政 山口
Toshiya Matsuyama
松山 隼也
Noboru Nishiyama
昇 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11378684A priority Critical patent/JPS60258411A/en
Publication of JPS60258411A publication Critical patent/JPS60258411A/en
Publication of JPH0211654B2 publication Critical patent/JPH0211654B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To prevent the deterioration of strength and toughness after the working by using a welding metal having a specified compsn. and applying the secondary hot working under a specified temp. condition in manufacturing a welded steel tube. CONSTITUTION:As the welded steel tube to be used as pipe line in cold district, etc., a seamed steel tube having the seamed welded part by the welding metal made of a steel contg. by weight, <0.12% C, 0.10-0.50% Si, 0.80-2.30% Mn, 0.010-0.070% Al, 0.20-3.00% Ni, <0.10% Mo, 0.015-0.050% Ti, 0.0020- 0.0050% B, <0.010% N, 0.025-0.050% O and one or two kinds of <0.035% Nb, <0.040% V is subjected to bending working. In this case said tube is heated to 850-1,050 deg.C, then hot worked with >=120sec holding time. In this way the secondarily worked product of the welded steel tube such as bent tube, etc. without the deterioration of strength and toughness by bending working is manufactured by rapid cooling to 300 deg.C at 15-60 deg.C/sec rate.

Description

【発明の詳細な説明】 (技術分野) 溶接鋼管の加工方法に関し、この明細書で述べる技術内
容は、たとえば溶接鋼管を用いるパイプライン中での河
川横断部分などに使用される、曲管の素材パイプの如く
に適用することかできるような二次加工性を具備させる
ため、該鋼管の溶接金属の成分範囲を、該加工過程を経
た後においても、元の鋼管の本来性能が維持される加工
条件とともに究明した結果に基いて、該溶接金属組成の
成分範囲に限定した溶接鋼管を、曲管としての使用に供
するための加工条件を特定した溶接鋼管の加工方法を提
案するところにある。
[Detailed Description of the Invention] (Technical Field) The technical content described in this specification regarding the processing method of welded steel pipes is applied to the material of curved pipes used, for example, in river crossing sections of pipelines using welded steel pipes. In order to have secondary workability that can be applied to pipes, the composition range of the weld metal of the steel pipe has been changed so that the original performance of the original steel pipe is maintained even after the processing process. Based on the results and conditions, we propose a method for processing welded steel pipes that specifies processing conditions for using the welded steel pipe as a curved pipe, which is limited to the range of the weld metal composition.

(背景技術) 石油、天然ガスなどの大量輸送方法としてパイプライン
による方法はもつとも効率が良く、世界各地に長距離パ
イプラインが数多く建設されているが、輸送効率を上げ
るため最近では管内の輸送圧力を増加させる傾向にある
(Background technology) Pipelines are an efficient method for transporting large volumes of oil, natural gas, etc., and many long-distance pipelines have been constructed around the world. There is a tendency to increase.

管内圧力が高くなるほどパイプに要求される強度も高く
なるが、中でも寒冷地で使用される場合には強度ととも
に低温での高じん性が必要とされ、鋼板については化学
組成の調整や特殊制御圧延法の適用により要求性能をほ
ぼ満足できるものが得られている。
The higher the pressure inside the pipe, the higher the strength required of the pipe, but in particular, when used in cold regions, not only strength but also high toughness at low temperatures is required, and steel plates require adjustment of chemical composition and special controlled rolling. By applying this method, we have obtained products that can almost satisfy the required performance.

この種の鋼管には一般にNbを含有した非調質高張力鋼
板が使用されるが、圧延温度と圧下率を制御し、強度と
じん性を確保して、UOE法、ベンディングロール法、
スパイラル法などにより成形後通常は両面一層サブマー
ジアーク溶接方法により製管される。
This type of steel pipe generally uses non-tempered high-strength steel sheets containing Nb, but the rolling temperature and reduction rate are controlled to ensure strength and toughness, and the UOE method, bending roll method, etc.
After forming by spiral method etc., pipes are usually manufactured by double-sided single-layer submerged arc welding method.

ところでパイプラインにおける河川横断部分や、ポンプ
ステーションまわりなどの曲線配管部分にはライン本管
と同一外径の曲管が使用されるが、従来鍛だや溶接加工
により別途製作されていたこの曲管も、納期やコストの
面から、最近では前述のような溶接鋼管を曲げ加工して
充当しようとする気運が強まりつつある。
By the way, curved pipes with the same outer diameter as the line main pipe are used for river crossing sections and curved piping parts around pump stations, but this curved pipe was previously manufactured separately by forging or welding. However, due to delivery time and cost considerations, there has recently been a growing trend to bend welded steel pipes as described above.

(問題点) 曲げ加工性の面から通常は高温で加工されるが溶接まま
では高強度、高じん性を有する上記溶接鋼管も高温加熱
加工による曲管成形を経た後、その再加熱条件によって
はじん性が劣化しとくに溶接金属のしん性劣化は著しい
ため、これを防止することが大きな課題となる。
(Problem) Although the welded steel pipes mentioned above are usually processed at high temperatures from the viewpoint of bendability, but have high strength and high toughness when as welded, after being bent into pipes by high-temperature heating processing, depending on the reheating conditions. Since the toughness deteriorates, and the toughness of weld metal in particular deteriorates significantly, preventing this is a major issue.

