JPS60208463A - Galvanized steel wire having superior twisting characteristic and its manufacture - Google Patents

Galvanized steel wire having superior twisting characteristic and its manufacture

Info

Publication number
JPS60208463A
JPS60208463A JP6111484A JP6111484A JPS60208463A JP S60208463 A JPS60208463 A JP S60208463A JP 6111484 A JP6111484 A JP 6111484A JP 6111484 A JP6111484 A JP 6111484A JP S60208463 A JPS60208463 A JP S60208463A
Authority
JP
Japan
Prior art keywords
steel wire
strength
twisting
galvanized steel
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6111484A
Other languages
Japanese (ja)
Other versions
JPH0373625B2 (en
Inventor
Takashi Tsukamoto
塚本 孝
Chuzo Sudo
須藤 忠三
Kenji Aihara
相原 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6111484A priority Critical patent/JPS60208463A/en
Publication of JPS60208463A publication Critical patent/JPS60208463A/en
Publication of JPH0373625B2 publication Critical patent/JPH0373625B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To manufacture a high tension galvanized steel wire which is not vertically cracked during twisting by galvanizing a steel wire having a composition obtd. by adding specified percentages of C, Si, Mn, Cr, Al, Mo and B to Fe. CONSTITUTION:A steel wire consisting of, by weight, 0.7-1.0% C, <=2.0% Si, <=2.0% Mn, 0.5-1.5% Cr, <=0.1% Al and the balance Fe with inevitable impurities or further contg. 0.1-0.3% Mo and/or 0.001-0.003% B is galvanized. The preferred Si content is 0.2-2.0% and that of Mn is 0.4-2.0%. A galvanized steel wire having about 220kg/mm.<2> tensile strength and superior twisting strength is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高張力亜鉛メッキ鋼線とその製造方法に関す
る。更に詳細には、220kg/mm2級の抗張力の調
芯A父撚線用鋼芯線としてめられる捻回特性を備え、か
つ捻回中の縦割れのない新規な高張力亜鉛メッキ鋼線と
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a high tensile strength galvanized steel wire and a method of manufacturing the same. More specifically, we provide a new high-tensile galvanized steel wire that has twisting characteristics that are acceptable as a steel core wire for A-stranded wires with a tensile strength of 220 kg/mm2 class, and that does not cause longitudinal cracking during twisting, and its production. Regarding the method.

従来技術とその課題 調芯A9撚線(以下、“AC3R”という)粗鋼芯線に
代表される亜鉛メッキ鋼線は、その使用条件の変化から
、近年、特に抗張力の高いものが要求される傾向にある
Conventional technology and its challenges Galvanized steel wires, represented by cored A9 stranded wire (hereinafter referred to as "AC3R") crude steel core wire, have recently become required to have particularly high tensile strength due to changes in their usage conditions. be.

例えば、AC3R用鋼心線の場合、送電電圧の高圧化に
(平いより高い張力が加わる使用環境が出現しつつある
For example, in the case of AC3R steel core wires, usage environments are emerging where higher tensions are applied due to higher transmission voltages.

第1図は年度別にみた国内の送電電圧の変遷を示したも
のであるが、この図より明らかなように、1980年代
後半には1000 KV送電が計画されている。
Figure 1 shows the changes in domestic power transmission voltage by year, and as is clear from this figure, 1000 KV power transmission is planned for the late 1980s.

現在は500KV テ送電され、130kg/mI++
’ 銅芯芯aが使用されティるが、100OKV送電テ
ハ180kg/n+m’級鋼芯線が必要とされている。
Currently, 500KV power is being transmitted, and 130kg/mI++
'Copper core a is used, but 100 OKV power transmission technology 180 kg/n+m' class steel core wire is required.

更に、電力会社の中には220kg / w2級銅芯線
の使用を計画しているところもある。現在AC3R鋼心
線としては180kg /mm2級のものが知られてい
るが将来型に220kg / mm”以上縁が要求され
ることが予想され又同時に、AC3R用鋼心線は撚線加
工等の3次加工を施すため、強度の達成のみならず、十
分な加工性及び捻回特性を具えていなければならない。
Additionally, some power companies are planning to use 220kg/w2 class copper core wire. Currently, 180 kg/mm2 grade AC3R steel core wires are known, but it is expected that future models will be required to have edges of 220 kg/mm or more. Since it is subjected to tertiary processing, it must not only achieve strength but also have sufficient workability and twisting characteristics.

更に、公知技術として例えば特開昭50−91517号
にCrを0.2〜1.5%含有する高強度鋼線が開示さ
れているが、この鋼線は115kg/+1lII’級の
強度でしかなく、今後AC3R用鋼心線として期待され
ている強度を具備せず、さらに後述のACS R用銅芯
線として必要とされる捻回特性を備え一〇いるものでは
ない。
Furthermore, as a known technique, for example, Japanese Patent Laid-Open No. 50-91517 discloses a high-strength steel wire containing 0.2 to 1.5% Cr, but this steel wire only has a strength of 115 kg/+1lII' class. Therefore, it does not have the strength expected as a steel core wire for AC3R in the future, and furthermore, it does not have the twisting characteristics required as a copper core wire for ACSR, which will be described later.

また、従来の180 kg / mm2級のAC3R用
鋼心線では、220kg/mm”以上の強度域で捻回値
等の特性が劣化するため、これ以上の強度の上昇を望む
ことはできなかった。また、鉛浴後の強度がパーライト
領域で130kg / 1ml’程度にしかならず、ま
た通常の連伸伸線を行った場合、加工度を85%程度ま
でしかとれないことも強度の上昇を151れない理由で
あった。
Furthermore, with the conventional 180 kg/mm2 class steel core wire for AC3R, properties such as torsion value deteriorate in the strength range of 220 kg/mm" or higher, so it was not possible to expect any further increase in strength. In addition, the strength after the lead bath is only about 130 kg / 1 ml' in the pearlite region, and when ordinary continuous drawing is performed, the degree of processing can only be about 85%, which makes it impossible to increase the strength. It was the reason.

