JPH0619110B2 - Method for producing high Mn austenitic stainless steel for cryogenic use - Google Patents

Method for producing high Mn austenitic stainless steel for cryogenic use

Info

Publication number
JPH0619110B2
JPH0619110B2 JP11572586A JP11572586A JPH0619110B2 JP H0619110 B2 JPH0619110 B2 JP H0619110B2 JP 11572586 A JP11572586 A JP 11572586A JP 11572586 A JP11572586 A JP 11572586A JP H0619110 B2 JPH0619110 B2 JP H0619110B2
Authority
JP
Japan
Prior art keywords
steel
cold rolling
austenitic stainless
less
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11572586A
Other languages
Japanese (ja)
Other versions
JPS62270721A (en
Inventor
晴男 梶
睦生 廣松
正二 登根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11572586A priority Critical patent/JPH0619110B2/en
Publication of JPS62270721A publication Critical patent/JPS62270721A/en
Publication of JPH0619110B2 publication Critical patent/JPH0619110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、極低温において高耐力、高靭性及びすぐれた
磁気特性を兼ね備えた極低温用高Mnオーステナイトス
テンレス鋼の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a high Mn austenitic stainless steel for cryogenic use, which has high yield strength, high toughness and excellent magnetic properties at cryogenic temperatures.

(従来の技術) 核融合炉、リニアモーターカー、電磁推進船、大型加速
器等に用いられる超電導マグネツトは、その稼動時に液
体ヘリウム温度(-269℃)に冷却され、しかも、強磁場
中で繰返しの高応力が働く過酷な環境下に曝される。従
つて、超電導マグネツトの支持構造材料には、-269℃に
おいて高耐力及び高靭性を有する非磁性鋼が要求され
る。
(Prior Art) Superconducting magnets used in fusion reactors, linear motor cars, electromagnetic propulsion vessels, large accelerators, etc. are cooled to liquid helium temperature (-269 ° C) during operation, and are repeatedly used in a strong magnetic field. It is exposed to a harsh environment where high stress acts. Therefore, a non-magnetic steel having high yield strength and high toughness at -269 ° C is required for the supporting structure material of the superconducting magnet.

従来、極低温用の非磁性鋼としては、SUS 304L、304L
N、316L 等のオーステナイトステンレス鋼が用いられて
いるが、これらのステンレス鋼は-269℃においてすぐれ
た靭性を有するものの、耐力が低いという大きな欠点を
有している。そのために、上記従来のオーステナイトス
テンレス鋼を超電導マグネツトの構造材料として用いる
ためには、肉厚を大きくせざるを得ず、その結果とし
て、液体ヘリウムによる冷却効率が極めて悪くなつた
り、或いは、超電導マグネツトを大型化、大重量化せざ
るを得ないという問題を有している。
Conventionally, as cryogenic non-magnetic steel, SUS 304L, 304L
Austenitic stainless steels such as N and 316L have been used, but these stainless steels have excellent toughness at -269 ° C, but have a major drawback of low yield strength. Therefore, in order to use the conventional austenitic stainless steel as a structural material of a superconducting magnet, it is unavoidable to increase the wall thickness, and as a result, the cooling efficiency by liquid helium becomes extremely poor, or the superconducting magnet. However, there is a problem in that the size and weight must be increased.

(発明の目的) 本発明は、上記した極低温用非磁性鋼としての従来のオ
ーステナイト系ステンレス鋼における問題を解決するた
めになされたものであつて、極低温において高耐力、高
靭性及びすぐれた磁気特性を兼ね備えた極低温用高Mn
オーステナイトステンレス鋼の製造方法を提供すること
を目的とする。
(Object of the Invention) The present invention has been made to solve the problems in the conventional austenitic stainless steel as the above-mentioned non-magnetic steel for cryogenic use, and has high yield strength, high toughness and excellent High Mn for cryogenic temperature that combines magnetic properties
An object is to provide a method for producing austenitic stainless steel.

(発明の構成) 本発明による極低温用高Mnオーステナイトステンレス
鋼の製造方法は、重量%で C 0.01〜0.15%、 Si 0.10〜2.00%、 Mn 16〜30%、 Ni 0.1〜8.0%、 Cr 12〜20%、 P 0.03%以下、 S 0.02%以下、及び N 0.10〜0.35% を含有する鋼塊又は鋼片を熱間圧延した後、全圧下率1
0%以上にて冷間圧延を施し、次いで、900〜115
0℃の温度にて溶体化処理を施した後、全圧下率0.5
〜10%にて冷間圧延を施すことを特徴とする。
(Structure of the Invention) The method for producing a high-Mn austenitic stainless steel for cryogenic use according to the present invention is, by weight%, C 0.01 to 0.15%, Si 0.10 to 2.00%, Mn 16 to 30%, Heat a steel ingot or billet containing Ni 0.1-8.0%, Cr 12-20%, P 0.03% or less, S 0.02% or less, and N 0.10-0.35%. Total rolling reduction of 1 after rolling
Cold rolling at 0% or more, then 900-115
After the solution treatment at a temperature of 0 ° C., the total rolling reduction is 0.5
It is characterized in that cold rolling is performed at 10%.