溶接後にいわゆる焼入れ一焼戻し処理や焼ならし処理に
より高強度で高じん性を有する溶接金属を得る方法につ
いてはすでに開示されていて、たとえば特公昭55−1
9297、同56−19381号各公報に溶接金属の化
学組成や、熱処理条件が示されているが曲管製造の場合
には、曲げ加工時に鋼管各部に相当大きな加工歪が生じ
、析出や、組織変化などしん性にとって好ましくない現
象が起り、じん性劣化が助長されることになる。
Methods of obtaining weld metal with high strength and high toughness by so-called quenching and tempering treatment or normalizing treatment after welding have already been disclosed, for example, in Japanese Patent Publication No. 55-1.
9297 and 56-19381, the chemical composition of weld metal and heat treatment conditions are shown, but in the case of bent pipe manufacturing, considerable processing strain occurs in each part of the steel pipe during bending, causing precipitation and microstructure. Phenomena that are unfavorable for toughness, such as changes, occur and the deterioration of toughness is accelerated.

それ故、単に直管の熱処理条件の応用のみではこの問題
の解決は困難であり上記各公報に示されている熱処理法
は全く役に立たず曲管を作るための適正な溶接金属、加
熱加工条件が必要なのである。
Therefore, it is difficult to solve this problem simply by applying the heat treatment conditions for straight pipes, and the heat treatment methods shown in the above publications are completely useless. It is necessary.

(発明の動機) このような現状をふまえて発明者らは、溶接鋼管溶接金
属の加工前のしん性確保はもちろんのこと、高温におけ
る曲管成形後のしん性劣化を回避することもできるよう
な溶接金属組成と加工条件について詳細な検討を行った
(Motivation for the Invention) In view of the current situation, the inventors have developed a method that not only ensures the toughness of welded steel pipe weld metal before processing, but also avoids the deterioration of toughness after forming bent pipes at high temperatures. A detailed study was conducted on the weld metal composition and processing conditions.

その結果、溶接ままの素管および高温における曲管成形
後に降伏強度40〜604f /mm2程度の強度と一
46℃で7kgfm程度の低温じん性を有する溶接金属
を得るためには、溶接金属の化学組成を特定化した上で
、熱間での曲げ加工につきγ粒の粗大化を防止するため
、加熱温度範囲と、加工完了までの経過時間を制限する
必要のあることが判明した。また強度とじん性を同時に
確保するためには加工後の冷却過程における平均冷却速
度についても適切な制御下に冷却することが重要である
ことが知見さ屯た。
As a result, in order to obtain a weld metal that has a yield strength of about 40 to 604 f/mm2 and a low-temperature toughness of about 7 kgfm at -46°C after forming an as-welded raw pipe and a bent pipe at high temperatures, it is necessary to After specifying the composition, it was found that it was necessary to limit the heating temperature range and the elapsed time until the completion of bending in order to prevent coarsening of γ grains during hot bending. It was also discovered that in order to simultaneously ensure strength and toughness, it is important to appropriately control the average cooling rate during the cooling process after processing.

(発明の目的) この発明は、ラインパイプとして使用され得るのはもち
ろん、それによるパイプラインの部分としての同径曲管
に容易に加工することができて強度およびじん性の劣化
を伴わない、溶接鋼管の加工方法を与えることが目的で
ある。
(Object of the Invention) The present invention not only can be used as a line pipe, but also can be easily processed into a curved pipe of the same diameter as a part of a pipeline without deterioration in strength and toughness. The purpose is to provide a method for processing welded steel pipes.

(発明の構成) この発明はC: 0.12wt%以下、Si : 0.
10〜0.50wt%、Mn : 0.80〜2.30
wt%、AJ2: 0,010〜0.070wt%、N
i : 0.20〜3,00wt%、Mo 二0,10
wt%以下、 Ti : 0.015〜0.050wt%、およびB 
: 0.0020wt%をこえて0,0050wt%ま
でを含有し、 N : o、o1owt%以下 0:0.025〜0,050wt%であってさらに0.
035wt%以下のNbおよび0.040wt%以下の
■のうら1種以上を含み、残部は溶接上不可避的に入っ
てくる混入成分および鉄の、溶接金属組成に成る継目溶
接部を有する溶接鋼管を、加熱温度850〜1050℃
において120秒以内の保持時間で熱間二次加工を施し
、その後300℃に至る平均冷却速度を15〜b 徴とする溶接鋼管の加工方法である。
(Structure of the Invention) This invention contains C: 0.12 wt% or less, Si: 0.
10-0.50wt%, Mn: 0.80-2.30
wt%, AJ2: 0,010-0.070wt%, N
i: 0.20-3,00wt%, Mo20.10
wt% or less, Ti: 0.015 to 0.050 wt%, and B
: Contains more than 0.0020 wt% and up to 0,0050 wt%, N: o, o1wt% or less 0: 0.025 to 0,050 wt% and further contains 0.
A welded steel pipe having a seam welded part containing 0.035wt% or less of Nb and 0.040wt% or less of one or more of , heating temperature 850-1050℃
This is a method for processing welded steel pipes, in which hot secondary processing is performed for a holding time of 120 seconds or less, and then the average cooling rate to 300° C. is 15 to 15°C.

この発明においてまず溶接鋼管の加熱後における加工条
件は、溶接金属の化学組成との関係でつぎに示す重要な
意味を有している。
In this invention, the processing conditions after heating the welded steel pipe have the following important meaning in relation to the chemical composition of the weld metal.

