JP5328478B2 - Stainless steel plate with excellent surface properties - Google Patents

Stainless steel plate with excellent surface properties Download PDF

Info

Publication number
JP5328478B2
JP5328478B2 JP2009121222A JP2009121222A JP5328478B2 JP 5328478 B2 JP5328478 B2 JP 5328478B2 JP 2009121222 A JP2009121222 A JP 2009121222A JP 2009121222 A JP2009121222 A JP 2009121222A JP 5328478 B2 JP5328478 B2 JP 5328478B2
Authority
JP
Japan
Prior art keywords
value
stainless steel
thick plate
amount
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009121222A
Other languages
Japanese (ja)
Other versions
JP2010270356A (en
Inventor
成雄 福元
義盛 福田
洋 本村
洋一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2009121222A priority Critical patent/JP5328478B2/en
Publication of JP2010270356A publication Critical patent/JP2010270356A/en
Application granted granted Critical
Publication of JP5328478B2 publication Critical patent/JP5328478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、表面性状の優れたステンレス鋼厚板に関するものである。   The present invention relates to a stainless steel thick plate having excellent surface properties.

オーステナイト系ステンレス鋼は高価なNi、Cr、Mo等を多量に含有しているために、歩留向上は製造コスト低減の観点から重要な課題である。しかし、耐食性および強度の面からNi、Cr、Mo,N等を多量に含有するために熱間での加工性に劣り、熱間加工中に粒界割れを起こして表面欠陥となり、歩留まりが低下するという問題がある。   Since austenitic stainless steel contains a large amount of expensive Ni, Cr, Mo and the like, yield improvement is an important issue from the viewpoint of reducing manufacturing costs. However, it contains a large amount of Ni, Cr, Mo, N, etc. in terms of corrosion resistance and strength, so it is inferior in hot workability, causing intergranular cracking during hot working, resulting in surface defects and lowering yield. There is a problem of doing.

一般にオーステナイト系ステンレス鋼の熱間加工性を改善させるためには、例えば特許文献1や特許文献2のように、有害なSおよびOを低減し、さらにCa、MgまたはCeを添加して有害なSおよびOを固定する方法が知られている。しかしながら、Ca、MgまたはCeを添加した場合には、鋼中に水溶性の硫化物が生成して耐食性を劣化させるという問題がある。   Generally, in order to improve the hot workability of austenitic stainless steel, harmful S and O are reduced as in Patent Document 1 and Patent Document 2, for example, and Ca, Mg, or Ce is added to be harmful. A method of fixing S and O is known. However, when Ca, Mg or Ce is added, there is a problem that water-soluble sulfides are generated in the steel and the corrosion resistance is deteriorated.

また、特許文献3のように鋼中のB、S濃度やδ−Fe量を適正に制御することによって、ステンレス鋼の熱間加工性を改善する方法が開示されている。しかし、Bを添加した場合にはホウ化物の生成による鋭敏化で耐食性が低下することが課題である。   Further, as disclosed in Patent Document 3, a method for improving the hot workability of stainless steel by appropriately controlling the B, S concentration and the amount of δ-Fe in the steel is disclosed. However, when B is added, the problem is that the corrosion resistance decreases due to sensitization by the formation of borides.

また、熱間加工性を向上させる手段として、特許文献2や特許文献3のように、鋳造組織中のδ−Fe量の制御が挙げられる。δ−Feの存在によりSおよびOの粒界への偏析が軽減し、熱間加工性を改善できることが知られている。しかしながら、δ−Fe量や熱間加工性に及ぼす各成分の影響は必ずしも明確ではなく、成分設計の面からの熱間加工性改善には十分適用されているとは言えないのが現状である。   Further, as means for improving the hot workability, as in Patent Document 2 and Patent Document 3, control of the amount of δ-Fe in the cast structure can be mentioned. It is known that the presence of δ-Fe reduces the segregation of S and O to the grain boundaries and improves hot workability. However, the influence of each component on the amount of δ-Fe and hot workability is not always clear, and it is not said that it is sufficiently applied to improve hot workability from the aspect of component design. .

特開平1−168846号公報Japanese Patent Laid-Open No. 1-168846 特公平5−7457号公報Japanese Patent Publication No. 5-7457 特開平7−41912号公報JP 7-41912 A 特公平5−7457号公報Japanese Patent Publication No. 5-7457

T.A.Siewert, C.N.McCowan, and D.L.Olso: Welding Journal,67(1988),292s.T.A.Siewert, C.N.McCowan, and D.L.Olso: Welding Journal, 67 (1988), 292s. D.J.Kotecki and T.A.Siewert: Welding Journal, 71(1992), 171sD.J.Kotecki and T.A.Siewert: Welding Journal, 71 (1992), 171s

従来技術は微量元素の添加により熱間加工性は改善するものの介在物や析出物に起因した耐食性の劣化が発生するため、耐食性の要求が厳しいステンレス鋼厚板では適用できない場合が多いのが現状である。   Although the conventional technology improves hot workability by adding trace elements, corrosion resistance deterioration due to inclusions and precipitates occurs, so it is often not applicable to stainless steel thick plates that have strict requirements for corrosion resistance. It is.

本発明は、このような従来の課題にかんがみてなされたものであって、ステンレス鋼厚板において、成分およびδ−Fe量の制御により、熱間圧延時に表面疵が発生することなく、表面性状の優れたオーステナイト系ステンレス鋼を提供するものである。   The present invention has been made in view of such a conventional problem, and in a stainless steel thick plate, surface properties are not generated during hot rolling by controlling the components and the amount of δ-Fe. An austenitic stainless steel excellent in the above is provided.

(1)質量%で、C:0.005〜0.07%、Si≦0.8%、Mn:0.5〜4.0%、P≦0.04%、S≦0.008%、Cr:16〜19%、Ni≦13%、Al≦0.05%、N≦0.08%、残部Feおよび不可避的不純物よりなり、かつ下記(1)式で規定するδ−Fe計算値が0.5以上7.0以下を満足し、厚板圧延後の板表面のδ−Fe測定値が体積%で0.1〜0.7%であることを特徴とする表面性状の優れたオーステナイト系ステンレス鋼厚板。
δ−Fe計算値=2.9×([Cr]+0.3[Si]+[Mo]+0.7[Nb])−2.6×([Ni]+0.3[Mn]+0.25[Cu]+35[C]+20[N])−18 (1)
(2)さらに質量%で、Mo≦3.0%、Cu≦3.5%、Nb≦0.5%の1種または2種以上を含有することを特徴とする上記(1)記載の表面性状の優れたオーステナイト系ステンレス鋼厚板。
(3)下記(2)式で規定するRA値≧78を満足することを特徴とする上記(1)又は(2)に記載の表面性状の優れたオーステナイト系ステンレス鋼厚板。
RA値=106−3.4×(δ−Fe計算値)−2036×[S]−81×[N] (2)
本発明は前述の先行技術3件と異なり、成分設計と熱延時のスラブ加熱によるδ−Fe量の制御を行うことで、厚板の表面品質の改善を達成している。なお、本発明において厚板圧延後とは、厚板圧延後の冷却を完了した状態を意味する。厚板圧延後にさらに溶体化処理などの熱処理を行う場合には、当該熱処理前の状態を意味する。また上記(1)(2)式で、[元素]は各元素の含有量(質量%)を意味する。
(1) By mass%, C: 0.005 to 0.07%, Si ≦ 0.8%, Mn: 0.5 to 4.0%, P ≦ 0.04%, S ≦ 0.008%, Cr: 16 to 19%, Ni ≦ 13%, Al ≦ 0.05%, N ≦ 0.08%, balance Fe and inevitable impurities, and the calculated value of δ-Fe defined by the following formula (1) is Austenite with excellent surface properties, characterized by satisfying 0.5 or more and 7.0 or less and having a measured δ-Fe value of 0.1% to 0.7% by volume on the surface of the plate after thick plate rolling Stainless steel plate.
δ-Fe calculated value = 2.9 × ([Cr] +0.3 [Si] + [Mo] +0.7 [Nb]) − 2.6 × ([Ni] +0.3 [Mn] +0.25 [ Cu] +35 [C] +20 [N])-18 (1)
(2) The surface according to the above (1), further comprising one or more of Mo ≦ 3.0%, Cu ≦ 3.5%, and Nb ≦ 0.5% by mass%. Austenitic stainless steel plate with excellent properties.
(3) The austenitic stainless steel thick plate having excellent surface properties according to the above (1) or (2), wherein RA value ≧ 78 defined by the following formula (2) is satisfied.
RA value = 106−3.4 × (calculated value of δ−Fe) −2036 × [S] −81 × [N] (2)
Unlike the three prior arts described above, the present invention achieves improvement in the surface quality of the thick plate by controlling the amount of δ-Fe by component design and slab heating during hot rolling. In the present invention, “after thick plate rolling” means a state in which cooling after thick plate rolling is completed. When heat treatment such as solution treatment is further performed after thick plate rolling, the state before the heat treatment is meant. In the above formulas (1) and (2), [element] means the content (% by mass) of each element.

本発明は、ステンレス鋼中の成分や厚板圧延後のδ−Fe量(δ−Fe測定値)を調整し、さらに、スラブ加熱後の圧延時のδ−Fe量を制御することにより熱間圧延時の割れを抑制し、表面性状の優れたオーステナイト系ステンレス鋼厚板を得るものである。   The present invention adjusts the components in stainless steel and the amount of δ-Fe after thick plate rolling (measured value of δ-Fe), and further controls the amount of δ-Fe during rolling after slab heating. A crack in rolling is suppressed, and an austenitic stainless steel thick plate having excellent surface properties is obtained.

δ−Fe計算値とヘゲ発生の関係を調べた結果を示す図である。It is a figure which shows the result of having investigated the relationship between (delta) -Fe calculation value and the occurrence of shave. 厚板表面のδ−Fe量(δ−Fe測定値)とヘゲ発生の関係を調べた結果を示す図である。It is a figure which shows the result of having investigated the relationship between the amount of (delta) -Fe (measured value of (delta) -Fe) on the surface of a thick plate, and the occurrence of hege. RA値とヘゲ発生の関係を調べた結果を示す図である。It is a figure which shows the result of having investigated the relationship between RA value and the occurrence of shaving. RA値と1100℃における断面収縮率の関係を調べた結果を示す図である。It is a figure which shows the result of having investigated the relationship between RA value and the cross-sectional shrinkage rate in 1100 degreeC.

本発明では熱間加工割れの発生を防止するために、鋳片および熱間圧延時のδ−Fe量を規制している。具体的には、鋳片のδ−Fe量として下記のδ−Fe計算値を用い、熱間圧延時のδ−Fe量として厚板圧延後の板表面におけるδ−Fe測定値を用いている。なお、δ−Fe量は、計算値、測定値ともに体積%で表示している。   In the present invention, in order to prevent the occurrence of hot working cracks, the amount of δ-Fe during slab and hot rolling is regulated. Specifically, the following δ-Fe calculated value is used as the δ-Fe amount of the slab, and the δ-Fe measured value on the plate surface after thick plate rolling is used as the δ-Fe amount during hot rolling. . In addition, the amount of δ-Fe is displayed in volume% for both the calculated value and the measured value.

本発明ではδ−Fe計算値は非特許文献1に記載される式にさらに非特許文献2に記載されているようにNbとCuの項を追加した下記(1)式を用いている。この式は従来用いられていたもの、例えば特許文献4のδ−Fe量の予測式より広い成分範囲に対して鋳片のδ−Fe量を精度良く予測できるためである。
δ−Fe計算値=2.9×([Cr]+0.3[Si]+[Mo]+0.7[Nb])−2.6×([Ni]+0.3[Mn]+0.25[Cu]+35[C]+20[N])−18 (1)
In the present invention, the calculated value of δ-Fe uses the following formula (1) in which terms of Nb and Cu are added to the formula described in non-patent document 1 as described in non-patent document 2. This is because the δ-Fe amount of the slab can be accurately predicted with respect to a wider component range than that conventionally used, for example, the δ-Fe amount prediction equation of Patent Document 4.
δ-Fe calculated value = 2.9 × ([Cr] +0.3 [Si] + [Mo] +0.7 [Nb]) − 2.6 × ([Ni] +0.3 [Mn] +0.25 [ Cu] +35 [C] +20 [N])-18 (1)

図1は、鋼成分から上記(1)式で計算したδ−Fe計算値と、厚板圧延後のヘゲ発生の関係を示したものである。厚板のヘゲ疵の発生状況を目視観察した結果より、○、△、×に分けて評価した。○は成品として全く問題のない程度で無手入れまたは部分手入れのもの、△は研削(全面手入れ)にて救済可能なもの、×は全く使用不可能な不合格が発生したものである。δ−Fe計算値は鋳片表層のδ−Fe量を表すものであり、図1から明らかなように、δ−Fe計算値が0.5%未満では熱間加工性が悪い。[S]を固溶するδ−Fe量が少ないためである。またδ−Fe計算値が7.0%ではヘゲ発生が増大する。変形抵抗の小さいδ相と変形抵抗の大きいγ相の差により相境界で割れが発生するためである。なお、図1に示すものは、本発明の請求項1に規定する成分範囲のものであって、下記δ−Fe測定値については0.1〜0.7%の範囲にあることを確認している。 FIG. 1 shows the relationship between the calculated value of δ-Fe calculated from the steel component according to the above equation (1) and the occurrence of lashes after thick plate rolling. From the result of visual observation of the state of occurrence of whipping on the thick plate, the evaluation was divided into ○, Δ, and ×. ○ indicates that there is no problem as a product with no maintenance at all, Δ indicates that it can be remedied by grinding (entire maintenance), and × indicates that a failure that cannot be used at all has occurred. The calculated value of δ-Fe represents the amount of δ-Fe in the slab surface layer. As is apparent from FIG. 1, when the calculated value of δ-Fe is less than 0.5%, the hot workability is poor. This is because the amount of δ-Fe that dissolves [S] is small. The [delta]-Fe calculated value of 7.0% in the ultra scab generation is increased. This is because cracks occur at the phase boundary due to the difference between the δ phase having a small deformation resistance and the γ phase having a large deformation resistance. In addition, what is shown in FIG. 1 is the component range prescribed | regulated to Claim 1 of this invention, Comprising: It confirmed that it exists in the range of 0.1-0.7% about the following (delta) -Fe measured value. ing.

図2は圧延後の厚板表面のδ−Fe測定値と厚板圧延後のヘゲ発生の関係を示す。δ−Fe測定値は、厚板圧延後の板表面を1000番のエミリー紙で研磨した後にフェライトスコープにより測定した。δ−Fe測定値が0.1〜0.7%の範囲にある場合にヘゲ発生率が少ないことがわかった。なお、図2に示すものは、本発明の請求項1に規定する成分範囲のものであって、上記δ−Fe計算値については0.5〜7.0%の範囲にあることを確認している。   FIG. 2 shows the relationship between the measured value of δ-Fe on the surface of the thick plate after rolling and the occurrence of shaving after the rolling of the thick plate. The measured value of δ-Fe was measured with a ferrite scope after the plate surface after thick plate rolling was polished with No. 1000 Emily paper. It was found that when the measured value of δ-Fe is in the range of 0.1 to 0.7%, the occurrence rate of hege is small. In addition, what is shown in FIG. 2 is the component range prescribed | regulated to Claim 1 of this invention, Comprising: About the said (delta) -Fe calculated value, it confirms that it exists in the range of 0.5 to 7.0%. ing.

即ち、(1)式のδ−Fe計算値が0.5〜7.0%の範囲にあるとともに、厚板圧延後の板表面のδ−Fe測定値が0.1〜0.7%の範囲にあれば、厚板圧延後のヘゲ発生を防止できることがわかった。 That, (1) δ-Fe Calculated formula with a range of 0.5~7.0%, δ-Fe measurement of the plate surface after Plate Mill of from 0.1 to 0.7% If it was in the range, it was found that the occurrence of shaving after thick plate rolling can be prevented.

ラボ実験により高温引張試験用試料に熱処理を加え、1100℃での高温引張試験を実施した。また試験片について表面のδ−Fe量(体積%)を測定し、残留δ−Fe量とした。熱処理条件を変更し、残留δ−Fe量と高温引張試験の断面収縮率の関係を見ると、残留δ−Fe量が0.5%の場合に高温延性が最も高く、0.1〜0.7%の範囲では良好であることを見出した。前述のように残留δ−Fe量が多い場合にはδとγ相の変形抵抗値に起因して割れが発生すると考えられる。一方、残留δ−Fe量が少なすぎる場合にはδ−Feによる[S]の固溶がなくなり、[S]の粒界偏析が助長されて熱間加工性が劣化すると考えられる。またδ−Feの消失は結晶構造の緻密なγ相への変態を意味し、変態の収縮によるマイクロボイドの発生も熱間加工性に悪影響を与えると推察される。以上の試験結果からも、本発明のように厚板圧延後の板表面のδ−Fe測定値を0.1〜0.7%とすることの意味が明らかである。   A heat treatment was applied to the sample for high temperature tensile test by a laboratory experiment, and a high temperature tensile test at 1100 ° C. was performed. Further, the amount of δ-Fe (volume%) on the surface of the test piece was measured to obtain the amount of residual δ-Fe. When the heat treatment conditions were changed and the relationship between the amount of residual δ-Fe and the cross-sectional shrinkage rate of the high-temperature tensile test was observed, the high-temperature ductility was highest when the amount of residual δ-Fe was 0.5%, and 0.1 to 0. It was found that the range of 7% was good. As described above, when the amount of residual δ-Fe is large, it is considered that cracking occurs due to the deformation resistance values of the δ and γ phases. On the other hand, when the amount of residual δ-Fe is too small, it is considered that the solid solution of [S] due to δ-Fe disappears and segregation of [S] is promoted to deteriorate the hot workability. The disappearance of δ-Fe means transformation into a fine γ phase of the crystal structure, and it is presumed that generation of microvoids due to transformation shrinkage also adversely affects hot workability. From the above test results, it is clear that the δ-Fe measured value on the surface of the plate after thick plate rolling is 0.1 to 0.7% as in the present invention.

圧延後の厚板表面のδ−Fe量(δ−Fe測定値)はスラブ加熱条件により制御することができる。スラブ加熱中におけるδ−Feの消失速度は加熱温度に依存し、消失速度を十分大きくするには1140℃から1220℃の範囲が好ましい。1250℃を越える場合にはδ−Feの再析出や粗大化によりヘゲ発生が増大し、1140℃未満では拡散によるδ−Feの消失効果が小さくなり、加熱時間を長くする必要が生じる。加熱時間は加熱温度やスラブ厚みに応じて、δ−Fe測定値が上記の適正範囲に入るように決定される。例えば、厚みが200mm厚のスラブの場合は1220℃なら5min程度、1140℃ならば20〜30min程度必要になる。δ−Fe消失には拡散速度の点から1100℃以上の高温での滞留時間が重要になる。   The amount of δ-Fe (measured value of δ-Fe) on the surface of the thick plate after rolling can be controlled by slab heating conditions. The disappearance rate of δ-Fe during slab heating depends on the heating temperature, and a range of 1140 ° C to 1220 ° C is preferable to sufficiently increase the disappearance rate. When the temperature exceeds 1250 ° C., the occurrence of scab increases due to reprecipitation and coarsening of δ-Fe. When the temperature is lower than 1140 ° C., the effect of disappearance of δ-Fe due to diffusion becomes small, and it is necessary to increase the heating time. The heating time is determined according to the heating temperature and the slab thickness so that the measured value of δ-Fe falls within the appropriate range. For example, in the case of a slab having a thickness of 200 mm, if it is 1220 ° C., about 5 min is required, and if it is 1140 ° C., about 20-30 min is required. For δ-Fe disappearance, the residence time at a high temperature of 1100 ° C. or higher is important from the viewpoint of diffusion rate.

図3は、鋼成分及び(1)式のδ−Fe計算値から下記(2)式で計算されるRAの値と、厚板圧延後のヘゲ発生の関係を示す。RAの値が78%以上にある場合にはヘゲ発生率が特に少ないことがわかった。なお、図3に示すものは、本発明の請求項1に規定する成分範囲のものであって、上記δ−Fe計算値については0.5〜7.0%の範囲にあり、δ−Fe測定値については0.1〜0.7%の範囲にあることを確認している。
RA値=106−3.4×(δ−Fe計算値)−2036×[S]−81×[N] (2)
FIG. 3 shows the relationship between the steel component and the value of RA calculated by the following equation (2) from the calculated δ-Fe value of the equation (1), and the occurrence of lashes after thick plate rolling. It was found that when the RA value was 78% or more, the rate of occurrence of baldness was particularly small. In addition, what is shown in FIG. 3 is the component range prescribed | regulated to Claim 1 of this invention, Comprising: About the said (delta) -Fe calculated value, it exists in 0.5 to 7.0% of range, (delta) -Fe About the measured value, it has confirmed that it exists in the range of 0.1-0.7%.
RA value = 106−3.4 × (calculated value of δ−Fe) −2036 × [S] −81 × [N] (2)

RA値を表現する上記(2)式は、図4に示すように、ラボ実験材の高温延性と成分の関係より回帰分析にて求めたものである。縦軸は1200℃×60minの熱処理を行った試験材について、1100℃における高温引張試験の断面収縮率を測定したものである。このRA値と高温延性との関係によれば、δ−Fe量に加えて、Sの粒界偏析やN添加による高強度化もまた熱間加工性に悪影響を及ぼすと考えられる。   As shown in FIG. 4, the above equation (2) expressing the RA value is obtained by regression analysis from the relationship between the hot ductility of the laboratory experimental material and the components. The vertical axis represents the cross-sectional shrinkage ratio of a high-temperature tensile test at 1100 ° C. for a test material subjected to heat treatment at 1200 ° C. × 60 min. According to the relationship between the RA value and the high temperature ductility, it is considered that, in addition to the amount of δ-Fe, segregation of S grain boundaries and increase in strength by addition of N also adversely affect hot workability.

本発明に係わる成分組成(質量%)の限定理由を各元素の作用と共に説明する。   The reason for limiting the component composition (mass%) according to the present invention will be described together with the action of each element.

Cは強力なオーステナイト化元素であるとともに、固溶強化するので0.005%以上添加するが、含有量が多くなると炭化物を生成して耐食性を劣化させるため、また、δ−Fe量への影響が大きく、ヘゲ疵が発生しやすくなるため、0.07%以下とした。   C is a strong austenitizing element and strengthens the solid solution, so 0.005% or more is added. However, if the content increases, carbides are generated and the corrosion resistance is deteriorated, and the effect on the amount of δ-Fe is also affected. Is large, and it becomes easy to generate the beard soot.

Siはステンレス鋼の溶製時に脱酸剤として作用する元素であるが、本発明では熱間加工性確保の面から、0.8%以下にコントロールする必要がある。Siの下限は好ましくは0.2%である。   Si is an element that acts as a deoxidizer during the melting of stainless steel, but in the present invention, it is necessary to control it to 0.8% or less from the viewpoint of ensuring hot workability. The lower limit of Si is preferably 0.2%.

Mnは脱酸剤であるとともに、熱間加工性を向上させる効果があり、SをMnSとして固定してFeSの生成による赤熱脆性の発生を防止するのに有効な元素である。しかし、多量に含有すると溶製中の耐火物溶損を増大させることや耐食性が劣化することになるので4.0%以下としている。Mnの下限は好ましくは0.6%である。   Mn is a deoxidizer and has an effect of improving hot workability, and is an element effective for fixing S as MnS and preventing the occurrence of red hot brittleness due to the formation of FeS. However, if it is contained in a large amount, the refractory melting loss during melting is increased and the corrosion resistance deteriorates, so the content is made 4.0% or less. The lower limit of Mn is preferably 0.6%.

Pは製鋼工程では不純物であるが、大量に含有されていると熱間加工性を害するので上限を0.04%以下としている。   P is an impurity in the steelmaking process, but if it is contained in a large amount, hot workability is impaired, so the upper limit is made 0.04% or less.

Sは熱間加工性を低下させて熱間圧延時の割れ欠陥を発生させやすくさせ、耐食性も劣化させるので、0.008%以下としている。   S lowers the hot workability, makes it easier to generate cracking defects during hot rolling, and deteriorates the corrosion resistance.

Crはステンレス鋼の基本元素で、耐食性および耐酸化性の向上に寄与する。また濃度レベルによってδ−Fe量への影響が変化するため、本発明におけるδ−Fe量の制御を安定して達成するためにはCr濃度は16〜19%とした。   Cr is a basic element of stainless steel and contributes to improvement of corrosion resistance and oxidation resistance. In addition, since the influence on the amount of δ-Fe varies depending on the concentration level, the Cr concentration is set to 16 to 19% in order to stably achieve the control of the amount of δ-Fe in the present invention.

Niは鋼の耐食性および靭性を向上させる作用を有する元素であるが、高価なものともなることから、13%以下としている。Niの下限は好ましくは6.0%である。   Ni is an element having an effect of improving the corrosion resistance and toughness of steel, but it is also expensive, so it is set to 13% or less. The lower limit of Ni is preferably 6.0%.

Alは脱酸剤として作用するが、Alを多量に含有すると有害な硬質酸化物が生成し、圧延時の表面疵が発生するため、Alの上限は0.05%とした。Alの下限は好ましくは0.002%である。   Al acts as a deoxidizer, but if a large amount of Al is contained, harmful hard oxides are generated and surface defects occur during rolling. Therefore, the upper limit of Al is set to 0.05%. The lower limit of Al is preferably 0.002%.

Nはオーステナイトの安定化などに寄与する作用を有する元素であり、同時に強度向上に効果的な元素であるが、熱間加工性起因の表面疵の問題からN≦0.08%にコントロールすることとしている。Nの下限は好ましくは0.02%である。   N is an element having an action contributing to stabilization of austenite and the like, and at the same time, is an element effective for improving the strength. However, N ≦ 0.08% should be controlled due to surface flaws caused by hot workability. It is said. The lower limit of N is preferably 0.02%.

Moは耐食性向上に有効な元素であるはかりではなく、固溶強化の効果があり、必要に応じて0.05%以上添加される。しかし、3.0%を超えると熱間加工性が急激に悪化するために、3.0%以下にコントロールすることとしている。   Mo is not a scale that is an effective element for improving the corrosion resistance, but has an effect of strengthening solid solution. If necessary, 0.05% or more is added. However, if it exceeds 3.0%, the hot workability deteriorates rapidly, so it is controlled to 3.0% or less.

Cuはオーステナイト安定化元素であり、耐食性を改善する作用を有する元素であるため、0.2%以上添加することが望ましい。しかし、多量に含有すると熱間加工性を害するので3.5%以下としている。   Cu is an austenite stabilizing element and is an element having an action of improving the corrosion resistance. Therefore, it is desirable to add 0.2% or more. However, if contained in a large amount, the hot workability is impaired, so the content is made 3.5% or less.

Nbは耐食性向上に有効な元素であり、また固溶強化の効果があるため、必要に応じて0.05%以上添加される。しかし、0.5%を超えると熱間加工性が急激に悪化するために、0.5%以下にコントロールすることとしている。   Nb is an element effective for improving corrosion resistance and has an effect of strengthening solid solution, so 0.05% or more is added as necessary. However, when it exceeds 0.5%, the hot workability deteriorates abruptly, so the content is controlled to 0.5% or less.

表1に示す化学成分で、残部がFeおよび不可避的な不純物からなるNo.1〜15のオーステナイト系ステンレス鋼を電気炉、AOD工程で溶製し、200mm厚の連続鋳造スラブを製造した。これらのスラブは1000℃以上における昇温速度が1〜3℃/minの範囲で所定の温度1140〜1220℃まで加熱し、5〜20minの時間を均熱保持した後に、厚板圧延ラインで10mm厚まで熱間圧延を行った。表1の鋼成分において、「−」は意図的に添加していない場合を意味する。また、S、Pも意図的に添加していない。比較例20と26はNを意図的には添加していない。本発明範囲から外れる数値にアンダーラインを付している。   It is a chemical component shown in Table 1, and the balance is No. consisting of Fe and inevitable impurities. 1 to 15 austenitic stainless steels were melted in an electric furnace and AOD process to produce a continuous cast slab having a thickness of 200 mm. These slabs were heated to a predetermined temperature of 1140 to 1220 ° C. at a temperature rising rate of 1000 ° C. or higher within a range of 1 to 3 ° C./min, and maintained at a constant temperature for 5 to 20 min. Hot rolling was performed to a thickness. In the steel components in Table 1, “-” means a case where the steel components are not intentionally added. Moreover, S and P are not added intentionally. Comparative Examples 20 and 26 did not intentionally add N. Numerical values that fall outside the scope of the present invention are underlined.

Figure 0005328478
Figure 0005328478

圧延後の厚板表面を1000番のエミリー紙で研磨した後にフェライトスコープを用いてδ−Feを測定し、δ−Fe測定値とした。測定は10ヶ所で行い、平均値を算出した。   After the rolled thick plate surface was polished with # 1000 Emily paper, δ-Fe was measured using a ferrite scope to obtain a δ-Fe measurement value. The measurement was performed at 10 locations and the average value was calculated.

厚板のヘゲ疵の発生状況を前記の○、△、×に、全く欠陥が検出されなかった◎を加えたの四段階に分けて評価した。評価結果を表1の「圧延結果」にしめす。本発明鋼のヘゲ疵評価は全て○または◎であり、RA値が78以上のものは◎であった。   The state of occurrence of scabs on the thick plate was evaluated in four stages: the above-mentioned circles, triangles, and circles plus a circle where no defects were detected. The evaluation results are shown in “Rolling results” in Table 1. The evaluations of the lashes of the steels of the present invention were all ○ or ◎, and those having an RA value of 78 or more were で.

これに比べて比較鋼16はδ−Fe計算値が高すぎるため、ヘゲ疵が発生した。比較鋼17はδ−Fe計算値が低すぎるため、ヘゲ疵が発生した。比較鋼18は高温長時間のスラブ加熱を行ったため厚板表面のδ−Fe測定値が低く、ヘゲ疵が発生した。比較鋼19はスラブ加熱が低温で短時間のため厚板表面のδ−Fe測定値が1.2と高くなりすぎ、ヘゲ疵が発生した。   Compared with this, the comparative steel 16 has a too high calculated value of δ-Fe, and therefore, galling occurred. Since the comparative steel 17 had a calculated value of δ-Fe that was too low, galling occurred. Since the comparative steel 18 was subjected to slab heating at a high temperature for a long time, the measured value of δ-Fe on the surface of the thick plate was low, and galling occurred. Since the comparative steel 19 was slab heated at a low temperature for a short time, the measured value of δ-Fe on the surface of the thick plate was too high at 1.2, and galling occurred.

比較鋼20はCが高すぎ、δ−Fe計算値も低すぎるため、ヘゲ疵が発生した。比較鋼21はSiが高すぎるため、ヘゲ疵が発生した。比較鋼22はSが高すぎるため、ヘゲ疵が発生した。比較鋼23はPが高すぎるため、ヘゲ疵が発生した。比較鋼24はCrが高すぎるため、ヘゲ疵が発生した。比較鋼25はNiが高すぎ、δ−Fe計算値が低すぎるため、ヘゲ疵が発生した。比較鋼26はAlが高すぎるため、ヘゲ疵が発生した。比較鋼27はNが高すぎるため、ヘゲ疵が発生した。比較鋼28はMoが高すぎるため、ヘゲ疵が発生した。比較鋼29はCuが高すぎるため、ヘゲ疵が発生した。比較鋼30はNbが高すぎるため、ヘゲ疵が発生した。比較鋼31はMnが低く、RA値が低すぎるため、ヘゲ疵が発生した。   In comparative steel 20, C was too high, and the calculated value of δ-Fe was too low, so that galling occurred. Since the comparative steel 21 was too high in Si, galling occurred. Since the comparative steel 22 was too high in S, it caused baldness. Since the comparative steel 23 had too high P, scabs were generated. Since the comparative steel 24 was too high in Cr, galling occurred. In comparative steel 25, Ni was too high, and the calculated value of δ-Fe was too low. Since the comparative steel 26 was too high in Al, galling occurred. Since the comparative steel 27 was too high in N, scabs were generated. Since the comparative steel 28 was too high in Mo, scabs were generated. Since the comparative steel 29 was too high in Cu, scabs were generated. Since the comparative steel 30 was too high in Nb, scabs were generated. Since comparative steel 31 had a low Mn and an RA value that was too low, baldness was generated.

Claims (3)

質量%で、C:0.005〜0.07%、Si≦0.8%、Mn:0.5〜4.0%、P≦0.04%、S≦0.008%、Cr:16〜19%、Ni≦13%、Al≦0.05%、N≦0.08%、残部Feおよび不可避的不純物よりなり、かつ下記(1)式で規定するδ−Fe計算値が0.5以上7.0以下を満足し、厚板圧延後の板表面のδ−Fe測定値が体積%で0.1〜0.7%であることを特徴とする表面性状の優れたオーステナイト系ステンレス鋼厚板。
δ−Fe計算値=2.9×([Cr]+0.3[Si]+[Mo]+0.7[Nb])−2.6×([Ni]+0.3[Mn]+0.25[Cu]+35[C]+20[N])−18 (1)
In mass%, C: 0.005 to 0.07%, Si ≦ 0.8%, Mn: 0.5 to 4.0%, P ≦ 0.04%, S ≦ 0.008%, Cr: 16 19%, Ni ≦ 13%, Al ≦ 0.05%, N ≦ 0.08%, balance Fe and inevitable impurities, and the calculated value of δ-Fe defined by the following formula (1) is 0.5 An austenitic stainless steel with excellent surface properties, characterized by satisfying 7.0 or less and having a measured δ-Fe value of 0.1% to 0.7% by volume on the surface of the plate after thick plate rolling Thick plate.
δ-Fe calculated value = 2.9 × ([Cr] +0.3 [Si] + [Mo] +0.7 [Nb]) − 2.6 × ([Ni] +0.3 [Mn] +0.25 [ Cu] +35 [C] +20 [N])-18 (1)
さらに質量%で、Mo≦3.0%、Cu≦3.5%、Nb≦0.5%の1種または2種以上を含有することを特徴とする請求項1記載の表面性状の優れたオーステナイト系ステンレス鋼厚板。   The surface property according to claim 1, further comprising one or more of Mo ≦ 3.0%, Cu ≦ 3.5%, Nb ≦ 0.5% by mass%. Austenitic stainless steel plate. 下記(2)式で規定するRA値≧78を満足することを特徴とする請求項1又は2に記載の表面性状の優れたオーステナイト系ステンレス鋼厚板。
RA値=106−3.4×(δ−Fe計算値)−2036×[S]−81×[N] (2)
The austenitic stainless steel thick plate with excellent surface properties according to claim 1 or 2, wherein an RA value ≧ 78 defined by the following formula (2) is satisfied.
RA value = 106−3.4 × (calculated value of δ−Fe) −2036 × [S] −81 × [N] (2)
JP2009121222A 2009-05-19 2009-05-19 Stainless steel plate with excellent surface properties Active JP5328478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121222A JP5328478B2 (en) 2009-05-19 2009-05-19 Stainless steel plate with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121222A JP5328478B2 (en) 2009-05-19 2009-05-19 Stainless steel plate with excellent surface properties

Publications (2)

Publication Number Publication Date
JP2010270356A JP2010270356A (en) 2010-12-02
JP5328478B2 true JP5328478B2 (en) 2013-10-30

Family

ID=43418614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121222A Active JP5328478B2 (en) 2009-05-19 2009-05-19 Stainless steel plate with excellent surface properties

Country Status (1)

Country Link
JP (1) JP5328478B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103397274B (en) * 2013-08-09 2015-05-20 四川金广实业(集团)股份有限公司 304J1 austenitic stainless steel hot-rolled steel belt for deep drawing and production method of steel belt

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860244A (en) * 1994-08-23 1996-03-05 Nippon Steel Corp Production of thick austenitic stainless steel plate
JP2007063632A (en) * 2005-08-31 2007-03-15 Nippon Metal Ind Co Ltd Austenitic stainless steel
JP5070831B2 (en) * 2005-12-26 2012-11-14 住友金属工業株式会社 Austenitic stainless steel

Also Published As

Publication number Publication date
JP2010270356A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
US8133431B2 (en) Austenitic stainless steel
KR101169627B1 (en) Duplex stainless steel
DK2591134T3 (en) Austenitic-ferritic stainless steel with improved machinability
EP3246426B1 (en) Method for manufacturing a thick high-toughness high-strength steel sheet
JP5349015B2 (en) Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet
JP6225874B2 (en) Abrasion-resistant steel plate and method for producing the same
JP6583374B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP6115691B1 (en) Steel plate and enamel products
US10030282B2 (en) Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
JP6196453B2 (en) Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
JP6572952B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP6583375B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
EP3722448B1 (en) High-mn steel and method for manufacturing same
US8865060B2 (en) Austenitic stainless steel
US20200157667A1 (en) Austenitic stainless steel
KR101409291B1 (en) Structural stainless steel sheet having excellent corrosion resistance at weld and method for manufacturing same
JP2012172211A (en) METHOD OF MANUFACTURING LOW Ni AUSTENITIC STAINLESS STEEL SHEET
KR20150074697A (en) Low-nickel containing stainless steels
EP2762597A2 (en) Low-alloy duplex stainless steel having outstanding corrosion resistance and hot working properties
JP5328478B2 (en) Stainless steel plate with excellent surface properties
JP6926247B2 (en) Cold-rolled steel sheet for flux-cored wire and its manufacturing method
EP3699314A1 (en) Utility ferritic stainless steel having excellent hot workability, and manufacturing method therefor
JP5424917B2 (en) Duplex stainless steel with excellent crack resistance and hot workability
JP5106153B2 (en) Stainless steel with excellent surface properties
JP4381954B2 (en) Austenitic stainless steel with excellent hot workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R150 Certificate of patent or registration of utility model

Ref document number: 5328478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250