JPH10110246A - High strength steel wire for acsr, reduced in iron loss in high magnetic field - Google Patents

High strength steel wire for acsr, reduced in iron loss in high magnetic field

Info

Publication number
JPH10110246A
JPH10110246A JP26462296A JP26462296A JPH10110246A JP H10110246 A JPH10110246 A JP H10110246A JP 26462296 A JP26462296 A JP 26462296A JP 26462296 A JP26462296 A JP 26462296A JP H10110246 A JPH10110246 A JP H10110246A
Authority
JP
Japan
Prior art keywords
steel wire
strength
iron loss
magnetic field
acsr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26462296A
Other languages
Japanese (ja)
Other versions
JP3505048B2 (en
Inventor
Atsuhiko Yoshie
淳彦 吉江
Tsugunori Nishida
世紀 西田
Masao Yabumoto
政男 薮本
Hiroshi Oba
浩 大羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26462296A priority Critical patent/JP3505048B2/en
Publication of JPH10110246A publication Critical patent/JPH10110246A/en
Application granted granted Critical
Publication of JP3505048B2 publication Critical patent/JP3505048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve strength and corrosion resistance and to reduce iron loss by using low-carbon silicon steel of a specific composition and regulating conditions for plating after cold wiredrawing, afterdrawing, bluing, and warm stretching respectively. SOLUTION: A wire rod, having a composition consisting of, by weight ratio, 0.01-0.3% C, 0.6-6.5% Si, 0.10-1.5% Mn, and the balance essentially Fe and satisfying Si>=10×C+0.5, is used. It is preferable that one or more kinds among 0.002-0.05% Al and/or 0.002-0.10% Nb and 0.002-0.10% Ti are further added. Moreover, if necessary, minute amounts of Cu, Ni, Cr, Mo, Co, W, V, B, Rem, Ca, and Mg are added. At the time of manufacture of a steel wire, Zn or Al-Si- Zn alloy plating is performed and then wiredrawing is carried out at 20-80% reduction of area, and further, warm stretching is applied at 300-370 deg.C at a force 20-50% of the tensile strength of the steel wire. Further, the tensile strength of this steel wire exceeds 1500MPa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は送電線用ケーブルの
Al導線を補強するために使用される鋼撚線の素線(A
CSR(Aluminium Conductor Steel Reinforced) 鋼
線) に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a twisted steel wire (A) used to reinforce an Al conductor of a power transmission cable.
It is related to CSR (Aluminum Conductor Steel Reinforced).

【0002】[0002]

【従来の技術】ACSRは米国ALCOA社が考案し、
Alの軽量により送電線として多く用いられている。し
かしAlは強度が低いため、補強用にACSRの中心部
にZnやAlをメッキした鋼線と組み合わせて用いる。
通常、当該鋼線にはJIS SWRH62〜77Aを素
線として用い、冷間伸線後の鋼線を3〜19本に縒りあ
わせて用いる。このような心線は強度、伸び、捻回値、
巻き付き試験時の折損などに関する規定があるが、AC
SRとして用いた場合の鉄損に関する規定はとくに定め
られていない。しかるに現実のACSR用鋼心線には、
鋼より線の周囲によりあわせた硬Al線に電流が流れる
ため、誘導電流による鉄損が生ずるという欠点があっ
た。この鉄損は大きな送電ロスの原因となるにもかかわ
らず、現状ではこの鉄損を防止する手段は何もとられて
いない。
2. Description of the Related Art ACSR was devised by the US company ALCOA,
Because of the light weight of Al, it is often used as power transmission lines. However, since Al has low strength, it is used in combination with a steel wire plated with Zn or Al at the center of the ACSR for reinforcement.
Normally, JIS SWRH62 to 77A is used as a strand for the steel wire, and 3 to 19 steel wires after cold drawing are used. Such cores have strength, elongation, torsion,
Although there are regulations regarding breakage during the winding test, AC
There are no specific rules for iron loss when used as SR. However, in the actual steel core wire for ACSR,
Since current flows through the hard Al wire more closely aligned with the periphery of the steel stranded wire, there is a drawback that an induced current causes iron loss. Although this iron loss causes a large transmission loss, at present there is no means to prevent this iron loss.

【0003】一般にトランスやモーターの鉄損を低減さ
せるために電磁鋼板が使用されており、圧延方向に対し
て結晶方位をそろえた方向性電磁鋼板、結晶方位をラン
ダムに配列した無方向性電磁鋼板が知られている。これ
らの電磁鋼板では結晶方位を制御するために製造工程で
はCを含む鋼を用い、最終製品では脱炭焼鈍等によりC
を30ppm 以下に抑える。この方法は多大な製造コスト
を要する。またこれらはいずれも薄板に関するものであ
り、より線を周囲の硬Al線とより合わせた場合に鉄損
を低減させる方法については報告はない。
[0003] In general, electrical steel sheets are used to reduce iron loss of transformers and motors, and grain-oriented electrical steel sheets having a uniform crystal orientation with respect to the rolling direction, and non-oriented electrical steel sheets having crystal orientations randomly arranged. It has been known. In these electromagnetic steel sheets, steel containing C is used in the manufacturing process in order to control the crystal orientation.
To 30 ppm or less. This method requires great manufacturing costs. In addition, all of them relate to a thin plate, and there is no report on a method of reducing iron loss when a stranded wire is twisted with a surrounding hard Al wire.