このような問題に対処するため本出願人は特願昭58−
:1127fi号によりJIS 5Wf11182をベ
ースに(:rを0.5〜1.5%添加し、PおよびSを
それぞれ0.025%以下およびf)、015 %以下
とし、かつP十Sをfl、03%以下に制限した高張カ
メツキ鋼線を提案し、これにより220kg/nun2
級の強度にて20回以上の捻回値を達成したものである
In order to deal with such problems, the present applicant filed a patent application in 1983-
Based on JIS 5Wf11182 according to No.:1127fi (:r added 0.5 to 1.5%, P and S each 0.025% or less and f), 015% or less, and P + S fl, We proposed a high-tension Kametsuki steel wire with a limit of 0.03% or less, which resulted in a
Achieved a twist value of 20 times or more at a strength of the same level.

しかしながら、上記の先願発明の亜鉛メッキ鋼線は高い
抗張力を有し、捻回値が高いものの次のような問題があ
る。
However, although the galvanized steel wire of the prior invention has a high tensile strength and a high twist value, it has the following problems.

一般に伸線強化された鋼線は溶融亜鉛メッキ等の防錆処
理を施されるが、その際に熱影響を受けて捻回中に縦割
れが発生ずるという問題があった。
Generally, steel wires that have been strengthened by wire drawing are subjected to anti-rust treatment such as hot-dip galvanizing, but there is a problem in that longitudinal cracks occur during twisting due to the effects of heat.

特にこの現象は鋼線の強度が高くなる程、顕著になり、
高強度化の傾向にある最近のAC3R用鋼心線の品質」
二の最大の問題であった。例えば従来の亜鉛メッキ鋼線
を捻回すると第2図に示す如く鋼線の断面半径方向に亀
裂が生じて捻じり方向、すなわち螺旋状に発展する。こ
れを縦割れと称するが、この問題を添付の図面を参照し
てさらに詳細に説明する。
In particular, this phenomenon becomes more pronounced as the strength of the steel wire increases.
"The quality of AC3R steel core wire is trending towards higher strength"
This was the second biggest problem. For example, when a conventional galvanized steel wire is twisted, cracks occur in the radial direction of the cross section of the steel wire and develop in the twisting direction, that is, in a spiral shape, as shown in FIG. This problem is called vertical cracking, and this problem will be explained in more detail with reference to the attached drawings.

第3図はC=0.80%、5i=0.30%、Mロー0
.60%、Cr=O870%、P=0.022%、S=
0.017%の成分で断面減少率が89%の加工を受け
た鋼線を亜鉛浴温度が450℃でメッキした際のメッキ
鋼線のメッキ時間と捻回値との関係を示したものである
Figure 3 shows C=0.80%, 5i=0.30%, M low 0
.. 60%, Cr=O870%, P=0.022%, S=
This graph shows the relationship between the plating time and twist value of a plated steel wire when a steel wire processed with a 0.017% component and a reduction in area of 89% was plated at a zinc bath temperature of 450°C. be.

第3図の横軸はメッキ時間を、縦軸は捻回回数を示す。In FIG. 3, the horizontal axis shows the plating time, and the vertical axis shows the number of twists.

他方、第4図は上記したP、Sの含有量が比較的高い組
成のメッキ鋼線についてその抗張力と捻回値との関係を
示す。
On the other hand, FIG. 4 shows the relationship between the tensile strength and torsion value of the plated steel wire having a relatively high content of P and S.

第3図及び第4図において、白丸は縦割れなしの状態で
の捻回値を示し、黒丸は縦割れの発生した捻回値を示し
、白丸の右半分が黒く塗りつぶされているのは、縦割れ
は生じているが破断しない状態での最大捻回回数、即ち
捻回値を示す。
In Figures 3 and 4, white circles indicate torsion values without vertical cracks, black circles indicate torsion values with vertical cracks, and the right half of the white circles is filled in black. It shows the maximum number of twists, that is, the twist value, in a state where vertical cracks occur but no breakage occurs.

第3図に示す如く、上記の鋼線は防錆処理として亜鉛メ
ッキを施すと、その際の熱影響により捻回中の縦割れが
発生し、80秒以下の゛メッキ時間の場合縦割れが発生
している。特1どこの影響は鋼線の強度が高くなる程顕
著になる。このため第4図に示す如< 220kg/m
m2級の抗張力では20回程度の捻回値を示すが、2〜
3回の捻回で縦割れが発生ずる。
As shown in Figure 3, when the above-mentioned steel wire is galvanized as an anti-rust treatment, vertical cracking occurs during twisting due to the heat effect, and if the plating time is less than 80 seconds, vertical cracking will occur. It has occurred. Special feature 1: This effect becomes more pronounced as the strength of the steel wire increases. For this reason, as shown in Fig. 4, < 220 kg/m
M2 class tensile strength shows a twisting value of about 20 times, but
A vertical crack occurs after three twists.

このような縦割れが発生すると、捻回中の亜鉛メッキ鋼
線の強度が低下する。第5図によりこの強度低下を説明
する。第5図はPおよびSが比較的高い亜鉛メッキ鋼線
の捻回中の縦割れ発生状況を示す。すなわち一旦縦割れ
が発生ずると鋼線の強度が著しく低下する。従って、A
C3R用鋼芯線として用いられ架線されたとき、この縦
割れが生じていると破断の危険性が高くなり、安全性の
問題きなる。
When such longitudinal cracks occur, the strength of the galvanized steel wire during twisting decreases. This decrease in strength will be explained with reference to FIG. FIG. 5 shows the occurrence of vertical cracking during twisting of a galvanized steel wire with relatively high P and S values. That is, once vertical cracks occur, the strength of the steel wire decreases significantly. Therefore, A
When used as a C3R steel core wire and installed as an overhead wire, if this vertical crack occurs, there is a high risk of breakage, which poses a safety problem.

