JP2006241590A - Austenitic stainless steel hot rolled steel having satisfactory corrosion resistance, proof stress and low temperature toughness and its production method - Google Patents

Austenitic stainless steel hot rolled steel having satisfactory corrosion resistance, proof stress and low temperature toughness and its production method Download PDF

Info

Publication number
JP2006241590A
JP2006241590A JP2006012569A JP2006012569A JP2006241590A JP 2006241590 A JP2006241590 A JP 2006241590A JP 2006012569 A JP2006012569 A JP 2006012569A JP 2006012569 A JP2006012569 A JP 2006012569A JP 2006241590 A JP2006241590 A JP 2006241590A
Authority
JP
Japan
Prior art keywords
austenitic stainless
rolled steel
corrosion resistance
steel material
proof stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006012569A
Other languages
Japanese (ja)
Other versions
JP4754362B2 (en
Inventor
Yusuke Oikawa
雄介 及川
Shinji Tsuge
信二 柘植
Shigeo Fukumoto
成雄 福元
Kazuhiro Suetsugu
和広 末次
Akira Matsuhashi
亮 松橋
Hiroshige Inoue
裕滋 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2006012569A priority Critical patent/JP4754362B2/en
Priority to US11/343,516 priority patent/US20060243356A1/en
Publication of JP2006241590A publication Critical patent/JP2006241590A/en
Priority to US12/391,045 priority patent/US8105447B2/en
Application granted granted Critical
Publication of JP4754362B2 publication Critical patent/JP4754362B2/en
Priority to US13/349,866 priority patent/US8506729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an austenitic stainless steel hot rolled steel having more satisfactory seawater resistance and higher strength than those of the conventional steel while securing low temperature toughness required for a structural member, i.e., whose three characteristics of corrosion resistance, proof stress and low temperature toughness are all satisfactory. <P>SOLUTION: The austenitic stainless steel hot rolled steel satisfies the relations of PI=Cr+3.3(Mo+0.5W)+16N is 35 to 40, and δcal=2.9(Cr+0.3Si+Mo+0.5W)-2.6(Ni+0.3Mn+0.25Cu+32C+20N)-18 is -6 to +2, and has the characteristics that 0.2% proof stress at room temperature is ≥550MPa, Charpy impact value by a V notch test piece at -40°C is ≥100 J/cm<SP>2</SP>, and a pitting potential (Vc'100) measured in a deaerated 10% NaCl aqueous solution heated at 50°C is ≥500 mV (Vs saturated Ag/AgCl). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、海洋・湾岸環境、塩化物環境で使用される耐食性に優れた構造用ステンレス鋼材の製品に係わり、たとえば船体構造用としての外殻、隔壁、骨材、水中翼等の材料として使用するにあたり、耐海水性、低温靱性を有しつつ、高強度であるオーステナイト系ステンレス鋼の熱間圧延鋼材およびその製造方法に関するものである。   The present invention relates to a structural stainless steel product with excellent corrosion resistance that is used in marine / gulf environments and chloride environments. For example, it is used as a material for outer shells, bulkheads, aggregates, hydrofoils, etc. for hull structures. In doing so, the present invention relates to a hot-rolled steel material of high-strength austenitic stainless steel having seawater resistance and low-temperature toughness, and a method for producing the same.

従来、船体構造用には重防食を施した塗装鋼板が使用されてきた。過去に水中翼等を備えた高速船の需要が増加しており、この用途では高速の海水流が接するため、塗装を要しない耐海水性の優れた材料が要求されている。さらに船体重量を軽減するため高強度の材料が望まれる。   Conventionally, coated steel plates with heavy anticorrosion have been used for hull structures. In the past, demand for high-speed ships equipped with hydrofoil has increased. In this application, high-speed seawater flow is in contact, and therefore, materials with excellent seawater resistance that do not require painting are required. Further, a high-strength material is desired in order to reduce the hull weight.

耐海水性の優れた材料としてオーステナイト系ステンレス鋼が有望であるが、通常の製造方法では熱間圧延後溶体化焼鈍を施すため軟質化し、耐力はせいぜい400MPaである。   Austenitic stainless steel is promising as a material with excellent seawater resistance, but in a normal production method, it is softened because it is subjected to solution annealing after hot rolling, and the yield strength is at most 400 MPa.

強度アップするためには溶体化焼鈍を省略しかつ特定の温度条件で熱間加工することにより実現可能であり、過去の知見も多数ある(特許文献1〜3)。そのうち特許文献2では低温靱性を維持しつつ高耐力のオーステナイト系ステンレス鋼の製造方法が示されているが、当該鋼は耐海水性は考慮していない。特許文献3では、0.3%以上のN添加、0.5〜3.0%のMo添加鋼を特定の条件で加工熱処理することにより、耐力が500MPa以上の高強度かつ耐海水性に優れたオーステナイト系ステンレス鋼の製造技術を開示しているが、靱性についての規定は無い。   In order to increase the strength, it can be realized by omitting solution annealing and hot working under a specific temperature condition, and there are many past findings (Patent Documents 1 to 3). Among them, Patent Document 2 discloses a method for producing a high-strength austenitic stainless steel while maintaining low-temperature toughness, but the steel does not consider seawater resistance. In Patent Literature 3, 0.3% or more of N-added steel and 0.5 to 3.0% Mo-added steel are heat-treated under specific conditions, so that the yield strength is 500 MPa or more and excellent in seawater resistance. Although a manufacturing technique for austenitic stainless steel is disclosed, there is no provision for toughness.

耐海水性を高める元素としてはCr、Mo、Nがあり、孔食指数としてPI=Cr+3.3(Mo+0.5W)+16N といった数式により鋼種の耐食順位が整理される。特許文献3の実施例で示された成分のPI値を計算すると最小の場合は約32であるが、より高PI値(35以上)を満たすステンレス鋼として、オーステナイト系ではNiを23%以上含有するSUS836L、890L、二相系ではNiを5.5〜7.5%含有するSUS329J4L等がある。   Elements that enhance seawater resistance include Cr, Mo, and N, and the corrosion resistance order of the steel types is arranged by a mathematical formula such as PI = Cr + 3.3 (Mo + 0.5W) + 16N as a pitting corrosion index. When the PI value of the component shown in the example of Patent Document 3 is calculated, the minimum value is about 32. However, as a stainless steel satisfying a higher PI value (35 or more), the austenite series contains 23% or more of Ni. SUS836L, 890L, and SUS329J4L containing 5.5 to 7.5% Ni in a two-phase system.

二相系のSUS329J4Lはフェライト相を含有するために高耐力である。近年Mo、Wを増量したスーパー二相と呼ばれる二相ステンレス鋼も開発され、高強度・高耐食材として適用がはじまっている。一方、オーステナイト系の高耐食ステンレス鋼の高強度鋼材としてはPI値が35を越えるものはいまだ実用化されていないのが実状である。   Two-phase SUS329J4L has a high yield strength because it contains a ferrite phase. In recent years, a duplex stainless steel called super duplex with increased amounts of Mo and W has been developed, and its application has started as a high strength and high corrosion resistance material. On the other hand, as a high-strength steel material of austenitic high corrosion-resistant stainless steel, those having a PI value exceeding 35 have not been put into practical use yet.

特開昭60−208459号公報JP 60-208459 A 特開平2−97649号公報Japanese Patent Laid-Open No. 2-97649 特開平4−6214号公報Japanese Patent Laid-Open No. 4-6214

ステンレス鋼はすき間形状となる場合すき間腐食を生じ、平板部より激しい腐食を生じる。そのため、船体構造用として汎用かつメンテフリー狙いで使用するためには特許文献3に示す鋼材より上位の高耐食鋼材の開発が求められた。   Stainless steel causes crevice corrosion when it has a crevice shape, and more severe corrosion than a flat plate portion. Therefore, in order to use it for general purpose and maintenance-free as a hull structure, development of a high corrosion resistance steel material higher than the steel material shown in Patent Document 3 has been required.