【0004】[0004]

【発明が解決しようとする課題】本発明は、鋼素線の成
分系と製造条件を特定することにより、送電時の鉄損を
低減しうるACSR用鋼心線とその製造法に関するもの
である。
The present invention relates to a steel core wire for an ACSR capable of reducing iron loss at the time of power transmission by specifying a component system and a manufacturing condition of a steel wire, and a method of manufacturing the same. .

【0005】[0005]

【課題を解決するための手段】かかる課題を解決するた
めに、本発明は鋼材の成分を限定し、さらに鋼材の製造
条件を選定することにより送電時の電力ロスを低減する
ことを可能とするACSR用鋼心線とその製造法を提供
するものである。即ち要旨とするところは以下のとおり
である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention makes it possible to reduce the power loss during power transmission by limiting the composition of the steel material and selecting the manufacturing conditions of the steel material. An object of the present invention is to provide a steel core wire for ACSR and a method for producing the same. That is, the summary is as follows.

【0006】(1)重量%で、C :0.01%〜0.
3%、Si:0.6%〜6.5%、Mn:0.10%〜
1.5%、且つCとSiの関係が、Si≧10×C+
0.5の範囲にあり、残部がFeおよび不可避的不純物
からなることを特徴とする高磁場で鉄損の低い高強度A
CSR用鋼線。
(1) C: 0.01% to 0.1% by weight.
3%, Si: 0.6% to 6.5%, Mn: 0.10% to
1.5% and the relationship between C and Si is Si ≧ 10 × C +
0.5, with the balance being Fe and unavoidable impurities, high intensity A with low iron loss at high magnetic field.
Steel wire for CSR.

【0007】(2)重量%で、Al:0.002%〜
0.050%を含有することを特徴とする(1)に記載
の高磁場で鉄損の低い高強度ACSR用鋼線。 (3)重量%で、Nb:0.002%〜0.10%、T
i:0.002%〜0.10%の1種または2種以上を
含有することを特徴とする(1)乃至(2)のいずれか
1つに記載の高磁場で鉄損の低い高強度ACSR用鋼
線。
(2) Al: 0.002% by weight%
The high-strength steel wire for ACSR having a high magnetic field and a low iron loss according to (1), characterized by containing 0.050%. (3) By weight%, Nb: 0.002% to 0.10%, T
i: High strength with low iron loss in a high magnetic field according to any one of (1) to (2), wherein one or more of 0.002% to 0.10% is contained. Steel wire for ACSR.

【0008】(4)重量%で、 Cu:0.02%〜0.5%、 Ni:0.02%〜0.5%、 Cr:0.02%〜0.5%、 Mo:0.02%〜0.5%、 Co:0.02%〜0.5%、 W :0.02%〜0.5% の1種または2種以上を含有することを特徴とする
(1)乃至(3)のいずれか1つに記載の高磁場で鉄損
の低い高強度ACSR用鋼線。
(4) Cu: 0.02% to 0.5%, Ni: 0.02% to 0.5%, Cr: 0.02% to 0.5%, Mo: 0. (1) to (2) to 0.5%, Co: 0.02% to 0.5%, and W: 0.02% to 0.5%. (3) The high-strength steel wire for ACSR having a high magnetic field and a low iron loss according to any one of (3).

【0009】(5)重量%で、V:0.002%〜0.
10%を含有することを特徴とする(1)乃至(4)の
いずれか1つに記載の高磁場で鉄損の低い高強度ACS
R用鋼線。 (6)重量%で、B:0.0002%〜0.0025%
を含有することを特徴とする(1)乃至(5)のいずれ
か1つに記載の高磁場で鉄損の低い高強度ACSR用鋼
線。
(5) V: 0.002% to 0.1% by weight.
High-strength ACS with low iron loss in a high magnetic field according to any one of (1) to (4), characterized by containing 10%.
Steel wire for R. (6) By weight%, B: 0.0002% to 0.0025%
The steel wire for high-strength ACSR having a high magnetic field and a low iron loss according to any one of (1) to (5), comprising:

【0010】(7)重量%で、Rem:0.002%〜
0.10%、Ca:0.0003%〜0.0030%、
Mg:0.0003〜0.01%の1種または2種以上
を含有することを特徴とする(1)乃至(6)のいずれ
か1つに記載の高磁場で鉄損の低い高強度ACSR用鋼
線。
(7) Rem: 0.002% by weight%
0.10%, Ca: 0.0003% to 0.0030%,
Mg: 0.0003 to 0.01% of one or more of the following: (1) to (6), a high magnetic field and a high strength ACSR having low iron loss and high iron loss. For steel wire.

【0011】(8)鋼線をZnメッキ、または重量比
で、Al:2〜12% Si:0.01〜0.12% 残余をZnおよび不可避的不純物からなる合金浴を用い
て溶融メッキすることを特徴とする(1)乃至(7)の
いずれか1つに記載の高磁場で鉄損の低い高強度ACS
R用メッキ鋼線。
(8) A steel wire is Zn-plated, or hot-dip-plated by using an alloy bath containing Zn and unavoidable impurities with Al: 2 to 12%, Si: 0.01 to 0.12% by weight. A high-strength ACS with low iron loss in a high magnetic field according to any one of (1) to (7),
Plated steel wire for R.