将来の高圧送電AC3R用鋼芯線として用いられる伸線
強化型の高張カメツキ鋼線の品質管理上の問題として、
この縦割れの問題は是非解決しなければならない問題で
ある。
As a quality control problem for the drawn-strengthened high-strength Kametsuki steel wire that will be used as the steel core wire for future high-voltage power transmission AC3R,
This problem of vertical cracking is a problem that must be solved.

発明の目的 本発明は、上記した将来の高圧送電の要求に応じ、AC
3R用鋼芯線の所望使用要件を達成し、従来技術では達
成し得なかった220kg / mm’級の強度と良好
な捻回特性、特に捻回中で縦割れが発生せず、捻回強度
の低下しない新規な高張力亜鉛メッキ鋼線とその製造方
法を提供することを目的とする。
Purpose of the Invention The present invention addresses the above-mentioned future requirements for high-voltage power transmission.
Achieved the desired usage requirements for the steel core wire for 3R, with a strength of 220kg/mm' class that could not be achieved with conventional technology and good twisting properties.In particular, no vertical cracks occur during twisting, and the twisting strength is improved. The purpose of the present invention is to provide a new high-tensile galvanized steel wire that does not deteriorate and a method for manufacturing the same.

発明の構成 かくして、上記本発明の目的を達成するため、長期間の
実験、研究の結果、本発明により、C:0.7〜1.0
%、 Si:2.0%以下、 Mn : 2. O%以下、 Cr :0.5−1.5%、 A9! : 0.1 %以下、 を含有し、さらにMo : O,1〜0.3%およびB
:0.001〜0.003%のいずれか一方または双方
を含有し、残部Fe及び不可避的不純物からなり、亜鉛
メッキされ、捻回特性の良好なことを特徴とする高張力
亜鉛メッキ鋼線が提供される。
Structure of the Invention Thus, in order to achieve the above object of the present invention, as a result of long-term experiments and research, the present invention has disclosed that C: 0.7 to 1.0.
%, Si: 2.0% or less, Mn: 2. 0% or less, Cr: 0.5-1.5%, A9! : 0.1% or less, further contains Mo: O, 1 to 0.3% and B
:0.001 to 0.003% of either or both, the balance being Fe and unavoidable impurities, galvanized, and having good twisting properties. provided.

さらに、本発明の好ましい態様に従うと、SlおよびM
nはそれぞれ0.2〜20%および0.4〜2.0%に
制限される。
Furthermore, according to a preferred embodiment of the invention, Sl and M
n is limited to 0.2-20% and 0.4-2.0%, respectively.

さらに、本発明に従うと、上記した本発明の成分の鋼線
を、900〜950℃に加熱して5分以上保持後、57
0〜610℃の鉛浴中に5分以上浸漬し、酸洗及び潤滑
処理を施した後、87%以上の伸線油1’を11い、史
に溶融亜鉛メッキを施ことを特徴とする特許 造方法が提供される。
Further, according to the present invention, the steel wire having the above-mentioned composition of the present invention is heated to 900 to 950°C and held for 5 minutes or more, and then heated to 57°C.
It is characterized by being immersed in a lead bath at 0 to 610°C for 5 minutes or more, pickling and lubricating it, then applying 87% or more wire drawing oil 1'11 and then hot-dip galvanizing. A patented manufacturing method is provided.

以下、本発明の高張力亜鉛メッキ鋼線の成分限定理由お
よび製造方法の条件限定理由を詳細に説明する。
Hereinafter, the reason for limiting the components of the high-tensile galvanized steel wire of the present invention and the reason for limiting the conditions of the manufacturing method will be explained in detail.

Cは強度を確保するのに最も重要な成分で、0.7%未
満では目標強度の220 kg / +nm2が実現出
来ず、また1.0%を越えると初析セメンタイトの析出
のため延性が著しく低下するため0.7〜1.0%とし
た。
C is the most important component for ensuring strength; if it is less than 0.7%, the target strength of 220 kg/+nm2 cannot be achieved, and if it exceeds 1.0%, the ductility will be significantly reduced due to the precipitation of pro-eutectoid cementite. It was set at 0.7% to 1.0% to avoid a decrease in the content.

Siは高炭素高張力鋼線において疲労特性と高温強度の
上昇に有効であるが、2.0%を越えると延性の低下が
著しいので2.0%以下に限定した。他方、0、2%未
満では」1記の疲労特性と高温強度上昇効果が有効でな
いので、0.2〜2.0%を好ましい範囲とした。
Si is effective in increasing the fatigue properties and high-temperature strength of high-carbon high-tensile steel wires, but if it exceeds 2.0%, the ductility decreases significantly, so it is limited to 2.0% or less. On the other hand, if it is less than 0.2%, the fatigue properties and high-temperature strength increasing effect described in item 1 are not effective, so 0.2 to 2.0% is set as a preferable range.

Mnは、焼入れ性の向上により大径サイズでの引張強さ
の向上に有効であるが、2.0%を越えるとパーライト
が粗大となって、かえって強度が低下するので2.0%
以下に限定した。さらに、0.4%未満では上記の強度
上昇効果が不充分となるので、Mn:0、4〜2.0 
%を好ましい範囲とした。
Mn is effective in improving tensile strength in large diameter sizes by improving hardenability, but if it exceeds 2.0%, pearlite becomes coarse and the strength decreases, so 2.0%
Limited to the following. Furthermore, if it is less than 0.4%, the above strength increasing effect will be insufficient, so Mn: 0, 4 to 2.0%.
% was set as a preferable range.

A9.は脱酸処理に必要であるが、0.1 %を越える
と加工度が劣化するので0.1%以下に限定した。
A9. is necessary for deoxidizing treatment, but if it exceeds 0.1%, the workability deteriorates, so it was limited to 0.1% or less.