すなわら、熱間二次加工に供すると否とに拘わらず溶接
金属は、溶接ままで十分な強度と低温じん性を有してい
る必要があり、そのためには酸素量が少いほど好ましい
In other words, regardless of whether or not it is subjected to hot secondary processing, the weld metal must have sufficient strength and low-temperature toughness as welded, and for this purpose, the lower the oxygen content, the better. .

しかしながら高温加熱では酸素(酸化物)がγ粒の成長
抑制作用を有しているため過度に酸素量を低減すること
は曲げ加工熱処理後のしん性向からは好ましくなく、適
正な酸素量、すなわち0.025〜0.050%の含有
間と、とくに850〜1050℃の範囲の加熱温度で1
20秒以内に二次加工を施すことが重要なのである。な
お、850℃より低い温度での曲げは変形の抵抗が大き
く短時間での曲げ加工が困難となる。
However, in high-temperature heating, oxygen (oxide) has the effect of inhibiting the growth of γ grains, so reducing the amount of oxygen excessively is not preferable from the viewpoint of the stiffness after bending heat treatment. 1 between a content of .025 and 0.050% and a heating temperature in the range of 850 to 1050°C.
It is important to perform secondary processing within 20 seconds. In addition, when bending at a temperature lower than 850° C., the resistance to deformation is large, making it difficult to perform the bending process in a short time.

また一般に溶接鋼管用母材にはNbを含む制御圧延鋼板
が使用されるが、Nbは溶接ままでは溶接金属中に固溶
し、溶接金属のしん性に決定的な影響を及ぼさないが、
その後の再加熱処理により微細なNb炭窒化物として析
出するとじん性は顕署に劣化する。したがってNbを含
む溶接金属を熱処理して使用する場合には微細な炭窒化
物を生じないように留意しなければならないが、加熱温
度の上限を1050℃として溶接金属中のNb量の上限
を0.035%とすることにより焼戻し時のNbの微細
析出によるしん性劣化の軽減(J可能となる。
In addition, controlled rolled steel plates containing Nb are generally used as the base material for welded steel pipes, but Nb is dissolved in the weld metal as it is being welded and does not have a decisive effect on the toughness of the weld metal.
When fine Nb carbonitrides are precipitated by subsequent reheating treatment, the toughness deteriorates significantly. Therefore, when using heat-treated weld metal containing Nb, care must be taken not to produce fine carbonitrides, but the upper limit of the heating temperature should be set to 1050°C and the upper limit of the amount of Nb in the weld metal should be set to 0. By setting it to .035%, it becomes possible to reduce the deterioration of toughness due to fine Nb precipitation during tempering.

次に加熱後の連続冷却においては、変態が完全に終了す
るまで冷却速度を制御することが大切であるが、300
℃までにほぼ変態は完全に終了するため、曲げ加工後の
冷却としては300℃までを考慮すれば十分である。加
熱温度から300℃までの平均冷却速度が60℃/ s
ecより速い場合には溶接金属の硬度が大きくなりすぎ
、必要に応じて施される焼戻しによっても硬度低下が少
ないため強度が高くなりすぎじん性の確保が困難となり
、いっぽう冷却速度が15℃/ seaより遅くなると
粗大なフェライトが生成してじん性を確保することがむ
ずかしくなるとともに強度の低下も大きくなる。
Next, in continuous cooling after heating, it is important to control the cooling rate until the transformation is completely completed.
Since the transformation is almost completely completed by 300°C, it is sufficient to consider cooling up to 300°C after bending. Average cooling rate from heating temperature to 300℃ is 60℃/s
If the cooling rate is faster than ec, the hardness of the weld metal will become too large, and even if tempering is applied as necessary, the hardness will not decrease much, so the strength will become too high and it will be difficult to ensure toughness. If it is slower than sea, coarse ferrite will be formed, making it difficult to ensure toughness and also causing a large decrease in strength.

このように迅速に加工を完了してからも300℃に至る
間に適正な冷却速度の制御を要し、それに応じて溶接金
属の組成も規制する必要のあることが見出されたのであ
る。
It was discovered that even after such rapid processing is completed, it is necessary to control the cooling rate appropriately until the temperature reaches 300°C, and it is also necessary to regulate the composition of the weld metal accordingly.

なお冷却後の焼戻し処理は、もちろん必要に応じて実施
すれば良い。
Of course, the tempering treatment after cooling may be carried out as necessary.

上述のようにして曲げ加工を行った溶接鋼管の溶接金属
強度と、低温じん性とを確保するためには前述のような
加工熱処理条件が必要であるが、それ以外にも溶接金属
化学組成の規制を行わないと一46℃レベルの低温じん
性を確保することは困難である。溶接金属化学組成を特
定し、かつ適正な加工熱処理条件を適用することにより
はじめて溶接ままおよび加工熱処理後の両方の状態で十
分な強度と低温じん性を有する溶接金属が得られるので
ある。
In order to ensure the weld metal strength and low-temperature toughness of welded steel pipes that have been bent as described above, the processing heat treatment conditions described above are necessary. Without regulations, it will be difficult to ensure low-temperature toughness at the -46°C level. Only by specifying the chemical composition of the weld metal and applying appropriate processing heat treatment conditions can weld metals with sufficient strength and low-temperature toughness both in the as-welded and post-process heat treatment states be obtained.

つぎに溶接金属の化学組成を限定した理由について述べ
る。
Next, we will discuss the reasons for limiting the chemical composition of the weld metal.