【0012】(9)メッキ後の鋼線を総減面率20〜8
0%で伸線することを特徴とする(8)に記載の高磁場
で鉄損の低い高強度ACSR用メッキ鋼線。 (10)伸線後の鋼線を300度以上370度以下の温
度でブルーイング処理を施すことを特徴とする(9)に
記載の高磁場で鉄損の低い高強度ACSR用メッキ鋼
線。
(9) The steel wire after plating has a total area reduction of 20 to 8
(8) The high-strength plated steel wire for ACSR according to (8), wherein the wire is drawn at 0% and the iron loss is low at a high magnetic field. (10) The plated steel wire for high-strength ACSR according to (9), wherein the drawn steel wire is subjected to a bluing treatment at a temperature of 300 ° C or more and 370 ° C or less.

【0013】(11)伸線後の鋼線を300度以上37
0度以下の温度で加熱し且つ加熱中に鋼線の引張強度の
20%〜50%の範囲の応力を加えることを特徴とする
(9)に記載の高磁場で鉄損の低い高強度ACSR用メ
ッキ鋼線。ただし、ここで高磁場とは磁界の強さが20
00A/mを越える場合を意味する。
(11) The drawn steel wire should be at least 300 degrees and 37
A high-strength ACSR having a high magnetic field and low iron loss according to (9), wherein the steel wire is heated at a temperature of 0 ° or less and a stress in a range of 20% to 50% of the tensile strength of the steel wire is applied during the heating. For plated steel wire. However, the high magnetic field here means that the magnetic field strength is 20
It means the case exceeding 00 A / m.

【0014】[0014]

【発明の実施の形態】以下本発明について詳細に説明す
る。本発明の根幹をなす技術思想は以下のとおりであ
る。一般に、鉄損はヒステリシス損と渦電流損に分離す
ることができる。前者は結晶方位と鋼の純度の影響を受
けることが知られている。鋼板の場合は圧延面に(11
0)[001]方位(いわゆるGoss方位)が集積す
ることが望ましく、また純度が高いほど良い。しかし、
高強度の鋼線は多量のCを含むことにより高強度化して
いるため、Cを低減する場合はそれに代替する高強度化
の手段をとる必要がある。さらに伸線加工は強烈な繊維
状集合組織を発達させるため、伸線材特有の集合組織以
外の結晶方位を得ることは不可能に近い。一方、後者の
渦電流損は固有抵抗が大きいほど小さくなるため、Si
添加が有効であることが知られている。特に高磁場(磁
界の強さが強い場合で、2000A/mを越えるような
場合)における鉄損を低減するためには高Si化が有効
である。しかし、高Si鋼は延性が低く、実際に伸線加
工する場合に容易に破断する。このような問題点を総合
的に解決するために本発明者らは種々検討を加え下記の
解決策を見出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The technical idea underlying the present invention is as follows. Generally, iron loss can be separated into hysteresis loss and eddy current loss. The former is known to be affected by crystal orientation and steel purity. In the case of a steel plate, (11
0) It is desirable that [001] directions (so-called Goss directions) be integrated, and the higher the purity, the better. But,
Since a high-strength steel wire contains a large amount of C, the strength is increased. Therefore, when C is reduced, it is necessary to take a means of increasing the strength instead. Further, since wire drawing develops an intense fibrous texture, it is almost impossible to obtain a crystal orientation other than the texture unique to the drawn material. On the other hand, the latter eddy current loss decreases as the specific resistance increases,
Addition is known to be effective. In particular, in order to reduce iron loss in a high magnetic field (when the strength of the magnetic field is strong and exceeds 2000 A / m), high Si is effective. However, the high Si steel has low ductility and easily breaks when it is actually drawn. In order to solve such problems comprehensively, the present inventors have conducted various studies and found the following solutions.

【0015】ヒステリシス損を低減するためにはC含有
量の低減が必須である。そのためCの低減に伴う強度の
低下を別の手法で補う必要がある。一般にC含有量が大
きいほど伸線加工による強度上昇は大きくなるため、C
量を低減すると伸線加工による高強度化もあまり期待で
きない。しかるに、Cの代わりにSiを高めることによ
り伸線加工による強度上昇量を大きくとることが可能で
ある。単にSiを高めると伸線加工性を阻害して伸線中
に容易に破断してしまうが、C量を低くすることにより
伸線加工性を阻害せずに強度を高めることができ且つヒ
ステリシス損も低減することが可能となる。良好な伸線
加工性を保つためにはCとSiの含有量が所定の範囲に
ある必要がある。さらに本発明が目的とするように高磁
場における鉄損を低減するためにはSiはCに対して所
定の量以上添加する必要がある。
In order to reduce the hysteresis loss, the C content must be reduced. Therefore, it is necessary to compensate for the decrease in strength due to the decrease in C by another method. In general, the higher the C content, the greater the increase in strength due to wire drawing.
If the amount is reduced, high strength by wire drawing cannot be expected much. However, by increasing Si instead of C, it is possible to increase the strength increase due to wire drawing. If Si is simply increased, the wire drawing workability is impaired and the wire is easily broken during wire drawing. However, by lowering the C content, the strength can be increased without impairing the wire drawing workability, and the hysteresis loss is reduced. Can also be reduced. In order to maintain good drawability, the contents of C and Si need to be within a predetermined range. Further, in order to reduce iron loss in a high magnetic field as intended by the present invention, it is necessary to add Si to C in a predetermined amount or more.