Crは上記の各成分を含有する鋼種に添加することによ
り焼入れ性が向上し恒温変態に近い鉛パテンテイングが
実現され、所定の強度を達成するだめの微細なパーライ
ト変態を導入する。また、本発明者はCrの添加により
フェライトの固溶強化が期待できるという知見を実験の
結果1号ることができた。
By adding Cr to steel types containing the above-mentioned components, hardenability is improved, lead patenting close to isothermal transformation is realized, and fine pearlite transformation necessary to achieve a predetermined strength is introduced. Moreover, the present inventor was able to make the first finding as a result of experiments that solid solution strengthening of ferrite can be expected by adding Cr.

添付の第6図は、Crの含有量を変化させた鋼線を95
0℃に加熱後10分間保持し、600℃の鉛浴にて5分
間の鉛パテンテイング処理したものの抗張力(×で示す
)と絞り(○で示す)を示すグラフである。第6図に明
らかな如く、C[の含有率0.5%以上1.5%以下の
範囲で良好な抗張力と絞りが同時に(ljられ、05%
未満では焼入れ性の向」ユの効果が小さく1−分な強度
が得られず、1.5%を越えるL偏析を起こし易く、局
部的にベイナイトを発生し、絞り値が著しく低下する。
The attached Figure 6 shows steel wires with varying Cr content.
It is a graph showing the tensile strength (indicated by x) and the area of area (indicated by ◯) of a sample that was heated to 0°C, held for 10 minutes, and subjected to lead patenting treatment for 5 minutes in a 600°C lead bath. As is clear from Fig. 6, good tensile strength and reduction of area can be obtained at the same time when the C content is in the range of 0.5% to 1.5%.
If it is less than 1.5%, the effect of improving hardenability is small and 1-min strength cannot be obtained, L segregation of more than 1.5% is likely to occur, bainite is generated locally, and the reduction of area is significantly reduced.

従って、Crの含有率は0.5 %〜1.5 %に限定
した。
Therefore, the Cr content was limited to 0.5% to 1.5%.

さらに、第7図は、C[の含有量を変えた鋼線を加熱保
持及び鉛パテンテイングを施した後、加工度を費えて伸
線処理し、これを亜鉛メッキした曲鉛メ7キ鋼線の捻回
値、絞り、抗張力及び鉛パテンテイング直後の抗張力を
示すグラフである。
Furthermore, Fig. 7 shows a curved lead-plated steel wire that has been heated and held with a different C content and subjected to lead patenting, then drawn using a high degree of processing, and then galvanized into a bent lead-plated steel wire. It is a graph showing the torsion value, reduction of area, tensile strength, and tensile strength immediately after lead patenting.

第7図からも明らかな如< 220kg/ll1m2以
上の抗張力を自し、且つ良好な捻回値、絞り、抗張力を
14)るにはC「が0.5〜1.5%の範囲が最適であ
り、この範囲で亜鉛メッキ鋼線の機械的性質が飛躍的に
向−Lすることがわかる。
As is clear from Fig. 7, in order to have a tensile strength of 220 kg/ll1m2 or more, and also to have good twisting value, narrowing, and tensile strength14), it is optimal for C' to be in the range of 0.5 to 1.5%. It can be seen that the mechanical properties of the galvanized steel wire improve dramatically within this range.

Mo、 Bは両者ともに焼入れ性向上元素であるが、ほ
かにPによる粒界脆化を抑制する効果を有する。
Both Mo and B are elements that improve hardenability, but they also have the effect of suppressing grain boundary embrittlement caused by P.

上記した本発明の各成分範囲の鋼種で、Pを通常のレベ
ルである0、 02(1%程度含有している鋼線はt−
記の如くメッキ線強度で220kg/mm”級のとき、
捻回中に縦割れが発生する。本発明者等は、この縦割れ
がPによる粒界脆化に起因しているとnう仮設をたてて
、Mo、 Bによる粒界脆化抑制効果を実験して、Mo
またはBの添加により縦割れがjll (なることを発
見したものである。
Steel wires containing P at the usual level of 0, 02 (approximately 1%) are t-
As shown below, when the plated wire strength is 220 kg/mm" class,
Vertical cracks occur during twisting. The present inventors hypothesized that this longitudinal cracking was caused by grain boundary embrittlement due to P, and conducted experiments to determine the effect of Mo and B on suppressing grain boundary embrittlement.
It was discovered that the addition of B causes vertical cracking.

すなわち、Moを0.1〜0.3%添加することにより
上記の縦割れの発生が抑制される。ただし、0.1%未
満ではこの効果が不十分であり、また0、3%を越える
と添加効果が飽和するので0.1〜0.3%の範囲とし
た。
That is, by adding 0.1 to 0.3% of Mo, the occurrence of the above-mentioned vertical cracks is suppressed. However, if it is less than 0.1%, this effect is insufficient, and if it exceeds 0.3%, the effect of addition is saturated, so it is set in the range of 0.1 to 0.3%.

!、Bを0.001〜0.003%添加することによっ
ても縦割れが抑制される。ただし、0.001%未満で
はこの効果が不十分であり、また0、 003%を越え
ると熱間脆性を起こし、圧延時にトラブルがp想される
ので0.001−0.003%の範囲とした。
! , B by 0.001 to 0.003% also suppresses vertical cracking. However, if it is less than 0.001%, this effect will be insufficient, and if it exceeds 0.003%, it will cause hot brittleness, which may cause trouble during rolling, so it should be in the range of 0.001-0.003%. did.

第8図にMo及びB添加による捻回特性改善の例を示す
。図示の如<、Mo、Hの添加のない場合には210k
g/mm’の抗張力で2〜4回の捻回で縦割れが生じ、
230kg/mm2級になると捻回値が極端に低Fする
のに対し、Mo5Bを添加すると220kg/mm2の
強度レベルでも縦割れなしで20回以上の捻回値が得ら
れ、230kg、7mm2でも20回以上の捻回値が達
成できる。
FIG. 8 shows an example of improvement in twisting characteristics by adding Mo and B. As shown in the figure, 210k when no Mo or H is added.
With a tensile strength of g/mm', vertical cracking occurs after twisting 2 to 4 times,
At 230 kg/mm2 grade, the twist value becomes extremely low F, but when Mo5B is added, a twist value of 20 times or more is obtained without vertical cracking even at a strength level of 220 kg/mm2, and even at 230 kg/7 mm2, the twist value is 20 times or more. It is possible to achieve a twist value of more than 3 times.

