JP5915818B2 - Seamless steel pipe for line pipe used in sour environment - Google Patents

Seamless steel pipe for line pipe used in sour environment Download PDF

Info

Publication number
JP5915818B2
JP5915818B2 JP2015519628A JP2015519628A JP5915818B2 JP 5915818 B2 JP5915818 B2 JP 5915818B2 JP 2015519628 A JP2015519628 A JP 2015519628A JP 2015519628 A JP2015519628 A JP 2015519628A JP 5915818 B2 JP5915818 B2 JP 5915818B2
Authority
JP
Japan
Prior art keywords
steel pipe
seamless steel
content
less
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015519628A
Other languages
Japanese (ja)
Other versions
JPWO2014192251A1 (en
Inventor
小林 憲司
憲司 小林
勇次 荒井
勇次 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP5915818B2 publication Critical patent/JP5915818B2/en
Publication of JPWO2014192251A1 publication Critical patent/JPWO2014192251A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、継目無鋼管に関する。さらに好ましくは、腐食性ガスである硫化水素(HS)を含有するサワー環境で使用されるラインパイプ用継目無鋼管に関する。The present invention relates to a seamless steel pipe. More preferably, the present invention relates to a seamless steel pipe for a line pipe used in a sour environment containing hydrogen sulfide (H 2 S) which is a corrosive gas.

原油や天然ガスは、硫化水素及び水分を含む。このような湿潤硫化水素環境をサワー環境という。ラインパイプは、油井やガス井から生産された原油や天然ガスを搬送するパイプラインとして使用される。したがって、ラインパイプはサワー環境で使用される。サワー環境で使用されるラインパイプでは、硫化水素を含む環境での腐食により、鋼中に侵入した水素に起因した水素脆化が問題となる。   Crude oil and natural gas contain hydrogen sulfide and moisture. Such a wet hydrogen sulfide environment is called a sour environment. Line pipes are used as pipelines for transporting crude oil and natural gas produced from oil and gas wells. Therefore, the line pipe is used in a sour environment. In line pipes used in sour environments, hydrogen embrittlement due to hydrogen that has penetrated into steel becomes a problem due to corrosion in an environment containing hydrogen sulfide.

水素脆化には、静的な外部応力下で鋼材に生じる硫化物応力割れと、外部応力のない状態で鋼材内部に生じる水素誘起割れ(Hydrogen Induced Cracking:以下、HICと称する)とがある。ラインパイプではHICが問題となることが多い。したがって、ラインパイプ用鋼管では特に、耐HIC性が要求される。   Hydrogen embrittlement includes sulfide stress cracking that occurs in steel under static external stress, and hydrogen-induced cracking (hereinafter referred to as HIC) that occurs in the steel without external stress. In line pipes, HIC is often a problem. Therefore, the steel pipe for line pipes is particularly required to have HIC resistance.

ラインパイプ用鋼管には、溶接鋼管と継目無鋼管とがある。溶接鋼管は軸方向又はスパイラル状に延びるシーム部(溶接部)を有する。溶接鋼管に使用される鋼板は、連続鋳造時に生成される中心偏析部を板厚中央に持ち、その中心偏析部が高いHIC感受性を持つ。そのため、特に耐HIC性が求められるラインパイプ用鋼管には、継目無鋼管を用いるのが好ましい。   Steel pipes for line pipes include welded steel pipes and seamless steel pipes. The welded steel pipe has a seam portion (welded portion) extending in the axial direction or spiral shape. A steel plate used for a welded steel pipe has a central segregation portion generated at the time of continuous casting in the center of the plate thickness, and the central segregation portion has high HIC sensitivity. Therefore, it is preferable to use a seamless steel pipe for a steel pipe for a line pipe that particularly requires HIC resistance.

一般的に、鋼の強度が高くなるほど、HICが発生しやすくなることが知られている。国際公開第2005/075694号(特許文献1)は、高強度を有し、かつ、耐HIC性に優れた継目無鋼管を提案する。   In general, it is known that the higher the strength of steel, the easier it is to generate HIC. International Publication No. WO 2005/075694 (Patent Document 1) proposes a seamless steel pipe having high strength and excellent HIC resistance.

具体的には、特許文献1に開示されたラインパイプ用鋼材は、組成が質量%にて、C:0.03〜0.15%、Si:0.05〜1.0%、Mn:0.5〜1.8%、P:0.015%以下、S:0.04%以下、O:0.01%以下、N:0.007%以下、sol.Al:0.01〜0.1%、Ti:0.024%以下、Ca:0.0003〜0.02%を含有し、残部はFe及び不純物からなる。上記ラインパイプ用鋼材ではさらに、鋼中のTiNの大きさが30μm以下である。TiNが微細であるため、優れた耐HIC性が得られる、と特許文献1には記載されている。   Specifically, the steel product for line pipes disclosed in Patent Document 1 has a composition of mass%, C: 0.03 to 0.15%, Si: 0.05 to 1.0%, Mn: 0 5-1.8%, P: 0.015% or less, S: 0.04% or less, O: 0.01% or less, N: 0.007% or less, sol. Al: 0.01-0.1%, Ti: 0.024% or less, Ca: 0.0003-0.02% is contained, and the remainder consists of Fe and an impurity. Furthermore, in the steel material for line pipes, the size of TiN in the steel is 30 μm or less. Patent Document 1 describes that excellent HIC resistance can be obtained because TiN is fine.

国際公開第2005/075694号International Publication No. 2005/075694 特開2002−60893号公報JP 2002-60893 A 国際公開第2011/152240号International Publication No. 2011/152240

高強度の継目無鋼管を製造する場合、通常、熱間加工工程後に、焼入れ及び焼戻し処理を実施して継目無鋼管の強度を高める。一方で、高強度を必要としない、降伏強度が450MPa未満の低強度のラインパイプ用継目無鋼管の需要もある。このような低強度の継目無鋼管では通常、焼入れ及び焼戻し処理は実施されず、省略される。   When manufacturing a high-strength seamless steel pipe, the strength of the seamless steel pipe is usually increased by performing quenching and tempering treatment after the hot working process. On the other hand, there is also a demand for a low-strength seamless steel pipe for line pipes that does not require high strength and has a yield strength of less than 450 MPa. Such a low-strength seamless steel pipe is usually not subjected to quenching and tempering and is omitted.

従来では、上述のとおり、強度が低ければHICが発生しにくいと考えられてきた。しかしながら、本出願の発明者らの調査の結果、強度が高い場合だけでなく、強度が低い場合にもHICの一種であるブリスタ及び微小な内部割れが多数発生する場合があることを新たに知見した。   Conventionally, as described above, it has been considered that if the strength is low, HIC hardly occurs. However, as a result of the investigation by the inventors of the present application, it has been newly found that not only when the strength is high, but also when the strength is low, a large number of blisters which are a kind of HIC and minute internal cracks may occur. did.

ブリスタとは、鋼材の表面近傍に発生し、鋼材の軸方向に延びる膨れである。NACEによって規定される耐HIC性試験(NACE TM0284等)において、優れた耐HIC性を示す高強度の継目無鋼管においても、ブリスタの発生は確認されることがある。ただしHIC(ブリスタ)が表面近傍での割れにとどまる場合は、輸送される流体のリーク等につながらないため、従来の高強度の継目無鋼管では、ブリスタは特に問題とされていなかった。   A blister is a bulge that occurs near the surface of a steel material and extends in the axial direction of the steel material. In a HIC resistance test (NACE TM0284, etc.) defined by NACE, the occurrence of blisters may be confirmed even in high-strength seamless steel pipes exhibiting excellent HIC resistance. However, when the HIC (blister) stays cracked near the surface, it does not lead to leakage of the transported fluid and the like, and the blister is not particularly a problem in conventional high-strength seamless steel pipes.

しかしながら、低強度の継目無鋼管においては、引張応力が負荷された場合、鋼中の複数のブリスタ及び微小な内部割れが継目無鋼管の肉厚方向で連結してSOHIC(Stress Oriented Hydrogen Induced Cracking)が発生する可能性がある。   However, in a low-strength seamless steel pipe, when a tensile stress is applied, a plurality of blisters and minute internal cracks in the steel are connected in the thickness direction of the seamless steel pipe to form a SOHIC (Stress Oriented Hydrogen Inducted Cracking). May occur.

したがって、焼入れ及び焼戻しを実施しない低強度の継目無鋼管において、ブリスタ及び微小な内部割れの発生を抑制することが望ましい。低強度鋼材においては微小な内部割れはブリスタと同じ原因で発生するため、ブリスタに着目しその発生を抑制すればよい。   Therefore, it is desirable to suppress the occurrence of blisters and minute internal cracks in a low-strength seamless steel pipe that is not quenched and tempered. In a low-strength steel material, minute internal cracks are generated for the same cause as blisters.

本発明の目的は、焼入れ及び焼戻しを実施せず、かつ、サワー環境で使用されるラインパイプ用途に使用された場合、ブリスタの発生及び微小な内部割れを抑制できる継目無鋼管を提供することである。   An object of the present invention is to provide a seamless steel pipe that can suppress the generation of blisters and minute internal cracks when it is used for a line pipe used in a sour environment without quenching and tempering. is there.

本実施形態による継目無鋼管は、サワー環境で使用されるラインパイプ用途である。上記継目無鋼管は、質量%で、C:0.08〜0.24%、Si:0.10〜0.50%、Mn:0.3〜2.5%、P:0.02%以下、S:0.006%以下、Nb:0.02〜0.12%、Al:0.005〜0.100%、Ca:0.0003〜0.0050%、N:0.0100%以下、O:0.0050%以下、Ti:0〜0.1%、V:0〜0.03%、Cr:0〜0.6%、Mo:0〜0.3%、Ni:0〜0.4%、Cu:0〜0.3%、及び、B:0〜0.005%、を含有し、残部はFe及び不純物からなる化学組成と、フェライト及びパーライトからなる組織とを備え、350〜450MPa未満の降伏強度を有する。   The seamless steel pipe according to this embodiment is a line pipe application used in a sour environment. The above-mentioned seamless steel pipe is mass%, C: 0.08 to 0.24%, Si: 0.10 to 0.50%, Mn: 0.3 to 2.5%, P: 0.02% or less S: 0.006% or less, Nb: 0.02 to 0.12%, Al: 0.005 to 0.100%, Ca: 0.0003 to 0.0050%, N: 0.0100% or less, O: 0.0050% or less, Ti: 0-0.1%, V: 0-0.03%, Cr: 0-0.6%, Mo: 0-0.3%, Ni: 0-0. 4%, Cu: 0 to 0.3%, and B: 0 to 0.005%, the balance comprising a chemical composition composed of Fe and impurities, and a structure composed of ferrite and pearlite, It has a yield strength of less than 450 MPa.

本実施形態の継目無鋼管は、焼入れ焼き戻しを実施せず、低強度であっても、ブリスタ及び微小な内部割れの発生を抑制できる。   The seamless steel pipe of the present embodiment does not perform quenching and tempering and can suppress the occurrence of blisters and minute internal cracks even if the strength is low.

図1は、継目無鋼管の降伏強度と、発生したブリスタ個数(個/20cm)との関係を示す図である。FIG. 1 is a diagram showing the relationship between the yield strength of a seamless steel pipe and the number of blisters generated (pieces / 20 cm 2 ). 図2は実施例中の本発明例(鋼A4、肉厚20mm)のブリスタ個数測定試験後のクーポン試験片の2つの表面(継目無鋼管の外面及び内面に相当)の写真画像である。FIG. 2 is a photographic image of two surfaces (corresponding to the outer surface and the inner surface of a seamless steel pipe) after the blister number measurement test of the inventive example (steel A4, wall thickness 20 mm) in the examples. 図3は実施例中の比較例(鋼B3、肉厚20mm)のブリスタ個数測定試験後のクーポン試験片の2つの表面(継目無鋼管の外面及び内面に相当)の写真画像である。FIG. 3 is a photographic image of two surfaces (corresponding to the outer surface and the inner surface of a seamless steel pipe) of the coupon test piece after the blister number measurement test of the comparative example (steel B3, thickness 20 mm) in the examples.

以下、図面を参照し、本発明の実施の形態を詳しく説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明者らは、焼入れ及び焼戻しを実施しない低強度の継目無鋼管におけるブリスタの発生について調査及び検討し、次の知見を得た。   The present inventors investigated and examined the occurrence of blisters in a low-strength seamless steel pipe not subjected to quenching and tempering, and obtained the following knowledge.

ブリスタは次のメカニズムで発生する。鋼中の介在物の周囲に水素が集積し、水素膨れ(ブリスタ)の起点を形成する。起点の水素圧力が高まることにより鋼材が降伏すると、亀裂が生成される。亀裂が生成されると、亀裂先端に転位と水素がさらに集積し、亀裂が進展する。これによりブリスタが生成される。   Blister occurs by the following mechanism. Hydrogen accumulates around the inclusions in the steel and forms the starting point for hydrogen blisters. When the steel material yields by increasing the starting hydrogen pressure, a crack is generated. When a crack is generated, dislocations and hydrogen are further accumulated at the crack tip, and the crack progresses. This produces a blister.

焼入れ及び焼戻しを実施しない低強度の継目無鋼管においては、降伏強度の低いフェライトの割合が多い。そのため、フェライトが降伏してブリスタが発生すると考えられる。したがって、ブリスタの発生を抑制するためには、フェライト自身を強化する、又は、鋼中のパーライトの比率を高める、等により、鋼の強度を高めることが有効である。   In low-strength seamless steel pipes that are not quenched and tempered, there are many ferrites with low yield strength. Therefore, it is considered that ferrite yields and blisters are generated. Therefore, in order to suppress the generation of blisters, it is effective to increase the strength of the steel by strengthening the ferrite itself or increasing the ratio of pearlite in the steel.

図1は、継目無鋼管の降伏強度と、発生したブリスタ個数(個/20cm)との関係を示す図である。図1は、次の方法により得られた。種々の化学組成を有する継目無鋼管を製造した。このとき、熱間加工後の継目無鋼管を、放冷又は5℃/s未満の冷却速度で冷却し、焼入れ及び焼戻し処理を実施しなかった。FIG. 1 is a diagram showing the relationship between the yield strength of a seamless steel pipe and the number of blisters generated (pieces / 20 cm 2 ). FIG. 1 was obtained by the following method. Seamless steel pipes with various chemical compositions were produced. At this time, the seamless steel pipe after hot working was allowed to cool or cooled at a cooling rate of less than 5 ° C./s, and quenching and tempering were not performed.

製造された各継目無鋼管に対して、後述の降伏強度試験を実施して降伏強度を求めた。さらに、後述のブリスタ個数測定試験を実施して、各継目無鋼管で発生したブリスタ個数(個/20cm)を求め、図1を作成した。A yield strength test described below was performed on each manufactured seamless steel pipe to determine the yield strength. Further, a blister number measurement test described later was performed to determine the number of blisters (pieces / 20 cm 2 ) generated in each seamless steel pipe, and FIG. 1 was created.

図1を参照して、継目無鋼管において、降伏強度が350MPaとなるまでは、降伏強度が高くなるにしたがって、ブリスタ個数は顕著に減少した。一方、降伏強度が350MPa以上の場合、降伏強度が増大しても、ブリスタ個数はそれほど変化しなかった。   Referring to FIG. 1, in the seamless steel pipe, the number of blisters was remarkably reduced as the yield strength increased until the yield strength reached 350 MPa. On the other hand, when the yield strength was 350 MPa or more, the number of blisters did not change so much even if the yield strength increased.

要するに、図1の曲線は、降伏強度が350MPa近傍に変曲点を有する。したがって、降伏強度が350MPa以上であれば、ブリスタ個数を低く抑えることができる。   In short, the curve of FIG. 1 has an inflection point where the yield strength is around 350 MPa. Therefore, if the yield strength is 350 MPa or more, the number of blisters can be kept low.

C含有量を高めれば、鋼中のパーライト比率が高まり、鋼の降伏強度が高まる。しかしながら、C含有量が高くなれば、溶接性が低下する。ラインパイプ用継目無鋼管は、ラインパイプが設置される現地で円周溶接される。C含有量が高くなれば、円周溶接された継手部の靱性が低下するとともに、硫化物応力割れ(SSC)が発生しやすくなる。したがって、C含有量を過剰には高めにくい。   Increasing the C content increases the pearlite ratio in the steel and increases the yield strength of the steel. However, if the C content increases, weldability decreases. Seamless steel pipes for line pipes are circumferentially welded at the site where the line pipes are installed. If the C content is increased, the toughness of the circumferentially welded joint portion is reduced, and sulfide stress cracking (SSC) is likely to occur. Therefore, it is difficult to increase the C content excessively.

また、焼入れ及び焼戻しを実施することにより継目無鋼管の強度を高めることはできる。しかしながら、低強度の継目無鋼管において、焼入れ及び焼戻しを実施すれば製造コストが高くなる。   Moreover, the strength of the seamless steel pipe can be increased by carrying out quenching and tempering. However, in a low-strength seamless steel pipe, if the quenching and tempering are performed, the manufacturing cost is increased.

また、UOE鋼管等の溶接鋼管の場合、製管や拡管等の冷間加工が実施される。冷間加工により溶接鋼管の強度は高まるため、ブリスタの発生数を抑えることができる可能性がある。しかしながら、上述のとおり、厳しいサワー環境に使用されるラインパイプには、継目無鋼管が適する。したがって、冷間加工等により強度を上げることは困難であり、製造コストを考慮しても好ましくない。   In the case of a welded steel pipe such as a UOE steel pipe, cold working such as pipe making or pipe expansion is performed. Since the strength of the welded steel pipe is increased by cold working, there is a possibility that the number of blisters generated can be suppressed. However, as described above, seamless steel pipes are suitable for line pipes used in severe sour environments. Therefore, it is difficult to increase the strength by cold working or the like, which is not preferable in consideration of manufacturing costs.

そこで、本実施形態では、C含有量を高め、さらに、Nb含有量を高める。具体的には、C含有量を0.08〜0.24%とし、Nb含有量を0.02〜0.12%とする。この場合、焼入れ及び焼戻しを実施しない(焼入れ及び焼戻しが省略された)継目無鋼管であっても、強度を高めることができ、ブリスタの発生を抑制することができる。   Therefore, in this embodiment, the C content is increased, and further the Nb content is increased. Specifically, the C content is 0.08 to 0.24%, and the Nb content is 0.02 to 0.12%. In this case, even a seamless steel pipe that is not subjected to quenching and tempering (quenching and tempering is omitted) can increase the strength and suppress the generation of blisters.

好ましくは、Nb含有量(質量%)の数値を、式(1)で定義されるF1値以上にする。
F1=0.02+(t−15)×0.001 (1)
ここで、tには、継目無鋼管の肉厚(単位はmm)の単位を除いた数値が代入される。
Preferably, the numerical value of the Nb content (mass%) is set to be equal to or higher than the F1 value defined by the formula (1).
F1 = 0.02 + (t−15) × 0.001 (1)
Here, a numerical value excluding the unit of the thickness (unit: mm) of the seamless steel pipe is substituted for t.

サワー環境に使用されるラインパイプ用途の継目無鋼管の肉厚は、たとえば、10〜50mmである。肉厚が厚くなれば、熱間加工後の継目無鋼管の冷却条件も変化する。つまり、冷却速度が遅くなり、鋼の強度は低下する傾向になる。Nb含有量が式(1)のF1値以上であれば、鋼の強度が350MPa以上となり、ブリスタの発生を抑制できる。   The thickness of the seamless steel pipe used for the sour environment for line pipe is, for example, 10 to 50 mm. As the wall thickness increases, the cooling conditions of the seamless steel pipe after hot working also change. That is, the cooling rate becomes slow and the strength of the steel tends to decrease. If the Nb content is equal to or greater than the F1 value of the formula (1), the strength of the steel becomes 350 MPa or more, and the generation of blisters can be suppressed.

以上の知見に基づいて完成された本実施形態の継目無鋼管は次のとおりである。   The seamless steel pipe of this embodiment completed based on the above knowledge is as follows.

本実施形態による継目無鋼管は、サワー環境で使用されるラインパイプ用途である。上記継目無鋼管は、質量%で、C:0.08〜0.24%、Si:0.10〜0.50%、Mn:0.3〜2.5%、P:0.02%以下、S:0.006%以下、Nb:0.02〜0.12%、Al:0.005〜0.100%、Ca:0.0003〜0.0050%、N:0.0100%以下、O:0.0050%以下、Ti:0〜0.1%、V:0〜0.03%、Cr:0〜0.6%、Mo:0〜0.3%、Ni:0〜0.4%、Cu:0〜0.3%、及び、B:0〜0.005%、を含有し、残部はFe及び不純物からなる化学組成と、フェライト及びパーライトからなる組織とを備え、350〜450MPa未満の降伏強度を有する。   The seamless steel pipe according to this embodiment is a line pipe application used in a sour environment. The above-mentioned seamless steel pipe is mass%, C: 0.08 to 0.24%, Si: 0.10 to 0.50%, Mn: 0.3 to 2.5%, P: 0.02% or less S: 0.006% or less, Nb: 0.02 to 0.12%, Al: 0.005 to 0.100%, Ca: 0.0003 to 0.0050%, N: 0.0100% or less, O: 0.0050% or less, Ti: 0-0.1%, V: 0-0.03%, Cr: 0-0.6%, Mo: 0-0.3%, Ni: 0-0. 4%, Cu: 0 to 0.3%, and B: 0 to 0.005%, the balance comprising a chemical composition composed of Fe and impurities, and a structure composed of ferrite and pearlite, It has a yield strength of less than 450 MPa.

好ましくは、Nbの含有量(質量%)は、式(1)で定義されるF1値以上である。
F1=0.02+(t−15)×0.001 (1)
ここで、tには、継目無鋼管の肉厚(単位はmm)の単位を除いた数値が代入される。
Preferably, the content (% by mass) of Nb is not less than the F1 value defined by the formula (1).
F1 = 0.02 + (t−15) × 0.001 (1)
Here, a numerical value excluding the unit of the thickness (unit: mm) of the seamless steel pipe is substituted for t.

以下、本実施形態の継目無鋼管について詳述する。   Hereinafter, the seamless steel pipe of this embodiment is explained in full detail.

[化学組成]
本実施形態による継目無鋼管は、以下の化学組成を有する。
[Chemical composition]
The seamless steel pipe according to this embodiment has the following chemical composition.

C:0.08〜0.24%
炭素(C)は、焼入れ性を高めて鋼の強度を高める。本実施形態の継目無鋼管のように、製管後に焼入れ焼戻し等の熱処理を実施しない場合、C含有量が低すぎれば、鋼の強度が低くなりすぎる。C含有量が低すぎればさらに、優れた耐HIC性が得られにくい。C含有量が0.08%以上であれば、高強度のパーライトが鋼中に分散析出する。そのため、フェライトの降伏が抑制される。そのため、優れた耐HIC性が得られ、ブリスタの発生が抑制される。一方、本実施形態の継目無鋼管はラインパイプとして、現地で円周溶接される。したがって、C含有量が高すぎれば、円周溶接の熱影響部(HAZ)が硬化して耐SSC性が低下する。したがって、C含有量は0.08〜0.24%である。C含有量の好ましい下限は0.08%よりも高く、さらに好ましくは0.10%である。C含有量の好ましい上限は0.24%未満であり、さらに好ましくは0.15%である。
C: 0.08 to 0.24%
Carbon (C) increases the hardenability and increases the strength of the steel. When heat treatment such as quenching and tempering is not performed after pipe making as in the seamless steel pipe of this embodiment, if the C content is too low, the strength of the steel becomes too low. If the C content is too low, it is difficult to obtain excellent HIC resistance. When the C content is 0.08% or more, high-strength pearlite is dispersed and precipitated in the steel. Therefore, the yield of ferrite is suppressed. Therefore, excellent HIC resistance is obtained, and the generation of blisters is suppressed. On the other hand, the seamless steel pipe of this embodiment is circumferentially welded as a line pipe on site. Therefore, if the C content is too high, the heat-affected zone (HAZ) of circumferential welding is cured and the SSC resistance is lowered. Therefore, the C content is 0.08 to 0.24%. The minimum with preferable C content is higher than 0.08%, More preferably, it is 0.10%. The upper limit with preferable C content is less than 0.24%, More preferably, it is 0.15%.

Si:0.10〜0.50%
シリコン(Si)は、鋼を脱酸する。Si含有量が低すぎれば、この効果が得られない。一方、Si含有量が高すぎれば、溶接熱影響部の靱性が低下する。Si含有量が高すぎればさらに、軟化相であるフェライトの析出を促進する。そのため、耐HIC性が低下し、ブリスタが発生しやすくなる。したがって、Si含有量は0.10〜0.50%である。Si含有量の好ましい下限は0.10%よりも高く、さらに好ましくは0.15%であり、さらに好ましくは0.20%である。Si含有量の好ましい上限は0.50%未満であり、さらに好ましくは0.35%であり、さらに好ましくは0.30%である。
Si: 0.10 to 0.50%
Silicon (Si) deoxidizes steel. If the Si content is too low, this effect cannot be obtained. On the other hand, if the Si content is too high, the toughness of the weld heat affected zone decreases. If the Si content is too high, the precipitation of ferrite, which is a softening phase, is further promoted. For this reason, the HIC resistance is lowered, and blisters are easily generated. Therefore, the Si content is 0.10 to 0.50%. The minimum with preferable Si content is higher than 0.10%, More preferably, it is 0.15%, More preferably, it is 0.20%. The upper limit with preferable Si content is less than 0.50%, More preferably, it is 0.35%, More preferably, it is 0.30%.

Mn:0.3〜2.5%
マンガン(Mn)は鋼の焼入れ性を高めて鋼の強度を高める。Mnはさらに、鋼の靱性を高める。Mn含有量が低すぎれば、この効果は得られない。一方、Mn含有量が高すぎれば、Mn偏析による鋼の硬化、及び、MnSの形成により、HICが発生しやすくなる。したがって、Mn含有量は0.3〜2.5%である。Mn含有量の好ましい下限は0.3%よりも高く、さらに好ましくは、0.5%であり、さらに好ましくは0.8%である。Mn含有量の好ましい上限は2.5%未満であり、さらに好ましくは2.0%であり、さらに好ましくは1.8%である。
Mn: 0.3 to 2.5%
Manganese (Mn) increases the hardenability of the steel and increases the strength of the steel. Mn further increases the toughness of the steel. If the Mn content is too low, this effect cannot be obtained. On the other hand, if the Mn content is too high, HIC tends to occur due to hardening of the steel by Mn segregation and formation of MnS. Therefore, the Mn content is 0.3 to 2.5%. The minimum with preferable Mn content is higher than 0.3%, More preferably, it is 0.5%, More preferably, it is 0.8%. The upper limit with preferable Mn content is less than 2.5%, More preferably, it is 2.0%, More preferably, it is 1.8%.

P:0.02%以下
燐(P)は不純物である。Pは、鋼の靱性を低下する。したがって、P含有量は0.02%以下である。好ましいP含有量は0.02%未満であり、さらに好ましくは0.01%以下である。P含有量はなるべく低い方が好ましい。
P: 0.02% or less Phosphorus (P) is an impurity. P decreases the toughness of the steel. Therefore, the P content is 0.02% or less. The preferable P content is less than 0.02%, more preferably 0.01% or less. The P content is preferably as low as possible.

S:0.006%以下
硫黄(S)は不純物である。Sは、MnSを形成する。MnSはブリスタの起点となる。したがって、S含有量は低い方が好ましい。しかしながら、S含有量の低減はコストが掛かる。本実施形態の継目無鋼管では製造コストを抑えるため、S含有量を0.006%以下にすればよい。本実施形態の継目無鋼管では、S含有量が0.005%以上含有されていても、C含有量及びNb含有量が適切であれば、優れた耐HIC性を示し、ブリスタの発生が抑制される。しかしながら、S含有量は低い方が好ましい。好ましいS含有量は0.003%以下である。
S: 0.006% or less Sulfur (S) is an impurity. S forms MnS. MnS becomes the starting point of the blister. Accordingly, a lower S content is preferable. However, reducing the S content is costly. In the seamless steel pipe of the present embodiment, the S content may be 0.006% or less in order to reduce the manufacturing cost. In the seamless steel pipe of this embodiment, even if the S content is 0.005% or more, if the C content and the Nb content are appropriate, excellent HIC resistance is exhibited, and blistering is suppressed. Is done. However, a lower S content is preferred. A preferable S content is 0.003% or less.

Nb:0.02〜0.12%
ニオブ(Nb)は、フェライトに固溶して鋼の強度を高める。Nbはさらに、C及びNと結合して炭窒化物を形成し、ピンニング硬化により鋼を細粒化する。細粒化により、鋼の耐HIC性が高まる。細粒化はさらに、鋼の靱性を高める。上記範囲のCと、上記範囲のMnとを含有し、Nbを含有しない鋼材を製管して継目無鋼管とした後、熱処理を実施しなかった場合(つまり、焼入れ及び焼戻しが省略されたアズロール材を製造した場合)、製造された継目無鋼管の降伏強度は250MPa程度である。しかしながら、上述の範囲のNb含有量を含有すれば、継目無鋼管の降伏強度は350MPa以上まで上がる。そのため、ブリスタの発生が抑制される。Nb含有量が低すぎれば、上記効果が得られない。一方、Nb含有量が高すぎれば、粗大なNb炭窒化物が形成される。粗大なNb炭窒化物はブリスタの起点となり、さらに、耐HIC性も低下する。したがって、Nb含有量は0.02〜0.12%である。
Nb: 0.02 to 0.12%
Niobium (Nb) is dissolved in ferrite to increase the strength of the steel. Nb further combines with C and N to form carbonitrides and refines the steel by pinning hardening. Refinement improves the HIC resistance of the steel. Refinement further increases the toughness of the steel. When a steel material containing C in the above range and Mn in the above range and containing no Nb is made into a seamless steel pipe and then heat treatment is not performed (that is, an as-roll in which quenching and tempering are omitted) When the material is manufactured), the yield strength of the manufactured seamless steel pipe is about 250 MPa. However, if the Nb content is in the above range, the yield strength of the seamless steel pipe increases to 350 MPa or more. Therefore, the generation of blisters is suppressed. If the Nb content is too low, the above effect cannot be obtained. On the other hand, if the Nb content is too high, coarse Nb carbonitride is formed. Coarse Nb carbonitride serves as a starting point for blisters and further reduces HIC resistance. Therefore, the Nb content is 0.02 to 0.12%.

上述のとおり、サワー環境のラインパイプ用途の継目無鋼管の肉厚は10〜50mmである。継目無鋼管の肉厚が大きいほど、継目無鋼管の冷却速度が遅くなり、フェライト粒が粗大となる。そのため、鋼の降伏強度が低下する。したがって、好ましくはNb含有量の下限は、次の式(1)で定義されるF1値(%)以上である。
F1=0.02+(t−15)×0.001 (1)
ここで、式(1)中のtには、継目無鋼管の肉厚(mm)の単位を除いた数値が代入される。
As described above, the thickness of a seamless steel pipe for use in a line pipe in a sour environment is 10 to 50 mm. The greater the thickness of the seamless steel pipe, the slower the cooling rate of the seamless steel pipe and the coarser the ferrite grains. As a result, the yield strength of the steel decreases. Therefore, Preferably the minimum of Nb content is more than F1 value (%) defined by the following formula (1).
F1 = 0.02 + (t−15) × 0.001 (1)
Here, a numerical value excluding the unit of the thickness (mm) of the seamless steel pipe is substituted for t in the formula (1).

上述の継目無鋼管が式(1)を満たす場合、母材だけでなく、継目無鋼管同士の円周溶接により形成される溶接熱影響部においても、十分な降伏強度が確保でき、ブリスタの発生が抑制される。溶接熱影響部においては加熱後の冷却速度が速く硬化する硬化領域と、冷却速度が遅くかつ繰り返し熱影響を受けて軟化する軟化領域がある。上記式(1)が満たされる場合、軟化領域において十分な降伏強度が確保される。   When the above-mentioned seamless steel pipe satisfies the formula (1), sufficient yield strength can be ensured not only in the base material but also in the weld heat affected zone formed by circumferential welding between the seamless steel pipes, and blisters are generated. Is suppressed. In the weld heat affected zone, there are a hardened region where the cooling rate after heating is fast and hardened, and a softened region where the cooling rate is slow and softened under repeated heat influences. When the above formula (1) is satisfied, sufficient yield strength is ensured in the softened region.

Nb含有量の好ましい下限は0.02%よりも高く、さらに好ましくは0.03%であり、さらに好ましくは0.04%である。Nb含有量の好ましい上限は0.12%未満であり、さらに好ましくは0.10%であり、さらに好ましくは0.08%である。   The minimum with preferable Nb content is higher than 0.02%, More preferably, it is 0.03%, More preferably, it is 0.04%. The upper limit with preferable Nb content is less than 0.12%, More preferably, it is 0.10%, More preferably, it is 0.08%.

Al:0.005〜0.100%
アルミニウム(Al)は鋼を脱酸する。Al含有量が低すぎれば、この効果は得られない。一方、Al含有量が高すぎれば、円周溶接時に粗大なクラスタ状のアルミナ介在物粒子が形成され、溶接熱影響部(HAZ)での靱性が低下する。したがって、Al含有量は0.005〜0.100%である。Al含有量の好ましい下限は0.005%よりも高く、さらに好ましくは0.010%であり、さらに好ましくは0.020%である。Al含有量の好ましい上限は0.100%未満であり、さらに好ましくは0.060%であり、さらに好ましくは0.040%である。本明細書において、Al含有量は、酸可溶Al(sol.Al)の含有量を意味する。
Al: 0.005 to 0.100%
Aluminum (Al) deoxidizes steel. If the Al content is too low, this effect cannot be obtained. On the other hand, if the Al content is too high, coarse cluster-like alumina inclusion particles are formed during circumferential welding, and the toughness at the weld heat affected zone (HAZ) decreases. Therefore, the Al content is 0.005 to 0.100%. The minimum with preferable Al content is higher than 0.005%, More preferably, it is 0.010%, More preferably, it is 0.020%. The upper limit with preferable Al content is less than 0.100%, More preferably, it is 0.060%, More preferably, it is 0.040%. In this specification, Al content means content of acid-soluble Al (sol.Al).

Ca:0.0003〜0.0050%
カルシウム(Ca)は鋳込み時のタンディッシュノズルの詰まりを抑制する。Caはさらに、HIC、ブリスタ及び微細な内部割れの起点となるMnSの生成を抑制する。そのため、Caは、ブリスタ及び微細な内部割れの発生を抑制する。Ca含有量が低すぎれば、この効果が不十分となる。一方、Ca含有量が高すぎれば、介在物がクラスタを形成し、鋼の靱性及び耐HIC性が低下する。したがって、Ca含有量は0.0003〜0.0050%である。Ca含有量の好ましい下限は0.0003%よりも高く、さらに好ましくは0.0010%であり、さらに好ましくは0.0015%である。Ca含有量の好ましい上限は0.0050%未満であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0030%である。
Ca: 0.0003 to 0.0050%
Calcium (Ca) suppresses clogging of the tundish nozzle during casting. Further, Ca suppresses the generation of HIC, blisters, and MnS that are the starting points of fine internal cracks. Therefore, Ca suppresses the generation of blisters and fine internal cracks. If the Ca content is too low, this effect will be insufficient. On the other hand, if the Ca content is too high, inclusions form clusters, and the toughness and HIC resistance of the steel decrease. Therefore, the Ca content is 0.0003 to 0.0050%. The minimum with preferable Ca content is higher than 0.0003%, More preferably, it is 0.0010%, More preferably, it is 0.0015%. The upper limit with preferable Ca content is less than 0.0050%, More preferably, it is 0.0040%, More preferably, it is 0.0030%.

N:0.0100%以下
窒素(N)は不純物である。Nは粗大な窒化物を形成して鋼の靱性及び耐SSC性を低下する。そのため、N含有量は低い方が好ましい。したがって、N含有量は0.0100%以下である。好ましいN含有量は0.0080%以下であり、さらに好ましくは0.0060%以下である。
N: 0.0100% or less Nitrogen (N) is an impurity. N forms coarse nitrides and lowers the toughness and SSC resistance of the steel. Therefore, a lower N content is preferable. Therefore, the N content is 0.0100% or less. The preferable N content is 0.0080% or less, and more preferably 0.0060% or less.

O:0.0050%以下
酸素(O)は不純物である。Oは粗大な酸化物、又は酸化物のクラスタを形成して鋼の靱性及び耐HIC性を低下する。そのため、O含有量はなるべく低い方が好ましい。したがって、O含有量は0.0050%以下である。好ましいO含有量は0.0040%以下であり、さらに好ましくは0.0030%以下である。
O: 0.0050% or less Oxygen (O) is an impurity. O forms coarse oxides or oxide clusters to lower the toughness and HIC resistance of the steel. Therefore, it is preferable that the O content is as low as possible. Therefore, the O content is 0.0050% or less. The O content is preferably 0.0040% or less, and more preferably 0.0030% or less.

本実施形態の継目無鋼管の化学組成の残部は、Fe及び不純物からなる。ここでいう不純物は、鋼の原料として利用される鉱石やスクラップ、又は、製造過程の環境等から混入する元素をいう。   The balance of the chemical composition of the seamless steel pipe of this embodiment is composed of Fe and impurities. Impurities here refer to ores and scraps used as raw materials for steel, or elements mixed from the environment of the manufacturing process.

[選択元素について]
本実施形態の継目無鋼管はさらに、Ti、V、Cr、Mo、Ni、Cu及びBからなる群から選択される1種又は2種以上を含有してもよい。これらの元素はいずれも、鋼の強度を高める。
[Selected elements]
The seamless steel pipe of this embodiment may further contain one or more selected from the group consisting of Ti, V, Cr, Mo, Ni, Cu and B. All of these elements increase the strength of the steel.

Ti:0〜0.1%
チタン(Ti)は選択元素である。TiはNbと同様に、C及びNと結合して炭窒化物を形成し、ピンニング硬化により鋼を細粒化する。一方、Ti含有量が高すぎれば、その効果は飽和する。したがって、Ti含有量は0〜0.1%である。Ti含有量の好ましい下限は0.002%であり、さらに好ましくは0.005%である。Ti含有量の好ましい上限は0.1%未満であり、さらに好ましくは0.05%である。
Ti: 0 to 0.1%
Titanium (Ti) is a selective element. Ti, like Nb, combines with C and N to form carbonitrides and refines the steel by pinning hardening. On the other hand, if the Ti content is too high, the effect is saturated. Therefore, the Ti content is 0 to 0.1%. The minimum with preferable Ti content is 0.002%, More preferably, it is 0.005%. The upper limit with preferable Ti content is less than 0.1%, More preferably, it is 0.05%.

V:0〜0.03%
バナジウム(V)は選択元素である。Vは炭化物を形成し、鋼を強化する。一方、V含有量が高すぎれば、粗大な炭化物を形成してSSCが発生しやすくなる。したがって、V含有量は0〜0.03%である。V含有量の好ましい下限は0.01%であり、さらに好ましくは0.015%である。V含有量の好ましい上限は0.03%未満であり、さらに好ましくは0.025%である。
V: 0 to 0.03%
Vanadium (V) is a selective element. V forms carbides and strengthens the steel. On the other hand, if the V content is too high, coarse carbides are formed and SSC tends to occur. Therefore, the V content is 0 to 0.03%. The minimum with preferable V content is 0.01%, More preferably, it is 0.015%. The upper limit with preferable V content is less than 0.03%, More preferably, it is 0.025%.

Cr:0〜0.6%
Mo:0〜0.3%
Ni:0〜0.4%
Cu:0〜0.3%
クロム(Cr)、モリブデン(Mo)、ニッケル(Ni)及び銅(Cu)はいずれも選択元素である。これらの元素はいずれも、鋼の焼入れ性を高めて鋼を強化し、低強度鋼においては耐HIC性を高める。一方、これらの元素の含有量が高すぎれば、局部に硬化組織が発生したり、鋼の表面の不均一な腐食の原因となったりする。したがって、Cr含有量は0〜0.6%であり、Mo含有量は0〜0.3%であり、Ni含有量は0〜0.4%であり、Cu含有量は0〜0.3%である。Cr含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%である。Mo含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%である。Ni含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%である。Cu含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%である。Cr含有量の好ましい上限は0.6%未満であり、さらに好ましくは0.5%である。Mo含有量の好ましい上限は0.3%未満であり、さらに好ましくは0.25%である。Ni含有量の好ましい上限は0.4%未満であり、さらに好ましくは0.3%であり、さらに好ましくは0.25%である。Cu含有量の好ましい上限は0.3%未満であり、さらに好ましくは0.25%である。
Cr: 0 to 0.6%
Mo: 0 to 0.3%
Ni: 0 to 0.4%
Cu: 0 to 0.3%
Chromium (Cr), molybdenum (Mo), nickel (Ni), and copper (Cu) are all selective elements. All of these elements enhance the hardenability of the steel and strengthen the steel, and increase the HIC resistance in low-strength steel. On the other hand, if the content of these elements is too high, a hardened structure is generated locally, or uneven corrosion of the steel surface may be caused. Therefore, the Cr content is 0 to 0.6%, the Mo content is 0 to 0.3%, the Ni content is 0 to 0.4%, and the Cu content is 0 to 0.3%. %. The minimum with preferable Cr content is 0.01%, More preferably, it is 0.05%. The minimum with preferable Mo content is 0.01%, More preferably, it is 0.05%. The minimum with preferable Ni content is 0.01%, More preferably, it is 0.05%. The minimum with preferable Cu content is 0.01%, More preferably, it is 0.05%. The upper limit with preferable Cr content is less than 0.6%, More preferably, it is 0.5%. The upper limit with preferable Mo content is less than 0.3%, More preferably, it is 0.25%. The upper limit with preferable Ni content is less than 0.4%, More preferably, it is 0.3%, More preferably, it is 0.25%. The upper limit with preferable Cu content is less than 0.3%, More preferably, it is 0.25%.

好ましくは、Cr、Mo、Ni、Cuの総含有量は、次の式(2)を満たす。
(Cr+Mo)/5+(Cu+Ni)/15<0.10 (2)
式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
Cr、Mo、Ni及びCuが式(2)を満たせば、厚肉の継目無鋼管であっても、降伏強度が450MPa未満になる。
Preferably, the total content of Cr, Mo, Ni, and Cu satisfies the following formula (2).
(Cr + Mo) / 5 + (Cu + Ni) / 15 <0.10 (2)
The content (mass%) of the corresponding element is substituted for each element symbol in the formula (2).
If Cr, Mo, Ni, and Cu satisfy Expression (2), the yield strength is less than 450 MPa even for a thick-walled seamless steel pipe.

B:0〜0.005%、
ボロン(B)は選択元素である。Bは、低強度の継目無鋼管において、鋼の焼入れ性を高め、低強度鋼においては耐HIC性を高める。一方、B含有量が高すぎれば、鋼の耐SSC性が低下する。したがって、B含有量は0〜0.005%である。B含有量の好ましい下限は0.0001%以上であり、さらに好ましくは0.0003%である。B含有量の好ましい上限は0.005%未満であり、さらに好ましくは0.003%である。
B: 0 to 0.005%,
Boron (B) is a selective element. B enhances the hardenability of steel in a low-strength seamless steel pipe, and enhances HIC resistance in a low-strength steel. On the other hand, if the B content is too high, the SSC resistance of the steel decreases. Therefore, the B content is 0 to 0.005%. The minimum with preferable B content is 0.0001% or more, More preferably, it is 0.0003%. The upper limit with preferable B content is less than 0.005%, More preferably, it is 0.003%.

[組織及び強度]
本実施形態の継目無鋼管は製管後に焼入れ及び焼戻しが実施されない。つまり、本実施形態の継目無鋼管は、焼入れ及び焼戻しが省略された、いわゆる、アズロール材である。後述するとおり、製管後の継目無鋼管は、放冷又は2℃/s未満の冷却速度で冷却される。そのため、本実施形態の継目無鋼管の組織は、フェライトと、パーライトからなる。組織の大部分はフェライトであり、残部がパーライトである。ここでいう組織とは、介在物及び析出物を含まない、母相組織を意味する。
[Organization and strength]
The seamless steel pipe of this embodiment is not quenched and tempered after pipe making. That is, the seamless steel pipe of this embodiment is a so-called as-roll material in which quenching and tempering are omitted. As will be described later, the seamless steel pipe after pipe making is allowed to cool or cooled at a cooling rate of less than 2 ° C./s. Therefore, the structure of the seamless steel pipe of this embodiment is composed of ferrite and pearlite. Most of the structure is ferrite and the rest is pearlite. The structure here means a matrix structure that does not contain inclusions and precipitates.

上述のような遅い冷却速度で冷却されても、本実施形態の継目無鋼管は、350MPa以上の降伏強度を有する。本明細書において、降伏強度とは、0.2%耐力を意味する。継目無鋼管の好ましい降伏強度は400MPa以上である。なお、本実施形態の継目無鋼管では、降伏強度は450MPa未満である。   Even when cooled at a slow cooling rate as described above, the seamless steel pipe of the present embodiment has a yield strength of 350 MPa or more. In this specification, the yield strength means 0.2% proof stress. The preferred yield strength of the seamless steel pipe is 400 MPa or more. In the seamless steel pipe of this embodiment, the yield strength is less than 450 MPa.

[製造方法]
本実施形態によるサワー環境で使用されるラインパイプ用継目無鋼管の製造方法の一例を説明する。
[Production method]
An example of the manufacturing method of the seamless pipe for line pipes used in the sour environment by this embodiment is demonstrated.

上述の化学組成の鋼を溶製し、周知の方法で精錬する。続いて、溶鋼を連続鋳造法により連続鋳造材にする。連続鋳造材はたとえば、スラブやブルームやビレットである。また、溶鋼を造塊法によりインゴットにしてもよい。   The steel having the above chemical composition is melted and refined by a well-known method. Subsequently, the molten steel is made into a continuous cast material by a continuous casting method. The continuous cast material is, for example, a slab, bloom or billet. Moreover, you may make molten steel into an ingot by an ingot-making method.

連続鋳造材のうちのスラブやブルーム及びインゴットを熱間加工してビレットを製造する。たとえば、スラブやブルーム、インゴットを分塊圧延して、ビレットを製造する。   Billets are manufactured by hot-working slabs, blooms, and ingots of continuous cast materials. For example, billets are manufactured by rolling a slab, a bloom, or an ingot.

続いて、製造されたビレットを熱間製管して継目無鋼管を製造する。具体的には、ビレットを加熱炉で加熱する。加熱されたビレットに粗大なNb介在物が残ったまま熱間製管を実施すれば、熱間製管後の冷却時にNbによる強化が十分に得られない。そのため、本実施形態では、通常の継目無鋼管の製造時と比較してさらに高温に加熱する。具体的には、上記加熱時において、ビレットを1250℃以上に加熱する。   Subsequently, the manufactured billet is hot-made to produce a seamless steel pipe. Specifically, the billet is heated in a heating furnace. If hot pipe making is performed with coarse Nb inclusions remaining in the heated billet, Nb strengthening cannot be sufficiently obtained during cooling after hot pipe making. Therefore, in this embodiment, it heats even higher temperature compared with the time of manufacture of a normal seamless steel pipe. Specifically, the billet is heated to 1250 ° C. or higher during the heating.

加熱炉から抽出されたビレットに対して熱間加工を実施して継目無鋼管を製造する。具体的には、マンネスマン法に基づく穿孔圧延を実施して素管を製造する。製造された素管に対してさらに、マンドレルミル、レデューサ、サイジングミル等により延伸圧延及び定径圧延を実施して継目無鋼管を製造する。   The billet extracted from the heating furnace is hot-worked to produce a seamless steel pipe. Specifically, piercing and rolling based on the Mannesmann method is performed to manufacture a raw pipe. Further, the produced raw pipe is further subjected to stretching rolling and constant diameter rolling by a mandrel mill, a reducer, a sizing mill or the like to produce a seamless steel pipe.

製管された継目無鋼管を冷却する。このとき、Nb炭窒化物が析出する500℃以上の高温域での冷却速度は速い方が好ましい。そこで、継目無鋼管の温度が500℃になるまでは0.5〜5℃/sの冷却速度で継目無鋼管を冷却し、その後は、2℃未満の冷却速度で冷却する。2℃/s未満の冷却速度には、放冷も含まれる。   The seamless steel pipe is cooled. At this time, it is preferable that the cooling rate in a high temperature region of 500 ° C. or higher where Nb carbonitride precipitates is high. Therefore, the seamless steel pipe is cooled at a cooling rate of 0.5 to 5 ° C./s until the temperature of the seamless steel pipe reaches 500 ° C., and then cooled at a cooling rate of less than 2 ° C. The cooling rate of less than 2 ° C./s includes cooling.

上記冷却速度はたとえば、放冷時の隣り合う継目無鋼管の間隔を調整することで、調整可能である。たとえば、継目無鋼管が500℃になるまで、隣り合う継目無鋼管の間隔を距離D1とし、500℃以下では、上記間隔を距離D1よりも短い距離D2に調整する。これにより、緩やかな2段階の冷却速度を実現できる。   The cooling rate can be adjusted, for example, by adjusting the interval between adjacent seamless steel pipes during cooling. For example, until the seamless steel pipe reaches 500 ° C., the distance between the adjacent seamless steel pipes is set as the distance D1, and at 500 ° C. or less, the distance is adjusted to the distance D2 shorter than the distance D1. Thereby, a gentle two-stage cooling rate can be realized.

上記製造方法では、熱間加工後の継目無鋼管に対して、焼入れ及び焼戻し処理を実施しない。   In the said manufacturing method, quenching and a tempering process are not implemented with respect to the seamless steel pipe after hot processing.

[ブリスタ個数]
以上の製造方法により製造された継目無鋼管では、ブリスタの発生を抑えることができる。特に、Nb含有量(%)が式(1)で定義されたF1値以上である場合、表面におけるブリスタ個数は10個/20cm未満である。ここで、ブリスタ個数は次に示すブリスタ個数測定試験で求めることができる。
[Number of blisters]
In the seamless steel pipe manufactured by the above manufacturing method, generation | occurrence | production of a blister can be suppressed. In particular, when the Nb content (%) is equal to or greater than the F1 value defined by the formula (1), the number of blisters on the surface is less than 10/20 cm 2 . Here, the number of blisters can be determined by the following blister number measurement test.

[ブリスタ個数測定試験]
NACE(National Association of Corrosion Engineers)Internationalにより規定されるNACE TM0284−2011に基づいて、湿潤硫化水素環境(サワー環境)を用いたHIC試験を実施する。具体的には、継目無鋼管から板厚×20mm幅×100mm長さ(継目無鋼管の軸方向の長さ)のクーポン試験片を採取する。上記クーポン試験片は、継目無鋼管の外面及び内面に相当する一対の表面を有する。
[Blister count measurement test]
An HIC test using a wet hydrogen sulfide environment (sour environment) is performed based on NACE TM0284-2011 defined by NACE (National Association of Corrosion Engineers) International. Specifically, a coupon test piece having a plate thickness × 20 mm width × 100 mm length (a length in the axial direction of the seamless steel pipe) is collected from the seamless steel pipe. The coupon test piece has a pair of surfaces corresponding to an outer surface and an inner surface of a seamless steel pipe.

NACE TM0284に準拠して、5%NaCl+0.5%CHCOOH水溶液に100%のHSガスを大気圧中で飽和させた25℃の試験浴を準備する。試験浴にクーポン試験片を96時間浸漬させる。96時間浸漬した後、クーポン試験片の表面(継目無鋼管の内面及び外面に相当する20mm幅×100mm長さの2面)を目視で観察する。そして、上記表面に発生したブリスタの総数をカウントし、ブリスタ個数(個/20cm)を求める。In accordance with NACE TM0284, a 25 ° C. test bath is prepared in which 5% NaCl + 0.5% CH 3 COOH aqueous solution is saturated with 100% H 2 S gas at atmospheric pressure. The coupon specimen is immersed in the test bath for 96 hours. After immersing for 96 hours, the surface of the coupon test piece (20 mm width × 100 mm length corresponding to the inner and outer surfaces of the seamless steel pipe) is visually observed. Then, the total number of blisters generated on the surface is counted to obtain the number of blisters (pieces / 20 cm 2 ).

上述のとおり、本実施形態による継目無鋼管では、C及びNbにより降伏強度を350MPa以上に高めることにより、ブリスタの発生を抑制することができる。そのため、耐HIC性に優れ、さらに、引張応力が負荷されたときにSOHICが発生しにくい。   As described above, in the seamless steel pipe according to the present embodiment, the occurrence of blister can be suppressed by increasing the yield strength to 350 MPa or more with C and Nb. Therefore, it is excellent in HIC resistance, and SOHIC hardly occurs when a tensile stress is applied.

表1に示す鋼A1〜A15、B1〜B6のインゴットを製造した。   Ingots of steels A1 to A15 and B1 to B6 shown in Table 1 were produced.

Figure 0005915818
Figure 0005915818

表1中の「−」は実質的に「0」%(不純物レベル)であったことを示す。表1中のF2は、次のとおり定義される。
F2=(Cr+Mo)/5+(Cu+Ni)/15
要するに、F2は式(2)の左辺である。
“-” In Table 1 indicates that it was substantially “0”% (impurity level). F2 in Table 1 is defined as follows.
F2 = (Cr + Mo) / 5 + (Cu + Ni) / 15
In short, F2 is the left side of Equation (2).

表1を参照して、鋼A1〜鋼A15の化学組成は、本実施形態の継目無鋼管の化学組成の範囲内であった。一方、鋼B1及び鋼B3は、Nbを含有しておらず、鋼B2のNb含有量は本実施形態のNb含有量の下限未満であった。鋼B4及び鋼B5のC含有量は、本実施形態の継目無鋼管のC含有量の下限未満であった。鋼種B6のF2は、式(2)を満たさなかった。   With reference to Table 1, the chemical composition of steel A1-steel A15 was in the range of the chemical composition of the seamless steel pipe of this embodiment. On the other hand, steel B1 and steel B3 did not contain Nb, and the Nb content of steel B2 was less than the lower limit of the Nb content of this embodiment. The C content of steel B4 and steel B5 was less than the lower limit of the C content of the seamless steel pipe of this embodiment. F2 of steel type B6 did not satisfy the formula (2).

各鋼のインゴットを熱間鍛造して各鋼ごとに複数のビレットを製造した。ビレットを表2に示す加熱温度で加熱した後、穿孔機(ピアサ)を用いてビレットを穿孔圧延して継目無鋼管を製造した。このとき、各鋼ごとに、肉厚=12.7mm、25.4mm及び38.1mmの3種類の継目無鋼管を製造した。製造後の継目無鋼管に対して、継目無鋼管の温度が500℃になるまでは表2に示す第1冷却速度で冷却し、それ以降は第2冷却速度で冷却した。   Each steel ingot was hot forged to produce a plurality of billets for each steel. The billet was heated at the heating temperature shown in Table 2, and then the billet was pierced and rolled using a piercing machine (piercer) to produce a seamless steel pipe. At this time, three types of seamless steel pipes having a thickness = 12.7 mm, 25.4 mm, and 38.1 mm were manufactured for each steel. The manufactured seamless steel pipe was cooled at the first cooling rate shown in Table 2 until the temperature of the seamless steel pipe reached 500 ° C., and thereafter cooled at the second cooling rate.

Figure 0005915818
Figure 0005915818

[ミクロ組織観察試験]
各鋼ごとに製造された3種類の肉厚の継目無鋼管に対して、ミクロ組織観察試験を実施した。各継目無鋼管の横断面(継目無鋼管の軸方向に垂直な面)において、肉厚中央部分をナイタール等でエッチングした。エッチングされた肉厚中央部分の任意の1視野(視野面積40000μm)を観察した。観察には500倍の光学顕微鏡を用いた。
[Microstructure observation test]
A microstructure observation test was carried out on three types of thick seamless steel pipes manufactured for each steel. In the cross section of each seamless steel pipe (surface perpendicular to the axial direction of the seamless steel pipe), the central thickness portion was etched with nital or the like. One arbitrary visual field (visual field area 40000 μm 2 ) of the etched thickness central portion was observed. A 500 × optical microscope was used for observation.

ミクロ組織観察試験の結果、いずれの継目無鋼管においても、フェライトとパーライトとからなる組織を有した。   As a result of the microstructure observation test, any seamless steel pipe had a structure composed of ferrite and pearlite.

[降伏強度試験]
各鋼の3種類の継目無鋼管の各々から、外径6mm、長さ40mmの平行部を有する丸棒引張試験片を採取した。平行部は継目無鋼管の軸方向に平行であった。採取された丸棒引張試験片を用いて、常温(25℃)で引張試験を行い、降伏強度YS(0.2%耐力)(MPa)を求めた。
[Yield strength test]
A round bar tensile test piece having a parallel portion with an outer diameter of 6 mm and a length of 40 mm was collected from each of the three types of seamless steel pipes of each steel. The parallel part was parallel to the axial direction of the seamless steel pipe. Using the collected round bar tensile test pieces, a tensile test was performed at room temperature (25 ° C.) to obtain a yield strength YS (0.2% proof stress) (MPa).

[ブリスタ個数測定試験]
各鋼の3種類の継目無鋼管の各々について、上述のブリスタ個数測定試験を実施して、ブリスタ個数を求めた。
[Blister count measurement test]
The blister number measurement test described above was performed on each of the three types of seamless steel pipes for each steel to determine the number of blisters.

[試験結果]
表2に試験結果を示す。さらに、図2は鋼A4(肉厚20mm)のブリスタ個数測定試験後のクーポン試験片の2つの表面(継目無鋼管の外面及び内面に相当)の写真画像であり、図3は、鋼B3(肉厚20mm)のブリスタ個数測定試験後のクーポン試験片の2つの表面の写真画像である。図2及び図3において、上段の表面が継目無鋼管の外面に相当し、下段の表面が継目無鋼管の内面に相当する。
[Test results]
Table 2 shows the test results. Further, FIG. 2 is a photographic image of two surfaces (corresponding to the outer and inner surfaces of a seamless steel pipe) of a coupon test piece after a blister count measurement test of steel A4 (thickness 20 mm), and FIG. It is a photograph image of two surfaces of a coupon test piece after a blister number measurement test of a wall thickness of 20 mm). 2 and 3, the upper surface corresponds to the outer surface of the seamless steel pipe, and the lower surface corresponds to the inner surface of the seamless steel pipe.

表2を参照して、鋼A1〜A11、A14及びA15の化学組成は適切であった。そのため、肉厚が15mm以下の12.7mmの継目無鋼管において、降伏強度YSが350〜450MPa未満であった。そのため、図2にも示されるように、表面におけるブリスタの発生が抑えられ、ブリスタ個数は10個/20cm未満であった。Referring to Table 2, the chemical compositions of steels A1 to A11, A14 and A15 were appropriate. Therefore, in a 12.7 mm seamless steel pipe having a wall thickness of 15 mm or less, the yield strength YS was less than 350 to 450 MPa. Therefore, as shown in FIG. 2, the generation of blisters on the surface was suppressed, and the number of blisters was less than 10/20 cm 2 .

さらに、鋼A1〜A9及びA11、A14及びA15のNb含有量は、肉厚25.4mmの継目無鋼管において、式(1)で定義されたF1値以上であった。そのため、肉厚が15mmを超える継目無鋼管においても、350〜450MPa未満の降伏強度が得られ、ブリスタ個数は10個/20cm未満であった。Further, the Nb contents of the steels A1 to A9 and A11, A14 and A15 were not less than the F1 value defined by the formula (1) in the seamless steel pipe having a thickness of 25.4 mm. Therefore, even in a seamless steel pipe having a wall thickness exceeding 15 mm, a yield strength of 350 to less than 450 MPa was obtained, and the number of blisters was less than 10 pieces / 20 cm 2 .

さらに、鋼A2〜A9、A14及びA15のNb含有量は、肉厚38.1mmの継目無鋼管において、F1値以上であった。そのため、肉厚が35mmを超える継目無鋼管においても、350〜450MPa未満の降伏強度が得られ、ブリスタ個数は10個/20cm未満であった。Further, the Nb contents of the steels A2 to A9, A14, and A15 were F1 values or more in the seamless steel pipe having a wall thickness of 38.1 mm. Therefore, even in a seamless steel pipe having a wall thickness exceeding 35 mm, a yield strength of 350 to less than 450 MPa was obtained, and the number of blisters was less than 10 pieces / 20 cm 2 .

一方、鋼A12及びA13の化学組成は適切であったものの、鋼A12では加熱温度が低すぎ、鋼A13では第1冷却速度が遅すぎた。そのため、降伏強度YSが350MPa未満となり、いずれの肉厚の継目無鋼管においても、ブリスタ個数が10個/20cm以上であった。On the other hand, although the chemical composition of steel A12 and A13 was appropriate, the heating temperature was too low for steel A12, and the first cooling rate was too slow for steel A13. Therefore, the yield strength YS was less than 350 MPa, and the number of blisters was 10/20 cm 2 or more in any thickness seamless steel pipe.

一方、鋼B1〜B3のNb含有量は低すぎた。そのため、肉厚が20mm未満の継目無鋼管においても、降伏強度が350MPa未満となった。その結果、図3に示すとおり、表面に多数のブリスタが発生し、ブリスタ個数が10個/20cm以上であった。On the other hand, the Nb content of steels B1 to B3 was too low. Therefore, even in a seamless steel pipe having a wall thickness of less than 20 mm, the yield strength was less than 350 MPa. As a result, as shown in FIG. 3, a large number of blisters were generated on the surface, and the number of blisters was 10/20 cm 2 or more.

また、鋼B4及びB5のC含有量は低すぎた。そのため、肉厚が20mm未満の継目無鋼管においても、降伏強度が350MPa未満となり、ブリスタ個数が10個/20cm以上であった。Moreover, C content of steel B4 and B5 was too low. Therefore, even in a seamless steel pipe having a wall thickness of less than 20 mm, the yield strength was less than 350 MPa, and the number of blisters was 10/20 cm 2 or more.

鋼B6のF2値は式(2)を満たさなかった。そのため、鋼B6の降伏強度は450MPaを超えた。   The F2 value of steel B6 did not satisfy the formula (2). Therefore, the yield strength of steel B6 exceeded 450 MPa.

以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。   While the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

Claims (2)

質量%で、
C:0.08〜0.24%、
Si:0.10〜0.50%、
Mn:0.3〜2.5%、
P:0.02%以下、
S:0.006%以下、
Nb:0.02〜0.12%、
Al:0.005〜0.100%、
Ca:0.0003〜0.0050%、
N:0.0100%以下、
O:0.0050%以下、
Ti:0〜0.1%、
V:0〜0.03%、
Cr:0〜0.6%、
Mo:0〜0.3%、
Ni:0〜0.4%、
Cu:0〜0.3%、及び、
B:0〜0.005%、
を含有し、残部はFe及び不純物からなる化学組成と、
フェライト及びパーライトからなる組織とを備え、
350〜450MPa未満の降伏強度を有する、サワー環境で使用されるラインパイプ用継目無鋼管。
% By mass
C: 0.08 to 0.24%,
Si: 0.10 to 0.50%,
Mn: 0.3 to 2.5%
P: 0.02% or less,
S: 0.006% or less,
Nb: 0.02 to 0.12%,
Al: 0.005 to 0.100%,
Ca: 0.0003 to 0.0050%,
N: 0.0100% or less,
O: 0.0050% or less,
Ti: 0 to 0.1%,
V: 0 to 0.03%,
Cr: 0 to 0.6%,
Mo: 0 to 0.3%,
Ni: 0 to 0.4%,
Cu: 0 to 0.3%, and
B: 0 to 0.005%,
And the balance is a chemical composition composed of Fe and impurities,
With a structure consisting of ferrite and pearlite,
A seamless steel pipe for line pipe used in a sour environment having a yield strength of 350 to less than 450 MPa.
請求項1に記載の継目無鋼管であって、
前記Nbの含有量(質量%)は、式(1)で定義されるF1値以上である、継目無鋼管。
F1=0.02+(t−15)×0.001 (1)
ここで、tには、継目無鋼管の肉厚(単位はmm)の単位を除いた数値が代入される。
The seamless steel pipe according to claim 1,
The Nb content (% by mass) is a seamless steel pipe having an F1 value or more defined by the formula (1).
F1 = 0.02 + (t−15) × 0.001 (1)
Here, a numerical value excluding the unit of the thickness (unit: mm) of the seamless steel pipe is substituted for t.
JP2015519628A 2013-05-31 2014-05-21 Seamless steel pipe for line pipe used in sour environment Active JP5915818B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013115135 2013-05-31
JP2013115135 2013-05-31
PCT/JP2014/002662 WO2014192251A1 (en) 2013-05-31 2014-05-21 Seamless steel pipe for line pipe used in sour environment

Publications (2)

Publication Number Publication Date
JP5915818B2 true JP5915818B2 (en) 2016-05-11
JPWO2014192251A1 JPWO2014192251A1 (en) 2017-02-23

Family

ID=51988303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015519628A Active JP5915818B2 (en) 2013-05-31 2014-05-21 Seamless steel pipe for line pipe used in sour environment

Country Status (7)

Country Link
EP (1) EP3006585B8 (en)
JP (1) JP5915818B2 (en)
CN (1) CN105283572B (en)
AR (1) AR096272A1 (en)
MX (1) MX2015016413A (en)
SA (1) SA515370210B1 (en)
WO (1) WO2014192251A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106011626A (en) * 2016-07-04 2016-10-12 湖南华菱湘潭钢铁有限公司 Production method for hydrogenation medium-thickness steel plate
CN106191671A (en) * 2016-07-12 2016-12-07 达力普石油专用管有限公司 High strength sulfur resisting hydrogen-type corrosion seamless line pipe and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555113B (en) * 2015-09-24 2018-09-04 宝山钢铁股份有限公司 A kind of high-strength tenacity seamless steel pipe and its manufacturing method
CN108359893B (en) * 2018-02-23 2020-06-23 鞍钢股份有限公司 High-silicon low-manganese pipeline steel hot-rolled coil and production method thereof
PL3626841T3 (en) * 2018-09-20 2022-04-04 Vallourec Tubes France High strength micro alloyed steel seamless pipe for sour service and high toughness applications
WO2022120337A1 (en) * 2020-12-04 2022-06-09 ExxonMobil Technology and Engineering Company Linepipe steel with alternative carbon steel compositions for enhanced sulfide stress cracking resistance
CN114438406A (en) * 2021-12-27 2022-05-06 天津钢管制造有限公司 Mechanical composite pipe seamless main pipe for acid environment
WO2024133917A1 (en) * 2022-12-22 2024-06-27 Tenaris Connections B.V. Steel composition, manufacturing method, steel article and uses hereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150066A (en) * 1983-02-14 1984-08-28 Sumitomo Metal Ind Ltd Seamless steel pipe having high toughness
JPS63250418A (en) * 1987-04-07 1988-10-18 Nippon Steel Corp Manufacture of line pipe combining high strength with low yield ratio
JPH01234521A (en) * 1988-03-14 1989-09-19 Nippon Steel Corp Production of high-toughness low-yielding ratio steel material having excellent sulfide stress corrosion cracking resistance
JP2012509398A (en) * 2008-11-20 2012-04-19 フェストアルピーネ チューブラーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method and apparatus for manufacturing steel pipes with special characteristics

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831031A (en) * 1981-08-17 1983-02-23 Nippon Steel Corp Production of steel pipe having high strength and toughness
JP2578598B2 (en) * 1987-04-08 1997-02-05 新日本製鐵株式会社 Manufacturing method of low yield ratio steel with excellent sulfide stress corrosion cracking resistance
WO1996036742A1 (en) * 1995-05-15 1996-11-21 Sumitomo Metal Industries, Ltd. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
JP3965708B2 (en) * 1996-04-19 2007-08-29 住友金属工業株式会社 Manufacturing method of high strength seamless steel pipe with excellent toughness
JPH10237583A (en) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd High tensile strength steel and its production
JP3666372B2 (en) 2000-08-18 2005-06-29 住友金属工業株式会社 Oil well steel with excellent resistance to sulfide stress corrosion cracking and its manufacturing method
JP2003119543A (en) * 2001-10-15 2003-04-23 Nippon Steel Corp Steel material for welded structure with little degradation of toughness caused by plastic strain, and manufacturing method therefor
BRPI0418503B1 (en) 2004-02-04 2017-03-21 Nippon Steel & Sumitomo Metal Corp steel product with high resistance to hic for use as pipe
CN101285153B (en) * 2008-05-09 2010-06-09 攀钢集团成都钢铁有限责任公司 Fire-resistant steel fire-resistant seamless steel pipe and production method thereof
RU2478133C1 (en) * 2009-10-28 2013-03-27 Ниппон Стил Корпорейшн High-strength and ductility steel sheet for making main pipe, and method of steel sheet fabrication
WO2011152240A1 (en) 2010-06-02 2011-12-08 住友金属工業株式会社 Seamless steel pipe for line pipe and method for producing the same
CN102392185B (en) * 2011-10-28 2013-05-22 首钢总公司 Normalized acid resistant hot-rolled steel plate and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150066A (en) * 1983-02-14 1984-08-28 Sumitomo Metal Ind Ltd Seamless steel pipe having high toughness
JPS63250418A (en) * 1987-04-07 1988-10-18 Nippon Steel Corp Manufacture of line pipe combining high strength with low yield ratio
JPH01234521A (en) * 1988-03-14 1989-09-19 Nippon Steel Corp Production of high-toughness low-yielding ratio steel material having excellent sulfide stress corrosion cracking resistance
JP2012509398A (en) * 2008-11-20 2012-04-19 フェストアルピーネ チューブラーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method and apparatus for manufacturing steel pipes with special characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106011626A (en) * 2016-07-04 2016-10-12 湖南华菱湘潭钢铁有限公司 Production method for hydrogenation medium-thickness steel plate
CN106191671A (en) * 2016-07-12 2016-12-07 达力普石油专用管有限公司 High strength sulfur resisting hydrogen-type corrosion seamless line pipe and preparation method thereof
CN106191671B (en) * 2016-07-12 2017-11-14 达力普石油专用管有限公司 High strength sulfur resisting hydrogen-type corrosion seamless line pipe and preparation method thereof

Also Published As

Publication number Publication date
SA515370210B1 (en) 2018-08-26
EP3006585B8 (en) 2019-08-21
EP3006585B1 (en) 2019-05-01
EP3006585A4 (en) 2017-03-01
JPWO2014192251A1 (en) 2017-02-23
CN105283572B (en) 2017-12-15
AR096272A1 (en) 2015-12-16
CN105283572A (en) 2016-01-27
WO2014192251A1 (en) 2014-12-04
EP3006585A1 (en) 2016-04-13
MX2015016413A (en) 2016-03-03

Similar Documents

Publication Publication Date Title
JP5915818B2 (en) Seamless steel pipe for line pipe used in sour environment
JP6677310B2 (en) Steel materials and steel pipes for oil wells
US9841124B2 (en) High-strength thick-walled electric resistance welded steel pipe having excellent low-temperature toughness and method of manufacturing the same
JP5387799B1 (en) Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking
JP5880787B2 (en) Steel tube for low alloy oil well and manufacturing method thereof
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
CN108699644B (en) Seamless steel pipe and method for producing same
JPWO2017200033A1 (en) Seamless steel pipe and manufacturing method thereof
JPWO2016114146A1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP5408389B1 (en) Seamless steel pipe and manufacturing method thereof
JP6028863B2 (en) Seamless steel pipe for line pipe used in sour environment
US20190040480A1 (en) Seamless steel pipe and method for producing same
JP2017031493A (en) Manufacturing method of stainless steel pipe
JP6805639B2 (en) Manufacturing method of stainless steel pipe
CN107849658B (en) Stainless steel pipe and method for manufacturing same
JP5246280B2 (en) Steel sheet for high strength steel pipe and high strength steel pipe
JP2000226642A (en) HIGH Cr STEEL PIPE FOR LINE PIPE
JP6402581B2 (en) Welded joint and method for producing welded joint
JP6152929B1 (en) Low alloy high strength seamless steel pipe for oil wells
JP2016053214A (en) Weld two-phase stainless steel tube and manufacturing method therefor
JP6672618B2 (en) Seamless steel pipe for line pipe and method of manufacturing the same

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R151 Written notification of patent or utility model registration

Ref document number: 5915818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350