【0016】以下に化学成分および金属組織の限定理由
を詳細に説明する。まず本発明の成分の限定理由につい
て述べる。Cは、線材を強化するのに有効な元素である
が、鉄損を著しく増大させるためにその含有量を厳しく
制限する必要がある。0.3%を超えると鉄損の増加が
顕著であるため含有量を0.3%以下とする。一方、
0.01%未満では実際に要求される1500MPaを
越えるような強度を得ることができないため、含有量の
範囲を0.01%〜0.3%とする。
Hereinafter, the reasons for limiting the chemical components and the metal structure will be described in detail. First, the reasons for limiting the components of the present invention will be described. C is an effective element for strengthening the wire rod, but its content must be severely restricted in order to significantly increase iron loss. If it exceeds 0.3%, the increase in iron loss is remarkable, so the content is made 0.3% or less. on the other hand,
If it is less than 0.01%, it is impossible to obtain a strength exceeding 1500 MPa which is actually required, so the content range is set to 0.01% to 0.3%.

【0017】Siは脱酸元素として有効であるとともに
固有抵抗を増して渦電流損を低減させる。0.6%未満
の含有量ではその効果が小さい。一方、6.5%を越え
ると伸線性が劣化するために含有量の範囲を0.6%以
上6.5%以下とする。2000A/mを越えるような
高磁場における鉄損を低減するためにはSiが所定の関
係を満たす範囲にある必要がある。特にSi含有量はC
量に対して所定の関係を満たす以上に多く添加すること
が必要である。著者らは、CとSiの含有量の関係が、
Si≧10×C+0.5を満たす範囲にある場合に高磁
場における鉄損が低減することを見出したので、CとS
iの含有量の範囲をSi≧10×C+0.5の範囲とす
る。
Si is effective as a deoxidizing element and increases the specific resistance to reduce eddy current loss. If the content is less than 0.6%, the effect is small. On the other hand, if it exceeds 6.5%, the drawability deteriorates, so the content range is set to 0.6% or more and 6.5% or less. In order to reduce iron loss in a high magnetic field exceeding 2000 A / m, Si needs to be in a range satisfying a predetermined relationship. Especially the Si content is C
It is necessary to add more than the amount satisfies a predetermined relationship. The authors conclude that the relationship between C and Si content is
Since it was found that iron loss in a high magnetic field was reduced when Si ≧ 10 × C + 0.5 was satisfied, C and S
The range of the content of i is set to the range of Si ≧ 10 × C + 0.5.

【0018】Mnは金属の強靱化に有効な元素であり、
0.10%未満の添加では十分な効果が得られない。一
方、その含有量が1.5%を越えると溶着金属の靱性が
劣化する。TiおよびNbはいずれも微量の添加で結晶
粒の微細化と析出硬化の面で有効に機能するが、添加量
が少ないとその効果が得られず、また過度の量の添加は
鉄損の増加をもたらすため、Nb,Tiともその添加量
をTi:0.002%〜0.10%、Nb:0.002
%〜0.10%の範囲に限定する。
Mn is an element effective for toughening a metal.
If it is less than 0.10%, a sufficient effect cannot be obtained. On the other hand, if the content exceeds 1.5%, the toughness of the deposited metal deteriorates. Both Ti and Nb function effectively in terms of crystal grain refinement and precipitation hardening when added in very small amounts, but the effect is not obtained when the added amount is small, and an excessive amount increases the iron loss. In order to bring about Nb and Ti, the addition amounts of Nb and Ti are set to 0.002% to 0.10% for Ti and 0.002% for Nb.
% To the range of 0.10%.

【0019】Cu,Ni,Cr,Mo,Wはいずれも鋼
の強度を高めることができるが、添加量が少ないと固溶
強化による強度上昇の効果が得られず、また過度の量の
添加は延性を劣化させるため、添加量をCu:0.02
%〜0.5%、Ni:0.02%〜0.5%、Cr:
0.02%〜0.5%、Mo:0.02%〜0.5%、
W:0.02%〜0.5%の範囲に限定する。
[0019] Cu, Ni, Cr, Mo and W can all increase the strength of the steel. However, if the addition amount is small, the effect of increasing the strength by solid solution strengthening cannot be obtained. In order to deteriorate the ductility, the added amount is Cu: 0.02
% To 0.5%, Ni: 0.02% to 0.5%, Cr:
0.02% to 0.5%, Mo: 0.02% to 0.5%,
W: Limited to the range of 0.02% to 0.5%.

【0020】Vは、鋼の強度を高めるのに有効である
が、添加量が少ないとその効果が得られず、また過度の
量の添加は鉄損の増加をもたらすため、その添加量を
0.002%〜0.10%の範囲に限定する。Bは鋼の
焼入れ性を向上させる元素である。本発明における場
合、その添加により鋼の強度を高めることができるが、
添加量が少ないと焼き入れ性が向上せず、また過度の添
加はBの析出物を増加させて延性を損なうためその含有
量を0.0002%〜0.0025%の範囲とする。
V is effective in increasing the strength of steel, but the effect is not obtained if the addition amount is small, and addition of an excessive amount causes an increase in iron loss. 0.002% to 0.10%. B is an element that improves the hardenability of steel. In the case of the present invention, the addition can increase the strength of the steel,
If the addition amount is small, the hardenability will not be improved, and excessive addition will increase the precipitation of B and impair ductility, so the content is made 0.0002% to 0.0025%.