次ぎに本発明の製造方法の条件制限理由を説明するが、
本発明の鉛パンティング処理及び伸線油1−の条件はつ
ぎの3項目の指標、ずなわら、(1)加工度85%以」
二の伸線性を確保すること、(2)加り度85%以上で
、良好な捻回特性を維持できること、 (3)鉛パテンテイング後、140〜145kg / 
w2の強度を確保し、尚且つ、絞り40%以上の延性を
維持すること、 を達成するために決定されたものである。
Next, the reason for limiting the conditions of the manufacturing method of the present invention will be explained.
The conditions for the lead punting treatment and wire drawing oil 1- of the present invention are the following three indicators: (1) workability of 85% or more.
(2) maintain good twisting characteristics with a stiffness of 85% or more; (3) after lead patenting, 140 to 145 kg /
This was determined in order to secure the strength of w2 and maintain the ductility of 40% or more.

(3)の鉛浴後140から145 kg/am”の強度
を確保し、尚且つ絞り40%以上の延性を確保するには
、クロム炭化物の完全な分解、パーライト変態の完r、
T粒の粗大化防止、の3点を満たすパテンティング条件
により鋼線を処理する必要がある。
(3) In order to secure a strength of 140 to 145 kg/am" after the lead bath and a ductility of 40% or more, it is necessary to completely decompose chromium carbides, complete pearlite transformation,
It is necessary to process the steel wire under patenting conditions that satisfy three points: prevention of coarsening of T grains;

第9図は、上記本発明の成分範囲の鋼線を加熱温度を8
50〜1000℃の範囲で、鉛浴温度を500〜700
℃の範囲で変化して処理して得た鋼線の抗張力(図中上
方の線で示ず)及び絞り(図中下方の線で示す)を示す
Figure 9 shows the heating temperature of the steel wire having the above composition range of the present invention.
In the range of 50 to 1000℃, the lead bath temperature is 500 to 700℃.
The tensile strength (not shown by the upper line in the figure) and the area of area (not shown by the lower line in the figure) of the steel wires obtained by processing the steel wires at varying temperatures in the range of °C are shown.

第9図から明らかな如く、900〜950℃の範囲で望
ましい強度と延性が得られ、また、鉛浴の温度が570
℃〜610℃の範囲で最高強度が得られる。
As is clear from Fig. 9, the desired strength and ductility can be obtained in the range of 900 to 950°C, and the temperature of the lead bath is 570°C.
Maximum strength is obtained in the range of 610°C to 610°C.

上記に説明した第7図を再び参照する。この第7図は、
Crの含有量を変えた鋼線を上記本発明の方法に従う加
熱保持及び鉛パテンテイングを施した後、加工度を変え
て伸線処理し、これを亜鉛メッキした亜鉛メッキ鋼線の
捻回値、絞り、抗張力及び鉛パテンテイング直後の抗張
力を示している。
Referring again to FIG. 7 described above. This figure 7 is
The torsion value of a galvanized steel wire in which steel wires with different Cr contents are heated and held and lead patented according to the method of the present invention, drawn with different working degrees, and then galvanized, Drawing, tensile strength, and tensile strength immediately after lead patenting are shown.

第7図に示すように、220kg/ mm” 1211
:の抗張力を有し、且つ良好な捻回値、絞り、抗張力を
得るには87%以上の加工度が必要である。
As shown in Figure 7, 220kg/mm” 1211
In order to have a tensile strength of : and obtain a good twist value, reduction of area, and tensile strength, a working ratio of 87% or more is required.

以上詳述の如く、本発明により、220kg / mm
2以上の抗張力を持ち、良好な捻回特性、特に捻回中で
縦割れが発生せず、捻回強度の低下しないΔCS R用
高張力曲鉛メッキ鋼線が1号られる。
As detailed above, according to the present invention, 220 kg/mm
The first high-tensile curved lead plated steel wire for ΔCSR has a tensile strength of 2 or more and has good twisting properties, especially no vertical cracking during twisting and no decrease in twisting strength.

以下、本発明を実施例により説明するが、これらの実施
例は本発明の単なる例示であって本発明の範囲を何隻制
限するものではないことは勿論である。
Hereinafter, the present invention will be explained with reference to Examples, but these Examples are merely illustrative of the present invention, and of course do not limit the scope of the present invention.

実施例 第1表に示す成分を持つ供試鋼の鋼線を、900〜1)
50℃に加熱して5分以」二保持後、570〜610℃
の鉛浴中に5分以」−浸漬し、酸洗及び潤滑処理を施し
た後、87%以上の伸線加工を行い、更に溶融Inr鉛
メッキを施した。この本発明の製造方法の条171il
lt!囲でそれぞれの供試鋼に応じたパーライト領域で
、絞り40%以上を確保しつつ最も高い強度のi%)ら
れる具体的条件を採用した。
Example: A steel wire of test steel having the composition shown in Table 1 was prepared from 900 to 1)
After heating to 50℃ and holding for 5 minutes or more, 570-610℃
The wire was immersed in a lead bath for 5 minutes or more, subjected to pickling and lubrication treatment, then wire-drawn to 87% or more, and then hot-dipped Inr lead plated. Article 171il of the manufacturing method of the present invention
lt! Specific conditions were adopted to achieve the highest strength (i%) while ensuring a reduction of 40% or more in the pearlite region corresponding to each test steel.

Δ1)1の供試鋼では、Cの含有量の影響を調べた。In the test steel with Δ1)1, the influence of the C content was investigated.