先ず、本発明鋼において化学成分を限定した理由を説明
する。
First, the reason for limiting the chemical composition in the steel of the present invention will be described.

Cは、オーステナイトの安定化と耐力の向上に有効な元
素である。添加量が0.01%よりも少ないときは、上
記効果に乏しく、他方、0.15%を越えて過多に添加
するときは、鋼の靭性を劣化させると共に、耐銹性をも
損なうこととなる。従つて、本発明においては、C量は
0.01〜0.15%の範囲とする。
C is an element effective in stabilizing austenite and improving yield strength. If the addition amount is less than 0.01%, the above effect is poor. On the other hand, if the addition amount exceeds 0.15%, the toughness of the steel is deteriorated and the rust resistance is impaired. Become. Therefore, in the present invention, the amount of C is set to the range of 0.01 to 0.15%.

Siは、鋼溶製時の脱酸に必要であると共に、耐力の向
上にも有効である。かかる効果を有効に発現させるため
には、0.10%以上を添加することが必要である。し
かし、2.00%を越えて過多に添加するときは、鋼の
高温延性を阻害し、また、靭性を低下させる。従つて、
本発明においては、Siの添加量は0.10〜2.00
%の範囲とする。
Si is necessary for deoxidation during steel melting, and is also effective for improving yield strength. In order to effectively develop such effects, it is necessary to add 0.10% or more. However, when it is added in excess of 2.00%, it impairs the high temperature ductility of the steel and reduces the toughness. Therefore,
In the present invention, the addition amount of Si is 0.10 to 2.00.
The range is%.

Mnも、Cと同様に、オーステナイトの安定化効果を有
すると共に、靭性を向上させ、また、Nの固溶限を増大
させる。しかし、本発明で規定する範囲のNi量におい
ては、Mnの添加量が16%よりも少ないときは、極低
温においてオーステナイトを十分に安定化させることが
できない。一方、30%を越えて過多に添加するとき
は、δフエライトを生成しやすくなつて、鋼の熱間加工
性、靭性及び磁気特性を劣化させる。従つて、本発明に
おいては、Mnの添加量は16〜30%の範囲とする。
Like C, Mn also has the effect of stabilizing austenite, improves toughness, and increases the solid solubility limit of N. However, in the amount of Ni within the range specified in the present invention, when the amount of Mn added is less than 16%, austenite cannot be sufficiently stabilized at an extremely low temperature. On the other hand, if it is added in excess of 30%, δ-ferrite is likely to be formed, and the hot workability, toughness and magnetic properties of the steel are deteriorated. Therefore, in the present invention, the amount of Mn added is in the range of 16 to 30%.

P及びSは、鋼の熱間加工性、溶接性及び靭性を損なう
不純物元素であるので、本発明鋼においては、その含有
量を極力抑えることが好ましい。しかし、製鋼上の経済
性を考慮して、含有量は、Pについては0.03%以下
とし、Sについては0.02%以下とする。
Since P and S are impurity elements that impair the hot workability, weldability and toughness of steel, it is preferable to suppress the contents thereof as much as possible in the steel of the present invention. However, in consideration of economical efficiency in steel making, the content of P is 0.03% or less, and the content of S is 0.02% or less.

Niは、オーステナイトの安定化と靭性の向上に有効で
あるが、かかる効果を有効に発現させるためには、少な
くとも0.1%の添加を要する。しかし、本発明で規定
するMn量の範囲においては、Niを8.0%を越えて
過多に添加しても、上記効果が飽和し、また、経済性を
損なうので、Niの添加量は0.1〜8.0%の範囲と
する。
Ni is effective in stabilizing austenite and improving toughness, but at least 0.1% must be added in order to effectively exhibit such effects. However, in the range of Mn amount defined in the present invention, even if Ni is added excessively in excess of 8.0%, the above effect is saturated and the economical efficiency is impaired. The range is from 0.1 to 8.0%.

Crは、鋼に耐銹性を付与すると共に、耐力の向上及び
N固溶限の増大にも有効な元素であり、これらの効果を
有効に得るために、本発明鋼においては、少なくとも1
2%を添加することが必要である。他方、20%を越え
る多量の添加は、δフエライトの生成を促し、熱間加工
性、靭性、磁気特性等を劣化させるので、添加量は12
〜20%の範囲とする。
Cr is an element that imparts rust resistance to steel and is also effective in improving yield strength and increasing N solid solution limit. In order to effectively obtain these effects, in the steel of the present invention, at least 1
It is necessary to add 2%. On the other hand, a large amount of addition exceeding 20% promotes the formation of δ-ferrite and deteriorates hot workability, toughness, magnetic properties, etc., so the addition amount is 12
-20% range.

Nは、Cと同様に、侵入型固溶元素として鋼のオーステ
ナイトの安定化と耐力の向上に極めて有効であるが、上
記効果を有効に発現させるためには、添加量は0.10
%以上であることが必要である。しかし、0.35%を
越えて過多に添加する場合は、靭性や溶接性の劣化が著
しい。従つて、Nの添加量は0.10〜0.35%の範
囲とする。
As with C, N is extremely effective as an interstitial solid solution element for stabilizing austenite and improving yield strength of steel, but in order to effectively exhibit the above effect, the addition amount is 0.10.
% Or more is required. However, if over 0.35% is added, the toughness and weldability are significantly deteriorated. Therefore, the amount of N added is in the range of 0.10 to 0.35%.

更に、本発明鋼は、上記した元素に加えてCu、Mo及
びWよりなる群から選ばれる1種又は2種以上の元素を
総量にて0.01〜2.00%の範囲で含有することが
できる。これらの元素はいずれも、オーステナイト地を
強化し、高耐力化に有効である。しかし、添加量が総量
にて0.01%よりも少ないときは上記効果に乏しく、
他方、総量にて2.00%を越えて過多に添加するとき
は、鋼の靭性を劣化させるので、添加量は総量にて0.
01〜2.00%の範囲とする。
Further, the steel of the present invention contains, in addition to the above-mentioned elements, one or more elements selected from the group consisting of Cu, Mo and W in a total amount of 0.01 to 2.00%. You can All of these elements strengthen the austenite matrix and are effective in increasing the yield strength. However, when the total amount added is less than 0.01%, the above effect is poor,
On the other hand, when the total amount exceeds 2.00% and is excessively added, the toughness of the steel is deteriorated, so the total amount added is 0.
The range is from 01 to 2.00%.

また、本発明鋼は上記した元素に加えて、又は上記した
元素とは独立して、 Nb 0.01〜0.50%、 V 0.01〜0.50%、及び Ti 0.01〜0.50% よりなる群から選ばれる少なくとも1種の元素を含有す
ることができる。
Further, the steel of the present invention is, in addition to the above-mentioned elements or independently of the above-mentioned elements, Nb 0.01 to 0.50%, V 0.01 to 0.50%, and Ti 0.01 to 0. At least one element selected from the group consisting of 0.50% can be contained.

Nb、V及びTiは、いずれも固溶強化又は析出強化に
よつて鋼の耐力向上に有効である。かかる効果を有効に
発現させるためには、それぞれの元素について、0.0
1%以上添加することが必要である。しかし、添加量が
0.50%を越えるときは、靭性を劣化させるので、添
加量の上限はそれぞれの元素について、0.50%とす
る。
Nb, V and Ti are all effective in improving the yield strength of steel by solid solution strengthening or precipitation strengthening. In order to effectively develop such effects, 0.0
It is necessary to add 1% or more. However, if the added amount exceeds 0.50%, the toughness is deteriorated, so the upper limit of the added amount is 0.50% for each element.

更に、本発明鋼は、上記した諸元素と共に、又は独立し
て、Al、Ca、Ce及びZrよりなる群から選ばれる
少なくとも1種の元素を総量にて0.001〜0.10
0%の範囲で含有してもよい。これら元素はいずれも、
鋼の清浄化や、介在物の微細化、球状化作用を有して、
鋼の熱間加工性及び靭性を向上させるが、総量で0.0
01%よりも少ない添加によつては、上記効果を有効に
得ることができず、他方、総量にて0.100%越える
過多量の添加は、却つて鋼の清浄度を劣化させ、また、
鋼の靭性を劣化させる。
Further, the steel of the present invention, together with or independently of the above-mentioned elements, has a total amount of at least one element selected from the group consisting of Al, Ca, Ce and Zr of 0.001 to 0.10.
You may contain in the range of 0%. Each of these elements
It has the effects of cleaning steel, refining inclusions, and spheroidizing,
Improves the hot workability and toughness of steel, but the total amount is 0.0
If the addition amount is less than 01%, the above effect cannot be effectively obtained. On the other hand, if the addition amount exceeds 0.100% in total, the cleanliness of the steel is deteriorated, and
It deteriorates the toughness of steel.

本発明の方法によれば、上記した化学成分を有する鋼塊
又は鋼片を熱間圧延した後、全圧下率10%以上にて冷
間圧延を施し、次いで、900〜1150℃の温度にて
溶体化処理を施した後、更に、全圧下率0.5〜10%
にて冷間圧延を施すことによつて、極低温用高Mnオー
ステナイトステンレス鋼を得る。
According to the method of the present invention, a steel ingot or a steel slab having the above chemical composition is hot-rolled, then cold-rolled at a total reduction of 10% or more, and then at a temperature of 900 to 1150 ° C. After solution treatment, the total rolling reduction is 0.5 to 10%.
Then, cold rolling is performed to obtain a high Mn austenitic stainless steel for cryogenic temperatures.

先ず、熱間圧延後の全圧下率10%以上の冷間圧延は、
後述する溶体化処理後に鋼のオーステナイト粒を微細化
すると共に、製品の寸法精度を高めるために必要であ
る。この冷間圧延後の溶体化処理は、900〜1150
℃の温度にて行なわれる。900℃よりも低いときは、
析出物の固溶や、オーステナイト結晶粒の整粒化に不十
分であり、耐銹性及び靭性が劣化する。しかし、115
0℃を越える高温域での溶体化処理を行えば、オーステ
ナイト結晶粒の粗大化が著しく、耐力の低下が大きい。
First, cold rolling with a total reduction of 10% or more after hot rolling is
It is necessary to refine the austenite grains of the steel after the solution treatment described later and to improve the dimensional accuracy of the product. The solution treatment after the cold rolling is 900 to 1150.
It is carried out at a temperature of ° C. When it is lower than 900 ℃,
It is insufficient for the solid solution of the precipitate and the sizing of the austenite crystal grains, and the rust resistance and toughness deteriorate. But 115
When the solution treatment is carried out in a high temperature range exceeding 0 ° C., the austenite crystal grains are remarkably coarsened and the yield strength is greatly reduced.

本発明の方法においては、上記溶体化処理後に、全圧下
率0.5〜10%にて、更に、冷間圧延が行なわれる。
本発明者らは、この冷間圧延によつて、オーステナイト
ステンレス鋼の-269℃における耐力が増大すると同時に
延性及び靭性が改善されることを見出したものである。
In the method of the present invention, after the solution treatment, cold rolling is further performed at a total reduction of 0.5 to 10%.
The present inventors have found that this cold rolling increases the yield strength of the austenitic stainless steel at -269 ° C and, at the same time, improves the ductility and toughness.

表における鋼種Aの化学成分を有する鋼を板厚4.0mm
に熱間圧延した後、板厚2.0mmに冷間圧延し、更に、
1050℃で溶体化処理を施した。これら鋼板を用い
て、全圧下率0〜20%の範囲にて更に冷間圧延し、こ
のようにして得られた鋼板について、-269℃において引
張試験及び切欠付き引張試験を行なつた。
Steel with a chemical composition of steel type A in the table is 4.0 mm thick
Hot-rolled, then cold-rolled to a thickness of 2.0 mm, and
Solution treatment was performed at 1050 ° C. These steel sheets were further cold-rolled in the range of 0 to 20% in total rolling reduction, and the thus obtained steel sheets were subjected to a tensile test and a notched tensile test at -269 ° C.

その結果を第1図に示すが、本発明者らは、冷間圧延率
が増大するにつれて-269℃での耐力及び引張強さが向上
し、他方、伸びは、冷間圧延率約2〜5%の範囲までは
上昇し、その後、冷間圧延率が増加するにつれて低下す
ることを見出した。即ち、冷間加工率0.5〜10%の
範囲にて冷間圧延した鋼板は、かかる冷間圧延を施さな
い鋼板に比べて、耐力及び引張強さが高く、しかも、延
性が同時以上である。
The results are shown in FIG. 1. The present inventors have found that the yield strength and tensile strength at -269 ° C. improve as the cold rolling rate increases, while the elongation is about 2 to the cold rolling rate. It has been found that it rises up to the range of 5% and then decreases as the cold rolling rate increases. That is, the steel sheet cold-rolled in the range of the cold-working rate of 0.5 to 10% has higher yield strength and tensile strength than the steel sheet not subjected to such cold-rolling, and the ductility is the same or higher. is there.

一方、切欠付き引張試験による破断強さ/平滑引張試験
による0.2%耐力として定義される靭性も、伸びと同
様の傾向を示し、冷間加工率が0.5〜10%の範囲で
ある鋼板は、冷間加工を施さない鋼板に比べて、同等又
はそれ以上の靭性を有する。
On the other hand, the toughness defined as the breaking strength by the notched tensile test / 0.2% proof stress by the smooth tensile test also shows the same tendency as the elongation, and the cold working ratio is in the range of 0.5 to 10%. The steel sheet has a toughness equal to or higher than that of a steel sheet that is not subjected to cold working.

(発明の効果) N強化型の高Mnオーステナイトステンレス鋼は本来、
溶体化処理ままでも、SUS 304L、304 LN等の鋼と比べ
て、高耐力を有するが、本発明に従つて、所定の化学成
分を有する鋼を所定の条件にて処理することによつて、
一層の高耐力を得ることができ、同時に延性及び靭性を
も向上させる。従つて、本発明によるオーステナイトス
テンレス鋼によれば、例えば、超電導マグネツトの薄肉
化や軽量化を達成することができる。
(Effect of the invention) N strengthened high Mn austenitic stainless steel is originally
Even as-solution-treated, SUS 304L, compared to steel such as 304 LN, has a high yield strength, but according to the present invention, by treating a steel having a predetermined chemical composition under predetermined conditions,
Higher yield strength can be obtained, and at the same time, ductility and toughness are also improved. Therefore, according to the austenitic stainless steel according to the present invention, for example, it is possible to achieve thinning and weight saving of the superconducting magnet.

尚、本発明による製造方法は、鋼板のみならず、線材、
棒鋼、鍛造品、型鋼等への適用も可能である。
Incidentally, the manufacturing method according to the present invention is not limited to a steel plate, but a wire rod,
It can also be applied to steel bars, forged products, die steels, etc.

(実施例) 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例によつて何ら限定されるものではない。
(Examples) Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

実施例1 表に示す化学成分を有する本発明鋼1〜8及び比較鋼9
〜16を真空溶解炉にて溶製し、熱間鍛造後、熱間圧延
して、厚さ4.0mmの熱間圧延板を製造した。次いで、
これを酸洗した後、冷間圧延によつて厚さ2.0〜3.
8mmの冷延鋼板を製造し、更に、これら冷延鋼板に85
0〜1200℃の溶体化処理を施した。これら冷間圧延
板を酸洗した後、更に、全圧下率0〜20%の範囲で冷
間圧延 を行なつて、供試材とした。これら供試材について、液
体ヘリウム温度(-269℃)において引張試験及び切欠付
き引張試験を行なつた。
Example 1 Inventive Steels 1 to 8 and Comparative Steel 9 having the chemical compositions shown in the table
Nos. 16 to 16 were melted in a vacuum melting furnace, hot forged and then hot rolled to manufacture a hot rolled plate having a thickness of 4.0 mm. Then
This is pickled and then cold rolled to a thickness of 2.0-3.
8mm cold rolled steel sheet is manufactured, and
Solution treatment was performed at 0 to 1200 ° C. After pickling these cold-rolled sheets, they are further cold-rolled at a total reduction ratio of 0 to 20%. Was carried out to obtain a test material. Tensile tests and notched tensile tests were performed on these test materials at liquid helium temperature (-269 ° C).

本発明の方法による本発明鋼1〜8は、-269℃において
耐力120kgf/mm2以上、引張強さ160kgf/mm2以上の
高強度を有すると同時に、伸びが35%以上であつて、
極めてすぐれた延性を有している。また、靭性(定義は
前記に同じ。)もすぐれており、1.5以上の高い値を
示す。
The steels 1 to 8 of the present invention according to the method of the present invention have high strengths of yield strength 120 kgf / mm 2 or more and tensile strength 160 kgf / mm 2 or more at -269 ° C, and at the same time, have an elongation of 35% or more,
It has excellent ductility. Further, the toughness (definition is the same as above) is also excellent, and shows a high value of 1.5 or more.

更に、冷間圧延後の-269℃における透磁率はいずれも
1.0以下と低く、すぐれた磁気特性をも有している。
Further, the magnetic permeability at −269 ° C. after cold rolling is as low as 1.0 or less, and it also has excellent magnetic properties.

一方、比較鋼9〜15は、化学成分は、本発明で規定す
る範囲にあるが、製造方法が本発明で規定する条件を満
たしていないために、所定の諸特性を備えていない。
On the other hand, the comparative steels 9 to 15 have the chemical composition within the range specified by the present invention, but the manufacturing method does not satisfy the conditions specified by the present invention, and therefore does not have predetermined characteristics.

即ち、比較鋼9は、溶体化処理後の冷間圧延を行なつて
いないので、強度、延性及び靭性すべて本発明鋼よりも
劣る。比較鋼10及び11は、溶体化処理後の冷間圧延
率がそれぞれ15%及び20%と大きいために、強度は
高いが、延性及び靭性が低い。比較鋼12は、溶体化処
理温度が1200℃と高すぎるために、特に、耐力が低
い。比較鋼13は、反対に、溶体化処理温度が低すぎる
ために、炭窒化物の固溶が十分でなく、且つ、オーステ
ナイトが混粒となつているために、延性及び靭性が極め
て低い。比較鋼14は、熱間圧延後の冷間圧延率が5%
と小さいために、溶体化処理後のオーステナイト粒が粗
大化しており、耐力及び引張強さが十分ではない。
That is, Comparative Steel 9 is inferior to the steel of the present invention in strength, ductility, and toughness because cold rolling after solution treatment is not performed. Comparative steels 10 and 11 have high cold rolling ratios after solution treatment of 15% and 20%, respectively, and thus have high strength but low ductility and toughness. Comparative Steel 12 has a particularly low yield strength because the solution heat treatment temperature is too high at 1200 ° C. On the contrary, Comparative Steel 13 has an extremely low ductility and toughness because the solution treatment temperature is too low, the solid solution of carbonitride is not sufficient, and the austenite is mixed grains. Comparative steel 14 has a cold rolling rate of 5% after hot rolling.
Therefore, the austenite grains after the solution treatment are coarsened, and the yield strength and tensile strength are not sufficient.

比較鋼15は、溶体化処理後の冷間圧延率が15%と大
きいために、延性及び靭性が低い。また、比較鋼16
は、N量が0.05%と低いために、耐力及び引張強さ
が十分ではなく、且つ、-269℃において透磁率も悪い。
Comparative steel 15 has low ductility and toughness because the cold rolling rate after solution treatment is as high as 15%. Also, comparative steel 16
Since the N content is as low as 0.05%, the yield strength and tensile strength are not sufficient, and the magnetic permeability at -269 ° C is also poor.

【図面の簡単な説明】[Brief description of drawings]

図面は、表において鋼種Aにて示す化学成分を有する鋼
を板厚4.0mmに熱間圧延した後、板厚2.0mmに冷間
圧延し、更に、1050℃で溶体化処理を施し、このよ
うにして得た鋼板を用いて、全圧下率0〜20%の範囲
にて更に冷間圧延し、このようにして得られた鋼板につ
いて、-269℃における0.2%耐力、引張強さ、伸び及
び靭性に及ぼす冷間圧延率の影響を示すグラフである。
The drawing shows that the steel having the chemical composition shown as steel type A in the table is hot-rolled to a plate thickness of 4.0 mm, cold-rolled to a plate thickness of 2.0 mm, and further subjected to solution treatment at 1050 ° C. Using the steel sheet thus obtained, further cold rolling was performed in the range of 0 to 20% of the total rolling reduction, and the steel sheet thus obtained had 0.2% proof stress at -269 ° C and tensile strength. It is a graph which shows the influence of the cold-rolling rate which acts on the elongation, elongation, and toughness.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で C 0.01〜0.15%、 Si 0.10〜2.00%、 Mn 16〜30%、 Ni 0.1〜8.0%、 Cr 12〜20%、 P 0.03%以下、 S 0.02%以下、及び N 0.10〜0.35% を含有する鋼塊又は鋼片を熱間圧延した後、全圧下率1
0%以上にて冷間圧延を施し、次いで、900〜115
0℃の温度にて溶体化処理を施した後、更に、全圧下率
0.5〜10%にて冷間圧延を施すことを特徴とする極
低温用高Mnオーステナイトステンレス鋼の製造方法。
1. C 0.01-0.15% by weight%, Si 0.10-2.00%, Mn 16-30%, Ni 0.1-8.0%, Cr 12-20%, After hot rolling a steel ingot or a steel slab containing P 0.03% or less, S 0.02% or less, and N 0.10 to 0.35%, the total rolling reduction is 1
Cold rolling at 0% or more, then 900-115
A method for producing a high-Mn austenitic stainless steel for cryogenic use, which comprises performing solution treatment at a temperature of 0 ° C. and further performing cold rolling at a total reduction of 0.5 to 10%.
【請求項2】重量%で (a)C 0.01〜0.15%、 Si 0.10〜2.00%、 Mn 16〜30%、 Ni 0.1〜8.0%、 Cr 12〜20%、 P 0.03%以下、 S 0.02%以下、及び N 0.10〜0.35%を含有し、更に、 (b)Nb 0.01〜0.50%、 V 0.01〜0.50%、及び Ti 0.01〜0.50% よりなる群から選ばれる少なくとも1種の元素と、 (c)Al、Ca、Ce及びZrよりなる群から選ばれる
1種又は2種以上の元素を総量にて0.001〜0.1
00%とを含有する鋼塊又は鋼片を熱間圧延した後、全
圧下率10%以上にて冷間圧延を施し、次いで、900
〜1150℃の温度にて溶体化処理を施した後、更に、
全圧下率0.5〜10%にて冷間圧延を施すことを特徴
とする極低温用高Mnオーステナイトステンレス鋼の製
造方法。
2. A weight percentage of (a) C 0.01-0.15%, Si 0.10-2.00%, Mn 16-30%, Ni 0.1-8.0%, Cr 12- 20%, P 0.03% or less, S 0.02% or less, and N 0.10 to 0.35%, and (b) Nb 0.01 to 0.50%, V 0.01. To 0.50%, and at least one element selected from the group consisting of Ti 0.01 to 0.50%, and (c) one or two elements selected from the group consisting of Al, Ca, Ce and Zr. The total amount of the above elements is 0.001 to 0.1
After hot rolling a steel ingot or a steel slab containing 100%, cold rolling is performed at a total reduction of 10% or more, and then 900
After the solution treatment at a temperature of ~ 1150 ° C,
A method for producing a high-Mn austenitic stainless steel for cryogenic use, which comprises performing cold rolling at a total reduction of 0.5 to 10%.
【請求項3】重量%で (a)C 0.01〜0.15%、 Si 0.10〜2.00%、 Mn 16〜30%、 Ni 0.1〜8.0%、 Cr 12〜20%、 P 0.03%以下、 S 0.02%以下、及び N 0.10〜0.35%を含有し、更に、 (b)Cu、Mo及びWよりなる群から選ばれる1種又は
2種以上の元素を総量にて0.01〜2.00%と、 (c)Al、Ca、Ce及びZrよりなる群から選ばれる
1種又は2種以上の元素を総量にて0.001〜0.1
00%とを含有する鋼塊又は鋼片を熱間圧延した後、全
圧下率10%以上にて冷間圧延を施し、次いで、900
〜1150℃の温度にて溶体化処理を施した後、更に、
全圧下率0.5〜10%にて冷間圧延を施すことを特徴
とする極低温用高Mnオーステナイトステンレス鋼の製
造方法。
3. A weight percentage of (a) C 0.01-0.15%, Si 0.10-2.00%, Mn 16-30%, Ni 0.1-8.0%, Cr 12- 20%, P 0.03% or less, S 0.02% or less, and N 0.10 to 0.35%, and (b) one or more selected from the group consisting of Cu, Mo, and W, or The total amount of two or more elements is 0.01 to 2.00%, and the total amount of one or more elements selected from the group consisting of (c) Al, Ca, Ce and Zr is 0.001. ~ 0.1
After hot rolling a steel ingot or a steel slab containing 100%, cold rolling is performed at a total reduction of 10% or more, and then 900
After the solution treatment at a temperature of ~ 1150 ° C,
A method for producing a high-Mn austenitic stainless steel for cryogenic use, which comprises performing cold rolling at a total reduction of 0.5 to 10%.
【請求項4】重量%で (a)C 0.01〜0.15%、 Si 0.10〜2.00%、 Mn 16〜30%、 Ni 0.1〜8.0%、 Cr 12〜20%、 P 0.03%以下、 S 0.02%以下、及び N 0.10〜0.35%を含有し、更に、 (b)Cu、Mo及びWよりなる群から選ばれる1種又は
2種以上の元素を総量にて0.01〜2.00と、 (c)Nb 0.01〜0.50%、 V 0.01〜0.50%、及び Ti 0.01〜0.50% よりなる群から選ばれる少なくとも1種の元素と、 (d)Al、Ca、Ce及びZrよりなる群から選ばれる
1種又は2種以上の元素を総量にて0.001〜0.1
00%とを含有する鋼塊又は鋼片を熱間圧延した後、全
圧下率10%以上にて冷間圧延を施し、次いで、900
〜1150℃の温度にて溶体化処理を施した後、更に、
全圧下率0.5〜10%にて冷間圧延を施すことを特徴
とする極低温用高Mnオーステナイトステンレス鋼の製
造方法。
4. A weight percentage of (a) C 0.01-0.15%, Si 0.10-2.00%, Mn 16-30%, Ni 0.1-8.0%, Cr 12- 20%, P 0.03% or less, S 0.02% or less, and N 0.10 to 0.35%, and (b) one or more selected from the group consisting of Cu, Mo, and W, or The total amount of two or more elements is 0.01 to 2.00, and (c) Nb 0.01 to 0.50%, V 0.01 to 0.50%, and Ti 0.01 to 0.50. And at least one element selected from the group consisting of (d) Al, Ca, Ce, and Zr in a total amount of 0.001 to 0.1
After hot rolling a steel ingot or a steel slab containing 100%, cold rolling is performed at a total reduction of 10% or more, and then 900
After the solution treatment at a temperature of ~ 1150 ° C,
A method for producing a high-Mn austenitic stainless steel for cryogenic use, which comprises performing cold rolling at a total reduction of 0.5 to 10%.
JP11572586A 1986-05-19 1986-05-19 Method for producing high Mn austenitic stainless steel for cryogenic use Expired - Lifetime JPH0619110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11572586A JPH0619110B2 (en) 1986-05-19 1986-05-19 Method for producing high Mn austenitic stainless steel for cryogenic use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11572586A JPH0619110B2 (en) 1986-05-19 1986-05-19 Method for producing high Mn austenitic stainless steel for cryogenic use

Publications (2)

Publication Number Publication Date
JPS62270721A JPS62270721A (en) 1987-11-25
JPH0619110B2 true JPH0619110B2 (en) 1994-03-16

Family

ID=14669569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11572586A Expired - Lifetime JPH0619110B2 (en) 1986-05-19 1986-05-19 Method for producing high Mn austenitic stainless steel for cryogenic use

Country Status (1)

Country Link
JP (1) JPH0619110B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271308A (en) * 1986-05-19 1987-11-25 日本原子力研究所 Superconductive cable conductor
JPH01301839A (en) * 1988-05-30 1989-12-06 Koberuko Kaken:Kk Steel material for cutting tools having excellent corrosion resistance
ATE546558T1 (en) * 2008-07-30 2012-03-15 Lepl Ferdinand Tavadze Inst Of Metallurg And Materials Science AUSTENITIC ALLOY FOR LOW TEMPERATURE APPLICATIONS
SI2924131T1 (en) * 2014-03-28 2019-12-31 Outokumpu Oyj Austenitic high-manganese stainless steel
EP3095889A1 (en) * 2015-05-22 2016-11-23 Outokumpu Oyj Method for manufacturing a component made of austenitic steel
US20210164067A1 (en) * 2017-12-07 2021-06-03 Jfe Steel Corporation High-mn steel and method for manufacturing same
CN112513307A (en) * 2018-08-03 2021-03-16 杰富意钢铁株式会社 High Mn steel and method for producing same
WO2020085852A1 (en) * 2018-10-25 2020-04-30 주식회사 포스코 High manganese austenitic steel having high yield strength and manufacturing method for same
EP3686309A1 (en) * 2019-01-22 2020-07-29 Gaztransport et Technigaz System for storing and/or transporting a liquefied gas
JP7326454B2 (en) * 2019-01-22 2023-08-15 アペラム Iron-manganese alloy with improved weldability
CN115627428B (en) * 2022-10-21 2023-08-01 山东烟炉节能科技有限公司 Seawater desalination engineering pipeline and preparation method thereof

Also Published As

Publication number Publication date
JPS62270721A (en) 1987-11-25

Similar Documents

Publication Publication Date Title
CN101381845B (en) High-purity ferrite stainless steel material and manufacturing method thereof
US20080035248A1 (en) Method Of Producing Austenitic Iron/Carbon/Manganese Steel Sheets Having Very High Strength And Elongation Characteristics Ans Excellent Homogeneity
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JPH07138704A (en) High strength and high ductility dual-phase stainless steel and its production
JPH04259325A (en) Production of hot rolled high strength steel sheet excellent in workability
JP2002332549A (en) Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor
JPH0619110B2 (en) Method for producing high Mn austenitic stainless steel for cryogenic use
JPS6013022A (en) Production of nonmagnetic steel plate
EP3831597A1 (en) Low-density clad steel sheet having excellent formability and fatigue property and manufacturing method therefor
JPH07188834A (en) High strength steel sheet having high ductility and its production
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JPS6054374B2 (en) Method for manufacturing austenitic steel plates and steel strips
EP0141661B1 (en) Work-hardenable substantially austenitic stainless steel and method
JPS60228616A (en) Manufacture of hot rolled steel strip of ferrite stainless steel
JP4457492B2 (en) Stainless steel with excellent workability and weldability
CN108866435A (en) A kind of automobile combined microalloying medium managese steel and its manufacturing method
JPH05195056A (en) Production of steel sheet having high ductility and high strength
JPH0741854A (en) Production of ferrite single phase stainless hot rolled steel sheet excellent in toughness
JP2763141B2 (en) Manufacturing method of ferritic stainless steel sheet with excellent heat and corrosion resistance
JP4506005B2 (en) High strength steel sheet for warm forming and forming method thereof
JP3779811B2 (en) ERW steel pipe with excellent workability and its manufacturing method
JP3567280B2 (en) Extremely soft austenitic stainless steel
JPH11209823A (en) Manufacture of high strength steel sheet excellent in press formability
CN114364820B (en) Ferritic stainless steel with improved high temperature creep resistance and method for manufacturing same