【0021】Rem,CaおよびMgはSまたは酸素と
結び付いて金属組織を微細化するのに有効である。少量
の添加ではSがそのまま残り、また過度の添加は鉄損の
増加をもたらすため、Rem:0.002%〜0.10
%、Ca:0.0003%〜0.0030%、Mg:
0.0003%〜0.01%の範囲で添加する。Alは
脱酸元素として有効である。0.002%未満の含有量
ではその効果がなく、0.05%を越えると表面疵がで
やすくなるため、その含有量を0.002%〜0.05
0%の範囲とする。
Rem, Ca and Mg are effective in refining the metal structure by combining with S or oxygen. When a small amount is added, S remains as it is, and excessive addition causes an increase in iron loss, so Rem: 0.002% to 0.10
%, Ca: 0.0003% to 0.0030%, Mg:
It is added in the range of 0.0003% to 0.01%. Al is effective as a deoxidizing element. If the content is less than 0.002%, there is no effect, and if it exceeds 0.05%, surface flaws are likely to occur.
The range is 0%.

【0022】次に本発明における製造条件の限定条件に
ついて述べる。本発明の鋼線はその製造工程をとくに定
める必要はない。すなわち、通常の製鋼工程で精錬およ
び鋳造された鋼塊または鋳片を出発点として必要に応じ
て分塊圧延を施し、通常の線材圧延工程で鋼線としたも
のを対象としている。各工程での操業条件は多岐にわた
るがそのいずれを用いても有効である。
Next, the limiting conditions for the manufacturing conditions in the present invention will be described. The manufacturing process of the steel wire of the present invention does not need to be particularly defined. In other words, the ingot or slab cast and refined and cast in the normal steelmaking process is subjected to slab rolling as necessary starting from a steel ingot or a slab, and a steel wire is formed in the normal wire rod rolling process. The operating conditions in each process vary widely, and any of them is effective.

【0023】通常ACSRに用いられる鋼線は耐食性を
付与するためにZnメッキまたはAl−Zn等の合金メ
ッキを施す必要がある。通常のZnメッキでも耐食性は
向上するが、Alを添加するとより良好な耐食性を示す
ため、使用環境の過酷度合に応じてAl量を選択すれば
良い。ただし、Al量が2%未満では耐食性の向上効果
は不十分であり、12%を越えると融点上昇によりメッ
キ温度が高くなるため鋼線強度の低下をもたらす。よっ
てメッキ浴中のAlの量は、重量%で2%以上12%以
下に限定する。一方、メッキ浴中にSiを添加する理由
はメッキ槽などの鋼製の設備・機器からFeが溶け出る
のを抑制し、メッキ浴中のドロスの発生を抑えることに
ある。Si添加量が0.01%未満ではドロスが発生
し、0.12%を越えるとSiがメッキ浴中に溶解しな
いため、その添加量を0.01%以上0.12%未満に
限定する。
The steel wire usually used for the ACSR needs to be plated with Zn or an alloy such as Al—Zn in order to impart corrosion resistance. Corrosion resistance is improved by ordinary Zn plating, but when Al is added, better corrosion resistance is exhibited. Therefore, the amount of Al may be selected according to the severity of the use environment. However, if the Al content is less than 2%, the effect of improving the corrosion resistance is insufficient, and if it exceeds 12%, the plating temperature increases due to an increase in melting point, resulting in a decrease in steel wire strength. Therefore, the amount of Al in the plating bath is limited to 2% to 12% by weight. On the other hand, the reason why Si is added to the plating bath is to suppress the dissolution of Fe from steel facilities and equipment such as a plating bath and to suppress the generation of dross in the plating bath. If the added amount of Si is less than 0.01%, dross is generated, and if it exceeds 0.12%, Si does not dissolve in the plating bath, so the added amount is limited to 0.01% or more and less than 0.12%.

【0024】通常メッキ工程が減ることにより強度が低
下するため、メッキ後伸線加工(アフタードロー)を施
し強度を補償する。その際の総減面率が20%未満では
強度が十分に回復せず、80%を越えると延性が著しく
劣化するので、総減面率の範囲を20%以上80%未満
に限定する。このような伸線加工をすると製品としての
伸びが劣化するため、再度加熱して伸びを確保する必要
がある。その際の加熱温度が300℃未満では伸びが十
分に回復せず、370℃を越えるとメッキ層が軟化して
しまうため、加熱温度の範囲を300℃以上370℃未
満に限定する。さらにメッキにより低下した強度を高め
るには、加熱中に応力を負荷することが有効である。そ
の際の負荷応力が鋼線の常温での引張り強度の10%未
満では強度上昇が不十分であり、50%を越えると局部
的に塑性変形が生じて延性を劣化させるため、負荷応力
の範囲を鋼線の常温での引張り強度の10%以上50%
以下に限定する。
Usually, the strength is reduced by reducing the number of plating steps. Therefore, wire drawing (afterdrawing) is performed after plating to compensate for the strength. If the total area reduction rate is less than 20%, the strength is not sufficiently recovered, and if it exceeds 80%, the ductility is significantly deteriorated. Therefore, the range of the total area reduction rate is limited to 20% or more and less than 80%. Such wire drawing deteriorates the elongation of the product, so it is necessary to reheat to secure the elongation. If the heating temperature at that time is less than 300 ° C., the elongation is not sufficiently recovered, and if it exceeds 370 ° C., the plating layer is softened. Therefore, the heating temperature range is limited to 300 ° C. or more and less than 370 ° C. In order to further increase the strength reduced by plating, it is effective to apply a stress during heating. If the applied stress at that time is less than 10% of the tensile strength of the steel wire at room temperature, the strength increase is insufficient, and if it exceeds 50%, plastic deformation occurs locally and ductility is deteriorated. 10% to 50% of the tensile strength of steel wire at room temperature
Limited to the following.

【0025】[0025]

【実施例】次に本発明を実施例にもとづいて詳細に説明
する。まず表1に示す成分の鋼線を通常の転炉法による
精錬(一部真空溶解)、連続鋳造(一部鋼塊法+分塊圧
延)、線材圧延(熱間圧延)により製造した。さらに冷
間伸線により所定の直径まで引いて強度を調整した。冷
間伸線後、一部のものについては表2に示す条件でメッ
キ、アフタードロー、ブルーイング、温間ストレッチン
グの各処理を施した。これらの鋼線の機械的性質および
耐食性倍率を表2に合わせて示す。ここで耐食性倍率は
下記の式で計算した。
Next, the present invention will be described in detail based on embodiments. First, steel wires having the components shown in Table 1 were manufactured by refining (partially vacuum melting), continuous casting (partial steel ingot method and slab rolling), and wire rod rolling (hot rolling) by a normal converter method. Further, the strength was adjusted by drawing to a predetermined diameter by cold drawing. After cold drawing, some of them were subjected to plating, afterdrawing, bluing, and warm stretching under the conditions shown in Table 2. Table 2 shows the mechanical properties and the corrosion resistance magnification of these steel wires. Here, the corrosion resistance magnification was calculated by the following equation.

【0026】[0026]

【化1】 Embedded image

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】これらの鋼線を直径270mmのリング状に
約6巻し、さらにその周囲に1次側で700巻、2次側
で20巻の銅線を巻いて鉄損の測定に供した。鉄損の測
定のためには交流での磁束密度と磁界強さの関係を測定
した。周波数は50Hzとした。磁界強さ(Hm)は1
000〜4000(A/m)の範囲で、また磁束密度
(Bm)は0.2〜1.5(T)の範囲で変化させて鉄
損を測定した。鉄損の測定結果を表3に示す。
Each of these steel wires was wound into a ring shape having a diameter of 270 mm, about 6 times, and further, 700 copper wires were wound on the primary side and 20 turns on the secondary side, and the iron loss was measured. For the measurement of iron loss, the relationship between the magnetic flux density and the magnetic field strength in alternating current was measured. The frequency was 50 Hz. Magnetic field strength (Hm) is 1
Iron loss was measured by changing the magnetic flux density (Bm) in the range of 2,000 to 4,000 (A / m) and 0.2 to 1.5 (T). Table 3 shows the measurement results of iron loss.

【0030】[0030]

【表3】 [Table 3]

【0031】表3に示したように、本発明の鋼は極低C
鋼ではあるものの1500MPaを越える引張強度を有
している。さらに伸びも比較的良好でACSRとしての
仕様に十分耐えるものである。メッキをほどこすことに
より、耐食性が確保できるが、特にZn−Alメッキを
施した場合の耐食性倍率が大きく、効果が顕著であるこ
とがわかる。
As shown in Table 3, the steel of the present invention has an extremely low C
Although it is steel, it has a tensile strength exceeding 1500 MPa. Furthermore, the elongation is relatively good, and it can sufficiently withstand the specification as the ACSR. By applying plating, corrosion resistance can be ensured. However, it can be seen that the corrosion resistance magnification is particularly large when Zn-Al plating is applied, and the effect is remarkable.

【0032】また、表3に示したように、本発明の鋼は
2000A/mを越えるような高磁場域での鉄損が低
い。特に鉄損はC量が低くSi量が高いほど低くなる傾
向が見られるが、本発明鋼のいずれの鉄損も、現状使用
されている0.82%C鋼21に比較して半減している
ことがわかる。また、CとSiの含有量の関係が、Si
≧10×C+0.5を満たす範囲にない比較鋼8,9は
高磁場における鉄損が高いことがわかる。メッキ後の熱
処理温度が400℃を越える場合11は強度、伸び、耐
食性倍率ともに劣化している。熱処理中の負荷応力が6
0%σyと高い場合12は伸び、耐食性倍率ともに劣化
している。またメッキ後の減面率が81%と過剰な場合
15,18は伸びが劣化する。
Further, as shown in Table 3, the steel of the present invention has a low iron loss in a high magnetic field region exceeding 2000 A / m. In particular, the iron loss tends to be lower as the C content is lower and the Si content is higher. You can see that there is. In addition, the relationship between the content of C and Si is
It can be seen that the comparative steels 8 and 9 not in the range satisfying ≧ 10 × C + 0.5 have high iron loss in a high magnetic field. When the heat treatment temperature after plating exceeds 400 ° C., the strength, elongation, and corrosion resistance magnification are all deteriorated. 6 applied stress during heat treatment
When it is as high as 0% σy, elongation is 12 and the corrosion resistance magnification is deteriorated. In addition, when the reduction in area after plating is excessively 81%, the elongation of 15 and 18 is deteriorated.

【0033】[0033]

【発明の効果】このように本発明は1500MPa以上
の高強度を有し、伸び、耐食性に優れさらに従来鋼より
はるかに高磁場での鉄損も低い。このことはACSRの
心線として用いた場合に電力ロスの大幅な低減を可能と
し省エネルギーに多大な効果をもたらすものである。
As described above, the present invention has a high strength of 1500 MPa or more, is excellent in elongation and corrosion resistance, and has a lower iron loss in a much higher magnetic field than conventional steel. This makes it possible to greatly reduce the power loss when used as the core wire of the ACSR, and brings a great effect on energy saving.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大羽 浩 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Oba 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Kimitsu Works

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.01%〜0.3%、 Si:0.6%〜6.5%、 Mn:0.10%〜1.5%、 且つCとSiの関係が、Si≧10×C+0.5の範囲
にあり、残部がFeおよび不可避的不純物からなること
を特徴とする高磁場で鉄損の低い高強度ACSR用鋼
線。
1. A weight percent of C: 0.01% to 0.3%, Si: 0.6% to 6.5%, Mn: 0.10% to 1.5%, and the content of C and Si A high-strength ACSR steel wire having a high magnetic field and a low iron loss, wherein the relationship is in the range of Si ≧ 10 × C + 0.5, and the balance is composed of Fe and inevitable impurities.
【請求項2】 重量%で、Al:0.002%〜0.0
50%を含有することを特徴とする請求項1に記載の高
磁場で鉄損の低いACSR用鋼線。
2. Al: 0.002% to 0.0% by weight.
The steel wire for an ACSR according to claim 1, wherein the steel wire has a high magnetic field and a low iron loss.
【請求項3】 重量%で、Nb:0.002%〜0.1
0%、Ti:0.002%〜0.10%の1種または2
種以上を含有することを特徴とする請求項1乃至請求項
2のいずれか1つに記載の高磁場で鉄損の低い高強度A
CSR用鋼線。
3. Nb: 0.002% to 0.1% by weight.
0%, Ti: one or two of 0.002% to 0.10%
The high intensity A having a low magnetic loss and a high magnetic field according to any one of claims 1 to 2, wherein the high intensity A contains at least one species.
Steel wire for CSR.
【請求項4】 重量%で、 Cu:0.02%〜0.5%、 Ni:0.02%〜0.5%、 Cr:0.02%〜0.5%、 Mo:0.02%〜0.5%、 Co:0.02%〜0.5%、 W :0.02%〜0.5% の1種または2種以上を含有することを特徴とする請求
項1乃至請求項3のいずれか1つに記載の高磁場で鉄損
の低い高強度ACSR用鋼線。
4. In% by weight, Cu: 0.02% to 0.5%, Ni: 0.02% to 0.5%, Cr: 0.02% to 0.5%, Mo: 0.02 % To 0.5%, Co: 0.02% to 0.5%, W: 0.02% to 0.5%. Item 4. A high-strength ACSR steel wire having a high magnetic field and a low iron loss according to any one of items 3.
【請求項5】 重量%で、V:0.002%〜0.10
%を含有することを特徴とする請求項1乃至請求項4の
いずれか1つに記載の高磁場で鉄損の低い高強度ACS
R用鋼線。
5. V: 0.002% to 0.10% by weight
5. The high-strength ACS with low iron loss in a high magnetic field according to any one of claims 1 to 4, characterized in that:
Steel wire for R.
【請求項6】 重量%で、B:0.0002%〜0.0
025%を含有することを特徴とする請求項1乃至請求
項5のいずれか1つに記載の高磁場で鉄損の低い高強度
ACSR用鋼線。
6. B: 0.0002% to 0.0% by weight
The high-strength ACSR steel wire according to any one of claims 1 to 5, wherein the steel wire has a high magnetic field and a low iron loss.
【請求項7】 重量%で、 Rem:0.002%〜0.10%、Ca:0.000
3%〜0.0030%、 Mg:0.0003〜0.01% の1種または2種以上を含有することを特徴とする請求
項1乃至請求項6のいずれか1つに記載の高磁場で鉄損
の低い高強度ACSR用鋼線。
7. Rem: 0.002% to 0.10% by weight, Ca: 0.000% by weight
The high magnetic field according to any one of claims 1 to 6, comprising one or more of 3% to 0.0030% and Mg: 0.0003 to 0.01%. High strength ASR steel wire with low iron loss.
【請求項8】 鋼線をZnメッキ、または重量比で、 Al:2〜12% Si:0.01〜0.12% 残余をZnおよび不可避的不純物からなる合金浴を用い
て溶融メッキすることを特徴とする請求項1乃至請求項
7のいずれか1つに記載の高磁場で鉄損の低い高強度A
CSR用メッキ鋼線。
8. A steel wire is Zn-plated or hot-dip plated by using an alloy bath containing Zn and unavoidable impurities, with Al: 2 to 12% Si: 0.01 to 0.12% in weight ratio. The high intensity A having a low iron loss in a high magnetic field according to any one of claims 1 to 7, characterized in that:
Plated steel wire for CSR.
【請求項9】 メッキ後の鋼線を総減面率20〜80%
で伸線することを特徴とする請求項8に記載の高磁場で
鉄損の低い高強度ACSR用メッキ鋼線。
9. The steel wire after plating has a total area reduction rate of 20 to 80%.
The high-strength plated steel wire for ACSR according to claim 8, wherein the wire is drawn by a high magnetic field and a low iron loss.
【請求項10】 伸線後の鋼線を300度以上370度
以下の温度でブルーイング処理を施すことを特徴とする
請求項9に記載の高磁場で鉄損の低い高強度ACSR用
メッキ鋼線。
10. The high-strength plated steel for ACSR according to claim 9, wherein the drawn steel wire is subjected to a bluing treatment at a temperature of 300 ° C. or more and 370 ° C. or less. line.
【請求項11】 伸線後の鋼線を300度以上370度
以下の温度で加熱し且つ加熱中に鋼線の引張強度の20
%〜50%の範囲の応力を加えることを特徴とする請求
項9に記載の高磁場で鉄損の低い高強度ACSR用メッ
キ鋼線。
11. The drawn steel wire is heated at a temperature of 300 ° C. to 370 ° C. and the tensile strength of the steel wire during heating is 20 ° C.
The high-strength plated steel wire for ACSR according to claim 9, wherein a stress in a range of 50% to 50% is applied.
JP26462296A 1996-10-04 1996-10-04 High strength steel wire for high strength ACSR with low iron loss in high magnetic field Expired - Fee Related JP3505048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26462296A JP3505048B2 (en) 1996-10-04 1996-10-04 High strength steel wire for high strength ACSR with low iron loss in high magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26462296A JP3505048B2 (en) 1996-10-04 1996-10-04 High strength steel wire for high strength ACSR with low iron loss in high magnetic field

Publications (2)

Publication Number Publication Date
JPH10110246A true JPH10110246A (en) 1998-04-28
JP3505048B2 JP3505048B2 (en) 2004-03-08

Family

ID=17405901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26462296A Expired - Fee Related JP3505048B2 (en) 1996-10-04 1996-10-04 High strength steel wire for high strength ACSR with low iron loss in high magnetic field

Country Status (1)

Country Link
JP (1) JP3505048B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317388A (en) * 2001-04-19 2002-10-31 Nippon Steel Corp Plated strand steel wire having high corrosion resistance and method for producing the same
KR100723157B1 (en) 2005-12-23 2007-05-30 주식회사 포스코 Steel sheet having ultra-high strength and excellent corrosion resistance after hot press forming and the method for manufacturing thereof
JP2008067842A (en) * 2006-09-13 2008-03-27 Kanai Hiroaki Core material for manufacturing catheter tube and method of manufacturing the same
CN103060822A (en) * 2013-01-04 2013-04-24 湖南雪豹电器有限公司 Blueing treatment process for semi-processed electrical steel rotor or stator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317388A (en) * 2001-04-19 2002-10-31 Nippon Steel Corp Plated strand steel wire having high corrosion resistance and method for producing the same
KR100723157B1 (en) 2005-12-23 2007-05-30 주식회사 포스코 Steel sheet having ultra-high strength and excellent corrosion resistance after hot press forming and the method for manufacturing thereof
JP2008067842A (en) * 2006-09-13 2008-03-27 Kanai Hiroaki Core material for manufacturing catheter tube and method of manufacturing the same
CN103060822A (en) * 2013-01-04 2013-04-24 湖南雪豹电器有限公司 Blueing treatment process for semi-processed electrical steel rotor or stator

Also Published As

Publication number Publication date
JP3505048B2 (en) 2004-03-08

Similar Documents

Publication Publication Date Title
CN108463569B (en) Non-oriented electromagnetic steel sheet and method for producing same
JP5224009B2 (en) Steel wire rod and manufacturing method thereof
JP5098444B2 (en) Method for producing high ductility direct patenting wire
JP7159311B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and its manufacturing method
JP2016130360A (en) Non-oriented electromagnetic steel sheet and method for manufacturing the same
WO1999053113A1 (en) Steel sheet for can and manufacturing method thereof
KR100441412B1 (en) Wire for high-fatigue-strength steel wire, steel wire and production method therefor
WO2020256140A1 (en) Wire rod
JPH04371549A (en) Wire rod extra fine steel wire with high strength and high toughness, extra fine steel wire with high strength and high toughness, stranded product using the extra fine steel wire, and production of the extra fine steel wire
JP3505048B2 (en) High strength steel wire for high strength ACSR with low iron loss in high magnetic field
JP3505047B2 (en) Steel wire for ACSR with low iron loss
JPWO2005100627A1 (en) Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
JPWO2019164015A1 (en) Wire rod, steel wire and aluminum coated steel wire
US5871851A (en) Magnetic shielding material for television cathode-ray tube and process for producing the same
JP2888726B2 (en) Ultra-fine steel wire excellent in wire drawability and fatigue strength and method for producing the same
JP3984393B2 (en) High-strength steel wire without delamination and method for producing the same
JPH10110216A (en) High strength steel wire for acsr, reduced in iron loss in medium and low magnetic field
JPH06145895A (en) High sterength and high toughness steel wire rod, extra fine steel wire using the same steel wire rod, production therefor and straded steel wire
JP4392093B2 (en) High-strength direct patenting wire and method for producing the same
JP3684186B2 (en) High-strength PC strand, manufacturing method thereof, PC floor slab using the same, concrete structure
JPH07179994A (en) Hyper-eutectoid steel wire having high strength and high toughness and ductility and its production
JP3428502B2 (en) Steel wire, extra fine steel wire and twisted steel wire
JP3520109B2 (en) High strength galvanized steel wire and method of manufacturing the same
JPH06340950A (en) High strength steel wire rod and high strength steel wire excellent in fatigue property
JP3546551B2 (en) High carbon steel wire with excellent drawability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees