JPH02190444A - Corrosion-resisting high-mn nonmagnetic steel having excellent workability - Google Patents
Corrosion-resisting high-mn nonmagnetic steel having excellent workabilityInfo
- Publication number
- JPH02190444A JPH02190444A JP924189A JP924189A JPH02190444A JP H02190444 A JPH02190444 A JP H02190444A JP 924189 A JP924189 A JP 924189A JP 924189 A JP924189 A JP 924189A JP H02190444 A JPH02190444 A JP H02190444A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- corrosion resistance
- content
- corrosion
- nonmagnetic steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 40
- 239000010959 steel Substances 0.000 title claims abstract description 40
- 230000007797 corrosion Effects 0.000 claims abstract description 36
- 238000005260 corrosion Methods 0.000 claims abstract description 36
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 14
- 229910052745 lead Inorganic materials 0.000 claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 3
- 229910052758 niobium Inorganic materials 0.000 abstract description 5
- 230000001105 regulatory effect Effects 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract 2
- 229910052802 copper Inorganic materials 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 7
- 230000035699 permeability Effects 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
Landscapes
- Hard Magnetic Materials (AREA)
Abstract
Description
(産業上の利用分野)
本発明は、高Mn非磁性鋼に係り、更に詳しくは、更に
詳しくは高Mn鋼の特性を保有し、かつ耐食性及び被削
性(加工性)の良好な高Mn非磁性鋼に関する。
(従来の技術及び解決しようとする課題)近年、磁気利
用技術の発達に伴って、非磁性鋼の応用範囲が増大の傾
向にある。
特に、最近発達の著しい弱電の技術分野においては、V
TR、オーディオ機器、事務機器、その他の電子機器等
の磁気を回避する必要のある精密機器部品として、マイ
クロモーターシャフトや磁気テープのガイドピン及びシ
ャフト等に非磁性鋼使用され、この傾向が顕著である。
このような非磁性鋼としては、従来から知られている5
O8304,316などのオーステナイト系ステンレス
鋼が使用されているが、冷間加工を施すと透磁率が約1
.5倍以上の値になるほか、価格も高いという問題があ
る。
そこで、最近は、オーステナイト系ステンレス鋼と同程
度の耐食性を有し、更に強度が高く非磁性が安定し、か
つ経済的であるという特色を有する高Mn高Cr系オー
ステナイト#I(以下、「耐食性高Mn非磁性鋼」と称
す。)の利用が増大している。
しかしながら、この耐食性高Mn非磁性鋼は、上記のよ
うな特色を有するものの、被削性(加工性)が通常の炭
素鋼やステンレス鋼などに比べて著しく劣るという問題
があった。
本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、加工性の優れた耐食性高Mn非磁性
鋼を提供することを目的とするものである。
(課題を解決するための手段)
前記目的を達成するため、本発明者は、従来の耐食性高
Mn非磁性鋼の特色である耐食性と高強度と非磁性を保
持しながら、更に被削性の良好な非磁性鋼を見い出すべ
く鋭意研究を行い、検討を重ねた。
まず、被削性を向上させるためには、従来はS。
Pb、Se、Te、Biなどの快削性元素を含有させる
ことが行われているが、高Mn非磁性鋼にこれらの元素
を多量に添加すると、熱間加工性と耐食性が著しく劣化
することが判明している。
そこで、これらの快削性元素を出来るだけ少量添加する
ことで熱間加工性と耐食性の劣化を起こさずに被削性を
改善しうる成分組成について種々検討した。
その結果、pbとBiを組み合わせ、かつ、BiとPb
+Biの比(Bi/(Pb+Bi))が0.30〜0゜
70の範囲である場合に切削仕上げ面粗さと、切り屑処
理性が著しく向上し、被剛性を向上できることを知見し
た。
一方、熱間加工性と耐食性は、他の元素を適正範囲に制
限することにより、従来の高Mn非磁性鋼並みの熱間加
工性と、5US304並みの耐食性を有する被削性の良
好な耐食性高Mn非磁性鋼が得られることを知見した。
本発明者は、上記の種々の知見に基づいて耐食性及び被
削性の良好な高Mn非磁性鋼を開発したものである。
すなわち、本発明は、C:0.05〜0.25%、Si
:0.20−0.70%、Mn:14.O〜18.5%
、P≦0.040%、S≦0.015%、Ni:1゜5
〜4.0%、Cr:14.0〜20.0%、N:0゜1
5〜0.60%、0≦0.01%、AΩ≦0.02%、
Pb:0.1〜0.3%及びBi:0.1〜0.3%を
含有し、更にCu:0.7〜4.0%、Mo:0゜7〜
3.0%及びB≦0.01%と、V、Ti、Nb。
W及びZrの1種又は2種以上:O,OO5〜1.0%
からなる群から選ばれた1種又は2種以上を含有し、か
つ、BiとPb+Biの比が次式%式%
を満足し、残部が鉄及び不可避的不純物からなることを
特徴とする加工性に優れた耐食性高Mn非磁性鋼を要旨
とするものである。
以下に本発明を更に詳細に説明する。
(作用)
本発明における化学成分の限定理由は以下のとおりであ
る。
C:
Cは0.05%未満では所要の非磁性、強度が安定して
得られず、また0、25%を超えて含有すると耐食性が
5US304より劣るので、C含有量は0.05〜0.
25%の範囲とする。
Si;
Siは0.20%未満では脱酸効果が不足し、また0、
70%を超えて含有するとSiの酸化物が介在物として
析出し、耐食性が劣化するので、Si含有量は0.20
〜0.70%の範囲とする。
Mn:
Mnはオーステナイトを生成し、鋼を非磁性化する元素
であり、含有量が14.0%よりも少ないとこの効果が
不充分となり、18.5%よりも多く含有すると熱間加
工性を著しく低下させることになる。したがって、Mn
含有量は14.0〜18.5%の範囲とする。
Ni:
Niはオーステナイト生成元素であり、4.0%を超え
て含有するとこの効果は飽和し、かつ高価となる。また
1、5%未満では充分な効果が得られない。したがって
、Ni含有量は1.5〜4.0%の範囲とする。
Cr:
Crは耐食性を向上させる元素であるが、pbやBiが
含有すると、Cr含有量が14.0%未満ではこの効果
は充分でなく、また20.0%を超えて含有すると非磁
性が不安定となる。したがって、Cr含有量は14.0
〜20.0の範囲%とする。
N:
Nはオーステナイトを生成すると共に強度を向上させる
元素であるが、含有量が0.15%未満ではこの効果は
不充分であり、また0、60%を超えて含有すると鋼塊
中に気泡を生じ、熱間加工性が劣化する。したがって、
N含有量は0.15〜0.60%の範囲とする。
0:
0は0.01%を超えて含有するとB系非金属介在物が
増加し、耐食性を劣化する。したがって、0含有量は0
.01%以下に規制する。
Afi:
AQは脱酸剤として必要な元素であるが、0゜02%を
超えて含有するとC系介在物を生成して耐食性が劣化す
る。したがって、AQ含有量は0゜02%以下に規制す
る。
Pb、 Bi:
Pb、Biは快削性元素であり、その効果を得るにはそ
れぞれ0.1%以上の含有が必要である。
しかし、それぞれ0.3%を超えると熱間加工性及び耐
食性の著しい劣化を招くので好ましくない。
したがって、Pb、Biの各含有量は0.1〜0.3%
の範囲とする。
但し、被削性の向上が顕著に認められるのは、BiとP
b+Biとの比が次式
%式%
を満足する必要があることが判明した。
p、s:
Pが0.040%を超える場合、Sが0.015%を超
える場合は、Pは炭化物の析出を助長し。
また、SはMnSを多量に析出し、これらにより耐食性
を著しく劣化させるので好ましくない。したがって、S
含有量は0.040%以下、S含有量は0.015%以
下にそれぞれ規制する。
以上の各元素のほか1本発明においては、必要に応じて
、以下の元素の1種又は2種以上を適量で含有させるこ
とができる。
Cu:
Cuは耐食性を向上させる元素であるが、0.7%未満
ではこの効果は不充分であり、また4、0%を超えて含
有すると熱間加工性が劣化するので、Cu含有量は0.
7〜4.0%の範囲とする。
Mo:
Moは耐食性を向上させる元素であるが、0.7%未満
ではこの効果は少なく、また3、0%を超えて含有する
とこの効果は飽和し、かつ高価となるので、Mo含有量
は0.7〜3.0%の範囲とする。
B:
Bは結晶粒度を微細化し靭性改善に効果があり、また熱
間加工性を改善する元素である。しかし、0.01%を
超えて含有させてもこの効果は飽和するので、S含有量
は0.01%以下とする。
■、Ti、Nb、W%Zr:
V、Ti、Nb、W、Zrは結晶粒度を微細化し、強度
の向上に有効で、かつ、結晶粒界のCr欠乏層生成原因
となるCr炭化物の析出を抑制し、耐食性の改善に有効
であり、そのためにはそれらの1種又は2種以上が合計
で0.005%以上が必要である。しかし、1.0%を
超えると靭性が低下するので好ましくない。したがって
、V、Ti。
Nb、W及びZrのうちの1種又は2種以上の含有量は
0.005〜1.0%の範囲とする。
次に本発明の実施例を示す。
(実施例)
第1表に示す化学成分を有する鋼を150kg高周波炉
で溶解し、鋳造後、801IIIIIφの棒に鍛造し、
溶体化処理を施した後、各種試験を行い、被剛性、硬さ
、透磁率及び耐食性について評価した。それらの結果を
第2表及び第3表に示す。
また、80mmφ棒の一部を更に9mmφまで熱間圧延
し、溶体化処理後、冷間伸線により6.3611Iφ(
伸線加工率50%)に加工し、各種試験を行い、被削性
、硬さ、透磁率及び耐食性について評価した。それらの
結果を第2表及び第3表に示す。
なお、被削性は、80mmφ棒について旋盤により以下
の条件で切削性試験を行い、工具寿命により評価した。
〈切削条件〉
工具:Plo
切削速度:100鳳/win
送り: 0.175mm/rev
切込み:Q、65m+a
切削油:バクマルJ1を使用
また、Bi/(Pb+Bi)の影響を明確にするため、
第1図に工具摩耗とBi/(Pb+Bi)比の関係を、
また第2図に表面粗さとBi/(Pb十Bi)比の関係
を示した0表面粗さは、JIS B 0601に従
い測定し、十点平均粗さ(Rz)により評価した。
硬さについてはJIS Z 2244に従ってビッ
カース硬さを求め、透磁率はASTM A 342に
従い測定した。耐食性は、JIS Z 2371に
従い塩水噴霧試験を行い、200時間後に発錆率を測定
して評価した。
第2表及び第3表、並びに第1図及び第2図より以下の
如く考察される。
本発明鋼Ha 1〜Ha 6は、第2表及び第1図と第
2図から明らかなように、工具摩耗が少なく、切削仕上
げ面粗さが良好で、優れた被削性が得られると共に、第
3表に示すように耐食性高Mn非磁性鋼としての従来の
基本的特性を保持していることがわかる。
一方、比較鋼&7は、Pb含有量が多く、Bi含有量が
少なく、しかもBi/(Pb+Bi)比が本発明範囲を
低目に外れているため、被剛性と共に耐食性が劣ってい
る。
比較鋼&8は、Pb含有量が少なく、Bi含有量が多く
、しかもB i/ (P b+ B i)比が本発明範
囲を高目に外れているため、比較鋼Nα7と同様に被削
性と共に耐食性が劣っている。
比較鋼Nα9は、Pb、Bi含有量がいずれも多いため
、被削性は良好であるものの、耐食性が著しく劣ってい
る。
比較鋼Nα10はBiが含有していない例であり、比較
鋼NQIIはpbが含有していない例であり、いずれも
被削性が劣っている。
比較鋼Nα12は、市販(7)JISSUS304であ
り、耐食性は良好であるものの、透磁率が高く且つ被削
性が劣っている。(Industrial Application Field) The present invention relates to a high-Mn nonmagnetic steel, and more specifically, a high-Mn non-magnetic steel that has the characteristics of a high-Mn steel and has good corrosion resistance and machinability (workability). Regarding non-magnetic steel. (Prior Art and Problems to be Solved) In recent years, with the development of magnetic utilization technology, the range of applications of non-magnetic steel has tended to increase. In particular, in the field of light electric current technology, which has been rapidly developing recently, V
This tendency is noticeable as non-magnetic steel is used for micro motor shafts, magnetic tape guide pins and shafts, etc. as precision equipment parts that need to be avoided from magnetism, such as TRs, audio equipment, office equipment, and other electronic equipment. be. As such non-magnetic steel, the conventionally known 5
Austenitic stainless steels such as O8304 and 316 are used, but when cold worked, the magnetic permeability decreases to about 1.
.. In addition to being more than five times as expensive, the problem is that it is also expensive. Therefore, recently, high Mn high Cr austenite #I (hereinafter referred to as "corrosion resistant The use of high Mn non-magnetic steels (high Mn non-magnetic steels) is increasing. However, although this corrosion-resistant high-Mn nonmagnetic steel has the above-mentioned features, it has a problem in that its machinability (workability) is significantly inferior to that of ordinary carbon steel, stainless steel, and the like. The present invention was made in order to solve the problems of the above-mentioned conventional technology, and an object of the present invention is to provide a corrosion-resistant high-Mn nonmagnetic steel with excellent workability. (Means for Solving the Problems) In order to achieve the above object, the present inventors have created a structure that further improves machinability while maintaining the corrosion resistance, high strength, and nonmagnetism that are the characteristics of conventional corrosion resistant high Mn nonmagnetic steel. We conducted extensive research and repeated examinations to find a good non-magnetic steel. First, in order to improve machinability, conventionally S was used. Free-machining elements such as Pb, Se, Te, and Bi have been added to the steel, but when large amounts of these elements are added to high-Mn nonmagnetic steel, hot workability and corrosion resistance are significantly degraded. It is clear that Therefore, various compositions were investigated to improve machinability without causing deterioration of hot workability and corrosion resistance by adding as small a quantity of these free-machining elements as possible. As a result, pb and Bi are combined, and Bi and Pb
It has been found that when the +Bi ratio (Bi/(Pb+Bi)) is in the range of 0.30 to 0.70, the finished cut surface roughness and chip disposal properties are significantly improved, and the rigidity can be improved. On the other hand, by restricting other elements to appropriate ranges, hot workability and corrosion resistance are as good as those of conventional high-Mn non-magnetic steel, and corrosion resistance is as good as that of 5US304. It has been found that a high Mn nonmagnetic steel can be obtained. The present inventor has developed a high-Mn nonmagnetic steel with good corrosion resistance and machinability based on the above-mentioned various findings. That is, in the present invention, C: 0.05 to 0.25%, Si
:0.20-0.70%, Mn:14. O~18.5%
, P≦0.040%, S≦0.015%, Ni: 1°5
~4.0%, Cr:14.0~20.0%, N:0°1
5~0.60%, 0≦0.01%, AΩ≦0.02%,
Contains Pb: 0.1-0.3% and Bi: 0.1-0.3%, further Cu: 0.7-4.0%, Mo: 0°7-
3.0% and B≦0.01%, and V, Ti, and Nb. One or more of W and Zr: O, OO5-1.0%
Processability characterized by containing one or more selected from the group consisting of, and the ratio of Bi to Pb + Bi satisfying the following formula % formula %, the balance consisting of iron and inevitable impurities The gist is a high Mn nonmagnetic steel with excellent corrosion resistance. The present invention will be explained in more detail below. (Function) The reasons for limiting the chemical components in the present invention are as follows. C: If C is less than 0.05%, the required non-magnetism and strength cannot be stably obtained, and if it is more than 0.25%, the corrosion resistance is inferior to 5US304, so the C content should be 0.05 to 0. ..
The range is 25%. Si: If Si is less than 0.20%, the deoxidizing effect will be insufficient, and if Si is less than 0.20%, the deoxidizing effect will be insufficient.
If the content exceeds 70%, Si oxides will precipitate as inclusions and corrosion resistance will deteriorate, so the Si content should be 0.20%.
The range is 0.70%. Mn: Mn is an element that generates austenite and makes steel non-magnetic. If the content is less than 14.0%, this effect will be insufficient, and if the content is more than 18.5%, hot workability will be reduced. This will significantly reduce the Therefore, Mn
The content is in the range of 14.0 to 18.5%. Ni: Ni is an austenite forming element, and if it is contained in an amount exceeding 4.0%, this effect will be saturated and it will become expensive. Further, if it is less than 1.5%, sufficient effects cannot be obtained. Therefore, the Ni content is in the range of 1.5 to 4.0%. Cr: Cr is an element that improves corrosion resistance, but if it contains PB or Bi, this effect will not be sufficient if the Cr content is less than 14.0%, and if it is contained in more than 20.0%, non-magnetic properties will be lost. Becomes unstable. Therefore, the Cr content is 14.0
-20.0 range%. N: N is an element that generates austenite and improves strength, but if the content is less than 0.15%, this effect is insufficient, and if the content exceeds 0.60%, bubbles may form in the steel ingot. This results in deterioration of hot workability. therefore,
The N content is in the range of 0.15 to 0.60%. 0: When 0 is contained in an amount exceeding 0.01%, B-based nonmetallic inclusions increase and corrosion resistance deteriorates. Therefore, the 0 content is 0
.. Regulated to 0.1% or less. Afi: AQ is an element necessary as a deoxidizing agent, but if it is contained in an amount exceeding 0.02%, C-based inclusions are formed and corrosion resistance is deteriorated. Therefore, the AQ content is regulated to 0°02% or less. Pb, Bi: Pb and Bi are free-machining elements, and each must be contained in an amount of 0.1% or more to obtain their effects. However, if each exceeds 0.3%, hot workability and corrosion resistance will significantly deteriorate, which is not preferable. Therefore, each content of Pb and Bi is 0.1 to 0.3%
The range shall be . However, the improvement in machinability is noticeable in Bi and P.
It has been found that the ratio of b+Bi needs to satisfy the following formula: %. p, s: When P exceeds 0.040% and when S exceeds 0.015%, P promotes precipitation of carbides. Further, S is not preferable because it precipitates a large amount of MnS, which significantly deteriorates the corrosion resistance. Therefore, S
The content is regulated to 0.040% or less, and the S content is regulated to 0.015% or less. In addition to the above-mentioned elements, one or more of the following elements may be contained in appropriate amounts in the present invention, if necessary. Cu: Cu is an element that improves corrosion resistance, but if it is less than 0.7%, this effect is insufficient, and if it is more than 4.0%, hot workability deteriorates, so the Cu content is 0.
The range is 7% to 4.0%. Mo: Mo is an element that improves corrosion resistance, but if it is less than 0.7%, this effect is small, and if it is contained more than 3.0%, this effect is saturated and it becomes expensive, so the Mo content is The range is 0.7% to 3.0%. B: B is an element that is effective in refining the grain size and improving toughness, and also improves hot workability. However, this effect is saturated even if the S content exceeds 0.01%, so the S content is set to 0.01% or less. ■, Ti, Nb, W% Zr: V, Ti, Nb, W, and Zr are effective in refining the grain size and improving strength, and also prevent the precipitation of Cr carbide, which causes the formation of a Cr-depleted layer at the grain boundaries. It is effective in suppressing corrosion and improving corrosion resistance, and for this purpose, the total amount of one or more of them is required to be 0.005% or more. However, if it exceeds 1.0%, toughness decreases, which is not preferable. Therefore, V, Ti. The content of one or more of Nb, W, and Zr is in the range of 0.005 to 1.0%. Next, examples of the present invention will be shown. (Example) 150 kg of steel having the chemical composition shown in Table 1 was melted in a high-frequency furnace, and after casting, it was forged into a bar of 801IIIφ,
After solution treatment, various tests were conducted to evaluate rigidity, hardness, magnetic permeability, and corrosion resistance. The results are shown in Tables 2 and 3. In addition, a part of the 80mmφ bar was further hot rolled to 9mmφ, and after solution treatment, cold wire drawing was performed to 6.3611Iφ (
The wire drawing processing rate was 50%), various tests were conducted, and the machinability, hardness, magnetic permeability, and corrosion resistance were evaluated. The results are shown in Tables 2 and 3. In addition, machinability was evaluated by conducting a machinability test on an 80 mmφ bar using a lathe under the following conditions, and based on the tool life. <Cutting conditions> Tool: Plo Cutting speed: 100/win Feed: 0.175mm/rev Depth of cut: Q, 65m+a Cutting oil: Bakumaru J1 used In addition, in order to clarify the influence of Bi/(Pb+Bi),
Figure 1 shows the relationship between tool wear and Bi/(Pb+Bi) ratio.
Further, the zero surface roughness, which shows the relationship between surface roughness and Bi/(Pb+Bi) ratio in FIG. 2, was measured according to JIS B 0601 and evaluated by ten-point average roughness (Rz). Regarding hardness, Vickers hardness was determined according to JIS Z 2244, and magnetic permeability was measured according to ASTM A 342. Corrosion resistance was evaluated by conducting a salt spray test in accordance with JIS Z 2371 and measuring the rusting rate after 200 hours. The following considerations can be made from Tables 2 and 3 and FIGS. 1 and 2. As is clear from Table 2 and Figures 1 and 2, the invention steels Ha 1 to Ha 6 have little tool wear, good finished surface roughness, and excellent machinability. As shown in Table 3, it can be seen that the conventional basic properties of corrosion-resistant high Mn nonmagnetic steel are maintained. On the other hand, comparative steel &7 has a high Pb content, a low Bi content, and a Bi/(Pb+Bi) ratio that is low and outside the range of the present invention, so that it has poor rigidity and corrosion resistance. Comparative steel &8 has low Pb content, high Bi content, and the Bi/(P b + Bi) ratio is highly outside the range of the present invention, so it has machinability similar to comparative steel Nα7. At the same time, corrosion resistance is poor. Comparative steel Nα9 has a high content of both Pb and Bi, so although its machinability is good, its corrosion resistance is significantly inferior. Comparative steel Nα10 is an example that does not contain Bi, and comparative steel NQII is an example that does not contain PB, and both have poor machinability. Comparative steel Nα12 is commercially available (7) JISSUS304, and although it has good corrosion resistance, it has high magnetic permeability and poor machinability.
第
表
第
表
(発明の効果)
以上詳述したように1本発明によれば、従来の耐食性高
Mn非磁性鋼の特色(耐食性、高強度、非磁性)を維持
すると共に、優れた加工性(被剛性)を具備した高Mn
非磁性鋼を提供することができる。Table 1 (Effects of the Invention) As detailed above, according to the present invention, the characteristics of conventional corrosion-resistant high Mn nonmagnetic steel (corrosion resistance, high strength, nonmagnetism) are maintained, and excellent workability is achieved. High Mn with (rigidity)
Non-magnetic steel can be provided.
第1図はBi/(Pb+Bi)比と被削性(工具寿命)
の関係を示す図。
第2図はB i/ (P b+ B i)比と切削仕上
げ表面粗さの関係を示す図である。
特許出願人 株式会社神戸製鋼所
代理人弁理士 中 村 尚
Bi/(T’btBr)Figure 1 shows Bi/(Pb+Bi) ratio and machinability (tool life)
A diagram showing the relationship between. FIG. 2 is a diagram showing the relationship between the B i/(P b+ B i) ratio and the finished surface roughness. Patent applicant: Kobe Steel, Ltd. Patent attorney Nao Nakamura Bi/(T'btBr)
Claims (2)
5%、Si:0.20〜0.70%、Mn:14.0〜
18.5%、P≦0.040%、S≦0.015%、N
i:1.5〜4.0%、Cr:14.0〜20.0%、
N:0.15〜0.60%、0≦0.01%、Al≦0
.02%、Pb:0.1〜0.3%及びBi:0.1〜
0.3%を含有し、かつ、BiとPb+Biの比が次式 Bi/(Pb+Bi):0.30〜0.70を満足し、
残部が鉄及び不可避的不純物からなることを特徴とする
加工性に優れた耐食性高Mn非磁性鋼。(1) In weight% (the same applies hereinafter), C: 0.05 to 0.2
5%, Si: 0.20-0.70%, Mn: 14.0-
18.5%, P≦0.040%, S≦0.015%, N
i: 1.5-4.0%, Cr: 14.0-20.0%,
N: 0.15-0.60%, 0≦0.01%, Al≦0
.. 02%, Pb: 0.1~0.3% and Bi: 0.1~
0.3%, and the ratio of Bi and Pb+Bi satisfies the following formula Bi/(Pb+Bi): 0.30 to 0.70,
A corrosion-resistant high-Mn nonmagnetic steel with excellent workability, characterized in that the remainder consists of iron and unavoidable impurities.
0.7〜3.0%及びB≦0.01%と、V、Ti、N
b、W及びZrの1種又は2種以上:0.005〜1.
0%からなる群から選ばれた1種又は2種以上を含有す
るものである請求項1に記載の加工性に優れた耐食性高
Mn非磁性鋼。(2) The steel further includes Cu: 0.7 to 4.0%, Mo:
0.7-3.0% and B≦0.01%, V, Ti, N
b, one or more of W and Zr: 0.005 to 1.
2. The corrosion-resistant high Mn nonmagnetic steel with excellent workability according to claim 1, which contains one or more selected from the group consisting of 0%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP924189A JPH02190444A (en) | 1989-01-17 | 1989-01-17 | Corrosion-resisting high-mn nonmagnetic steel having excellent workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP924189A JPH02190444A (en) | 1989-01-17 | 1989-01-17 | Corrosion-resisting high-mn nonmagnetic steel having excellent workability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02190444A true JPH02190444A (en) | 1990-07-26 |
Family
ID=11714910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP924189A Pending JPH02190444A (en) | 1989-01-17 | 1989-01-17 | Corrosion-resisting high-mn nonmagnetic steel having excellent workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02190444A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06253485A (en) * | 1992-12-28 | 1994-09-09 | Japan Casting & Forging Corp | High strength end ring and manufacture thereof |
EP2248919A1 (en) * | 2009-04-27 | 2010-11-10 | Daido Tokushuko Kabushiki Kaisha | High corrosion-resistant, high-strength and non-magnetic stainless steel, high corrosion-resistant, high-strength and non-magnetic stainless steel product and method for producing the same |
-
1989
- 1989-01-17 JP JP924189A patent/JPH02190444A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06253485A (en) * | 1992-12-28 | 1994-09-09 | Japan Casting & Forging Corp | High strength end ring and manufacture thereof |
EP2248919A1 (en) * | 2009-04-27 | 2010-11-10 | Daido Tokushuko Kabushiki Kaisha | High corrosion-resistant, high-strength and non-magnetic stainless steel, high corrosion-resistant, high-strength and non-magnetic stainless steel product and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5072285B2 (en) | Duplex stainless steel | |
US9127336B2 (en) | Hot-working steel excellent in machinability and impact value | |
JP2012180567A (en) | Clad steel sheet having duplex stainless steel as mating material, and method for production thereof | |
JP2533481B2 (en) | Non-magnetic high strength stainless steel and method for producing the same | |
CN102953016A (en) | 600HB-grade wear-resistant steel plate and manufacturing method thereof | |
CA2890857C (en) | Ferritic stainless steel | |
JP2006161144A (en) | Carburizing rolled steel having excellent high temperature carburizing property and hot forgeability | |
JP2006291335A (en) | Steel for case hardening having excellent high temperature carburizing characteristic and workability | |
JPH0542493B2 (en) | ||
JPH11293405A (en) | High hardness high corrosion resistance stainless steel | |
JP3791664B2 (en) | Austenitic Ca-added free-cutting stainless steel | |
JPH02190444A (en) | Corrosion-resisting high-mn nonmagnetic steel having excellent workability | |
JPH0753896B2 (en) | High Mn non-magnetic steel with good rust resistance and machinability | |
JP2008106306A (en) | Ferritic free-cutting stainless steel | |
JP4018021B2 (en) | Nonmagnetic sulfur free-cutting stainless steel wire with excellent cold-drawing workability and corrosion resistance | |
KR20060016788A (en) | Steel product for induction hardening, induction-hardened member using the same, and methods for production them | |
JP3442706B2 (en) | Free-cutting steel | |
JP3603461B2 (en) | High hardness non-magnetic stainless steel and high hardness non-magnetic stainless steel wire | |
JP2001279385A (en) | Martensitic precipitation hardening stainless steel for machine structural use | |
JP4330331B2 (en) | Free-cutting corrosion-resistant steel for precision equipment | |
KR100310757B1 (en) | Free-machining austenitic stainless steel | |
JPH04280948A (en) | Ferritic stainless steel excellent in tougness and corrosion resistance | |
JPS63169362A (en) | Nonmagnetic tool steel | |
JP2889020B2 (en) | High Mn non-magnetic steel with excellent machinability | |
JPH0441651A (en) | Corrosion resisting austenitic stainless steel excellent in machinability |