JP5070831B2 - Austenitic stainless steel - Google Patents

Austenitic stainless steel Download PDF

Info

Publication number
JP5070831B2
JP5070831B2 JP2006342245A JP2006342245A JP5070831B2 JP 5070831 B2 JP5070831 B2 JP 5070831B2 JP 2006342245 A JP2006342245 A JP 2006342245A JP 2006342245 A JP2006342245 A JP 2006342245A JP 5070831 B2 JP5070831 B2 JP 5070831B2
Authority
JP
Japan
Prior art keywords
content
grain boundary
stainless steel
less
stress corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006342245A
Other languages
Japanese (ja)
Other versions
JP2007197821A (en
Inventor
雅之 相良
憲明 廣畑
哲 暮石
博之 穴田
貴代子 竹田
正晃 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2006342245A priority Critical patent/JP5070831B2/en
Publication of JP2007197821A publication Critical patent/JP2007197821A/en
Application granted granted Critical
Publication of JP5070831B2 publication Critical patent/JP5070831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、鋭敏化による粒界への炭化物析出に起因する応力腐食割れに対して優れた耐性を有するオーステナイト系ステンレス鋼に関する。この鋼は、原子力発電プラントや火力発電プラントの給水加熱器等の構造部材、例えば板、管、継手等として用いるのに好適なものである。   The present invention relates to an austenitic stainless steel having excellent resistance to stress corrosion cracking caused by carbide precipitation at grain boundaries due to sensitization. This steel is suitable for use as a structural member such as a feed water heater of a nuclear power plant or a thermal power plant, such as a plate, a pipe, or a joint.

従来、原子力発電プラントや火力発電プラントの給水加熱器等で用いられる構造部材としては、オーステナイト系ステンレス鋼であるSUS304鋼が用いられている。しかし、その構造部材の経年劣化現象の一つとして、応力腐食割れがある。この現象は、溶接や熱処理で鋭敏化温度範囲に加熱される熱履歴を受けると、その粒界に炭化物(Cr23C6)が析出し、その粒界近傍にCr欠乏層が生じることで応力腐食割れ感受性が高くなるために発生する現象である。この炭化物析出を抑制するため、一般にC含有量を低減する方法がとられている。しかし、C含有量を低減すると材料の機械的性質、特に強度が低下するという問題がある。 Conventionally, SUS304 steel, which is an austenitic stainless steel, has been used as a structural member used in a feed water heater of a nuclear power plant or a thermal power plant. However, stress corrosion cracking is one of the aging phenomena of the structural members. This phenomenon is caused by the fact that carbide (Cr 23 C 6 ) precipitates at the grain boundary when a thermal history heated to the sensitization temperature range by welding or heat treatment, and a Cr-deficient layer is formed near the grain boundary. This phenomenon occurs because the corrosion cracking sensitivity is increased. In order to suppress this carbide precipitation, the method of reducing C content is generally taken. However, when the C content is reduced, there is a problem that the mechanical properties, particularly the strength, of the material is lowered.

表面の機械的加工による耐応力腐食割れ性の改善方法として、特許文献1には、ショットピーニングにより金属材料表面に圧縮の残留応力を付与する方法が開示されている。また、特許文献2には、金属材料表面に複合酸化物層を形成することで、応力腐食割れの起点となる粒界からの亀裂表面をこの複合酸化物で覆うことによって亀裂進展を抑制した原子力発電プラントの発明が開示されている。   As a method for improving the stress corrosion cracking resistance by mechanical machining of the surface, Patent Document 1 discloses a method of applying compressive residual stress to the surface of a metal material by shot peening. Patent Document 2 discloses a nuclear power generation in which crack growth is suppressed by forming a complex oxide layer on the surface of a metal material and covering the crack surface from the grain boundary that is the starting point of stress corrosion cracking with the complex oxide. An invention of a power plant is disclosed.

一方、熱処理による耐応力腐食割れ性の改善として、特許文献3には、溶体化熱処理後に550〜800℃で特定時間以上加熱した後、さらに1000〜1100℃で特定時間加熱し、その後3℃/sec以上の冷却速度で冷却することで粒界および粒界近傍のCr濃度を平均値の1.3倍以上とし、それによってCr欠乏層の形成を抑制して、耐応力腐食割れ性を改善したオーステナイト系ステンレス鋼が開示されている。   On the other hand, as an improvement of stress corrosion cracking resistance by heat treatment, Patent Document 3 describes that after solution heat treatment, after heating at 550 to 800 ° C. for a specified time or more, further heating at 1000 to 1100 ° C. for a specified time, and then 3 ° C. / Austenite with improved stress corrosion cracking resistance by reducing the Cr concentration at the grain boundary and in the vicinity of the grain boundary to 1.3 times or more of the average value by cooling at a cooling rate of sec or more, thereby suppressing the formation of Cr-deficient layers Stainless steel is disclosed.