一方、岩礁への座礁や船舶同士の衝突事故に対し信頼性のあるステンレス鋼材への要望が高まりつつある。鋼材の信頼性としては母材の特性と溶接性の両者となる。母材の信頼性としては、衝突事故に備えて高い靭性が要求される。耐食性を向上させるCr、Mo、NのうちMo、Crについては、単に添加しただけでは鋳片鋼片中のデルタフェライトの影響で熱間加工性が大幅に低下する上、高Cr、Mo鋼の場合一般にσ相と呼ばれる金属間化合物の影響により靱性が大幅に悪化し、両者の影響を除くため大量にNiを含有させる必要がある。しかしながら昨今のNi、Mo原料価格の高騰を考えると殊更に省資源・低コスト型の高耐食ステンレス鋼の開発が望まれる。なお、二相鋼については低温靱性の点から採用することは出来ない。   On the other hand, there is a growing demand for reliable stainless steel materials for reef groundings and collisions between ships. The reliability of the steel material is both the characteristics of the base material and the weldability. As the reliability of the base material, high toughness is required in preparation for a collision accident. Of Cr, Mo, and N that improve corrosion resistance, the addition of Mo and Cr will greatly reduce the hot workability due to the effect of delta ferrite in the slab steel slab, as well as high Cr and Mo steel. In some cases, the toughness is greatly deteriorated by the influence of an intermetallic compound generally called σ phase, and it is necessary to contain a large amount of Ni in order to eliminate the influence of both. However, considering the recent rise in Ni and Mo raw material prices, development of resource-saving, low-cost, high-corrosion resistant stainless steel is desired. In addition, it cannot be adopted from the point of low temperature toughness about the duplex stainless steel.

一方、特許文献3が開示するようなNの添加については、確かに強度を確保する点では有効であるが、過剰なNの添加は溶接部に気泡を生じやすく、逆に溶接部の接合強度や信頼性を低下させることがある。   On the other hand, the addition of N as disclosed in Patent Document 3 is effective in terms of ensuring the strength, but excessive addition of N tends to cause bubbles in the weld, and conversely the joint strength of the weld. And may reduce reliability.

本発明の目的は高速船の構造用部材で要求される低温靱性を確保しつつ、従来鋼より耐海水性良好で、かつ高強度である。即ち耐食性、耐力、低温靱性の三特性全てが良好なオーステナイト系ステンレス鋼熱間圧延鋼材を実現することである。   The object of the present invention is to have better seawater resistance and higher strength than conventional steel while ensuring low temperature toughness required for structural members of high-speed ships. That is, it is to realize an austenitic stainless steel hot-rolled steel material having excellent corrosion resistance, proof stress, and low temperature toughness.

本発明者らは溶接性の観点からN量が0.35%以下でかつPI値を35以上と出来るオーステナイト系の成分系について、鋳造、熱間加工、熱処理によって得られる厚鋼板の強度、靭性、耐食性を調査した。特に靭性についてはNi含有量のみで整理されるものではなく、鋼材中に含まれるCr、Mo含有量が高い金属間化合物の含有率が靭性を支配していることを知見した。このような金属組織の形成は鋼の凝固より始まる上、熱間圧延におけるどの工程においても生じる可能性がある。そこで凝固組織に及ぼす化学組成の影響より調査を始め、さらに鋳鋼の粗圧延、均質化熱処理、熱間加工、熱処理条件についての影響を調査した。その結果、従来技術の問題点を克服し、耐食性、強靱性、高強度および熱間加工性に優れるオーステナイト系ステンレス鋼材を得るための成分元素含有量と凝固組織の限定、鋼材の金属組織の限定を行い、またその鋼材を製造するために有効な製造方法を見いだしたのである。   From the viewpoint of weldability, the inventors of the present invention have the strength and toughness of a thick steel plate obtained by casting, hot working, and heat treatment for an austenitic component system having an N amount of 0.35% or less and a PI value of 35 or more. The corrosion resistance was investigated. In particular, the toughness is not limited only by the Ni content, but it has been found that the content of the intermetallic compounds having a high Cr and Mo content in the steel material controls the toughness. The formation of such a metal structure starts from solidification of steel and can occur in any process in hot rolling. Therefore, investigation was started from the influence of chemical composition on the solidification structure, and the influence on rough rolling, homogenization heat treatment, hot working, and heat treatment conditions of cast steel was also investigated. As a result, overcoming the problems of the prior art, limiting the content of constituent elements and solidification structure to obtain austenitic stainless steel with excellent corrosion resistance, toughness, high strength and hot workability, limiting the metal structure of the steel And found an effective manufacturing method for manufacturing the steel material.

本発明の要旨とするところは以下の通りである。
即ち、質量%にてC:0.001〜0.03%
Si:0.1〜1.5%
Mn:0.1〜3.0%
P:0.005〜0.05%
S:0.0001〜0.003%
Ni:15.0〜21.0%
Cr:22.0〜28.0%
Mo:1.5〜3.5%
N :0.15〜0.35%
O :0.0005〜0.007%を含有し、
残部がFeおよび不可避的不純物からなり、
室温における0.2%耐力が550MPa以上、
−40℃におけるVノッチ試験片によるシャルピー衝撃値が100J/cm2以上、
50℃の脱気10%NaCl水溶液中で測定した孔食電位(Vc’100)が500mV(vs 飽和Ag/AgCl)以上
の特性を持つオーステナイト系ステンレス熱間圧延鋼材である。
The gist of the present invention is as follows.
That is, in mass% C: 0.001 to 0.03%
Si: 0.1 to 1.5%
Mn: 0.1 to 3.0%
P: 0.005 to 0.05%
S: 0.0001 to 0.003%
Ni: 15.0-21.0%
Cr: 22.0-28.0%
Mo: 1.5-3.5%
N: 0.15-0.35%
O: 0.0005 to 0.007% is contained,
The balance consists of Fe and inevitable impurities,
0.2% proof stress at room temperature is 550 MPa or more,
Charpy impact value by V notch test piece at −40 ° C. is 100 J / cm 2 or more,
This is an austenitic stainless hot-rolled steel material having a pitting corrosion potential (Vc′100) measured in a degassed 10% NaCl aqueous solution at 50 ° C. of 500 mV (vs saturated Ag / AgCl) or more.

下記の成分あるいは金属組織の規定により、上記特性を有する鋼材を得ることが出来る。
(1)式で表されるPI値が35〜40、(2)式で表されるδcal値が−6〜+2の関係を満たし、更に鋼材に含まれる金属間化合物の含有率が0.5%以下
PI=Cr+3.3(Mo+0.5W)+16N・・・・・・・・・・(1)
δcal =2.9(Cr+0.3Si+Mo+0.5W)
−2.6(Ni+0.3Mn+0.25Cu+32C+20N)−18
・・・・・・・・・・・・(2)
The steel material which has the said characteristic can be obtained by prescription | regulation of the following component or metal structure.
The PI value represented by the formula (1) satisfies the relationship of 35 to 40 and the δcal value represented by the formula (2) satisfies -6 to +2, and the content of the intermetallic compound contained in the steel material is 0.5. % Or less PI = Cr + 3.3 (Mo + 0.5W) + 16N (1)
δcal = 2.9 (Cr + 0.3Si + Mo + 0.5W)
-2.6 (Ni + 0.3Mn + 0.25Cu + 32C + 20N) -18
.... (2)

これに加え、下記の合金元素を含有することが出来る。
1)質量%でW:0.3〜3.0%、Al:0.005〜0.1%の1種または2種
2)質量%でCu:0.3〜2.0%、Sn:0.1%以下の1種または2種以上
3)質量%でCa:0.0005〜0.0050%、Mg:0.0005〜0.0050%、REM:0.005〜0.10%の1種または2種以上で、
(3)式で表されるPV値が0以下
PV=S+O−0.8Ca−0.3Mg−0.3REM−30・・・・(3)
4)質量%でB:0.0003〜0.0060%
5)質量%でTi:0.003〜0.03%、Nb:0.02〜0.20%、Zr:0.003〜0.03%、V:0.05〜0.5%、Ta:0.01〜0.1%の1種または2種以上
In addition to this, the following alloy elements can be contained.
1) 1% or 2 types of W: 0.3 to 3.0%, Al: 0.005 to 0.1% in mass% 2) Cu: 0.3 to 2.0% in mass%, Sn: 0.1% or less of 1 type or 2 types or more 3) By mass%, Ca: 0.0005-0.0050%, Mg: 0.0005-0.0050%, REM: 0.005-0.10% One or more,
(3) PV value represented by the formula is 0 or less PV = S + O-0.8Ca-0.3Mg-0.3REM-30 (3)
4) B in mass%: 0.0003 to 0.0060%
5) By mass: Ti: 0.003-0.03%, Nb: 0.02-0.20%, Zr: 0.003-0.03%, V: 0.05-0.5%, Ta : 0.01-0.1% of 1 type or 2 types or more

製造法としては、鋳片もしくは鋼片に1200〜1300℃で1時間以上の均質化熱処理を加え、1100℃〜1300℃で再加熱し、圧延工程では850℃以上を保ち、かつ1050℃以上で50%以上、1050〜850℃で10%以上の圧下率で圧延し、圧延後800℃〜500℃の平均冷却速度が150℃/分以上であり、溶体化熱処理を行わない事が有効である。   As a production method, a homogenized heat treatment at 1200 to 1300 ° C. for 1 hour or more is added to a slab or steel slab, and reheated at 1100 ° C. to 1300 ° C. In the rolling process, 850 ° C. or more is maintained, and It is effective that rolling is performed at a reduction rate of 10% or more at 50% or more, 1050 to 850 ° C., and the average cooling rate of 800 ° C. to 500 ° C. is 150 ° C./min or more after rolling, and no solution heat treatment is performed .

本発明は、成分の限定を行い、特定の加工熱処理を行うことにより、耐海水性に優れ、耐力および低温靱性が良好なオーステナイトステンレス鋼を得ることが出来た。   In the present invention, austenitic stainless steel having excellent seawater resistance, proof stress and low temperature toughness was obtained by limiting the components and performing a specific heat treatment.

本発明は高速船の構造用部材に要求される耐海水性、耐力および低温靱性を全て高レベルで満足する船体構造に適したオーステナイトステンレス鋼を実現し、産業上寄与するところは極めて大である。   The present invention realizes austenitic stainless steel suitable for a hull structure that satisfies all the seawater resistance, proof stress and low-temperature toughness required for structural members of high-speed ships, and has a significant industrial contribution. .

以下に、先ず、本発明の請求項1記載の限定理由について説明する。   Below, the reason for limitation of Claim 1 of this invention is demonstrated first.

まず、船舶構造用材として有用な特性について規定する。   First, characteristics useful as ship structural materials are defined.

耐食性については、海水中で重防食塗装無しでも耐える事が必要であり、それを満たす必要特性について検討したところ、以下の通りであった。   As for corrosion resistance, it is necessary to endure in seawater without heavy anti-corrosion coating.

即ち、通常の孔食電位は30℃−3.5%NaCl中で測定するが、熱帯地方での耐海水性を考えると水温50℃となることも多々あり、またすき間構造内では海水濃度の3.5%NaClより塩分が濃縮することも多く、結局、脱気した50℃−10%NaCl水溶液中で孔食電位(Vc’100)を測定し、この電位が500mV以上であれば実用上問題ないことが判明した。なお、参照電極は飽和Ag/AgClを用いた。   That is, the normal pitting potential is measured in 30 ° C-3.5% NaCl, but considering the seawater resistance in the tropics, the water temperature is often 50 ° C. In many cases, the salinity is concentrated from 3.5% NaCl. Eventually, the pitting corrosion potential (Vc′100) is measured in a degassed 50 ° C.-10% NaCl aqueous solution, and if this potential is 500 mV or more, it is practical. It turns out that there is no problem. In addition, saturated Ag / AgCl was used for the reference electrode.

耐衝撃性については、逆に寒冷地で問題となることから−40℃において、一般に船舶で問題が起こらないとされているシャルピー衝撃値100J/cm2以上を満たすこととした。 Concerning impact resistance, conversely, it becomes a problem in cold regions, and at -40 ° C., Charpy impact value of 100 J / cm 2 or more, which is generally considered not to cause problems in ships, is satisfied.

強度については、軽量化のため、耐力が高ければ高いほど良いが、本発明では、上記耐食性、耐衝撃性を満足した上で、室温における0.2%耐力が550MPa以上の高強度となる鋼材を提供出来る。   As for strength, the higher the yield strength, the better for weight reduction. However, in the present invention, the steel material that has a 0.2% yield strength at room temperature of 550 MPa or more after satisfying the above corrosion resistance and impact resistance. Can be provided.

次に本発明において成分を限定した理由を説明する。   Next, the reason why the components are limited in the present invention will be described.

Cは、ステンレス鋼の耐食性を確保するために、0.03%以下の含有量に制限する。0.03%を越えて含有させるとCr炭化物が生成して、耐食性、靱性が劣化する。ただ、極端に低減することは精練コスト高となるために下限を0.001%とした。好ましくは、0.01〜0.03%である。   C limits the content to 0.03% or less in order to ensure the corrosion resistance of the stainless steel. If the content exceeds 0.03%, Cr carbide is produced and the corrosion resistance and toughness deteriorate. However, since extremely reducing increases the cost of scouring, the lower limit was made 0.001%. Preferably, it is 0.01 to 0.03%.

Siは、脱酸のため0.1%以上添加する。しかしながら、1.5%を超えて添加すると靱性が劣化する。そのため、上限を1.5%に限定する。好ましい範囲は、0.2〜1.0%である。   Si is added in an amount of 0.1% or more for deoxidation. However, if added over 1.5%, the toughness deteriorates. Therefore, the upper limit is limited to 1.5%. A preferable range is 0.2 to 1.0%.

Mnは、脱酸のため0.1%以上添加する。しかしながら、3.0%を超えて添加すると耐食性および靭性が劣化する。そのため、上限を3.0%に限定する。好ましい範囲は、0.2〜1.5%である。   Mn is added in an amount of 0.1% or more for deoxidation. However, if it exceeds 3.0%, corrosion resistance and toughness deteriorate. Therefore, the upper limit is limited to 3.0%. A preferable range is 0.2 to 1.5%.

Pは、熱間加工性および靱性を劣化させるため、0.05%以下に限定する。ただ、極端に低減することは精練コスト高となるために下限を0.005%とした。好ましくは0.01〜0.03%である。
Sは、熱間加工性、靱性および耐食性をも劣化させるため、0.003%以下に限定する。ただ、極端に低減することは精練コスト高となるために下限を0.0001%とした。好ましくは、0.0005〜0.001%である。
P is limited to 0.05% or less in order to deteriorate hot workability and toughness. However, since the excessive reduction leads to high scouring costs, the lower limit was made 0.005%. Preferably it is 0.01 to 0.03%.
S degrades hot workability, toughness, and corrosion resistance, so is limited to 0.003% or less. However, since extremely reducing increases the cost of scouring, the lower limit was made 0.0001%. Preferably, it is 0.0005 to 0.001%.

Niは、オーステナイト組織を安定させ、各種酸に対する耐食性、さらに靭性を改善するため15.0%以上含有させる。一方高価な合金であり、コストの観点より21.0%以下の含有量に制限する。   Ni is contained in an amount of 15.0% or more in order to stabilize the austenite structure and improve corrosion resistance to various acids and further toughness. On the other hand, it is an expensive alloy and is limited to a content of 21.0% or less from the viewpoint of cost.

Crは、基本的な耐食性を確保するため22.0%以上含有させる。一方28.0%を超えて含有させると金属間化合物が析出しやすくなり靭性を阻害する。このためCrの含有量を22.0%以上28.0%以下とした。   Cr is contained at 22.0% or more in order to ensure basic corrosion resistance. On the other hand, if the content exceeds 28.0%, intermetallic compounds are liable to precipitate and inhibit toughness. Therefore, the Cr content is set to 22.0% or more and 28.0% or less.

Moは、ステンレス鋼の耐食性を付加的に高める非常に有効な元素であり、本発明鋼では1.5%以上含有させる。一方非常に高価な元素であり、またCrとともに金属間化合物の析出を促進する元素であるためその上限を3.5%以下と規定する。望ましい含有量は2.0〜3.0%である。   Mo is a very effective element that additionally increases the corrosion resistance of stainless steel, and the steel of the present invention contains 1.5% or more. On the other hand, since it is an extremely expensive element and promotes the precipitation of intermetallic compounds together with Cr, the upper limit is defined as 3.5% or less. A desirable content is 2.0 to 3.0%.

Nは、オーステナイト相に固溶して強度、耐食性を高める有効な元素である。このために0.15%以上含有させる。母材に対しては本発明鋼で0.4%まで固溶させることは可能であるが溶接をおこなったときの気泡発生の感受性を高めるため、上限の含有量を0.35%と定めた。望ましくは0.30%以下である。   N is an effective element that improves the strength and corrosion resistance by dissolving in the austenite phase. For this reason, it is made to contain 0.15% or more. For the base metal, it is possible to make a solid solution up to 0.4% with the steel of the present invention, but in order to increase the sensitivity of bubble generation when welding is performed, the upper limit content was set to 0.35%. . Desirably, it is 0.30% or less.

Oは、非金属介在物の代表である酸化物を構成する重要な元素であり、過剰な含有は靭性を阻害し、他方で粗大なクラスター状酸化物が生成すると表面疵の原因となる。このためその含有量の上限を0.007%と定めた。また極端に低減することは精練コスト高となるために下限を0.0005%とした。好ましくは0.001〜0.004%である。   O is an important element that constitutes an oxide that is representative of non-metallic inclusions. Excessive inclusion inhibits toughness, and on the other hand, a coarse clustered oxide causes surface defects. For this reason, the upper limit of the content was set to 0.007%. In addition, since the excessive reduction increases the cost of scouring, the lower limit was made 0.0005%. Preferably it is 0.001 to 0.004%.

本発明の請求項2記載の限定理由について説明する。   The reason for limitation according to claim 2 of the present invention will be described.

前記式(1)で示されるPI値:孔食指数は、ステンレス鋼の塩化物環境に対する耐食性の指標であり、35以上とすることで必要な特性を得ることが出来た。40を越えるステンレス鋼はSUS836L等が存在するが、Ni含有量が24%以上で非常に高価となる。本発明ではコストに見合った耐食性を有するオーステナイト系ステンレス鋼を対象とするためPI値の上限を40と定めた。なお、Wを含有しない本発明においては、式(1)のWを0とする。   The PI value: pitting index represented by the above formula (1) is an index of corrosion resistance of stainless steel to the chloride environment, and by setting it to 35 or more, necessary characteristics could be obtained. SUS836L and the like exist in stainless steel exceeding 40, but the Ni content is 24% or more, and becomes very expensive. In the present invention, since the austenitic stainless steel having corrosion resistance commensurate with the cost is targeted, the upper limit of the PI value is set to 40. In the present invention not containing W, W in formula (1) is set to zero.

前記式(2)で示されるδcalは、オーステナイトステンレス鋼の凝固組織に現れるデルタフェライトの量を表わす指標であり、凝固割れ感受性を低減したり、組織を微細にするためには一般に0〜7%程度に制御されるものである。ところが本発明鋼のようにCr量が高い鋼においては、凝固組織中のデルタフェライトが熱間製造工程の間に金属間化合物に変化し、製品となる鋼材の中に残留し靭性を阻害する。このためデルタフェライトが少なくなるようにδcalの上限を+2に制限した。この値を超えると熱間製造工程に於ける工夫を凝らしても高い靭性を得ることが困難となる。一方δcalの小さい(マイナス)側はデルタフェライト量が実質的に0%となることを意味し、上記効果が飽和するばかりかNi量を過剰に高く含有させることになるので、コストの観点より−6を下限とした。好ましい範囲は−3〜+1である。なお、W若しくはCuを含有しない本発明においては、式(2)のW若しくはCuを0とする。   Δcal represented by the above formula (2) is an index representing the amount of delta ferrite appearing in the solidified structure of austenitic stainless steel, and is generally 0 to 7% in order to reduce the susceptibility to solidification cracking or make the structure finer. It is controlled to the extent. However, in a steel having a high Cr content such as the steel of the present invention, the delta ferrite in the solidified structure is changed to an intermetallic compound during the hot manufacturing process, and remains in the steel material as a product to inhibit toughness. Therefore, the upper limit of δcal is limited to +2 so that delta ferrite is reduced. If this value is exceeded, it will be difficult to obtain high toughness even if the device is devised in the hot manufacturing process. On the other hand, a small (minus) side of δcal means that the amount of delta ferrite is substantially 0%, and not only the above effect is saturated, but also an excessively high amount of Ni is contained. 6 was the lower limit. A preferred range is -3 to +1. In the present invention that does not contain W or Cu, W or Cu in formula (2) is set to zero.

鋼材に含まれる金属間化合物の含有率は、本発明に於けるオーステナイト系ステンレス鋼材の靭性を支配する重要な因子である。金属間化合物とはσ相、χ相と呼ばれるCr、MoあるいはWを主要な成分とする化合物のことである。この化合物の含有率はミクロ組織をアルカリ電解腐食し、400倍程度の光学顕微鏡観察により測定することができる。本発明者らは鋼材断面観察の平均値としてのこの含有率が0.5%を越えると鋼材のシャルピー吸収エネルギーが100J/cm2を下回ることを知見し、その上限を0.5%と定めた。 The content ratio of the intermetallic compound contained in the steel material is an important factor governing the toughness of the austenitic stainless steel material in the present invention. An intermetallic compound is a compound having Cr, Mo, or W as a main component, called σ phase or χ phase. The content of this compound can be measured by observing an optical microscope of about 400 times with alkaline electrolytic corrosion of the microstructure. The present inventors have found that the Charpy absorbed energy of the steel material is less than 100 J / cm 2 when the content ratio as an average value of the cross section observation of the steel material exceeds 0.5%, and the upper limit is set to 0.5%. It was.

本発明の請求項3記載の限定理由について説明する。   The reason for limitation according to claim 3 of the present invention will be described.

Wは、Moと同様にステンレス鋼の耐食性を付加的に向上させる元素であり、本発明鋼においてこの目的のために0.3〜3.0%を含有させることができる。   W, like Mo, is an element that additionally improves the corrosion resistance of stainless steel, and 0.3 to 3.0% can be contained in the steel of the present invention for this purpose.

Alは、鋼の脱酸のための重要な元素であり、鋼中の酸素を低減するために0.005%以上含有させる。一方でAlはNとの親和力が比較的大きな元素であり、過剰に添加するとAlNを生じてステンレス鋼の靭性を阻害する。その程度はN含有量にも依存するが、Alが0.1%を越えると靭性低下が著しくなるためその含有量の上限を0.1%と定めた。   Al is an important element for deoxidation of steel, and is contained in an amount of 0.005% or more in order to reduce oxygen in the steel. On the other hand, Al is an element having a relatively large affinity with N, and if added excessively, AlN is generated and inhibits the toughness of stainless steel. The degree depends on the N content, but when Al exceeds 0.1%, the toughness deteriorates remarkably, so the upper limit of the content is set to 0.1%.

本発明の請求項4記載の限定理由について説明する。   The reason for limitation according to claim 4 of the present invention will be described.

Cuは、ステンレス鋼の酸にたいする耐食性を付加的に高める元素であり、この目的のもと含有させることができる。その効果は0.3%以上添加することが好ましいが、2.0%を越えて含有させてもコストに見合った効果が飽和するので上限を2.0%とした。   Cu is an element that additionally increases the corrosion resistance of stainless steel to acids, and can be contained for this purpose. The effect is preferably 0.3% or more, but even if the content exceeds 2.0%, the effect corresponding to the cost is saturated, so the upper limit was made 2.0%.

Snも鋼の耐食性を向上させるが、過剰に添加すると熱間加工割れを生じるので上限を0.1%とした。Snの下限を0.005%とすると好ましい。   Sn also improves the corrosion resistance of the steel, but if added excessively, hot working cracks occur, so the upper limit was made 0.1%. The lower limit of Sn is preferably 0.005%.

本発明の請求項5記載の限定理由について説明する。   The reason for limitation according to claim 5 of the present invention will be described.

Ca、Mg、REMは、いずれも鋼の熱間加工性を改善する元素であり、その目的で1種または2種以上添加される。いずれも過剰な添加は逆に熱間加工性を低下するためその含有量の上下限を次のように定めた。CaとMgについては0.0005〜0.0050%、REMについては0.005〜0.10%である。ここでREMはLaやCe等のライタノイド系希土類元素の含有量の総和とする。   Ca, Mg, and REM are all elements that improve the hot workability of steel, and one or more of them are added for that purpose. In any case, excessive addition conversely decreases hot workability, so the upper and lower limits of the content were determined as follows. It is 0.0005 to 0.0050% for Ca and Mg, and 0.005 to 0.10% for REM. Here, REM is the total content of lanthanoid rare earth elements such as La and Ce.

更に、下記の(3)式で規定されるPV値は0以下とする。この式はSの存在分だけCa、Mg、REMを添加するための必要量を明確にしている式であり、0以下とすることで適正な添加により熱間加工性を更に向上させることが出来る。
PV=S+O−0.8Ca−0.3Mg−0.3REM−30・・・・(3)
Furthermore, the PV value defined by the following formula (3) is 0 or less. This formula clarifies the necessary amount for adding Ca, Mg, and REM by the amount of S, and by making it 0 or less, hot workability can be further improved by appropriate addition. .
PV = S + O-0.8Ca-0.3Mg-0.3REM-30 (3)

本発明の請求項6記載の限定理由について説明する。   The reason for limitation according to claim 6 of the present invention will be described.

Bは0.0003%以上添加することにより粒界強度を上げ熱間加工性を向上できる。但し、過剰の添加は過剰析出ホウ化物により却って熱間加工性を損ねるので上限を0.0060%とする。   B can increase the grain boundary strength and improve hot workability by adding 0.0003% or more. However, excessive addition causes the hot workability to be impaired by excessive precipitation boride, so the upper limit is made 0.0060%.

本発明の請求項7記載の限定理由について説明する。   The reason for limitation according to claim 7 of the present invention will be described.

Tiは、極微量で酸化物、窒化物、硫化物を形成し鋼の結晶粒を微細化する元素であり、本発明鋼では積極的に利用して良い元素である。鋼材中の金属間化合物含有率を低減するためにはδcal上限値の制限と鋼片の均質化熱処理の実施が有効である。このうち後者の方法では1250℃程度の高い温度で数時間の熱処理を実施することになるが、Tiの適量の含有はこのような高い温度での熱処理中の結晶粒の成長を有効に抑制する。この目的のためには0.003%以上の含有が必要である。一方Tiは窒化物生成能が非常に高い元素であり、Nを含有する本発明鋼においては0.03%を越えて含有させると粗大なTiNが鋼の靭性を阻害するようになる。このためその含有量を0.003〜0.03%と定めた。含有させる場合の好適な含有率は0.005〜0.02%である。   Ti is an element that forms oxides, nitrides, and sulfides in a very small amount to refine the crystal grains of the steel, and is an element that can be actively used in the steel of the present invention. In order to reduce the intermetallic compound content in steel, it is effective to limit the upper limit of δcal and perform homogenization heat treatment on the steel slab. Among these, in the latter method, heat treatment is performed at a high temperature of about 1250 ° C. for several hours, but the inclusion of an appropriate amount of Ti effectively suppresses the growth of crystal grains during the heat treatment at such a high temperature. . For this purpose, a content of 0.003% or more is necessary. On the other hand, Ti is an element having a very high ability to form nitrides. In the steel of the present invention containing N, if Ti is contained in an amount exceeding 0.03%, coarse TiN will inhibit the toughness of the steel. For this reason, the content was determined to be 0.003 to 0.03%. The preferable content rate when it is contained is 0.005 to 0.02%.

Nbは、炭化物を形成してCを固定することで、Cr炭化物の生成を抑制し、耐食性、靱性を向上させる。また窒化物を形成して結晶粒成長を抑制し、鋼材を細粒化し強度を上昇させる。この耐食性改善、強度上昇の目的のため、0.02%以上添加することができる。しかしながら、0.2%を超えて添加すると、熱間加工中にNbの炭窒化物が多量析出して熱間再結晶を阻害し、製品となる鋼材に粗大な組織が残留するようになるので0.2%を上限と定めた。添加する場合の好ましい含有率範囲は、0.05%〜0.15%である。   Nb forms carbide and fixes C, thereby suppressing the formation of Cr carbide and improving corrosion resistance and toughness. Also, nitrides are formed to suppress crystal grain growth, and the steel material is refined to increase the strength. For the purpose of improving the corrosion resistance and increasing the strength, 0.02% or more can be added. However, if added over 0.2%, a large amount of Nb carbonitride precipitates during hot working and hinders hot recrystallization, leaving a coarse structure in the steel product. The upper limit was set to 0.2%. A preferable content range in the case of adding is 0.05% to 0.15%.

Vは、Nbと同様に炭窒化物を生成する元素であり、耐食性、靱性を確保するために添加することができる。この目的のためには0.05%以上含有させるが、0.5%を超えて含有させると粗大なV系炭窒化物が生成し、逆に靱性が劣化する。そのため、上限を0.5%に限定する。好ましくは、0.1〜0.3%の範囲である。   V is an element that forms carbonitrides similarly to Nb, and can be added to ensure corrosion resistance and toughness. For this purpose, it is contained in an amount of 0.05% or more, but if it exceeds 0.5%, coarse V-based carbonitrides are produced, and conversely, toughness deteriorates. Therefore, the upper limit is limited to 0.5%. Preferably, it is 0.1 to 0.3% of range.

Zr、Taも添加によりCやSの耐食性への悪影響を抑制することができるが、過剰に添加すると靱性低下を生じる等の悪影響が発生するため、その含有量は、Zr:0.003〜0.03%、Ta:0.01〜0.1%に限定した。   Zr and Ta can also be added to suppress adverse effects on the corrosion resistance of C and S, but if added excessively, adverse effects such as a reduction in toughness occur, so the content is Zr: 0.003 to 0 0.03%, Ta: limited to 0.01-0.1%.

本発明の請求項8記載の限定理由について説明する。   The reason for limitation according to claim 8 of the present invention will be described.

本発明においては鋼材の靭性を高めるために鋼材に含まれる金属間化合物の量が0.5%以下になるように制限するが、高耐力を得るには最終熱延後の溶体化熱処理は省略しなければならない。従って、金属間化合物については鋳片中のものを低減し、更に熱延工程内では出来る限り生じさせない必要がある。   In the present invention, in order to increase the toughness of the steel material, the amount of intermetallic compounds contained in the steel material is limited to 0.5% or less, but the solution heat treatment after the final hot rolling is omitted in order to obtain high yield strength. Must. Therefore, it is necessary to reduce the amount of intermetallic compounds in the slab and not to generate as much as possible in the hot rolling process.

まず、鋳片中の金属間化合物を低減する手法はδcalの制御と本請求項で記載する鋼片に対する均質化熱処理を組み合わせる必要がある。本発明が対象とする鋼材において凝固偏析が無い場合に金属間化合物が生成する温度はおよそ1000℃以下である。しかし、凝固により成分偏析をともなった鋼片においては金属間化合物の含有率を低減させるために偏析を拡散させ、均質化する製造工程が必要となる。この均質化熱処理の温度と時間は鋳片の凝固速度や断面積、鋼片にしたときの熱間加工度、δcal等の化学組成等によりいくぶん変化するが、Cr、Mo、Ni等の拡散に律速されるため必要な温度は1200℃以上である。一方1300℃を越えると酸化スケールが異常に発生する。また時間については長時間ほど良いが、最低1時間は必要となる。また製品圧延のための鋼片の加熱において1200℃x1h以上の均熱をとることによってもこの目的は達成される。以上より1200〜1300℃で1時間以上の均質化熱処理を加えると規定した。効果と経済性を考慮すると均熱時間の望ましい範囲は2〜20hである。   First, the technique for reducing the intermetallic compound in the slab needs to combine the control of δcal and the homogenization heat treatment for the steel slab described in this claim. In the steel material to which the present invention is applied, the temperature at which the intermetallic compound is formed when there is no solidification segregation is about 1000 ° C. or less. However, a steel slab with component segregation due to solidification requires a production process in which segregation is diffused and homogenized in order to reduce the content of intermetallic compounds. The temperature and time of this homogenization heat treatment vary somewhat depending on the solidification rate and cross-sectional area of the slab, the hot workability when it is made into a steel slab, the chemical composition such as δcal, etc., but the diffusion of Cr, Mo, Ni, etc. Since the rate is limited, the necessary temperature is 1200 ° C. or higher. On the other hand, when the temperature exceeds 1300 ° C., oxide scale is abnormally generated. The longer the time, the better, but a minimum of 1 hour is required. This object can also be achieved by taking soaking of 1200 ° C. × 1 h or more in the heating of the steel slab for product rolling. From the above, it was defined that a homogenization heat treatment at 1200 to 1300 ° C. for 1 hour or longer was applied. Considering the effect and economy, the desirable range of soaking time is 2 to 20 hours.

圧延条件については、1100℃〜1300℃で再加熱し、1050℃以上で全圧下量が50%以上とする粗圧延段階と、続いて1050〜850℃で全圧下量が10%以上とする仕上げ圧延段階から成る。粗圧延段階では主に凝固組織を壊し、均一な再結晶組織を得るための段階で、仕上げ圧延段階は圧延により加工歪を導入し、圧延後の強度を上昇させる段階である。更に、圧延は全て850℃以上で行うことにより、金属間化合物の再析出を抑制する。そして圧延後800℃〜500℃までを150℃/分以上の平均冷却速度で制御冷却することにより、金属間化合物の再析出を抑制し、かつ仕上げ圧延で導入された加工歪が回復するのを抑制する。   About rolling conditions, it is reheated at 1100 ° C. to 1300 ° C., and a rough rolling stage in which the total reduction amount is 50% or more at 1050 ° C. or higher, and subsequently, the final reduction amount is 10% or more at 1050 to 850 ° C. It consists of a rolling stage. The rough rolling stage is a stage for mainly breaking the solidified structure and obtaining a uniform recrystallized structure, and the finish rolling stage is a stage for introducing work strain by rolling and increasing the strength after rolling. Furthermore, re-precipitation of intermetallic compounds is suppressed by performing all rolling at 850 degreeC or more. And by controlling cooling from 800 ° C. to 500 ° C. at an average cooling rate of 150 ° C./min or more after rolling, re-precipitation of intermetallic compounds is suppressed and work strain introduced by finish rolling is recovered. Suppress.

さらに詳細に条件限定理由を述べる。   The reason for condition limitation will be described in more detail.

1050℃以上で全圧下量が50%以上となる圧延を可能にし、かつ変形抵抗を下げ圧延を容易にするために鋼塊の加熱は1100℃以上必要である。しかし1300℃を超えて加熱すると粒界部が溶融し、圧延時に割れを生じるため加熱温度は1100℃〜1300℃に限定した。   In order to enable rolling with a total reduction amount of 50% or more at 1050 ° C. or more, and to lower the deformation resistance and facilitate rolling, the steel ingot needs to be heated to 1100 ° C. or more. However, when heated above 1300 ° C, the grain boundary portion melts and cracks occur during rolling, so the heating temperature is limited to 1100 ° C to 1300 ° C.

粗圧延段階では、凝固組織を壊し均一な再結晶組織を得るため、1050℃以上で全圧下量を50%以上としなければならない。圧延温度が1050℃未満あるいは全圧下量が50%未満であると、均一な再結晶組織を得ることができない。   In the rough rolling stage, in order to break the solidified structure and obtain a uniform recrystallized structure, the total reduction must be 50% or more at 1050 ° C. or higher. When the rolling temperature is less than 1050 ° C. or the total reduction amount is less than 50%, a uniform recrystallized structure cannot be obtained.

仕上げ圧延段階では、目標とする耐力550MPaを得るためには、本発明で限定した成分範囲において1050℃〜850℃での全圧下量が10%以上となる仕上げ圧延が必要である。また1050℃超で圧延すると再結晶し、加圧歪が蓄積できず、十分な強度を得ることができず、850℃未満で圧延を行うと、金属間化合物の析出を促進し靱性を大幅に低下させることになる。したがってすべての圧延工程では850℃以上を保ち圧延を行なう必要がある。   In the finish rolling stage, in order to obtain a target yield strength of 550 MPa, finish rolling is required in which the total rolling reduction at 1050 ° C. to 850 ° C. is 10% or more in the component range limited in the present invention. Moreover, if it rolls above 1050 degreeC, it will recrystallize, a pressurization strain will not accumulate | store, and sufficient strength will not be acquired, but if it rolls below 850 degreeC, precipitation of an intermetallic compound will be accelerated | stimulated and toughness will be drastically improved. Will be reduced. Therefore, it is necessary to perform rolling while maintaining 850 ° C. or higher in all rolling processes.

最後に、溶体化処理を省略することにより高強度を維持することが出来る。   Finally, high strength can be maintained by omitting the solution treatment.

以下に実施例について記載する。表1に供試鋼の化学組成を示す。なお表中に記載されている成分以外の不可避的不純物元素の含有量は通常のステンレス鋼と同じ程度である。また表1に示した成分について含有量が記載されていない部分は不純物レベルであることを示す。また表中のREMはランタノイド系希土類元素を意味し、含有量はそれら元素の合計を示している。   Examples are described below. Table 1 shows the chemical composition of the test steel. In addition, the content of inevitable impurity elements other than the components described in the table is the same as that of ordinary stainless steel. Moreover, the part in which content is not described about the component shown in Table 1 shows that it is an impurity level. REM in the table means lanthanoid rare earth elements, and the content indicates the total of these elements.

これらの鋼は実験室の50kg真空誘導炉により溶製され厚さが約100mmの扁平鋼塊に鋳造された。   These steels were melted in a laboratory 50 kg vacuum induction furnace and cast into a flat steel ingot having a thickness of about 100 mm.

Figure 2006241590
Figure 2006241590

上記の供試鋼を用い分塊圧延、均質化熱処理、製品圧延により12〜22mm厚の鋼板を製造した。分塊圧延は1180℃に2h均熱した後65mmまで圧延した。この鋼片に表2、3に示す条件で均質化熱処理を実施した。一部の鋼片は均質化熱処理を省略した。この鋼片を60mmに研削し、製品圧延用素材とし、更に表2に示す条件で熱間圧延を行い熱間圧延鋼材とした。なお圧延直後の鋼材温度が800℃以上の状態より500℃以下までスプレー冷却を実施した。一部の鋼板では溶体化熱処理を1100℃x20分均熱後水冷の条件で実施した。   A steel plate having a thickness of 12 to 22 mm was produced by the above-mentioned test steel by partial rolling, homogenization heat treatment, and product rolling. The partial rolling was soaked at 1180 ° C. for 2 hours and then rolled to 65 mm. The steel pieces were subjected to homogenization heat treatment under the conditions shown in Tables 2 and 3. Some steel pieces omitted the homogenization heat treatment. This steel slab was ground to 60 mm, used as a material for product rolling, and further hot-rolled under the conditions shown in Table 2 to obtain a hot-rolled steel material. Note that spray cooling was performed from a state where the steel material temperature immediately after rolling was 800 ° C or higher to 500 ° C or lower. Some steel plates were subjected to solution heat treatment under conditions of water cooling after soaking at 1100 ° C. for 20 minutes.

Figure 2006241590
Figure 2006241590

Figure 2006241590
Figure 2006241590

Figure 2006241590
Figure 2006241590

以上の製造条件で得られた厚鋼板について4号引張試験片とJIS4号Vノッチシャルピー試験片を圧延直角方向より切り出し、0.2%オフセット耐力と−40℃での衝撃値を測定し、更に表面を#600研磨した上で50℃の脱気10%NaCl水溶液中で孔食電位(Vc’100)測定を行った。またミクロ組織観察用の試験片を切り出し、鏡面仕上げの後10%KOH電解エッチにより金属間化合物を現出させ光学顕微鏡により含有率を測定した。含有率の測定は1/4、1/2、3/4厚部において400倍の各10視野でポイントカウントをおこない、すべての平均値を算出してその鋼材の金属間化合物含有率とした。得られた結果を表2〜4に示す。   With respect to the thick steel plate obtained under the above production conditions, a No. 4 tensile test piece and a JIS No. 4 V-notch Charpy test piece were cut out from the direction perpendicular to the rolling direction, and 0.2% offset proof stress and impact value at −40 ° C. were measured. After the surface was polished by # 600, the pitting potential (Vc′100) was measured in a degassed 10% NaCl aqueous solution at 50 ° C. Moreover, the test piece for microstructure observation was cut out, and after mirror finishing, the intermetallic compound was revealed by 10% KOH electrolytic etching, and the content rate was measured with an optical microscope. For the measurement of the content rate, point counting was performed in each 10 visual fields 400 times in 1/4, 1/2, and 3/4 thick parts, and all average values were calculated to obtain the intermetallic compound content of the steel material. The obtained results are shown in Tables 2-4.

熱間加工性の評価は製品圧延時の耳割れの発生により相対評価をおこなった。発明例5または6にかかる鋼材(鋼No.F〜N)においては再加熱温度が過剰に高い場合を除き、いずれも耳割れが発生せず良好な熱間加工性を示すことが確認された。一方それ以外の発明例鋼材においては片側あたり5〜10mm程度の耳割れが発生し、若干歩留まりが低下することが確認された。耳割れの長さを表2〜4に示す。   The hot workability was evaluated relative to the occurrence of ear cracks during product rolling. In the steel materials (Steel Nos. F to N) according to Invention Example 5 or 6, it was confirmed that no cracks occurred and good hot workability was exhibited except for the case where the reheating temperature was excessively high. . On the other hand, it was confirmed that in other steel examples of the invention, an ear crack of about 5 to 10 mm occurred on one side, and the yield was slightly reduced. The length of the ear crack is shown in Tables 2-4.

表1および表2〜4の結果から明らかなように本発明の範囲である鋼組成と金属間化合物含有率、製造条件を満たす鋼材においては耐食性、耐力、シャルピー衝撃値が全て規定の条件を満たす。   As is clear from the results of Table 1 and Tables 2 to 4, the steel composition and the intermetallic compound content that are within the scope of the present invention, and the steel material that satisfies the manufacturing conditions, the corrosion resistance, proof stress, and Charpy impact value all satisfy the specified conditions. .

以上の実施例から分かるように本発明鋼材が耐食性、靱性が良好でかつ高強度のオーステナイト系ステンレス鋼材であることが明確となった。   As can be seen from the above examples, the steel material of the present invention is clearly a high-strength austenitic stainless steel material having good corrosion resistance and toughness.

本発明は高速船の構造用部材に要求される耐海水性、耐力および低温靱性を全て高レベルで満足する船体構造に適したオーステナイトステンレス鋼を実現し、産業上寄与するところは極めて大である。   The present invention realizes austenitic stainless steel suitable for a hull structure that satisfies all the seawater resistance, proof stress and low-temperature toughness required for structural members of high-speed ships, and has a significant industrial contribution. .

Claims (8)

質量%にてC:0.001〜0.03%
Si:0.1〜1.5%
Mn:0.1〜3.0%
P:0.005〜0.05%
S:0.0001〜0.003%
Ni:15.0〜21.0%
Cr:22.0〜28.0%
Mo:1.5〜3.5%
N :0.15〜0.35%
O :0.0005〜0.007%
を含有し、
残部がFeおよび不可避的不純物からなり、
室温における0.2%耐力が550MPa以上、
−40℃におけるVノッチ試験片によるシャルピー衝撃値が100J/cm2以上、
50℃の脱気10%NaCl水溶液中で測定した孔食電位(Vc’100)が500mV(vs 飽和Ag/AgCl)以上であることを特徴とする
耐食性、耐力、低温靱性が良好なオーステナイト系ステンレス熱間圧延鋼材。
C: 0.001 to 0.03% in mass%
Si: 0.1 to 1.5%
Mn: 0.1 to 3.0%
P: 0.005 to 0.05%
S: 0.0001 to 0.003%
Ni: 15.0-21.0%
Cr: 22.0-28.0%
Mo: 1.5-3.5%
N: 0.15-0.35%
O: 0.0005 to 0.007%
Containing
The balance consists of Fe and inevitable impurities,
0.2% proof stress at room temperature is 550 MPa or more,
Charpy impact value by V notch test piece at −40 ° C. is 100 J / cm 2 or more,
Austenitic stainless steel with good corrosion resistance, proof stress, and low temperature toughness, characterized by a pitting corrosion potential (Vc′100) measured in a degassed 10% NaCl aqueous solution at 50 ° C. of 500 mV (vs saturated Ag / AgCl) or higher. Hot rolled steel.
請求項1のオーステナイト系ステンレス熱間圧延鋼材において、更に(1)式で表されるPI値が35〜40、(2)式で表されるδcal値が−6〜+2の関係を満たし、更に鋼材に含まれる金属間化合物の含有率が0.5%以下であることを特徴とする耐食性、耐力、低温靱性が良好なオーステナイト系ステンレス熱間圧延鋼材。
PI=Cr+3.3(Mo+0.5W)+16N・・・・・・・・・・・・(1)
δcal =2.9(Cr+0.3Si+Mo+0.5W)
−2.6(Ni+0.3Mn+0.25Cu+32C+20N)−18・・・・・・・・・・・・(2)
In the austenitic stainless hot-rolled steel material according to claim 1, the PI value represented by the formula (1) further satisfies the relationship of 35 to 40, the δcal value represented by the formula (2) satisfies the relationship of -6 to +2, and An austenitic stainless hot-rolled steel material having good corrosion resistance, proof stress, and low-temperature toughness, wherein the content of intermetallic compounds contained in the steel material is 0.5% or less.
PI = Cr + 3.3 (Mo + 0.5W) + 16N (1)
δcal = 2.9 (Cr + 0.3Si + Mo + 0.5W)
-2.6 (Ni + 0.3Mn + 0.25Cu + 32C + 20N) -18 (2)
請求項1または2のオーステナイト系ステンレス熱間圧延鋼材において、更に質量%にてW:0.3〜3.0%、Al:0.005〜0.1%の1種または2種を含有することを特徴とする
耐食性、耐力、低温靱性が良好なオーステナイト系ステンレス熱間圧延鋼材。
The austenitic stainless hot-rolled steel material according to claim 1 or 2, further comprising one or two of W: 0.3 to 3.0% and Al: 0.005 to 0.1% in mass%. An austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness.
請求項1ないし3のオーステナイト系ステンレス熱間圧延鋼材において、更に質量%にてCu:0.3〜2.0%、Sn:0.1%以下の1種または2種以上を含有することを特徴とする耐食性、耐力、低温靱性が良好なオーステナイト系ステンレス熱間圧延鋼材。   The austenitic stainless hot-rolled steel material according to claims 1 to 3, further comprising one or more of Cu: 0.3 to 2.0% and Sn: 0.1% or less in mass%. Austenitic stainless hot rolled steel with good corrosion resistance, proof stress and low temperature toughness. 請求項1ないし4のオーステナイト系ステンレス熱間圧延鋼材において、更に質量%にてCa:0.0005〜0.0050%、Mg:0.0005〜0.0050%、REM:0.005〜0.10%の1種または2種以上を含有し、
(3)式で表されるPV値が0以下であることを特徴とする耐食性、耐力、低温靱性が良好なオーステナイト系ステンレス熱間圧延鋼材。
PV=S+O−0.8Ca−0.3Mg−0.3REM−30・・・・・・・(3)
The austenitic stainless hot-rolled steel material according to any one of claims 1 to 4, wherein Ca: 0.0005-0.0050%, Mg: 0.0005-0.0050%, REM: 0.005-0. Containing one or more of 10%,
An austenitic stainless hot-rolled steel material having good corrosion resistance, proof stress, and low-temperature toughness, wherein the PV value represented by the formula (3) is 0 or less.
PV = S + O-0.8Ca-0.3Mg-0.3REM-30 (3)
請求項1ないし5のオーステナイト系ステンレス熱間圧延鋼材において、更に質量%にてB:0.0003〜0.0060%を含有することを特徴とする耐食性、耐力、低温靱性が良好なオーステナイト系ステンレス熱間圧延鋼材。   6. The austenitic stainless hot-rolled steel material according to claim 1, further comprising B: 0.0003 to 0.0060% by mass%. Austenitic stainless steel having good corrosion resistance, proof stress, and low temperature toughness. Hot rolled steel. 請求項1ないし6のオーステナイト系ステンレス熱間圧延鋼材において、更に質量%にてTi:0.003〜0.03%、Nb:0.02〜0.20%、Zr:0.003〜0.03%、V:0.05〜0.5%、Ta:0.01〜0.1%の1種または2種以上を含有することを特徴とする耐食性、耐力、低温靱性が良好なオーステナイト系ステンレス熱間圧延鋼材。   In the austenitic stainless hot-rolled steel material according to any one of claims 1 to 6, Ti: 0.003-0.03%, Nb: 0.02-0.20%, Zr: 0.003-0. Austenitic series with good corrosion resistance, proof stress, and low temperature toughness characterized by containing one or more of 03%, V: 0.05 to 0.5%, Ta: 0.01 to 0.1% Stainless hot rolled steel. 請求項1ないし7のオーステナイト系ステンレス熱間圧延鋼材の鋳片もしくは鋼片に1200〜1300℃で1時間以上の均質化熱処理を加え、1100℃〜1300℃で再加熱し、圧延工程では850℃以上を保ち、かつ1050℃以上で50%以上、1050〜850℃で10%以上の圧下率で圧延し、圧延後800℃〜500℃の平均冷却速度が150℃/分以上であり、溶体化熱処理を行わないことを特徴とする耐食性、耐力、低温靱性が良好なオーステナイト系ステンレス熱間圧延鋼材の製造方法。   A homogenization heat treatment of 1200 to 1300 ° C for 1 hour or longer is added to the slab or steel slab of the austenitic stainless hot-rolled steel material according to claims 1 to 7, and reheated at 1100 to 1300 ° C, and 850 ° C in the rolling step The above is maintained, and rolling is performed at a reduction rate of 50% or more at 1050 ° C. or more and 10% or more at 1050 to 850 ° C., and after cooling, an average cooling rate of 800 ° C. to 500 ° C. is 150 ° C./min or more. A method for producing an austenitic stainless hot-rolled steel material having good corrosion resistance, yield strength and low-temperature toughness, characterized by not performing heat treatment.
JP2006012569A 2005-02-02 2006-01-20 Austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness, and method for producing the same Active JP4754362B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006012569A JP4754362B2 (en) 2005-02-02 2006-01-20 Austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness, and method for producing the same
US11/343,516 US20060243356A1 (en) 2005-02-02 2006-01-30 Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof
US12/391,045 US8105447B2 (en) 2005-02-02 2009-02-23 Austenitic stainless hot-rolled steel material with excellent corrosion resistance, proof stress, and low-temperature toughness
US13/349,866 US8506729B2 (en) 2005-02-02 2012-01-13 Austenite-type stainless steel hot-rolling steel material with excellent corrosion resistance, proof-stress, and low-temperature toughness and production method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005026177 2005-02-02
JP2005026177 2005-02-02
JP2006012569A JP4754362B2 (en) 2005-02-02 2006-01-20 Austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006241590A true JP2006241590A (en) 2006-09-14
JP4754362B2 JP4754362B2 (en) 2011-08-24

Family

ID=37048277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012569A Active JP4754362B2 (en) 2005-02-02 2006-01-20 Austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4754362B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229652A (en) * 2007-03-19 2008-10-02 Sanyo Special Steel Co Ltd METHOD FOR PREVENTING SURFACE FLAW IN HOT ROLLED MATERIAL OF Cu-Sn-CONTAINING STEEL material
CN101314835B (en) * 2007-06-01 2010-10-06 黄石市火炬科技实业有限公司 Low-cost non-magnetoelectricity roll body and manufacturing process thereof
WO2012121380A1 (en) 2011-03-09 2012-09-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel exhibiting excellent corrosion resistance in weld
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
CN113560343A (en) * 2021-06-25 2021-10-29 鞍钢股份有限公司 Method for controlling grain size of low-carbon austenitic stainless steel extra-thick plate
CN115612917A (en) * 2021-07-15 2023-01-17 振石集团东方特钢有限公司 Stainless steel and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154848A (en) * 1987-12-12 1989-06-16 Nippon Steel Corp Production of austenitic stainless steel having excellent seawater resistance
JPH0297649A (en) * 1988-09-30 1990-04-10 Aichi Steel Works Ltd Austenitic stainless steel excellent in strength and toughness at very low temperature and its production
JPH046216A (en) * 1990-04-23 1992-01-10 Nippon Steel Corp Production of high strength austenitic stainless steel excellent in seawater corrosion resistance and minimal in softening by welding
JPH04272131A (en) * 1991-02-28 1992-09-28 Nippon Steel Corp Production of b-containing austenitic stainless steel
JPH05320756A (en) * 1992-05-21 1993-12-03 Nippon Steel Corp Production of high strength austenitic stainless steel excellent in seawater corrosion rest stance
JPH07258800A (en) * 1994-03-23 1995-10-09 Nippon Steel Corp Austenitic stainless steel for building material
JP2002322545A (en) * 2001-04-25 2002-11-08 Nisshin Steel Co Ltd Mo-CONTAINING HIGH Cr HIGH Ni AUSTENITIC STAINLESS STEEL PLATE HAVING EXCELLENT DUCTILITY AND PRODUCTION METHOD THEREFOR
JP2003328087A (en) * 2002-05-10 2003-11-19 Nippon Steel Corp Steel for chemical tank excellent in resistance to sulfuric acid corrosion and pitting corrosion

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154848A (en) * 1987-12-12 1989-06-16 Nippon Steel Corp Production of austenitic stainless steel having excellent seawater resistance
JPH0297649A (en) * 1988-09-30 1990-04-10 Aichi Steel Works Ltd Austenitic stainless steel excellent in strength and toughness at very low temperature and its production
JPH046216A (en) * 1990-04-23 1992-01-10 Nippon Steel Corp Production of high strength austenitic stainless steel excellent in seawater corrosion resistance and minimal in softening by welding
JPH04272131A (en) * 1991-02-28 1992-09-28 Nippon Steel Corp Production of b-containing austenitic stainless steel
JPH05320756A (en) * 1992-05-21 1993-12-03 Nippon Steel Corp Production of high strength austenitic stainless steel excellent in seawater corrosion rest stance
JPH07258800A (en) * 1994-03-23 1995-10-09 Nippon Steel Corp Austenitic stainless steel for building material
JP2002322545A (en) * 2001-04-25 2002-11-08 Nisshin Steel Co Ltd Mo-CONTAINING HIGH Cr HIGH Ni AUSTENITIC STAINLESS STEEL PLATE HAVING EXCELLENT DUCTILITY AND PRODUCTION METHOD THEREFOR
JP2003328087A (en) * 2002-05-10 2003-11-19 Nippon Steel Corp Steel for chemical tank excellent in resistance to sulfuric acid corrosion and pitting corrosion

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229652A (en) * 2007-03-19 2008-10-02 Sanyo Special Steel Co Ltd METHOD FOR PREVENTING SURFACE FLAW IN HOT ROLLED MATERIAL OF Cu-Sn-CONTAINING STEEL material
CN101314835B (en) * 2007-06-01 2010-10-06 黄石市火炬科技实业有限公司 Low-cost non-magnetoelectricity roll body and manufacturing process thereof
US9862168B2 (en) 2011-01-27 2018-01-09 Nippon Steel & Sumikin Stainless Steel Corporation Alloying element-saving hot rolled duplex stainless steel material, clad steel plate having duplex stainless steel as cladding material therefor, and production method for same
WO2012121380A1 (en) 2011-03-09 2012-09-13 新日鐵住金ステンレス株式会社 Two-phase stainless steel exhibiting excellent corrosion resistance in weld
US9365914B2 (en) 2011-03-09 2016-06-14 Nippon Steel & Sumikin Stainless Steel Corporation Duplex stainless steel superior in corrosion resistance of weld
CN113560343A (en) * 2021-06-25 2021-10-29 鞍钢股份有限公司 Method for controlling grain size of low-carbon austenitic stainless steel extra-thick plate
CN115612917A (en) * 2021-07-15 2023-01-17 振石集团东方特钢有限公司 Stainless steel and preparation method and application thereof
CN115612917B (en) * 2021-07-15 2024-02-09 振石集团东方特钢有限公司 Stainless steel and preparation method and application thereof

Also Published As

Publication number Publication date
JP4754362B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
US8105447B2 (en) Austenitic stainless hot-rolled steel material with excellent corrosion resistance, proof stress, and low-temperature toughness
JP5393459B2 (en) High manganese type high strength steel plate with excellent impact characteristics
JP3758508B2 (en) Manufacturing method of duplex stainless steel pipe
WO2005073422A1 (en) Austenitic-ferritic stainless steel
WO2013044640A1 (en) Steel plate with low yield ratio high toughness and manufacturing method thereof
KR20130107371A (en) Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
JP4665692B2 (en) High-strength steel sheet with excellent bending rigidity and method for producing the same
CN111902559B (en) Duplex stainless steel clad steel sheet and method for manufacturing same
JP4754362B2 (en) Austenitic stainless hot-rolled steel with good corrosion resistance, proof stress, and low-temperature toughness, and method for producing the same
JP5509909B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP4291480B2 (en) Structural steel with excellent corrosion resistance and corrosion fatigue resistance
CN111918979B (en) Duplex stainless steel clad steel sheet and method for manufacturing same
EP1929059A1 (en) Steel sheet for galvanizing with excellent workability, and method for manufacturing the same
JP2010270377A (en) High-strength low-specific-gravity steel sheet superior in ductility, workability and toughness, and method for manufacturing the same
WO2015118864A1 (en) High-strength hot-rolled steel sheet and production method therefor
JP4494237B2 (en) Austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, and method for producing the same
JP4697844B2 (en) Manufacturing method of steel material having fine structure
JP6086080B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
CN115558852A (en) High-strength austenitic stainless steel with crevice corrosion resistance and pitting corrosion resistance superior to 317L and manufacturing method thereof
JPH05320756A (en) Production of high strength austenitic stainless steel excellent in seawater corrosion rest stance
CN115443344B (en) Steel sheet and method for producing same
CN111108225A (en) Steel sheet and method for producing same
KR20150073005A (en) Austenitic galvanized steel sheet having excellent resistance crack of welding point and method for manufacturing the same
JP2665009B2 (en) High strength martensitic stainless steel and method for producing the same
JP6123551B2 (en) High-strength hot-rolled steel sheet excellent in fatigue resistance and shape freezing property after slit processing and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4754362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250