B Jiiの供試鋼では、Mo及びBの含有量の影響を
調べた。
In the B Jii test steel, the influence of Mo and B contents was investigated.

C群の供試鋼では、Crの含有量の影響を調べた。In the test steels of Group C, the influence of the Cr content was investigated.

l)群の(Jli試鋼では、Siの含有量の影響を調べ
た。
In the (Jli test steel) of group l), the influence of the Si content was investigated.

E I!Tの供試鋼では、Mnの含有量の影響を調べた
E I! In the T test steel, the influence of Mn content was investigated.

F群の供試鋼では、A9の含有量の影響を調べた。In the test steels of Group F, the influence of the A9 content was investigated.

尚、材料成分と熱処理条件以外の条件は、伸線加工度を
除いて総て同一の条件とした。
Note that all conditions other than the material components and heat treatment conditions were the same except for the degree of wire drawing.

尚、各実施に於ける亜鉛メッキは450℃の亜鉛浴に通
線して行ない、通線時間は捻回における縦割れが発生し
なくなる領域で最も高い強度が得られる条件を採用した
In each case, the galvanizing was carried out by passing the wire through a zinc bath at 450° C., and the wire passing time was set to a condition where the highest strength was obtained in a region where no vertical cracking occurred during twisting.

得られた亜鉛メッキ鋼線につい−C各種機械試験を行な
いその結果を第2表に示す。
The obtained galvanized steel wire was subjected to various -C mechanical tests, and the results are shown in Table 2.

/′ / / / 第2表に示す結果について説明すると、本発明の範囲を
越えてCの含有量の高いA1の供試鋼はA2、A3の供
試鋼よりも鉛浴後およびメッキ後の強度が低く、220
kg /mm”級の抗張力に到底述しない。
/' / / / To explain the results shown in Table 2, the A1 test steel, which has a high C content beyond the scope of the present invention, has a higher strength after the lead bath and after plating than the A2 and A3 test steels. is low, 220
There is no mention of tensile strength in the kg/mm" class.

B1、B2、B3の供試鋼はMoおよびBの含有量が本
発明の範囲外に相当する。すなわち、B1の供試鋼はM
OおよびBを全く含有せず、その結果縦割れが発生し、
捻回値も低い。B2の供試鋼はMoの含有量が低ずぎ、
これも縦割れが発生し、捻回値も低い。B3の供試鋼は
MOおよびBの含有量がともに高すぎ熱間脆性のため加
工性が悪く、その結果強度、捻回値も十分でない。
The Mo and B contents of the test steels B1, B2, and B3 are outside the range of the present invention. That is, the test steel of B1 is M
Contains no O or B, resulting in vertical cracking,
Torsion value is also low. The B2 test steel had a low Mo content;
This also causes vertical cracking and has a low torsion value. The sample steel B3 has too high a content of both MO and B and is hot brittle, resulting in poor workability, and as a result, its strength and torsion value are also insufficient.

0群の供試鋼はCrの影響を調べるものであり、C1は
Crの含有量が低く、捻回値が低く、抗張力および絞り
値も本発明鋼よりも著しく低い。他方、C2の供試鋼の
場合は、Cr含有量が2.1%と高いために延性が劣化
し且つ捻回値も著しく低下している。
The test steels of group 0 are for examining the influence of Cr, and C1 has a low Cr content, a low torsion value, and a significantly lower tensile strength and reduction of area than the steel of the present invention. On the other hand, in the case of C2 test steel, the Cr content was as high as 2.1%, so the ductility deteriorated and the torsion value also decreased significantly.

Dlの供試鋼は本発明の範囲内であるが、S1含有量が
低いため、本発明の好ましい態様に従うB2およびB3
の供試鋼の場合と比較して抗張力がやや低い。他方、B
4の供試鋼はSi含有量が2.22%と高いため延性が
低下し、捻回特性も著しく劣化している。これと同様の
傾向がMnの影響について調べたEl(Mnが低い)及
びB4(Mnが高すぎる)の供試鋼にもあられれている
The sample steel of Dl is within the scope of the present invention, but due to the low S1 content, B2 and B3 according to the preferred embodiment of the present invention.
The tensile strength is slightly lower than that of the sample steel. On the other hand, B
Test steel No. 4 has a high Si content of 2.22%, so its ductility is reduced and its twisting properties are also significantly deteriorated. A similar tendency was observed in the test steels El (low Mn) and B4 (too high Mn), which were investigated for the influence of Mn.

F群はA父の含有量の影響を調べたものであり、本発明
の範囲を越えてA9を含有するB3の供試鋼の場合は強
度、延性、捻回特性のすべてが著しく劣化している。
Group F investigated the influence of the content of A, and in the case of test steel B3, which contains A9 beyond the scope of the present invention, all of the strength, ductility, and torsional properties were significantly deteriorated. There is.

これらの比較鋼にたいして本発明の供試鋼を用いた場合
はいずれも所望の抗張力を有し、捻回値も高く、縦割れ
は発生しなかった。
When the test steels of the present invention were used in contrast to these comparative steels, all had the desired tensile strength, high torsion values, and no longitudinal cracks occurred.

発明の効果 以上詳述の如く本発明は220kg 7mm2級の抗張
力と優れた捻回特性を有し、捻回中に縦割れのない高張
力亜鉛メッキ鋼線とその製造方法を提供することに成功
したものである。このような本発明の高張力亜鉛メッキ
鋼線は高電圧送電のAC3R用鋼芯線として好適に使用
することができる。
Effects of the Invention As detailed above, the present invention has succeeded in providing a high-tensile galvanized steel wire that has a tensile strength of 220 kg 7 mm2 grade and excellent twisting characteristics and does not cause vertical cracking during twisting, and a method for manufacturing the same. This is what I did. Such a high tensile strength galvanized steel wire of the present invention can be suitably used as a steel core wire for AC3R for high voltage power transmission.

本発明では抗張力、絞り、加工性および捻回特性のずヘ
−(が220kg /mm”級のAC3R用鋼芯線とし
て好適な範囲となるようC5Si、 MnXCr、A9
、帽)、Bの含有量が実験的に決定されている。従って
、本発明による高張力亜鉛メッキ鋼線は捻回時に縦割れ
を発生せず、捻回された状態での強度の低下がない。
In the present invention, C5Si, MnXCr, and A9 are used so that the tensile strength, reduction of area, workability, and twisting properties are within the range suitable for a 220 kg/mm'' class AC3R steel core wire.
, B), and the B content has been determined experimentally. Therefore, the high tensile strength galvanized steel wire according to the present invention does not generate vertical cracks when twisted, and does not lose strength in the twisted state.

以上本発明の亜鉛メッキ鋼線の用途をAC3R用鋼芯線
として説明してきたが、本発明の亜鉛メッキ鋼線はその
他の用途にも使用できることは勿論である。
Although the use of the galvanized steel wire of the present invention has been described above as a steel core wire for AC3R, it goes without saying that the galvanized steel wire of the present invention can also be used for other uses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は年度別にみた国内の送電電圧の変遷を示したも
のである。 第2図は鋼線の捻回中に生じた縦割れの斜視図である。 ′;53図は通常の範囲でPおよびSを含有する亜鉛メ
ッキ鋼線についての亜鉛メッキによる熱影響と捻回値と
の関係を示すグラフである。 第4図は上記メッキ鋼線についての抗張力と捻回値との
関係を示すグラフである。 第3図および第4図において、白丸は縦割れなしの状態
での捻回値を示し、黒丸は縦割れの発生した捻回値を示
し、白丸の右半分が黒く塗りつぶされているのは、縦割
れは生じているが破断しない状態での最大捻回回数、即
ち捻回値を示す。 第5図は通常の範囲でPおよびSを含有する亜鉛メッキ
鋼線の捻回試験における捻回トルクの変化を示し、横軸
は捻回回数を、縦軸は捻回トルクを示す。 第6図は、Crの含有量を変化させた鋼線を950℃に
加熱後10分間保持し、600℃の鉛浴にて5分間の鉛
パテンテイング処理したものの抗張力(×で示す)と絞
り(○で示す)を示すグラフである。 第7図は、C[の含有量を変えた鋼線を上記本発明の方
法に従う加熱保持及び鉛パテンテイングを施した後、加
工度を変えて伸線処理し、これを亜鉛メッキした亜鉛メ
ッキ鋼線の捻回値、絞り、抗張ツノ及び鉛パテンテイン
グ直後の抗張力を示すグラフである。 第8図はMOおよびB添加による捻回特性改善効果を示
すグラフである。 第9図は、本発明の成分範囲の鋼線を加熱温度及び鉛浴
温度を変えて処理したものの抗張力(図中上方の線で示
す)及び絞り(図中下方の線で示す)を示す。 特許出願人 住友金属工業株式会社 代 理 人 弁理士 新居 正彦 (ト 年友 第2図 第3図 第4図 220 210 220 230 机5LfJ (kv%気す 次回l丸 第6図 0 1.0 2.0 C)−と〆) 第7図 0 1.0 2.0 Cr(%) 第8図 第9図 童へ浩りぶ(力りど°す
Figure 1 shows the changes in domestic power transmission voltage by year. FIG. 2 is a perspective view of a vertical crack that occurred during twisting of the steel wire. Figure 53 is a graph showing the relationship between the thermal influence due to galvanizing and the twist value for a galvanized steel wire containing P and S in the normal range. FIG. 4 is a graph showing the relationship between tensile strength and twist value for the plated steel wire. In Figures 3 and 4, white circles indicate torsion values without vertical cracks, black circles indicate torsion values with vertical cracks, and the right half of the white circles is filled in black. It shows the maximum number of twists, that is, the twist value, in a state where vertical cracks occur but no breakage occurs. FIG. 5 shows changes in twisting torque in a twisting test of a galvanized steel wire containing P and S in a normal range, with the horizontal axis showing the number of twists and the vertical axis showing the twisting torque. Figure 6 shows the tensile strength (indicated by x) and reduction of area ( (indicated by ○). FIG. 7 shows a galvanized steel wire that has been subjected to heat holding and lead patenting according to the above method of the present invention, and then drawn to different working degrees, and galvanized steel wire with a different content of C. It is a graph showing the twist value of the wire, the aperture, the tensile horn, and the tensile strength immediately after lead patenting. FIG. 8 is a graph showing the effect of improving twisting characteristics by adding MO and B. FIG. 9 shows the tensile strength (indicated by the upper line in the figure) and the area of area (indicated by the lower line in the figure) of steel wires having the composition range of the present invention treated at different heating temperatures and lead bath temperatures. Patent Applicant Sumitomo Metal Industries Co., Ltd. Representative Patent Attorney Masahiko Arai Figure 7 0 1.0 2.0 Cr (%) Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 (+) C:0.7〜1.0%、 Si:2.0%以下、 Mn:2.0 %以下、 ([r・()、5〜1.5%、 A父:01%以下、 を含有し、さらにMo : 0.1〜0.3%およびB
:0.001−tl、Ofl:1%のいずれか一方また
は双方を含有し、残部Fc及び不FiJ避的不純物から
なり、亜鉛メッキさlt、捻回特性の良好なことを特徴
とする高張力亜鉛メッキ鋼線。 (2) Si:0.2〜2.0 %、 Mn :0.4−2.0 %、 である、ことを特徴とする特許請求の範囲第1項記載の
高張力亜鉛メッキ鋼線。 (3) C:0.7 〜160 %、 Si:2.0%以下、 Mn : 2.0%以下、 Cr :0.5 〜1.5 %、 A父:0.1 %以下、 を含有し、さらにMo : O,l 〜0.3%および
B:0.00]〜0.003%のいずれか一方または双
方を含有し、残部Fe及び不可避的不純物からなる鋼線
を、900〜950℃に加熱して5分以上保持後、57
0〜610℃の鉛浴中に5分以上浸漬し、酸洗及び潤滑
処理を施した後、87%以上の伸線油]二を行い、更に
溶融亜鉛メッキを施すことを特徴とする特許好な高張力
亜鉛メッキ鋼線の製造方法。
[Claims] (+) C: 0.7 to 1.0%, Si: 2.0% or less, Mn: 2.0% or less, ([r・(), 5 to 1.5%, A father: 01% or less, further contains Mo: 0.1 to 0.3% and B
: 0.001-tl, Ofl: 1% or both, the balance consists of Fc and non-FiJ impurities, galvanized lt, high tensile strength characterized by good twisting properties Galvanized steel wire. (2) The high tensile strength galvanized steel wire according to claim 1, characterized in that: Si: 0.2 to 2.0%, Mn: 0.4 to 2.0%. (3) Contains: C: 0.7 to 160%, Si: 2.0% or less, Mn: 2.0% or less, Cr: 0.5 to 1.5%, A father: 0.1% or less Further, a steel wire containing one or both of Mo:O,l~0.3% and B:0.00]~0.003%, with the balance consisting of Fe and inevitable impurities, was After heating to ℃ and holding for more than 5 minutes, 57
The patented method is characterized in that it is immersed in a lead bath at 0 to 610°C for 5 minutes or more, pickled and lubricated, then subjected to 87% or more wire drawing oil]2, and then hot-dip galvanized. A method for manufacturing high-tensile galvanized steel wire.
JP6111484A 1984-03-30 1984-03-30 Galvanized steel wire having superior twisting characteristic and its manufacture Granted JPS60208463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6111484A JPS60208463A (en) 1984-03-30 1984-03-30 Galvanized steel wire having superior twisting characteristic and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6111484A JPS60208463A (en) 1984-03-30 1984-03-30 Galvanized steel wire having superior twisting characteristic and its manufacture

Publications (2)

Publication Number Publication Date
JPS60208463A true JPS60208463A (en) 1985-10-21
JPH0373625B2 JPH0373625B2 (en) 1991-11-22

Family

ID=13161722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6111484A Granted JPS60208463A (en) 1984-03-30 1984-03-30 Galvanized steel wire having superior twisting characteristic and its manufacture

Country Status (1)

Country Link
JP (1) JPS60208463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121208A (en) * 1996-10-15 1998-05-12 Nippon Steel Corp High strength stainless steel wire excellent in wire drawing longitudinal crack resistance
WO2015186701A1 (en) * 2014-06-02 2015-12-10 新日鐵住金株式会社 Steel wire material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123923A (en) * 1973-04-04 1974-11-27
JPS51137612A (en) * 1975-05-24 1976-11-27 Nippon Steel Corp High ductility, high tensile, high carbon steel wire
JPS5920427A (en) * 1982-07-22 1984-02-02 Sumitomo Metal Ind Ltd Steel wire for steel core of steel reinforced al twisted wire and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123923A (en) * 1973-04-04 1974-11-27
JPS51137612A (en) * 1975-05-24 1976-11-27 Nippon Steel Corp High ductility, high tensile, high carbon steel wire
JPS5920427A (en) * 1982-07-22 1984-02-02 Sumitomo Metal Ind Ltd Steel wire for steel core of steel reinforced al twisted wire and its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121208A (en) * 1996-10-15 1998-05-12 Nippon Steel Corp High strength stainless steel wire excellent in wire drawing longitudinal crack resistance
WO2015186701A1 (en) * 2014-06-02 2015-12-10 新日鐵住金株式会社 Steel wire material
CN106460119A (en) * 2014-06-02 2017-02-22 新日铁住金株式会社 Steel wire material
JPWO2015186701A1 (en) * 2014-06-02 2017-04-20 新日鐵住金株式会社 Steel wire rod
EP3150738A4 (en) * 2014-06-02 2018-01-24 Nippon Steel & Sumitomo Metal Corporation Steel wire material

Also Published As

Publication number Publication date
JPH0373625B2 (en) 1991-11-22

Similar Documents

Publication Publication Date Title
JP2921978B2 (en) Manufacturing method of high strength and high ductility ultrafine steel wire
CN110832096A (en) High-strength steel wire
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JPS6324046A (en) Wire rod for high toughness and high ductility ultrafine wire
JPH0430462B2 (en)
JPS60208463A (en) Galvanized steel wire having superior twisting characteristic and its manufacture
JP3400071B2 (en) High strength steel wire and high strength steel wire with excellent fatigue properties
JPH0565581B2 (en)
JP3176226B2 (en) Manufacturing method of high strength and high toughness hot-dip coated steel wire
JP2001271138A (en) High strength and high carbon steel wire excellent in ductility
JP4527913B2 (en) High-strength high-carbon steel wire and method for producing the same
JP3130445B2 (en) High strength galvanized steel wire and method of manufacturing the same
JP3036393B2 (en) High strength and high toughness hot-dip galvanized steel wire and method for producing the same
JPH075992B2 (en) High-strength steel wire manufacturing method
JP2687839B2 (en) High carbon steel wire rod with excellent wire drawability and twistability
JPS5852021B2 (en) Kouensei Kōchiyouriyoku Kōtansōkōsenzai
JP3330233B2 (en) Manufacturing method of hot-dip Zn-Al plated steel wire
JP2000063987A (en) High carbon steel wire rod excellent in wire drawability
JP3520109B2 (en) High strength galvanized steel wire and method of manufacturing the same
JPS60208464A (en) High tension galvanized steel wire and its manufacture
JPH11229088A (en) High tensile strength wire rod for steel wire excellent in twisting value and its production
JP2993748B2 (en) High strength and high ductility ultrafine steel wire and method for producing the same
JP3340233B2 (en) High strength steel wire excellent in twisting characteristics and method for producing the same
JPS59157267A (en) High tension galvanized steel wire for steel core al twisted wire and its production
JPH01215928A (en) Production of high strength and high toughness galvanized steel wire