さらに、特許文献4には、表層近傍の硬化層を予め引張強度の低い平均結晶粒度番号で2以下の粗粒とすることで、歪が加えられた場合の発生応力を低下させて耐応力腐食割れ性を改善したオーステナイト系ステンレス鋼が開示されている。   Furthermore, Patent Document 4 discloses that a hardened layer in the vicinity of the surface layer is previously made coarse grains having an average crystal grain size number of 2 or less with a low tensile strength, thereby reducing stress generated when strain is applied and stress corrosion resistance. An austenitic stainless steel with improved crackability is disclosed.

材料面からの改良としては、特許文献5に、NbまたはTaの添加により炭化物の粒界析出を抑制し、耐粒界腐食性、耐粒界応力腐食割れ性や耐孔食性を改善したオーステナイト系ステンレス鋼が開示されている。   As an improvement from the viewpoint of materials, Patent Document 5 discloses an austenite system in which carbide grain boundary precipitation is suppressed by adding Nb or Ta, and intergranular corrosion resistance, intergranular stress corrosion cracking resistance and pitting corrosion resistance are improved. Stainless steel is disclosed.

特開平7−266230号公報JP-A-7-266230 特開2001−91688号公報Japanese Patent Laid-Open No. 2001-91688 特開平10−317104号公報JP-A-10-317104 特開2005−23343号公報JP 2005-23343 特公昭59−40901号公報 上記のように応力腐食割れ防止の対策は種々提案されている。しかし、特許文献1に示されるような、機械的なショットピーニングや、特許文献2に開示される表面への複合酸化物被膜形成では、その処理作業の工数が多大になるという問題がある。また、熱処理条件を規定して粒界やその近傍のCr濃度を高めたり、表層部を粗粒化する方法では、熱処理工程が増え、生産性が低下するという問題がある。さらに、材料面の改善においても、原子力用の給水加熱器等で問題となる高温純水中での粒界応力腐食割れを考慮すると、より鋭敏化し難い材料の開発が望まれている。As described above, various countermeasures for preventing stress corrosion cracking have been proposed. However, mechanical shot peening as disclosed in Patent Document 1 and formation of a complex oxide film on the surface disclosed in Patent Document 2 have a problem that the number of man-hours for the processing work is enormous. In addition, in the method in which the heat treatment conditions are defined to increase the Cr concentration at or near the grain boundary, or the surface layer portion is coarsened, there is a problem that the heat treatment step increases and the productivity is lowered. Furthermore, in terms of material improvement, in consideration of intergranular stress corrosion cracking in high-temperature pure water, which is a problem in nuclear water heaters and the like, the development of materials that are less sensitive is desired.

本発明の目的は、原子力発電プラントや火力発電プラントの給水加熱器等の構造部材として適するオーステナイト系ステンレス鋼であって、耐応力腐食割れ性に著しく優れたステンレス鋼を提供することにある。   An object of the present invention is to provide an austenitic stainless steel suitable as a structural member for a feed water heater or the like of a nuclear power plant or a thermal power plant, and to provide a stainless steel remarkably excellent in stress corrosion cracking resistance.

前述のように、SUS304鋼のようなオーステナイト系ステンレス鋼では、熱履歴により鋭敏化された組織ができる。本発明者は、その発生機構を詳細に調査し検討した。その結果、熱履歴を受けることにより粒界にはCr23C6炭化物が選択的に析出し、それに伴い粒界近傍にCr欠乏層が生成することで、粒界が鋭敏化されることが明らかになった。そこで、粒界への選択的な炭化物析出を抑制し、粒界近傍のCr欠乏層の深さや幅を小さくすることができれば、粒界の鋭敏化が抑制され、耐粒界応力腐食割れ性も改善されると考え、さらに探求を進めたところ、下記の知見を得た。なお、以下において成分含有量についての%は「質量%」を意味する。 As described above, an austenitic stainless steel such as SUS304 steel has a sensitized structure due to thermal history. The inventor has investigated and studied the generation mechanism in detail. As a result, it is clear that Cr 23 C 6 carbide is selectively precipitated at the grain boundary by receiving the thermal history, and a Cr-deficient layer is formed in the vicinity of the grain boundary, thereby sensitizing the grain boundary. Became. Therefore, if selective carbide precipitation at the grain boundaries can be suppressed and the depth and width of the Cr-deficient layer near the grain boundaries can be reduced, grain boundary sensitization can be suppressed, and intergranular stress corrosion cracking resistance can also be improved. As a result of further exploration, the following findings were obtained. In the following, “%” for the component content means “mass%”.

(1) 粒界への炭化物の析出を少なくするには、従来以上にCの含有量を少なくする必要がある。具体的にはC含有量を0.03%未満に抑えることが必要である。   (1) In order to reduce the precipitation of carbides at the grain boundaries, it is necessary to reduce the C content more than before. Specifically, it is necessary to keep the C content below 0.03%.

(2) Mo含有量を0.2〜1.0%とすることで粒界近傍のCr欠乏層の形成を小さくできる。通常のSUS304鋼では、溶接や熱処理等で鋭敏化の熱履歴を受けると、粒界にCr23C6炭化物が析出し、その粒界近傍にはCr欠乏層が形成される。ところが、SUS304鋼にMoを含有させた鋼では、鋭敏化により粒界に析出する炭化物は(Cr,Mo)23C6となる。(Cr,Mo)23C6は、Cr23C6と比べて、炭化物中のCr量が少ないため、Cr欠乏層の幅を狭くすることができ、また、Cr欠乏層でのCr量の低下も小さくすることができる。さらに、Moは、粒界への拡散が遅いため、(Cr,Mo)23C6炭化物は微細に析出するので、粒界近傍のCr欠乏の程度も軽減される。 (2) By setting the Mo content to 0.2 to 1.0%, the formation of a Cr-deficient layer near the grain boundary can be reduced. In ordinary SUS304 steel, when it receives a heat history of sensitization by welding or heat treatment, Cr 23 C 6 carbide precipitates at the grain boundary, and a Cr-deficient layer is formed in the vicinity of the grain boundary. However, in the steel in which Mo is contained in SUS304 steel, the carbide that precipitates at the grain boundary due to sensitization is (Cr, Mo) 23 C 6 . (Cr, Mo) 23 C 6 has a smaller amount of Cr in the carbide than Cr 23 C 6 , so the width of the Cr-deficient layer can be narrowed, and the Cr amount in the Cr-deficient layer is reduced. Can also be reduced. Furthermore, since Mo diffuses slowly into the grain boundary, (Cr, Mo) 23 C 6 carbide precipitates finely, so the degree of Cr deficiency near the grain boundary is also reduced.

(3) さらに、重要なことは、粒界にCr23C6よりも(Cr,Mo)23C6をできるだけ多く析出させて、粒界近傍のCr欠乏をできるだけ軽減する必要があることである。そのため、鋭敏化の過程でCrよりも炭化物として析出しやすいMoを、少なくとも鋼中のCの半分程度をMo23C6として固定できる量、すなわちCr含有量との関係で下記の(2)式で表される量のMoを含有させることで、鋭敏化による応力腐食割れを一層よく抑制することができる。なお(2)式中の元素記号は、その元素の含有量(質量%)を意味する。 (3) Furthermore, it is important that (Cr, Mo) 23 C 6 is precipitated as much as possible at the grain boundaries rather than Cr 23 C 6 to reduce Cr deficiency near the grain boundaries as much as possible. . Therefore, in the process of sensitization, Mo, which is more likely to precipitate as carbide than Cr, is an amount that can fix at least about half of C in steel as Mo 23 C 6 , that is, in relation to the Cr content, the following formula (2) By containing Mo in an amount represented by the following, stress corrosion cracking due to sensitization can be further suppressed. In addition, the element symbol in Formula (2) means the content (mass%) of the element.

{Mo/(96×23)}/{C/(12×6)}≧0.5 ・・・(2)
この(2)式を整理すると下記の(1)式になる。
{Mo / (96 × 23)} / {C / (12 × 6)} ≧ 0.5 (2)
When this formula (2) is arranged, the following formula (1) is obtained.

Mo≧(46/3)×C ・・・(1)
上記のように、Mo添加により、粒界近傍に形成されるCr欠乏層の幅の増大およびCr量の低下を抑制することができるため、Cr欠乏層の形成に起因する粒界応力腐食割れを防止することができる。そして、上記の(1)式を満たすようなMoを含有させることが、応力腐食割れを防止するのに一層望ましいのである。
Mo ≧ (46/3) × C (1)
As described above, the addition of Mo can suppress an increase in the width of the Cr-depleted layer formed near the grain boundary and a decrease in the amount of Cr, so that intergranular stress corrosion cracking due to the formation of the Cr-depleted layer is prevented. Can be prevented. Further, it is more desirable to contain Mo that satisfies the above formula (1) in order to prevent stress corrosion cracking.

(4) さらに、Moとともに、0.05〜1.0%の微量のCuを含有させることによって高温純水中での耐応力腐食割れ性を改善する効果が得られる。これは、Cuには割れに伴う溶解速度を低下させ、Cr欠乏層の選択的腐食による粒界割れの進展を抑制する作用があるためと考えられる。   (4) Furthermore, the effect of improving the stress corrosion cracking resistance in high-temperature pure water can be obtained by adding a small amount of 0.05 to 1.0% Cu together with Mo. This is presumably because Cu has the effect of reducing the dissolution rate associated with cracking and suppressing the development of intergranular cracking due to selective corrosion of the Cr-deficient layer.

(5) Ti:0.005〜0.1%およびV: 0.01〜0.2%の少なくとも一方を含有させることにより耐粒界応力腐食割れ性をさらに改善することができる。これは、TiやVには炭化物を形成し粒界への炭化物析出を抑制する作用があるからである。   (5) By containing at least one of Ti: 0.005-0.1% and V: 0.01-0.2%, the intergranular stress corrosion cracking resistance can be further improved. This is because Ti and V have an action of forming carbides and suppressing carbide precipitation at the grain boundaries.

本発明は、上記の諸知見を基礎とするものであって、その要旨は、下記(1)および(2)のオーステナイト系ステンレス鋼にある。
The present invention is based on the above findings, and the gist thereof is the following austenitic stainless steels (1) and (2) .

(1)質量%で、C:0.03%未満、Si:1.0%未満、Mn:1.2〜2.5%、P:0.04%以下、S:0.02%以下、Cr:15〜25%、Ni:6〜15%、Mo:0.3〜1.0%、Cu:0.05〜1.0%およびN:0.03〜0.083%を含有し、残部が鉄および不純物からなり、かつMo含有量が下記の(1)式を満足することを特徴とするオーステナイト系ステンレス鋼。
(1) By mass%, C: less than 0.03%, Si: less than 1.0%, Mn: 1.2-2.5%, P: 0.04% or less, S: 0.02% or less, Cr: 15-25%, Ni: 6-15 %, Mo: 0.3 to 1.0%, Cu: 0.05 to 1.0% and N: 0.03 to 0.083%, the balance is composed of iron and impurities, and the Mo content satisfies the following formula (1) A feature of austenitic stainless steel.

Mo≧(46/3)×C ・・・(1)
但し、(1)式中の元素記号は、その元素の含有量(質量%)を意味する。
Mo ≧ (46/3) × C (1)
However, the element symbol in the formula (1) means the content (% by mass) of the element.

(2)上記(1)に記載の成分に加えてさらに、Ti:0.005〜0.1%およびV:0.01〜0.2%の一方または両方を含有することを特徴とするオーステナイト系ステンレス鋼。







(2) An austenitic stainless steel characterized by further containing one or both of Ti: 0.005-0.1% and V: 0.01-0.2% in addition to the components described in (1 ) above.







本発明のオーステナイト系ステンレス鋼では、溶接や熱処理等の熱履歴を受けても鋭敏化が抑制され、粒界への選択的な炭化物析出が抑制される。したがって、粒界近傍のCr欠乏層の深さや幅を小さくすることができるため、耐粒界応力腐食割れ性も改善される。したがって、本発明鋼は鋭敏化による炭化物析出が問題となる原子力発電プラントや火力発電プラントの給水加熱器等の構造部材として好適である。   In the austenitic stainless steel of the present invention, sensitization is suppressed even when subjected to a thermal history such as welding or heat treatment, and selective carbide precipitation at grain boundaries is suppressed. Therefore, since the depth and width of the Cr-deficient layer in the vicinity of the grain boundary can be reduced, the intergranular stress corrosion cracking resistance is also improved. Therefore, the steel according to the present invention is suitable as a structural member for a feed water heater of a nuclear power plant or a thermal power plant in which carbide precipitation due to sensitization is a problem.

以下、本発明のステンレス鋼の各成分の作用効果と含有量の限定理由を説明する。   Hereinafter, the effect of each component of the stainless steel of this invention and the reason for limitation of content are demonstrated.

C:0.03%未満
Cは、オーステナイト相を安定させる元素であるが、その含有量が多いと粒界に炭化物が析出する。本発明では、特に溶接や熱処理等の熱履歴による鋭敏化によって粒界に選択的にCr炭化物が析出して粒界近傍にCr欠乏層が形成され、耐応力腐食割れ性が低下するのを防止することを目的としている。したがって、C含有量は0.03%未満とする。C含有量は少ないほど好ましい。より望ましいのは0.020%以下、最も望ましいのは0.015%以下である。
C: Less than 0.03% C is an element that stabilizes the austenite phase, but if the content is large, carbides precipitate at the grain boundaries. In the present invention, it is prevented that Cr carbide is selectively deposited at the grain boundary due to sensitization due to thermal history such as welding and heat treatment, and a Cr-deficient layer is formed near the grain boundary, thereby reducing the stress corrosion cracking resistance. The purpose is to do. Therefore, the C content is less than 0.03%. The smaller the C content, the better. More desirable is 0.020% or less, and most desirable is 0.015% or less.

Si:1.0%未満
Siは、脱酸剤として必要により使用される。脱酸の効果を得る場合は、0.1%以上を含有させるのが望ましい。一方、Si含有量が1.0%以上になると靭性が劣化する。より好ましいのは0.8%以下である。なお、Siを脱酸剤として用いない場合は、Siの含有量の下限は不純物レベルとなる。
Si: Less than 1.0%
Si is optionally used as a deoxidizer. In order to obtain the effect of deoxidation, it is desirable to contain 0.1% or more. On the other hand, when the Si content is 1.0% or more, the toughness deteriorates. More preferred is 0.8% or less. When Si is not used as a deoxidizer, the lower limit of the Si content is an impurity level.

Mn:1.2〜2.5%
Mnは、オーステナイト形成元素であり、かつ鋼中のSを固定して熱間加工性を向上させる。また、本発明においては鋭敏化による炭化物析出を抑制するためC含有量を極力低下させるが、それによる強度低下を補償するためには、1.2%以上の含有が必要である。一方、Mnの過剰な含有は延性や耐食性の劣化につながるため、上限は2.5%とする。より望ましい上限は2.0%である。
Mn: 1.2-2.5%
Mn is an austenite forming element and fixes S in steel to improve hot workability. Further, in the present invention, the C content is reduced as much as possible in order to suppress carbide precipitation due to sensitization, but in order to compensate for the strength reduction due to this, the content of 1.2% or more is necessary. On the other hand, excessive content of Mn leads to deterioration of ductility and corrosion resistance, so the upper limit is made 2.5%. A more desirable upper limit is 2.0%.

P:0.04%以下
Pは、不可避的不純物として鋼中に含まれる元素であり、その含有量は0.04%以下で、少なければ少ないほどよい。Pの含有量が多いと結晶粒界に偏析して耐粒界応力腐食割れ性を劣化させる。
P: 0.04% or less P is an element contained in steel as an inevitable impurity, and its content is 0.04% or less, and the smaller the better. If the content of P is large, it segregates at the grain boundaries and deteriorates the intergranular stress corrosion cracking resistance.

S:0.02%以下
Sは、Pと同様に不可避的不純物として鋼中に含まれる元素であり、粒界に偏析して耐粒界応力腐食割れ性を損なうばかりでなく、熱間加工性を劣化させる。したがって、0.02%以下で、できるだけ少ない方がよい。より好ましいのは0.01%以下である。
S: 0.02% or less S is an element contained in steel as an inevitable impurity like P. It segregates at the grain boundaries and impairs intergranular stress corrosion cracking resistance, but also deteriorates hot workability. Let Therefore, it should be 0.02% or less and as little as possible. More preferred is 0.01% or less.

Cr:15〜25%
Crは、鋼の耐食性を向上させるのに不可欠な元素である。15%以上の含有量でその効果が得られる。一方、25%を超えるとフェライトが生成して熱間加工性が劣化する。Crのより好ましい含有量は17〜22%である。
Cr: 15-25%
Cr is an essential element for improving the corrosion resistance of steel. The effect is obtained with a content of 15% or more. On the other hand, if it exceeds 25%, ferrite is generated and hot workability deteriorates. A more preferable content of Cr is 17 to 22%.

Ni:6〜15%
Niは、オーステナイト相を生成させる元素であり、耐食性をも向上させる。6%以上でその効果が得られる。一方、15%を超えるとその効果が飽和し、コスト上昇にもつながる。Niのより好ましい含有量は8〜12%である。
Ni: 6-15%
Ni is an element that generates an austenite phase and also improves corrosion resistance. The effect can be obtained at 6% or more. On the other hand, if it exceeds 15%, the effect will be saturated and the cost will rise. A more preferable content of Ni is 8 to 12%.

Mo:0.2〜1.0%
Moは、本発明鋼では重要な元素の一つである。Moを含有する場合、鋭敏化により粒界に析出する炭化物は、(Cr,Mo)23C6となる。この(Cr,Mo)23C6はCr23C6と比べて、炭化物中のCr量が少ないため、Cr欠乏層の幅やCr量の低下も小さくすることができる。さらに、Moは粒界への拡散が遅いため、析出する(Cr,Mo)23C6炭化物は微細であり、そのため、粒界近傍のCrの欠乏の程度も軽減される。このように、Mo添加により、Cr欠乏層の幅の増大およびCr量の低下を抑制することができるため、Cr欠乏層の形成に起因する粒界応力腐食割れを防止する効果を得ることができる。このような効果が得られるMo含有量の下限は0.2%である。一方、Moを過度に含有させても効果が飽和し、コストアップになるだけでなく、熱間加工性の劣化も懸念されるため、上限は1.0%とする。より好ましいMo含有量は0.2〜0.8%、さらに好ましいのは0.3〜0.6%である。
Mo: 0.2-1.0%
Mo is one of the important elements in the steel of the present invention. When Mo is contained, the carbide precipitated at the grain boundary by sensitization is (Cr, Mo) 23 C 6 . Since (Cr, Mo) 23 C 6 has a smaller amount of Cr in the carbide than Cr 23 C 6 , the width of the Cr-deficient layer and the decrease in the Cr amount can be reduced. Further, since Mo diffuses slowly into the grain boundary, the precipitated (Cr, Mo) 23 C 6 carbide is fine, and therefore the degree of Cr deficiency near the grain boundary is reduced. As described above, the addition of Mo can suppress the increase in the width of the Cr-deficient layer and the decrease in the amount of Cr, thereby obtaining the effect of preventing intergranular stress corrosion cracking due to the formation of the Cr-deficient layer. . The lower limit of the Mo content for obtaining such an effect is 0.2%. On the other hand, even if Mo is excessively contained, the effect is saturated and not only the cost is increased, but also deterioration of hot workability is concerned, so the upper limit is made 1.0%. More preferable Mo content is 0.2 to 0.8%, and still more preferable is 0.3 to 0.6%.

さらに、前述したように、粒界にCr23C6よりも(Cr,Mo)23C6をできるだけ多く析出させて、粒界近傍のCr欠乏をできるだけ軽減することが望ましい。そこで、鋭敏化の過程でCrよりも炭化物として析出しやすいMoを、少なくとも鋼中のCの半分程度をMo23C6として固定できる量含有させるのである。すなわち下記の(2)式で表される量のMoを含有させることによって、鋭敏化による応力腐食割れを抑制するのである。 Further, as described above, it is desirable to reduce (Cr, Mo) 23 C 6 as much as possible rather than Cr 23 C 6 at the grain boundaries, thereby reducing Cr deficiency near the grain boundaries as much as possible. Therefore, Mo, which is more likely to precipitate as a carbide than Cr during the sensitization process, is contained in such an amount that at least about half of C in the steel can be fixed as Mo 23 C 6 . That is, stress corrosion cracking due to sensitization is suppressed by containing Mo in an amount represented by the following formula (2).

{Mo/(96×23)}/{C/(12×6)}≧0.5 ・・・(2)
但し、(2)式中の元素記号は、その元素の含有量(質量%)である。そして、前記のとおり、この(2)式を整理すると下記の(1)式になる。
{Mo / (96 × 23)} / {C / (12 × 6)} ≧ 0.5 (2)
However, the element symbol in the formula (2) is the content (% by mass) of the element. Then, as described above, this equation (2) can be rearranged into the following equation (1).

Mo≧(46/3)×C ・・・(1)
Cu:0.05〜1.0%
前述のように、MoとともにCuを0.05〜1.0%と微量含有させることで高温純水中での耐応力腐食割れ性を改善することができる。これは、Cuには割れに伴う溶解速度を低下させ、Cr欠乏層の選択的腐食による粒界割れの進展を抑制する作用があるためと考えられる。上記の効果を得るには0.05%以上の含有が必要である。一方、過剰に含有させるとCuが粒界に偏析し、熱間加工時の表面割れや溶接割れを助長するため、上限は1.0%とする。より好ましい上限は0.5%である。
Mo ≧ (46/3) × C (1)
Cu: 0.05-1.0%
As described above, the stress corrosion cracking resistance in high-temperature pure water can be improved by adding a small amount of Cu to 0.05 to 1.0% together with Mo. This is presumably because Cu has the effect of reducing the dissolution rate associated with cracking and suppressing the development of intergranular cracking due to selective corrosion of the Cr-deficient layer. In order to obtain the above effects, it is necessary to contain 0.05% or more. On the other hand, when Cu is excessively contained, Cu segregates at the grain boundary and promotes surface cracks and weld cracks during hot working, so the upper limit is made 1.0%. A more preferred upper limit is 0.5%.

N:0.03〜0.3%
Nはオーステナイト形成元素であり、鋼の強度を確保するためにも必要な元素である。また、Nには鋼の耐食性を向上させる効果もある。これらの効果を得るには0.03%以上の含有が必要である。しかし、Nの過剰な含有は、溶接性の低下を招いたり、鋳造時に表面割れを誘発する懸念があるので、上限を0.3%とする。より望ましい上限は0.15%である。
N: 0.03-0.3%
N is an austenite-forming element and is also an element necessary for ensuring the strength of steel. N also has the effect of improving the corrosion resistance of steel. In order to obtain these effects, a content of 0.03% or more is necessary. However, the excessive content of N causes a decrease in weldability or induces surface cracking during casting, so the upper limit is made 0.3%. A more desirable upper limit is 0.15%.

Ti:0.005〜0.1%およびV:0.01〜0.2%の少なくとも一方
TiおよびVは、炭化物を形成し粒界への炭化物析出を抑制する効果を有し、耐粒界応力腐食割れ性をより一層改善する作用を有するので、必要に応じて一方または両方を含有させる。効果を得る下限は、それぞれ0.005%および0.01%である。一方、これらを過剰に含有させると、効果が飽和するだけでなく、熱間加工性も劣化するため上限はそれぞれ0.1%および0.2%とする。より好ましい含有量は、Tiで0.02〜0.05%、Vで0.05〜0.15%である。
At least one of Ti: 0.005-0.1% and V: 0.01-0.2%
Ti and V have the effect of forming carbides and suppressing the precipitation of carbides at the grain boundaries, and have the effect of further improving the intergranular stress corrosion cracking resistance. Therefore, one or both of Ti and V are contained as necessary. . The lower limit for obtaining the effect is 0.005% and 0.01%, respectively. On the other hand, if these are contained excessively, not only the effect is saturated but also the hot workability is deteriorated, so the upper limit is made 0.1% and 0.2%, respectively. More preferable contents are 0.02 to 0.05% for Ti and 0.05 to 0.15% for V.

表1に示す化学組成を有するステンレス鋼を溶製し、そのインゴットを1200℃に加熱した後、熱間鍛造および熱間圧延を施して厚さ5mmの板材とした。その板材を1020〜1060℃に加熱した後、水冷による焼入れ処理を施した。次いで、この板材に対してArガス雰囲気中において、650℃で10時間保持する鋭敏化熱処理を施した。   Stainless steel having the chemical composition shown in Table 1 was melted, and the ingot was heated to 1200 ° C., and then subjected to hot forging and hot rolling to obtain a plate having a thickness of 5 mm. The plate was heated to 1020 to 160 ° C. and then quenched by water cooling. Next, the plate material was subjected to a sensitizing heat treatment held at 650 ° C. for 10 hours in an Ar gas atmosphere.

上記の板材を試料として、次の手順で蓚酸エッチングによる粒界のCr欠乏層の確認を行った。   Using the plate material as a sample, a Cr-deficient layer at the grain boundary was confirmed by oxalic acid etching according to the following procedure.

まず、上記の板材の断面を観察面として樹脂に埋め込んで研磨して、JIS G0571の10%蓚酸エッチング試験方法によりエッチングした。その後、粒界のエッチング状況を顕微鏡にて観察した。Cr欠乏層の判定は、板厚中央部を200倍の顕微鏡で観察し、視野内の粒界総長さに対するエッチングされた長さが10%以上の場合を●、5%以上で10%未満の場合を▲、3%以上で5%未満の場合を△、1%以上で%未満の場合を○、1%未満の場合を◎とした。結果を表1に併記する。 First, the cross-section of the plate material was embedded in a resin as an observation surface, polished, and etched by the 10% oxalic acid etching test method of JIS G0571. Thereafter, the etching state of the grain boundaries was observed with a microscope. The determination of the Cr-deficient layer is made by observing the central part of the plate thickness with a 200x microscope, and when the etched length with respect to the total grain boundary length in the field of view is 10% or more, 5% or more and less than 10% Cases were marked with △ when 3% or more and less than 5%, ◯ when 1% or more and less than 3 %, and ◎ when less than 1%. The results are also shown in Table 1.

Figure 0005070831
Figure 0005070831

表1から明らかなように、本発明鋼(No.2および4〜7)では鋭敏化熱処理後の粒界のエッチング長さが短くなっており、粒界近傍のCr欠乏層の生成が抑制されている。即ち、本発明鋼では耐粒界応力腐食割れ性が改善されている。一方、C、Cr、MoおよびCuのいずれかの含有量が本発明で定める範囲内にない鋼(No.9〜15)では、鋭敏化熱処理後の粒界が著しくエッチングされている。これは、粒界のCr欠乏層が大きいため、耐粒界応力腐食割れ性に劣ることを意味する

As apparent from Table 1, in the steels of the present invention (Nos. 2 and 4 to 7 ), the etching length of the grain boundary after the sensitizing heat treatment is shortened, and the formation of a Cr-deficient layer near the grain boundary is suppressed. ing. That is, the steel of the present invention has improved intergranular stress corrosion cracking resistance. On the other hand, in steels (Nos. 9 to 15) in which the content of any of C, Cr, Mo and Cu is not within the range defined by the present invention, the grain boundaries after the sensitizing heat treatment are significantly etched. This means that the grain-boundary Cr-deficient layer is large, and therefore the intergranular stress corrosion cracking resistance is poor .

図1は、表1のNo.5、6および15の鋼の蓚酸エッチング後の顕微鏡写真である。表1に示すように、No.5は評価◎、No.6は評価○、No.15は評価●である。   FIG. 1 is a photomicrograph after oxalic acid etching of No. 5, 6 and 15 steels in Table 1. As shown in Table 1, No. 5 is evaluation ◎, No. 6 is evaluation ○, and No. 15 is evaluation ●.

上記のとおり、本発明のオーステナイト系ステンレス鋼は、通常のオーステナイト系ステンレス鋼が鋭敏化されるような熱履歴を受けても、粒界への選択的な炭化物析出が抑制され、粒界近傍のCr欠乏層の深さや幅が小さい。したがって、耐粒界応力腐食割れ性が大きく改善されている。本発明の鋼は、鋭敏化による炭化物析出が問題となる原子力発電プラントや火力発電プラントの給水加熱器等の構造部材である板、管、継手等として好適である。   As described above, even if the austenitic stainless steel of the present invention is subjected to a thermal history such that normal austenitic stainless steel is sensitized, selective carbide precipitation to the grain boundary is suppressed, and the vicinity of the grain boundary is The depth and width of the Cr-deficient layer are small. Therefore, the intergranular stress corrosion cracking resistance is greatly improved. The steel of the present invention is suitable as a plate, pipe, joint, or the like, which is a structural member such as a feed water heater of a nuclear power plant or a thermal power plant in which carbide precipitation due to sensitization is a problem.

鋭敏化熱処理した試料の粒界エッチングの状態を示す顕微鏡写真の複写図である。It is a reproduction figure of the microscope picture which shows the state of the grain boundary etching of the sample which carried out the sensitizing heat processing.

Claims (2)

質量%で、C:0.03%未満、Si:1.0%未満、Mn:1.2〜2.5%、P:0.04%以下、S:0.02%以下、Cr:15〜25%、Ni:6〜15%、Mo:0.3〜1.0%、Cu:0.05〜1.0%およびN:0.03〜0.083%を含有し、残部が鉄および不純物からなり、かつMo含有量が下記の(1)式を満足することを特徴とするオーステナイト系ステンレス鋼。
Mo≧(46/3)×C ・・・(1)
但し、(1)式中の元素記号は、その元素の含有量(質量%)を意味する。
In mass%, C: less than 0.03%, Si: less than 1.0%, Mn: 1.2-2.5%, P: 0.04% or less, S: 0.02% or less, Cr: 15-25%, Ni: 6-15%, Mo : 0.3-1.0%, Cu: 0.05-1.0% and N: 0.03-0.083%, the balance is composed of iron and impurities, and the Mo content satisfies the following formula (1) Austenitic stainless steel.
Mo ≧ (46/3) × C (1)
However, the element symbol in the formula (1) means the content (% by mass) of the element.
請求項に記載の成分に加えてさらに、Ti:0.005〜0.1質量%およびV:0.01〜0.2質量%の一方または両方を含有することを特徴とする請求項に記載のオーステナイト系ステンレス鋼。
In addition to the components described in claim 1, Ti: 0.005 to 0.1 wt% and V: 0.01 to 0.2% by weight of one or austenitic stainless steel according to claim 1, characterized in that it contains both.
JP2006342245A 2005-12-26 2006-12-20 Austenitic stainless steel Active JP5070831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006342245A JP5070831B2 (en) 2005-12-26 2006-12-20 Austenitic stainless steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005371348 2005-12-26
JP2005371348 2005-12-26
JP2006342245A JP5070831B2 (en) 2005-12-26 2006-12-20 Austenitic stainless steel

Publications (2)

Publication Number Publication Date
JP2007197821A JP2007197821A (en) 2007-08-09
JP5070831B2 true JP5070831B2 (en) 2012-11-14

Family

ID=38452701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006342245A Active JP5070831B2 (en) 2005-12-26 2006-12-20 Austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP5070831B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328478B2 (en) * 2009-05-19 2013-10-30 新日鐵住金ステンレス株式会社 Stainless steel plate with excellent surface properties
KR101923922B1 (en) * 2016-12-23 2018-11-30 주식회사 포스코 Austenitic stainless steel product having excellent surface properties and manufacturing method of the same
KR102173302B1 (en) * 2018-11-12 2020-11-03 주식회사 포스코 Non-magnetic austenitic stainless steel and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188413A (en) * 1975-02-01 1976-08-03 Kotaishokuseifueraitosutenresuko
JPH0672256B2 (en) * 1988-07-08 1994-09-14 日本鋼管株式会社 Method for producing austenitic stainless clad steel sheet
JPH0611902B2 (en) * 1989-07-12 1994-02-16 住友金属工業株式会社 Stainless steel section and its manufacturing method
JP2005133145A (en) * 2003-10-30 2005-05-26 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel having excellent hot workability and corrosion resistance

Also Published As

Publication number Publication date
JP2007197821A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP4140556B2 (en) Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking
KR20090130331A (en) Austenitic stainless steel excellent in intergranular corrosion resistance and stress corrosion cracking resistance, and method for producing austenitic stainless steel
JP6048436B2 (en) Tempered high tensile steel plate and method for producing the same
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP2008030086A (en) Method for producing high-strength clad steel plate
KR101539520B1 (en) Duplex stainless steel sheet
JP5501795B2 (en) Low-chromium stainless steel with excellent corrosion resistance in welds
JP4062190B2 (en) Austenitic stainless steel pipe for nuclear power
JP5070831B2 (en) Austenitic stainless steel
JP6986455B2 (en) Duplex Stainless Steel Wires for Duplex Stainless Steel, Duplex Stainless Steel Wires and Duplex Stainless Steels for Prestressed Concrete
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JP6337514B2 (en) Precipitation hardening type Fe-Ni alloy and manufacturing method thereof
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP4765283B2 (en) Method for producing martensitic stainless steel pipe circumferential welded joint
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JP5040973B2 (en) Method for producing martensitic stainless steel pipe circumferential welded joint
JP5365499B2 (en) Duplex stainless steel and urea production plant for urea production plant
JP4082288B2 (en) Mo-containing austenitic stainless steel and method for producing the same
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JP7008873B2 (en) Stainless steel plate
JP7436793B2 (en) Manufacturing method of welded joints of ferritic heat-resistant steel
JP2672430B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP4775910B2 (en) Austenitic stainless steel with excellent high temperature salt damage corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5070831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350