C:上記の熱処理条件のもとではC量がo、12%を超
えると、焼入時(冷却時)にしん性に有害な高炭素マル
テンサイトが生成し、焼戻しによってもじん性は向上し
ないためCtは0.12%以下にする必要がある。
C: Under the above heat treatment conditions, if the C content exceeds 12%, high carbon martensite that is harmful to toughness will be generated during quenching (cooling), and toughness will not improve by tempering. Therefore, Ct needs to be 0.12% or less.

3i :3iは母材などからこの種の溶接金属に不可欠
に入ってくる成分であり、じん性対策上からも0.10
%以上が下限値として必要である。いっぽう0.50%
を超えると溶接まま状態でのしん性確保が困難となるば
かりでなく加工熱処理後もポリゴナルフェラント粒が大
きくなり良好なしん性は得られないためSi量は0.1
0%〜0.50%とした。
3i: 3i is an essential component that enters this type of weld metal from the base metal, etc., and from the viewpoint of toughness, it is 0.10
% or more is required as the lower limit. On the other hand, 0.50%
If the Si content exceeds 0.1, it will not only be difficult to ensure toughness in the as-welded state, but also the polygonal ferrant grains will become large even after processing heat treatment, making it impossible to obtain good toughness.
The content was set at 0% to 0.50%.

Mn:Mnは溶接金属の脱酸の上では不可欠の元素であ
ると同時に強度しん性の上からも重要であり、0.80
%より少いと脱酸不足になりやすくかつ溶接金属の強度
を保つことがむずかしい。いっぽう2.30%を超える
と焼入れ性が大きくなりすぎてラス状組織となり、じん
性が劣化づるためその上限は2.30%とする必要があ
る。
Mn: Mn is an essential element for deoxidizing weld metal, and is also important from the viewpoint of strength and toughness.
If it is less than %, deoxidation tends to be insufficient and it is difficult to maintain the strength of the weld metal. On the other hand, if it exceeds 2.30%, the hardenability becomes too large, resulting in a lath-like structure and the toughness deteriorates, so the upper limit should be 2.30%.

Aβ:A℃は脱酸上および窒素を固定する上から、また
組織微細化の面からも必要な元素であるが、o、oio
%より少ないとその効果は期待できず、いっぽう0.0
70%を超えるとフェライトが粗大になり溶接ままでの
しん性が著しく不良となるため、0.010〜0.07
0%にする必要がある。
Aβ: A°C is an element necessary for deoxidation, nitrogen fixation, and microstructural refinement, but o, oio
If it is less than 0.0, the effect cannot be expected.
If it exceeds 70%, the ferrite will become coarse and the toughness as welded will be extremely poor, so 0.010 to 0.07
It needs to be set to 0%.

Ni :Niは前述のMnや後記するMOとともに溶接
まま溶接金属の強度およびじん性向上には効果的な元素
であるが、0.20%より少い場合にはその効果は期待
できない。Niの上記効果は加工熱処理後でもかわらず
、しかも広範囲の添加量によってもじん性劣化をまねく
ことがなく、極めて有効な元素である。しかしながら添
加量が多くなりすぎると溶接時に高温割れの発生する危
険性があるため3.00%を上限とした。
Ni: Ni is an element that is effective in improving the strength and toughness of as-welded weld metal together with Mn described above and MO described below, but if it is less than 0.20%, no such effect can be expected. The above-mentioned effects of Ni remain even after processing and heat treatment, and it does not cause deterioration of toughness even when added in a wide range of amounts, making it an extremely effective element. However, if the amount added is too large, there is a risk of hot cracking occurring during welding, so the upper limit was set at 3.00%.

Mo:Moも焼入性を高め、溶接まま溶接金属のしん性
向上には効果的な元素であり、とくに後記するTi、B
と同時に添加される場合には極めて良好なしん性を有す
る溶接金属が得られる。しかしながらMOは加工熱処理
時に高炭素マルテンサイトを生成しやすくし、焼戻しに
よってもじん性は向上しないため加工熱処理後のしん性
を考慮した場合添加口の上限は0.10%である。
Mo: Mo is also an effective element for increasing hardenability and improving the toughness of as-welded weld metal, especially Ti and B described later.
When added at the same time, a weld metal with extremely good toughness can be obtained. However, MO tends to generate high carbon martensite during heat treatment and tempering does not improve toughness, so when considering the toughness after heat treatment, the upper limit of the addition amount is 0.10%.

Ti、3:つぎにTiと8についてはこれらの総合的な
効果として溶接ままではもちろんのこと、加工熱処理後
でも細粒フェライトが生成して、良好な低温じん性が得
られるのでまとめて述べる。B(7)基本的な働きは、
旧オーステナイト粒界に生成する粒界フェライトの析出
を抑制することであるが、Bが窒化物や酸化物になって
しまうとその効果は期待できなくなる。Tiを添加する
ことによりBの窒化、酸化を抑制づることができ、しか
もTiはフェライト粒を細かくする働きを有しているた
めTiと8を同時に添加することで低温じん性の確保は
容易となり、添加量を制限すればこの効果は加工熱処理
後でも失われない。
Ti, 3: Next, Ti and 8 will be discussed together because their overall effect is that fine-grained ferrite is generated not only as welded but also after processing heat treatment and good low-temperature toughness can be obtained. B(7) The basic function is
The purpose is to suppress the precipitation of grain boundary ferrite generated at prior austenite grain boundaries, but if B becomes a nitride or oxide, the effect cannot be expected. By adding Ti, it is possible to suppress the nitridation and oxidation of B, and since Ti has the function of making ferrite grains finer, it is easy to ensure low-temperature toughness by adding Ti and 8 at the same time. If the amount added is limited, this effect will not be lost even after processing heat treatment.

ここにB饅が0.0020%未満では粒界フェライトが
生成しやすく、0.0050%を越えると粒界にBの濃
厚偏析が生じるためいずれも低じん性となる。
If the B content is less than 0.0020%, grain boundary ferrite is likely to be formed, and if it exceeds 0.0050%, dense segregation of B occurs at the grain boundaries, resulting in low toughness.

一方TiについてはBを有効に活用する―が0.015
〜0.050%であり、0.015%より少ない場合に
は細粒フェライトが得られにくく、またo、oso%を
超えると固溶T1が多くなり、何れも低じん性となる。
On the other hand, for Ti, effective use of B is 0.015
~0.050%, and if it is less than 0.015%, it is difficult to obtain fine grain ferrite, and if it exceeds o or oso%, solid solution T1 increases, resulting in low toughness.

N:NについてはBの窒化を防止するため、また固溶N
によるじん性劣下を防止するためそのおそれのない0.
010%以下に限定する必要がある。
N: Regarding N, to prevent nitridation of B, and to prevent solid solution N.
In order to prevent the deterioration of toughness due to
It is necessary to limit it to 0.010% or less.

O:Oについてはすでに述べたごとく溶接ままのじん性
、加工熱処理後のしん性の両方を考跪すると、0.02
0%〜0.050%にする必要がある。
O: Regarding O, as mentioned above, considering both the as-welded toughness and the toughness after processing heat treatment, it is 0.02.
It is necessary to set it to 0% to 0.050%.

Nb、V:通常溶接鋼管用母材にはNbやVを含むII
Jill圧延鋼板が用いられ、溶接時には母材希釈によ
り溶接金属にこれらの元素が含有される。
Nb, V: Normally the base material for welded steel pipes contains Nb and V.
Jill rolled steel plates are used, and these elements are contained in the weld metal by dilution of the base metal during welding.

溶接ままではこれらの元素は固溶状態にあり、じん性に
決定的な影響をおよぼさないが、加工熱処理、焼戻し過
程で微細に析出すると、じん性は大幅に劣化する。
As welded, these elements are in a solid solution state and do not have a decisive effect on toughness, but if they are finely precipitated during processing heat treatment and tempering processes, toughness will be significantly degraded.

前記加工熱処理条件の場合にはNb1iが0.035%
以下、V量が0.040以下であればこれらの1種以上
を含んでいてもじん性の確保は可能であることからそれ
ぞれの上限を0.035%、0.040%とした。
In the case of the above processing heat treatment conditions, Nb1i is 0.035%
Hereinafter, as long as the V content is 0.040 or less, toughness can be ensured even if one or more of these is contained, so the respective upper limits are set as 0.035% and 0.040%.

なお、P、Sは不純物元素として溶接金属に入ってくる
が、じん性を劣化させる元素であるため少いにこしたこ
とはない。この発明の成分範囲内にあってはいずれも0
.020%までは許される、以下にこの発明の実施例に
ついて説明する。
Note that P and S enter the weld metal as impurity elements, but since they are elements that deteriorate toughness, they are not a big deal. Within the range of ingredients of this invention, all are 0.
.. Examples of the present invention will be described below, in which up to 0.020% is allowed.

実施例1 表1に示す化学組成を有する板厚25.4mmの鋼板に
角度606、深さ11mn+のV溝加工を施し、表2に
示すワイヤと表3に示すフラックスを組み合せて入熱6
8kJ/に11のV溝一層ザブマージアーク溶接を行っ
た。なお溶接金属の成分調整のため溶接前開先内に必要
な合金成分を適宜適量散布して溶接を行った。
Example 1 A V-groove with an angle of 606 and a depth of 11 mm+ was machined on a steel plate with a thickness of 25.4 mm and the chemical composition shown in Table 1.The wire shown in Table 2 and the flux shown in Table 3 were combined to create a heat input of 6.
11 V-groove single-layer submerged arc welding was performed at 8kJ/. In order to adjust the composition of the weld metal, welding was performed by spraying an appropriate amount of the necessary alloy components into the groove before welding.

また溶接金属の酸素量はフラックスの塩基度と母材、ワ
イヤ、散布合金中の脱酸元素の供によって決まるが、主
として組合せるフラックスを変えることにより変化させ
た。
The amount of oxygen in the weld metal is determined by the basicity of the flux and the presence of deoxidizing elements in the base metal, wire, and scattering alloy, but it was mainly changed by changing the combined fluxes.

表4は、溶接金属の化学組成と溶接まま状態での吸収エ
ネルギ、硬さを示したものであるが、これらの溶接金属
を用いて加工熱処理条件の影響について検討した。
Table 4 shows the chemical composition of weld metals, absorbed energy and hardness in as-welded state. Using these weld metals, we investigated the influence of processing heat treatment conditions.

まず加熱温度の影響に関し、表4中の溶接金属No3に
750℃〜1150℃の加熱、保持時間60秒で各加熱
温度から300℃に至るまでの平均冷却速度が30℃/
 SeCとなる熱処理を施しその後600℃で焼戻し処
理をしたときの一46℃における吸収エネルギ変化を第
1図に示す。
First, regarding the influence of heating temperature, when weld metal No. 3 in Table 4 was heated from 750°C to 1150°C and held for 60 seconds, the average cooling rate from each heating temperature to 300°C was 30°C/
FIG. 1 shows the change in absorbed energy at -46° C. when heat treated to become SeC and then tempered at 600° C.

第1図から明らかなように850〜1050℃の範囲で
良好なしん性が得られる。850℃より低温では部分的
にしかオ“−ステナイト化しないため、組織が不均一と
なってじん性は劣化する。また1050℃より高温では
オーステナイト粒が粗大化してラス状組織となるためぜ
い化し、適正な加熱温度は850〜1050℃であるこ
とがわかる。
As is clear from FIG. 1, good toughness can be obtained in the range of 850 to 1050°C. At temperatures lower than 850°C, the austenitic structure is only partially transformed, resulting in an uneven structure and poor toughness. At temperatures higher than 1050°C, the austenite grains become coarse and lath-like, resulting in brittleness. It can be seen that the appropriate heating temperature is 850 to 1050°C.

つぎに加熱保持時間の影響に関しては同じく表4中No
3溶接金属に900℃、1050℃での保持時間を20
〜180秒に変化させて、各加熱温度から300℃に至
るまでの平均冷却速度が30℃/ Secとなる熱処理
を施し、その後600℃で焼戻し処理をしたときの一4
6℃における吸収エネルギ変化を第2図に示す。
Next, regarding the influence of heating holding time, No.
3 Holding time at 900℃ and 1050℃ for weld metal for 20
- 180 seconds, the average cooling rate from each heating temperature to 300°C is 30°C/Sec, and then tempering at 600°C.
Figure 2 shows the change in absorbed energy at 6°C.

上記の加熱温度での保持時間が120秒以内であれば溶
接金属の組織は微細なフェライトであるが120秒を超
えるとラス状組織が生じるためしん性は劣化し、120
秒内に加工熱処理を7Jl!i1′必要があることがわ
かる。
If the holding time at the above heating temperature is within 120 seconds, the structure of the weld metal will be fine ferrite, but if it exceeds 120 seconds, a lath structure will occur and the toughness will deteriorate.
7Jl processing heat treatment within seconds! It can be seen that i1' is necessary.

第3図は加熱温度950℃、保持時間60秒のとき95
0℃から300℃までの平均冷却速度を変化させた場合
の一46℃における吸収エネルギを示したものである。
Figure 3 shows 95% when the heating temperature is 950℃ and the holding time is 60 seconds.
It shows the absorbed energy at -46°C when the average cooling rate is changed from 0°C to 300°C.

なお用いた溶接金属、焼戻し条件などは前出の例と全く
同じである。
The weld metal, tempering conditions, etc. used were exactly the same as in the previous example.

第3図に示すごとり15〜b 組織が良好で高じん性を示すのに対し、この範囲外では
じん性が劣化している。
As shown in FIG. 3, 15-b has a good structure and exhibits high toughness, while outside this range the toughness deteriorates.

つぎに溶接金属中酸素量の影響に関し表4に示した溶接
金属を用い加熱温度950℃、保持時間60秒950℃
から300℃までの平均冷却法rfJ30℃/secと
なる熱処理を施し、その後600℃で焼戻し処理を行っ
たとぎの結果を第4図に示した。同図には溶接ままでの
結果も併記しである。
Next, regarding the influence of the amount of oxygen in the weld metal, using the weld metal shown in Table 4, the heating temperature was 950°C and the holding time was 950°C for 60 seconds.
Figure 4 shows the results of heat treatment at an average cooling rfJ of 30°C/sec from 300°C to 300°C, followed by tempering at 600°C. The same figure also shows the results for as-welded products.

溶接ままでは酸素量が0.020−0.050%の範囲
で良好な低温しん性が得られるのに対し、熱処理後では
0.025〜0.050%の範囲でしか良好なしん性が
得られなくなる。これは酸素量が少くなると加熱冷却後
ラス状組織となりやすいためであり、溶接まま熱処理後
の両方のしん性を考えるど酸素量は0.025%以上と
する必要がある。いっぽう0.050%を超えると酸化
物が多くなりすぎ高じ/υ性が得られない。
As welded, good low-temperature toughness can be obtained with an oxygen content in the range of 0.020-0.050%, but after heat treatment, good toughness can only be obtained with an oxygen content in the range of 0.025-0.050%. I won't be able to do it. This is because when the amount of oxygen is small, a lath-like structure tends to form after heating and cooling, and considering the toughness after heat treatment while welding, the amount of oxygen needs to be 0.025% or more. On the other hand, if it exceeds 0.050%, there will be too much oxide, making it impossible to obtain high/υ properties.

以上この発明で規定した熱処理条件と溶接金属の成分組
成の関連について主として表4のN013について述べ
たが、同表の仙の試料についてもほぼ同様な挙動を示す
ことがだしかめられている。
The relationship between the heat treatment conditions specified in this invention and the composition of the weld metal has been mainly described for N013 in Table 4 above, but it has been confirmed that the sample No. 1 in the same table also exhibits almost the same behavior.

実施例2 表1に示した鋼板に■開先を付し表2、表3の溶接材料
を組合せて入熱量68kJ/(、mのV溝一層ザブマー
ジアーク溶接を行った。なお溶接金属の成分調整のため
溶接前に開先内に必要な合金を適宜適当量散布して溶接
を行った。溶接ままおよびその後に950℃加熱、60
秒保持後950℃〜300℃間の平均冷却速度30℃/
 SeCで冷却して600℃で焼戻し処理を行った後の
溶接金属の一46℃における吸収エネルギと溶接金属化
学組成を表5に示す。
Example 2 A groove was added to the steel plate shown in Table 1, and the welding materials shown in Tables 2 and 3 were combined to perform single-layer submerged arc welding in a V-groove with a heat input of 68 kJ/(, m. In order to adjust the composition, an appropriate amount of the necessary alloy was sprayed into the groove before welding.Welding was performed by heating at 950°C as welded and after welding.
Average cooling rate between 950℃ and 300℃ after holding for seconds 30℃/
Table 5 shows the absorbed energy at -46° C. and the chemical composition of the weld metal after cooling with SeC and tempering at 600° C.

表5においてこの発明の溶接金属△1〜A7では溶接ま
まおよび熱処理後の両方の状態で一46℃における吸収
エネルギがいずれも7kgfm以上となっている。
In Table 5, weld metals Δ1 to A7 of the present invention have an absorbed energy of 7 kgfm or more at -46° C. both as welded and after heat treatment.

これに対し比較例B1〜B7では両状態とも良好なしん
性が得られるものはない。
On the other hand, none of Comparative Examples B1 to B7 had good toughness in both conditions.

実施例3 表6に示す溶接金属を有する外径600Il1111肉
厚25.4mll1(7)AP I 5LX−X65試
験鋼管を2次加工として曲率半93000mmでの曲管
加工を950℃加熱で120秒以内に行い、950°〜
300℃間を平均30℃/ secで冷却した。また曲
管加工部の一部を600℃にて焼戻し処理を行い。加熱
冷却まま部分と冷却後焼戻し処理を行った部分から丸棒
引張試験片、衝撃試験片を採取して、曲げ加工する前の
値ど比較した。
Example 3 Outer diameter 600Il 1111 Wall thickness 25.4ml 1 (7) AP I 5LX-X65 test steel pipe having weld metal shown in Table 6 was subjected to secondary processing at a curvature of half 93000mm within 120 seconds by heating at 950°C 950°~
It was cooled at an average rate of 30°C/sec between 300°C. In addition, a part of the curved pipe part was tempered at 600°C. Round bar tensile test pieces and impact test pieces were taken from the part that had been heated and cooled and the part that had been tempered after cooling, and their values before bending were compared.

その結果を表7に示すが、この発明の条件を満たず溶接
金属では一46℃における吸収エネルギが良好であるの
に対し、比較した溶接金属では良好なしん性が得られな
い。
The results are shown in Table 7. Weld metals that do not meet the conditions of the present invention have good absorbed energy at -46°C, whereas comparative weld metals do not have good toughness.

引張強度は溶接まま、熱処理後とも60kgr/mm2
以上は確保できた。
Tensile strength is 60 kgr/mm2 both as welded and after heat treatment.
We were able to secure more than that.

(発明の効果) ス上のようにして、溶接鋼管を石油と天然ガスどの輸送
に供するパイプラインのラインパイプノでの所要性能を
充分に具備すさせ得るのはもろん、該パイプライン中の
曲管に充当する素材Jて必要となる二次加工性が溶接金
属の成分組つ特定と加工条件の限定によって充足され、
こ4明の方法により曲管加工を行った溶接鋼管は6℃に
おける衝撃特性および十分な引張特性を、]工後にも持
続することができるので、特別仕1鍛造曲管との間にお
ける納期調節の要もなく、プラインの施工が有利に可能
となる。
(Effects of the Invention) As described above, it is possible to make welded steel pipes sufficiently provide the required performance in line pipes for transporting oil and natural gas, etc. The secondary workability required for the material used for curved pipes is achieved by specifying the composition of the weld metal and limiting the processing conditions.
Welded steel pipes processed into curved pipes using this method can maintain their impact properties at 6°C and sufficient tensile properties even after processing, so it is possible to adjust the delivery date between special specification 1 forged bent pipes. Pline construction is advantageously possible without the need for.

【図面の簡単な説明】 1図〜第4図は表4に示した溶接金属のしんおよぼす熱
履歴条件の影響について、第1図熱温度、また第2図は
900℃、 1050℃におけ待時間、第3図は加熱温
度〜300℃間の冷却、そして第4図は溶接金属酸素量
との関係をグラフである。 第1図 加部J度(r:) 第2図 第3図 第4図 0、Of O,020,030,041205θ66溶
mis鍍盪量(%)
[Brief explanation of the drawings] Figures 1 to 4 show the influence of the thermal history conditions on the weld metal shown in Table 4. Figure 1 shows the thermal temperature, and Figure 2 shows the thermal temperature at 900°C and 1050°C. FIG. 3 is a graph showing the relationship between time, cooling between the heating temperature and 300° C., and FIG. 4 is a graph showing the relationship with the amount of oxygen in the weld metal. Figure 1 J degree (r:) Figure 2 Figure 3 Figure 4 Figure 4

Claims (1)

【特許請求の範囲】 1、(:、 : 0,12wt%以下、S i : 0
.10〜0,50wt%、Mn : 0,80〜2.3
0wt%、AA : 0.010〜0.070wt%、
Ni : 0.20〜3.00wt%、Mo : 0.
10wt%以下、 Ti : 0.015〜0.050wt%、およびB 
: 0.0020wt%をこえて0,0050 wt%
までを含有し、 N : 0,010wt%12下 0 : 0.025〜0.050wt%であってさらに
0.035wt%以下のNbおよび0.040wt%以
下のVのうち1種以上を含み、残部は溶接上不可避的に
入ってくる混入成分および鉄の、溶接金属組成に成る継
目溶接部を有する溶接鋼管を、加熱温度850〜105
0℃において120秒以内の保持時間で熱間二次加工を
施し、その後300℃に至る平均冷却速僚を15〜bs
ecの範囲で冷却することを特徴とする溶接鋼管の加工
方法。
[Claims] 1, (:, : 0, 12 wt% or less, S i : 0
.. 10~0.50wt%, Mn: 0.80~2.3
0wt%, AA: 0.010-0.070wt%,
Ni: 0.20-3.00wt%, Mo: 0.
10 wt% or less, Ti: 0.015 to 0.050 wt%, and B
: More than 0.0020wt% and 0,0050wt%
N: 0,010 wt%, N: 0.025 to 0.050 wt%, further containing at least 0.035 wt% of Nb and 0.040 wt% or less of V, A welded steel pipe having a seam weld is heated to a temperature of 850 to 105°C, with the remainder being a weld metal composition of iron and contaminants that inevitably enter during welding.
Hot secondary processing is performed at 0℃ for a holding time of 120 seconds or less, and then the average cooling speed to 300℃ is 15~bs
A method for processing a welded steel pipe, characterized by cooling within the EC range.
JP11378684A 1984-06-05 1984-06-05 Method for working welded steel tube Granted JPS60258411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11378684A JPS60258411A (en) 1984-06-05 1984-06-05 Method for working welded steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11378684A JPS60258411A (en) 1984-06-05 1984-06-05 Method for working welded steel tube

Publications (2)

Publication Number Publication Date
JPS60258411A true JPS60258411A (en) 1985-12-20
JPH0211654B2 JPH0211654B2 (en) 1990-03-15

Family

ID=14621056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11378684A Granted JPS60258411A (en) 1984-06-05 1984-06-05 Method for working welded steel tube

Country Status (1)

Country Link
JP (1) JPS60258411A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231137A (en) * 1985-04-08 1986-10-15 Hitachi Ltd Steel for steel pipe for high frequency heat bending having superior toughness
JP2001342545A (en) * 2000-03-31 2001-12-14 Kawasaki Steel Corp Steel pipe for weld-bending use with high strength, excellent in toughness of welded zone and its production
JP2007107055A (en) * 2005-10-13 2007-04-26 Nippon Steel Corp Welded joint for fireproof construction having excellent high temperature strength and toughness
CN106191670A (en) * 2016-07-11 2016-12-07 山东钢铁股份有限公司 A kind of ocean engineering low temperature resistant hot-rolled steel channel and manufacture method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321493B2 (en) * 2010-02-12 2013-10-23 新日鐵住金株式会社 Spiral steel pipe manufacturing method and spiral steel pipe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231137A (en) * 1985-04-08 1986-10-15 Hitachi Ltd Steel for steel pipe for high frequency heat bending having superior toughness
JP2001342545A (en) * 2000-03-31 2001-12-14 Kawasaki Steel Corp Steel pipe for weld-bending use with high strength, excellent in toughness of welded zone and its production
JP4581275B2 (en) * 2000-03-31 2010-11-17 Jfeスチール株式会社 Elementary pipe for high-strength welded bend steel pipe with excellent weld toughness and manufacturing method thereof
JP2007107055A (en) * 2005-10-13 2007-04-26 Nippon Steel Corp Welded joint for fireproof construction having excellent high temperature strength and toughness
JP4495060B2 (en) * 2005-10-13 2010-06-30 新日本製鐵株式会社 Welded joints for refractory structures with excellent high-temperature strength and toughness
CN106191670A (en) * 2016-07-11 2016-12-07 山东钢铁股份有限公司 A kind of ocean engineering low temperature resistant hot-rolled steel channel and manufacture method thereof

Also Published As

Publication number Publication date
JPH0211654B2 (en) 1990-03-15

Similar Documents

Publication Publication Date Title
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP3116156B2 (en) Method for producing steel pipe with excellent corrosion resistance and weldability
JP4969915B2 (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP2013204103A (en) High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
EP3476953A1 (en) Electric resistance welded steel pipe for high-strength thin hollow stabilizer and manufacturing method therefor
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JP2020510749A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature and method for producing the same
JP3812168B2 (en) Manufacturing method of seamless steel pipe for line pipe with excellent strength uniformity and toughness
JP2006233263A (en) Method for producing high strength welded steel tube having excellent low yield ratio and weld zone toughness
JP2020504236A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature, and method for producing the same
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP3226278B2 (en) Method of manufacturing steel material and steel pipe excellent in corrosion resistance and weldability
JPS5891123A (en) Production of seamless steel pipe for 80kg/mm2 class structure having excellent toughness of weld zone
JPS60258411A (en) Method for working welded steel tube
JP2006265722A (en) Production method of steel sheet for high-tension linepipe
JP6747623B1 (en) ERW steel pipe
JPS62107023A (en) Working method for welded steel pipe
JP2001059132A (en) 60 kilo class direct-quenched and tempered steel excellent in weldability and toughness after strain aging
JP2001064727A (en) Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
CN113646455B (en) Steel material for line pipe and method for producing same, and line pipe and method for producing same
JP2019031698A (en) Thick-wall electric resistance welded steel pipe and method of producing the same
JPH0790375A (en) Production of thick bend steel pipe having high strength and high toughness
JP4292864B2 (en) Structural Fe-Cr steel plate, method for producing the same, and structural steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees