JPS59205452A - High strength member for machinery mounted on board submarine searching ship - Google Patents

High strength member for machinery mounted on board submarine searching ship

Info

Publication number
JPS59205452A
JPS59205452A JP7929883A JP7929883A JPS59205452A JP S59205452 A JPS59205452 A JP S59205452A JP 7929883 A JP7929883 A JP 7929883A JP 7929883 A JP7929883 A JP 7929883A JP S59205452 A JPS59205452 A JP S59205452A
Authority
JP
Japan
Prior art keywords
high strength
strength
strength member
magnetic permeability
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7929883A
Other languages
Japanese (ja)
Inventor
Rikio Nemoto
根本 力男
Yuji Ikegami
雄二 池上
Hiroshi Akita
宏 秋田
Kanae Sannomiya
三宮 嘉苗
Yuichi Nakamura
祐一 中村
Shigeru Uchida
茂 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Yakin Kogyo Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Yakin Kogyo Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7929883A priority Critical patent/JPS59205452A/en
Publication of JPS59205452A publication Critical patent/JPS59205452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide the titled high strength member having both of high strength and high toughness and low in magnetic permeability, obtained by applying hot processing respectively prescribed in a draft and a finish temp. to an Fe base alloy respectively containing C, Si, Mn, Ni, Cr, Mo and N in a predetermined ratio. CONSTITUTION:Steel containing, on a wt. basis, 0.15% or less C, 0.1-2.0% Si, 7.0-18.0% Mn, 0.5-6.0% Ni, 15.0-26.0% Cr, 0.5-4.0% Mo and 0.2-0.6% N and comprising the remainder of substantially Fe is prepared. Subsequently, hot processing is applied to said steel under such a condition that a draft is 50% or more and a finish temp. is 800-1,000 deg.C. Thus proof-stress at 0.2% is 80kg/mm.<2> or more, a Charpy impact value is 8kgm/cm<2> and magnetic permeability is 1.5% or less and optimum as a high strength member for machinery mounted to a submarine searching ship.

Description

【発明の詳細な説明】 本発明は、高強度・高靭性を兼ね備えかつ透磁率の低い
海中探索船搭載機器用強度部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a strength member for equipment mounted on an underwater exploration vessel that has both high strength and high toughness and low magnetic permeability.

一般に、海中探索用船は海上または海中に浮遊する障害
物をレーダー、超音波等の探知機を用いて探知して、上
記障害物を除去する任務を有する船であり、本発明は、
析出硬化型ステンレス鋼に比し1さるとも劣らない高強
度・高靭性を有し、かつ透磁率の低い実質的に非磁性で
ある鋼からなる海中探索船搭載機器用強度部材を提供す
ることを目的とするものである。すなわち本発明の部材
は下記の諸物件を有する。
In general, an underwater exploration vessel is a vessel that has the mission of detecting obstacles floating on the sea or in the sea using detectors such as radar and ultrasonic waves, and removing the obstacles.
It is an object of the present invention to provide a strong member for equipment mounted on an underwater exploration vessel, which is made of a substantially non-magnetic steel with low magnetic permeability, which has high strength and high toughness comparable to precipitation hardening stainless steel. This is the purpose. That is, the member of the present invention has the following properties.

(ハ 0.コチ耐力Hgokg/−以上(2)  シャ
ルピー衝撃値: g kgm/cm2以上(3)透磁率
:/、S以下 次に本発明の詳細な説明する。
(c) 0. Flathead proof stress Hgokg/- or more (2) Charpy impact value: g kgm/cm2 or more (3) Magnetic permeability: /, S or less Next, the present invention will be described in detail.

オーステナイトステンレス鋼は非磁性鋼として一般に用
いられている。しかしながらこの鋼は通常溶体化処理が
施された後構造用材料として使用されており、かかる処
理が施された材料は耐力が低いという欠点がある。この
点を改善するために主に溶体化処理後の時効処理もしく
は冷間加工がなされているが、前者の処理によれば高強
度化は図れるが衝撃値の著しい低下をまねき、−劣後者
の処理によれば冷間加工による透磁率が上昇したシ、あ
るいは製品形状の点で冷間加工が制限されるという欠点
があった。
Austenitic stainless steel is commonly used as a non-magnetic steel. However, this steel is usually used as a structural material after being subjected to solution treatment, and materials subjected to such treatment have the disadvantage of low yield strength. In order to improve this point, aging treatment or cold working is mainly performed after solution treatment, but although the former treatment increases the strength, it leads to a significant decrease in impact value; The processing has disadvantages in that the magnetic permeability increases due to cold working, or that cold working is limited due to the shape of the product.

本発明者らは、クロム燐化物の析出強化を利用したHN
M鋼あるいはバナジウム炭窒化物の析出強化をオリ用し
た高マンガンオーステナイトステンレス鋼について種々
研究したが、強度が高くなるに伴い衝撃値が著しく低下
し、目標とする。、2%耐力がgokg/−以上であり
、かつ衝撃値がg1m/Cm2以上を満足するものは得
られなかった。
The present inventors have developed HN using precipitation strengthening of chromium phosphide.
Various studies have been conducted on M steel or high manganese austenitic stainless steel using vanadium carbonitride precipitation strengthening, but as the strength increases, the impact value decreases significantly, which is the target. , a 2% yield strength of gokg/- or more and an impact value of g1m/Cm2 or more were not obtained.

そこで本発明者らは、先に特開昭5.、?、−//96
/7および特開昭!;3− //9A/gで開示した溶
体化状態でも60蹟へ一級の0.2%耐力を有する高力
オーステナイトステンレス鋼に着目し、研究を進めた結
果、これらの鋼は熱間加工状態で優れた強度と靭性を具
備していることを新規に知見し、本発明の部材に想到し
たのである。
Therefore, the inventors of the present invention first published the patent application published in Japanese Patent Application Laid-Open No. ,? ,-//96
/7 and Tokukai Sho! ;3-//As a result of research focusing on high-strength austenitic stainless steels that have a first-class 0.2% yield strength to 60 degrees even in the solution state disclosed at 9 A/g, it was found that these steels have a high strength in the hot worked state. They newly discovered that the material has excellent strength and toughness, and came up with the idea for the member of the present invention.

次に本発明を実験データについて説明する。Next, the present invention will be explained using experimental data.

第1表に示す成分組成を有する本発明の部材ならびに比
較材についてそれぞれls kg鋼塊を製造し、熱間鍛
造を施して2!r 7r(zφの丸棒にし、これを供試
材とした。これから試料を切り出し、第2表に示す熱処
理を施し、それぞれについて機械的性質および透磁率を
調べた。
ls kg steel ingots were produced for the members of the present invention and the comparative materials having the compositions shown in Table 1, and hot forged. A round bar of r 7r (zφ) was used as a test material. Samples were cut from this and subjected to the heat treatment shown in Table 2, and the mechanical properties and magnetic permeability of each were examined.

その結果を第3表に示す。The results are shown in Table 3.

第3表 本発明部材および比較材の機械的性質および透
磁率 第3表続き 第3表かられかるように、本発明部材は目標としている
O、、2耐力goゆ/n−以上、シャルピー衝撃値g 
kl?m/cm2以上、透磁率i、5以下をすべて満足
している。比較材33はN添加した)INM鋼、比較材
3’lは析出硬化型ステンレス鋼、比較材3左はscM
り33゛であり、上記目標をすべて満足しているものは
ない。
Table 3: Mechanical properties and magnetic permeability of the members of the present invention and comparative materials Table 3: As shown in Table 3, the members of the present invention have a target of O, 2 proof stress of 0, 2 proof stress or more, Charpy impact value g
kl? m/cm2 or more and magnetic permeability i of 5 or less. Comparative material 33 is N-added) INM steel, comparative material 3'l is precipitation hardening stainless steel, comparative material 3 left is scM
There is no one that satisfies all of the above goals.

第7表は本発明部材に従来の溶体化処理を施したものの
機械的性質および透磁率を示したものである。なお、俗
体化処理条件は10!rO℃X 30 min WQで
ある。第3表に示した熱間鍛造状態のも(1)(C比べ
てθ。J%耐力、引張強さが著しく低下していることが
わかる。
Table 7 shows the mechanical properties and magnetic permeability of members of the present invention subjected to conventional solution treatment. In addition, the vulgarization processing conditions are 10! rO°C x 30 min WQ. It can be seen that the θ.J% yield strength and tensile strength of the hot forged specimens shown in Table 3 are significantly lower than those of (1) (C).

第1図は1本発明部材について。0.2係1酎カ、引張
強さ、衝撃値のそれぞれと熱間加工の仕上温度との関係
を示したものである。なお熱間加工の圧F率は70%で
ある。同図によれば仕上温度が高くなるにつれてO,コ
チ耐力と引張強さは低下し、衝撃値は上昇することがわ
かる。
Figure 1 shows one of the members of the present invention. This figure shows the relationship between each of the 0.2 coefficient, tensile strength, and impact value, and the finishing temperature of hot working. Note that the pressure F ratio of hot working is 70%. According to the figure, it can be seen that as the finishing temperature increases, the O, flathead yield strength and tensile strength decrease, and the impact value increases.

第2図、第3図はそれぞれ本発明部材7およびコダにつ
いて、第1図と同様の関係について調べたものである。
FIGS. 2 and 3 show the same relationships as in FIG. 1 for the member 7 of the present invention and Koda, respectively.

本発明部材lと同じくり、2りについても仕上温度が高
くなるにつれて0.:lTo耐力と引張強さが低下し衝
撃値は上昇している。
Similar to the present invention member 1, 0.0% for 2 as the finishing temperature increases. :lTo proof stress and tensile strength decreased and impact value increased.

第1図〜第3図から目標の0.2%耐力go kg/m
rtf’以上、衝撃値gkg71L/Crn2以上を満
足させるには、鍛造仕上温度をgoθ〜7000℃の範
囲内にする必要があることがわかる。
From Figures 1 to 3, the target 0.2% yield strength go kg/m
It can be seen that in order to satisfy rtf' or more and impact value gkg71L/Crn2 or more, the forging finishing temperature needs to be within the range of goθ to 7000°C.

第7表 本発明部材の溶体化状態での機械的性質および
透磁率また、不発明者らは熱間加工の仕上温度930℃
Table 7 Mechanical properties and magnetic permeability of the members of the present invention in a solution state;
.

圧F率70eI)ty)処理を施した20Or −/j
Mn −II Ni−2MO−0゜2V−0,AN 鋼
について炭素含有量をO,OS〜0.37%の間に変化
させて炭素量が。、2チ耐力と衝撃値に及ぼす影響を調
べた。その結果を第を図に示す。同図より炭素量が多く
なると0.2チ耐力は徐々に上昇するが、衝撃値は炭素
量がθ、/!f%より多いと急激に低下することがわか
る。
20Or −/j treated with pressure F rate 70eI)ty)
Mn-II Ni-2MO-0°2V-0,AN The carbon content was varied between O,OS and 0.37% for steel. , the influence on the 2-inch proof stress and impact value was investigated. The results are shown in Figure 2. From the figure, the 0.2 inch proof stress gradually increases as the carbon content increases, but the impact value increases as the carbon content increases, θ, /! It can be seen that when it exceeds f%, it decreases rapidly.

次に本発明部材の成分組成を限定する理由を説明する。Next, the reason for limiting the component composition of the member of the present invention will be explained.

炭素は強力なオーステナイト生成元素であると同時にオ
ーステナイトマトリックスの強化作用を著しく高くする
元素であるが、θ、15係 より多いと熱間加工中粒界
に炭化物が多量に析出し靭性を著しく損なうので、炭素
はθ、is% 以下にする必閥がある。
Carbon is a strong austenite-forming element and at the same time is an element that significantly enhances the strengthening effect of the austenite matrix. However, if the θ coefficient exceeds 15, a large amount of carbide will precipitate at grain boundaries during hot working, significantly impairing toughness. , carbon must be kept below θ,is%.

珪素は有効な脱酸剤で製鋼作業に不可欠の成分であり、
/係程度は通常必要とされる。また珪素はフェライト生
成元素であり、オーステナイトマトリックスの強化に有
効である。珪素が2.0%よシ多いと製造時にキズ、割
れを生じゃすく2またδフェライトを生成して透磁率が
上昇し非磁性を劣化させる。また製鋼作業上、珪素を0
. /優未満にすることは工業的にメリットがない。し
たがって適量は0./〜コ。ocI)の範囲内とした。
Silicon is an effective deoxidizer and an essential component in steelmaking operations.
/ degree is usually required. Furthermore, silicon is a ferrite-forming element and is effective in strengthening the austenite matrix. If the silicon content is more than 2.0%, it will cause scratches and cracks during manufacturing, and it will also produce δ ferrite, which increases magnetic permeability and deteriorates non-magnetism. In addition, during steelmaking work, silicon is
.. / There is no industrial advantage in making it less than excellent. Therefore, the appropriate amount is 0. /~Ko. ocI).

マンガンはオーステナイト生成元素であり、かつ窒素の
溶解度を著しく増加させる。Ni  含有量とのバラン
スでオーステナイト単相にするためには7.θφ以上必
要であるためマンガンの下限を7.0係以上とした。し
かし7g、θ係 を超えて含有すると熱間加工性が著し
く悪くなるので、マンガン含有量を7.0〜/g、o’
Aの範囲内に限定した。
Manganese is an austenite-forming element and significantly increases the solubility of nitrogen. 7. To make the austenite single phase in balance with the Ni content. Since θφ or more is required, the lower limit of manganese is set to 7.0 or more. However, if the manganese content exceeds 7.0 g/g, o'
Limited to the range of A.

ニッケルは0.N、Mnとともにオーステナイトを安定
化する元素であり、安定なオーステナイト相を得るには
最低O,S%以上は必要である。N1が乙、Oチを超え
ると部材を高価なものとし、その上強度が低下して好1
しくない。したがってニッケル含有量はO,S〜乙。0
 % +/) 範囲内に限定した。
Nickel is 0. It is an element that stabilizes austenite together with N and Mn, and in order to obtain a stable austenite phase, a minimum content of O and S% or more is required. If N1 exceeds Ochi or Ochi, the material becomes expensive and its strength decreases, making it unsuitable.
It's not right. Therefore, the nickel content is O, S ~ B. 0
% +/) limited within the range.

クロムは耐食性を維持するための基本成分であると同時
に、フェライト生成元素として作用する。
Chromium is a basic component for maintaining corrosion resistance, and at the same time acts as a ferrite-forming element.

またマンガンと同様に窒素溶解度を著しく増加させる。Also, like manganese, it significantly increases nitrogen solubility.

クロムが/!;、0%未満であると耐食性が著しく劣化
する。窒素溶解度を増すためにクロム量は多いほどよい
が、24.0 %  を超えて含有するとオーステナイ
ト単相組織とならずフェライトとの混合組織となり、透
磁率の上昇および熱間加工性の劣化をまねく。したがっ
てクロムは75.0〜26.0係の範囲内とした。
Chrome/! ; If it is less than 0%, corrosion resistance will be significantly deteriorated. In order to increase nitrogen solubility, the higher the amount of chromium, the better; however, if the content exceeds 24.0%, the structure will not be a single-phase austenite structure but a mixed structure with ferrite, leading to an increase in magnetic permeability and deterioration of hot workability. . Therefore, chromium was set within the range of 75.0 to 26.0.

モリブデンはフェライト生成元素として作用し、オ・−
ステナイト単相を得るには有害な元素である。
Molybdenum acts as a ferrite-forming element, and
It is a harmful element to obtain a single phase of stenite.

1−かしモリブデンがマトリックス中に固溶する範囲内
であればマトリックスの強化、靭性の改善および耐食性
に有効であり、0.5係以上は必要である。xi、os
を超えて含有するとフェライトを生成させオーステナイ
ト単相が得にくくな9、壕だ価格が高くなり経済的な面
から不利であるので、モリブデン含有量はO,S〜11
.o%の範囲内に限定した。
If the 1-butymolybdenum is within the range of solid solution in the matrix, it is effective for strengthening the matrix, improving toughness, and corrosion resistance, and a coefficient of 0.5 or more is necessary. xi, os
If the molybdenum content exceeds O,S~11, it will generate ferrite and make it difficult to obtain a single phase of austenite.
.. It was limited within the range of 0%.

窒素は炭素と同様に強力なオーステナイト生成元素であ
り、かつ著しい強化作用をもっているか炭素と異なシ熱
間加工中粒界に窒化物として多量に析出せず、靭性を損
なわずに高強度化を可能にする元素である。0.2’l
r未満では材料強度の向上が期待できないので下限を0
.2%以上とした。またO0乙係を超えて含有するとし
ばしばブローホールを生じ健全な鋼塊が得られないので
窒素含有量は0.2〜0.4%の範囲内に限定した。
Like carbon, nitrogen is a strong austenite-forming element, and unlike carbon, it does not precipitate in large amounts as nitrides at the grain boundaries during hot working, making it possible to increase strength without compromising toughness. It is an element that makes 0.2'l
If it is less than r, no improvement in material strength can be expected, so the lower limit is set to 0.
.. 2% or more. Further, if the nitrogen content exceeds O0, blowholes often occur and a sound steel ingot cannot be obtained, so the nitrogen content was limited to a range of 0.2 to 0.4%.

銅はオーステナイト生成元素として作用しオーステナイ
ト単相を得るのに有効な元素であり、かつオーステナイ
トマトリックスを強化する。またオーステナイト中への
窒素溶解度の増加2よび耐食性の向上に寄与する作用が
ある。o、7%未満ではその効果が少ないので0. /
%以上に限定した。
Copper acts as an austenite-forming element, is an effective element for obtaining an austenite single phase, and also strengthens the austenite matrix. It also has the effect of contributing to increasing nitrogen solubility in austenite2 and improving corrosion resistance. o. If it is less than 7%, the effect is small, so 0. /
% or more.

しかし、コ、θ係を超えて含有すると高温での粒界脆化
が促進され熱間加工性を著し9く害する。したがって銅
含有量は0.7〜ツ。0%の範囲内に限定した。
However, if it is contained in an amount exceeding the θ coefficient, grain boundary embrittlement will be promoted at high temperatures, and hot workability will be significantly impaired. Therefore, the copper content is 0.7~T. It was limited to within the range of 0%.

ニオブは強力な炭化物生成元素であるがフェライト生成
元素としても作用する。マ牛微細な炭化物、窒化物とな
って結晶粒を微細化し材料強度を向上させる。o、o3
% 未満ではその効果が少なく、0.3チを超えて含有
すると材料価格が高くなる°だけてなく材料強度への寄
与が小さくなる。したがってニオブ含有量は0003〜
O03% の範囲内に限定した。
Niobium is a strong carbide-forming element, but also acts as a ferrite-forming element. It becomes fine carbides and nitrides, making the crystal grains finer and improving the strength of the material. o, o3
If the content is less than 0.3%, the effect will be small, and if the content exceeds 0.3%, not only will the cost of the material increase, but the contribution to the strength of the material will be reduced. Therefore, the niobium content is 0003 ~
It was limited to within the range of O03%.

ジルコニウム、バナジウム、チタン、タンタル。Zirconium, vanadium, titanium, tantalum.

アルミニウムは結晶粒を微細化し、材料強度の向上に大
きく寄与する元素である。0.3%を超えて含有すると
ニオブと同様に材料強度への寄与が小さくなり高価にな
るので、ジルコニウム、バナジウム、チタン、タンタル
、アルミニウムの内から選ばれるいずれか/種貰たは2
種以上0.3係以下とした。
Aluminum is an element that refines crystal grains and greatly contributes to improving material strength. If the content exceeds 0.3%, like niobium, the contribution to the material strength will be small and it will become expensive, so one selected from zirconium, vanadium, titanium, tantalum, and aluminum should be used.
The ratio was set to 0.3 or less.

以上述べたように、本発明部材は特許請求の範囲に記載
しであるごとく、本発明の目的、すなわち0.2%耐力
go kg / m−以上、シャルピー衝撃値g ki
i’ m/crrL2以上、透磁率/、1以下を満足す
る部材を提供しうるものであり、本発明部材は、海中探
索船搭載機器用高強度部材として最適であることを新規
に知見した。
As described above, the members of the present invention meet the objectives of the present invention as described in the claims, that is, 0.2% proof stress go kg/m- or more, Charpy impact value g ki
It is possible to provide a member that satisfies i' m/crrL2 or more and magnetic permeability/, 1 or less, and it has been newly discovered that the member of the present invention is optimal as a high-strength member for equipment mounted on an underwater exploration vessel.

また本発明部材は高力非磁性部材であることから、リニ
アモーターカーの軌道用構造材1発電機の保持リング、
核融合炉実験装置用構造材、および超電導マグネット蓄
電設備、 MHD発電設備および超電導発電機等の構造
材としても利用することができる。
In addition, since the member of the present invention is a high-strength non-magnetic member, it can be used as a retaining ring for a generator,
It can also be used as a structural material for fusion reactor experimental equipment, superconducting magnet power storage equipment, MHD power generation equipment, superconducting generators, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2.3図はそれぞれ本発明部材/、7゜2’lの
熱間鍛造仕上温度と0.2’lr耐力、引張強さ。 衝撃値との関係を示す図、第4図は熱間加工仕上温度9
30°C9圧下率70チの処理を施した200r −1
5Mn −II Ni−2Mo −0,,2V −0,
A N鋼の炭素含有量とO,コ係耐力、衝撃値との関係
を示す図である。 特許出願人 日本冶金工業株式会社 三菱重工業株式会社 代理人弁理士 村  1)  政  治第2図 %Jl懺利ン4、(tJjQ(”C) 演素量(・l。)
Figures 1 and 2.3 show the hot forging finishing temperature of 7°2'l, proof stress and tensile strength of 0.2'lr, respectively, of the members of the present invention. A diagram showing the relationship with impact value, Figure 4 shows hot working finishing temperature 9
200r-1 treated at 30°C9 rolling reduction rate of 70 inches
5Mn-II Ni-2Mo-0,,2V-0,
FIG. 2 is a diagram showing the relationship between carbon content, O, C proof stress, and impact value of AN steel. Patent applicant Nippon Yakin Kogyo Co., Ltd. Mitsubishi Heavy Industries Co., Ltd. Patent attorney Mura 1) Politics Figure 2 % Jl Kirin 4, (tJjQ(”C) Element amount (・l.)

Claims (1)

【特許請求の範囲】 LO:17.#チ以下、Si:O,/−2.θ%。 Mn : 7.0〜/g、0%、 Ni : 0゜5〜
6.0%。 Cr ; /!;、 0〜21..0%、Mo:θ。5
− lI、 0 % 。 N : 0.2〜o、b%を含み、残部実質的にFθよ
りなり、圧下率so efo以上の熱間加工を施し、前
記熱間加工の仕上温度をgoθ℃〜lOθO℃としてな
る海中探索船搭載機器用高強度部材。 zcHo、/s%以下、 Eli : 0. / 〜:
t、 0 % 。 Mn ; 7.0〜/LO% 、 Ni : 0.!r
 〜6.0%。 Or ; /!;、0−2A、0 %、 MO: 0.
!;−’1.0 係。 N:0.2〜0.6%を含み、かつ下記(イ)〜(ハ)
の中から選ばれるいずれか1種筐たは2種以上を含み、
残部実質的にF’sよりなり圧丁率諏チ以上の熱間加工
を施し、前記熱間加工の仕上温度f:g000Q −/
θθO℃としてなる海中探索船搭載機器用高強度部材。 (イ)  Cu : O,/〜コ、Oチ(ロ)   N
b:0.03 〜0.3  係(ハ) Zr、V、Ta
・T↓、Atの内から選ばれるいずれか1種又は2種以
上0.3チ以F
[Claims] LO:17. #chi and below, Si:O, /-2. θ%. Mn: 7.0~/g, 0%, Ni: 0°5~
6.0%. Cr; /! ;, 0-21. .. 0%, Mo:θ. 5
−lI, 0%. N: Contains 0.2 to o, b%, the remainder is substantially Fθ, and is subjected to hot working at a reduction rate of so efo or more, and the finishing temperature of the hot working is goθ°C to lOθO°C. High-strength components for ship-mounted equipment. zcHo, /s% or less, Eli: 0. / ~:
t, 0%. Mn: 7.0~/LO%, Ni: 0. ! r
~6.0%. Or; /! ;, 0-2A, 0%, MO: 0.
! ;-'1.0 Person in charge. N: Contains 0.2 to 0.6%, and the following (a) to (c)
Including one or more types of cabinets selected from the following,
The remaining portion is substantially F's and is subjected to hot working at a cutting rate of Suzuchi or higher, and the finishing temperature of the hot working is f: g000Q −/
A high-strength member for equipment mounted on an underwater exploration vessel that has a temperature of θθO℃. (a) Cu: O, /~ko, Ochi (b) N
b: 0.03 to 0.3 (c) Zr, V, Ta
・One or more types selected from T↓, At, 0.3 cm or more F
JP7929883A 1983-05-09 1983-05-09 High strength member for machinery mounted on board submarine searching ship Pending JPS59205452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7929883A JPS59205452A (en) 1983-05-09 1983-05-09 High strength member for machinery mounted on board submarine searching ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7929883A JPS59205452A (en) 1983-05-09 1983-05-09 High strength member for machinery mounted on board submarine searching ship

Publications (1)

Publication Number Publication Date
JPS59205452A true JPS59205452A (en) 1984-11-21

Family

ID=13685934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7929883A Pending JPS59205452A (en) 1983-05-09 1983-05-09 High strength member for machinery mounted on board submarine searching ship

Country Status (1)

Country Link
JP (1) JPS59205452A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270356A (en) * 1985-05-24 1986-11-29 Kobe Steel Ltd Austenitic stainless steels plate having high strength and high toughness at very low temperature
JPS6455332A (en) * 1987-08-26 1989-03-02 Japan Casting Forging Corp Manufacture of high toughness and high strength nonmagnetic steel
EP2248919A1 (en) 2009-04-27 2010-11-10 Daido Tokushuko Kabushiki Kaisha High corrosion-resistant, high-strength and non-magnetic stainless steel, high corrosion-resistant, high-strength and non-magnetic stainless steel product and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270356A (en) * 1985-05-24 1986-11-29 Kobe Steel Ltd Austenitic stainless steels plate having high strength and high toughness at very low temperature
JPS6455332A (en) * 1987-08-26 1989-03-02 Japan Casting Forging Corp Manufacture of high toughness and high strength nonmagnetic steel
EP2248919A1 (en) 2009-04-27 2010-11-10 Daido Tokushuko Kabushiki Kaisha High corrosion-resistant, high-strength and non-magnetic stainless steel, high corrosion-resistant, high-strength and non-magnetic stainless steel product and method for producing the same

Similar Documents

Publication Publication Date Title
US4765953A (en) High nitrogen containing duplex stainless steel having high corrosion resistance and good structure stability
EP2248919B1 (en) High corrosion-resistant, high-strength and non-magnetic stainless steel
US5000801A (en) Wrought stainless steel having good corrosion resistance and a good resistance to corrosion in seawater
JP2014114466A (en) Cladding material of duplex stainless clad steel having excellent pitting-corrosion resistance, duplex stainless clad steel using the same, and method for producing the same
US3865644A (en) High strength, corrosion resistant, austenite-ferrite stainless steel
US4162930A (en) Austenitic stainless steel having excellent resistance to intergranular and transgranular stress corrosion cracking
US5275893A (en) Line pipe having good corrosion-resistance and weldability
JP2006241590A (en) Austenitic stainless steel hot rolled steel having satisfactory corrosion resistance, proof stress and low temperature toughness and its production method
JPS59205452A (en) High strength member for machinery mounted on board submarine searching ship
US4101347A (en) Ferrite-austenite stainless steel castings having an improved erosion-corrosion resistance
JPH09302446A (en) Duplex stainless steel
US3594158A (en) Strong,tough,corrosion resistant maraging steel
JPH0121845B2 (en)
JPH0215148A (en) High mn nonmagnetic steel having excellent corrosion resistance
JPH0770700A (en) High proof stress and high corrosion resistant austenitic stainless cast steel
GB1566204A (en) Tough ferritic steels and the use thereof for metal articles more particularly welded structures
WO1984001175A1 (en) Abrasion wear resistant steel
JP2712702B2 (en) Steel for pressure vessels
JP3531351B2 (en) Welded structure and method of manufacturing the same
JP3194207B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JPS589962A (en) High-strength stainless steel with superior intergranular corrosion cracking resistance and workability
JP2000309857A (en) Stainless steel
JP2790749B2 (en) Duplex stainless steel with excellent drill and bite workability
Sinigaglia et al. New stainless steels for sea‐water applications. Part II: Comparison of corrosion and mechanical properties of laboratory and commercial ELI ferritic and superaustenitic stainless steels
GB2099456A (en) High mn-cr non-magnetic steel alloy