WO2023191027A1 - Plated steel wire - Google Patents

Plated steel wire Download PDF

Info

Publication number
WO2023191027A1
WO2023191027A1 PCT/JP2023/013463 JP2023013463W WO2023191027A1 WO 2023191027 A1 WO2023191027 A1 WO 2023191027A1 JP 2023013463 W JP2023013463 W JP 2023013463W WO 2023191027 A1 WO2023191027 A1 WO 2023191027A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel wire
plating
alloy layer
layer
Prior art date
Application number
PCT/JP2023/013463
Other languages
French (fr)
Japanese (ja)
Inventor
尚 馬場
昌 坂本
康太郎 石井
純 真木
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2023191027A1 publication Critical patent/WO2023191027A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes

Definitions

  • the present invention relates to a plated steel wire.
  • This application claims priority based on Japanese Patent Application No. 2022-058885 filed in Japan on March 31, 2022, the contents of which are incorporated herein.
  • Galvanized steel wire is widely used, for example, as a reinforcing wire for overhead power transmission lines.
  • One type of overhead power transmission line is steel core aluminum stranded wire (ACSR).
  • the steel-core aluminum stranded wire is composed of a steel stranded wire made of a plurality of galvanized steel wires and an aluminum stranded wire arranged on the outer peripheral side of the steel stranded wire.
  • galvanized steel wires used for overhead power transmission lines are required to have excellent corrosion resistance since they are installed outdoors.
  • overhead power transmission lines are installed at high places between steel towers, they are susceptible to repeated tensile stress or compressive stress due to being blown by the wind. For this reason, galvanized steel wire is required to have excellent fatigue properties.
  • the galvanized wire is subjected to twisting processing, it is required to have excellent workability.
  • galvanized steel wires have uses such as supporting not only power lines but also signal lines, bridge wires, wire meshes, and other exposed steel wires used outdoors. Even in these applications, galvanized steel wire is required to have corrosion resistance, fatigue properties, and workability. Furthermore, as a technique related to galvanizing, there is a technique in which galvanizing is applied to steel sheets.
  • the knowledge in the technology of applying galvanization to steel sheets cannot be applied to the technology related to steel wires because the manufacturing conditions, such as annealing temperature and atmosphere, are significantly different from those of steel wires.
  • the Sendzimer method is used for treatment before immersion in a plating bath, and the steel plate is heated to 600° C. and subjected to reduction treatment. Reductive heating as described above cannot be used with steel wires because it degrades fatigue properties.
  • Patent Document 1 has a steel material and a plating layer formed on the surface of the steel material, and the plating layer is formed by sequentially forming an interfacial alloy layer, an intermediate alloy layer, and a surface plating layer from the steel material side,
  • the interfacial alloy layer consists of Fe: 20 to 60% by mass, Al: 10 to 44% by mass, and the remainder substantially consists of Zn and impurities, and the intermediate alloy layer contains Fe: 20 to 60% by mass, Al: 10 to 44%.
  • a plated steel material is described in which the total thickness of the interfacial alloy layer and the intermediate alloy layer is 30 ⁇ m or more.
  • Patent Document 2 discloses that a Fe-Zn-Al-Mg quaternary intermetallic compound is present at the interface between the plated base metal and has a thickness of 2 to 20 ⁇ m, and a residual strain of 0.01% or more is present in the intermetallic compound layer.
  • Plating with fatigue resistance and excellent corrosion resistance in which a Zn-Al-Mg alloy layer of 5 ⁇ m or more is present on the outside, consisting of Al: 8 to 15%, Mg: 0.1 to 3%, and the balance Zn in mass%. Steel wire is listed.
  • Patent Document 3 discloses a steel wire for bridges, which includes a steel wire, a plated main body layer, and a Zn-Al plating having a Fe-Al alloy forming layer formed at the interface between the surface layer of the steel wire and the plated main body layer.
  • drawn pearlite structure contains Mn from 0.01% to 0.9%, limits P to 0.02% or less, S to 0.02% or less, and N to 0.01% or less, with the balance being Fe and unavoidable
  • drawn pearlite structure is the type of structure that contains the most amount of impurities, and the average component composition of Zn-Al plating is 3.5% by mass of Al. 0 to 15.0%, Fe is limited to 3.0% or less, the thickness of the Fe-Al alloying layer is 5 ⁇ m or less, and the Fe-Al alloying layer is on the steel wire side.
  • the multi-layer structure consists of a layer containing the most Al 3.2 Fe columnar crystals, and a layer containing the most Al 5 Fe 2 columnar crystals on the Zn-Al plating side, which has excellent corrosion resistance and fatigue properties. An excellent high-strength Zn-Al plated steel wire for bridges is described.
  • Patent Documents 1 to 3 Although the plated steel materials and plated steel wires described in Patent Documents 1 to 3 have excellent corrosion resistance, there is still room for further improvement in corrosion resistance, fatigue properties, and workability.
  • the present invention was made in view of the above circumstances, and an object of the present invention is to provide a plated steel wire with excellent corrosion resistance, fatigue properties, and workability.
  • the present invention employs the following configuration.
  • Steel wire and a plating layer disposed on the surface of the steel wire The plating layer includes an Fe-Al-based interfacial alloy layer disposed on the steel wire side, and a Zn-Al-Mg alloy layer disposed on the Fe-Al-based interfacial alloy layer,
  • the chemical composition of the steel wire is in mass%, C: 0.030% or more and 1.20% or less, Si: 0.05% or more and 2.00% or less, Mn: 0.10% or more and 0.90% or less, P: 0.030% or less, S: 0.030% or less, Contains N: 0.010% or less, The remainder consists of Fe and impurities,
  • the average composition of the plating layer is in mass%, Fe: 15.0% or less, Al: 3.0% or more and 15.0% or less, Mg: 0.3% or more and 3.5% or less, Cr: Contains 0.003% or more and 0.500% or less, The remainder: consists of Zn and
  • the Zn-Al-Mg alloy layer contains Al, Mg, Cr, balance Zn and impurities, contains 0.1 to 40.0 area% MgZn two phase in the structure, and has an average thickness of 10 ⁇ m or more and 150 ⁇ m.
  • a plated steel wire characterized by: [2] The average composition of the plating layer is in mass%, Fe: 2% or less, Al: 3.0% or more and 8.0% or less, Mg: 0.3% or more and 3.5% or less, Cr: Contains 0.003% or more and 0.5% or less, The remainder: consists of Zn and impurities,
  • the plating layer further has an average composition of one or more of Ni, Ti, Zr, Sr, Sn, Ca, Co, Mn, B, REM, and Hf in a total of 0.
  • the chemical composition of the steel wire is C: 0.40% or more and 1.20% or less in mass %, Si: 0.3% or more and 2.00% or less, Mn: 0.10% or more and 0.90% or less, P: 0.030% or less, S: 0.030% or less, Contains N: 0.010% or less,
  • the chemical composition of the steel wire is further expressed in mass%, Ni: more than 0% and less than 1.00%, Cu: more than 0% and 0.50% or less, Mo: more than 0% and less than 0.50%, V: more than 0% and less than 0.50%, B: more than 0% and less than 0.0070%, Al: more than 0% and less than 0.100%, Ti: more than 0% and less than 0.10%, Nb: more than 0% and less than 0.10%, Zr: more than 0% and less than 0.10%, Ca: more than 0% and less than 0.005%, Mg: more than 0% and less than 0.005%, REM: more than 0% and less than 0.02%, Co: more than 0% and less than 0.5%, Sb: more than 0% and less than 0.05%, As: more than 0% and less than 0.05%, Sn: more than 0% and less than 0.05%,
  • the plated steel wire according to any one of [1] to [5], characterized in that it contains one
  • a plated steel wire with excellent corrosion resistance, fatigue properties, and workability can be provided.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a plating layer of a plated steel wire according to an embodiment of the present invention.
  • the present inventors have conducted extensive studies in order to realize a plated steel wire with excellent corrosion resistance, fatigue properties, and workability.
  • Galvanized steel wire is required to have corrosion resistance and fatigue properties.
  • Zn alloy plating is mainly used.
  • conventional Zn alloy plated steel wires are mainly manufactured by two-step plating, which is easy to plate, due to the restriction that they are manufactured using the flux method. In some cases, the fatigue properties were insufficient due to the thick formation.
  • the composition of the plating layer must be changed from the normal plating composition in the first stage plating, or the composition of the plating layer in the first stage must be It is necessary to separately prepare a plating bath and a second plating bath to perform plating.
  • Al-clad wire has superior corrosion resistance compared to pure Zn-plated wire, it has the drawback of high manufacturing cost. Therefore, there is a need for a Zn alloy plated wire that has excellent fatigue properties and better corrosion resistance than pure Zn plating.
  • the present inventors considered adopting a one-stage continuous hot-dip plating method in order to thin the Fe-containing interfacial alloy layer.
  • the present inventors also aimed to improve corrosion resistance by using a Zn-Al-Mg alloy plating layer as the plating layer.
  • Zn-Al-Mg plating using the flux method was difficult to manufacture using the one-step plating method because Mg inhibits the plating reaction, but by adding a small amount of Cr to the plating bath, the reaction between the steel and the plating bath can be improved.
  • the present inventors have found that the properties are improved and one-step plating becomes possible.
  • the present inventors have considered utilizing the components in steel.
  • Si in steel exists in the form of Si oxide on the steel surface, and therefore, during hot-dip plating, it greatly reduces plating wettability and causes plating defects such as no plating.
  • the amount of Si oxide on the surface is reduced, so the Fe-Al interfacial alloy layer, which is a characteristic of metallic Si, can be formed without impairing the plating wettability.
  • the present inventors have discovered that growth can be suppressed.
  • the present inventors have discovered that Cr in the plating bath promotes the initial reaction of Fe-Al alloying, but Cr in steel conversely suppresses Fe-Al alloy growth. Therefore, by increasing the content of Si and Cr in steel and making use of the alloy growth suppressing effects of both elements to thin the Fe-Al interface alloy layer, fatigue properties and corrosion resistance can be improved even with the same plating thickness.
  • the Zn--Al--Mg alloy layer which is advantageous for this purpose, can be relatively increased.
  • the plated steel wire of this embodiment includes a steel wire and a plating layer disposed on the surface of the steel wire, and the plating layer includes an Fe-Al interface alloy layer disposed on the steel wire side and a Fe-Al based interfacial alloy layer disposed on the steel wire side.
  • - Zn-Al-Mg alloy layer disposed on the Al-based interfacial alloy layer, and the chemical composition of the steel wire is, in mass %, C: 0.030% or more and 1.20% or less, Si: 0.
  • Mn 0.10% or more and 0.90% or less
  • P 0.030% or less
  • S 0.030% or less
  • N 0.010% or less
  • the remainder consists of Fe and impurities, and the average composition of the plating layer is, in mass%, Fe: 15.0% or less, Al: 3.0% or more and 15.0% or less, Mg: 0.3% or more and 3.5%.
  • the Fe-Al interface alloy layer contains Fe 4 Al 13 , Fe 2 Al 5 , Fe 2 Al 5 Zn 0.4 and has an average thickness of 0.2 ⁇ m or more and 5.0 ⁇ m or less
  • the Zn-Al-Mg alloy layer contains Al, Mg, Cr, the balance being Zn and It contains impurities, contains 0.1 to 40.0 area % MgZn two- phase in its structure, and has an average thickness of 10 ⁇ m or more and 150 ⁇ m or less.
  • % means “mass%”.
  • a numerical range expressed using “ ⁇ ” means a range that includes the numerical values written before and after “ ⁇ ” as lower and upper limits.
  • a numerical range in which "more than” or “less than” is attached to the numerical value written before and after “ ⁇ ” means a range that does not include these numerical values as the lower limit or upper limit.
  • C is an effective element for increasing the tensile strength of steel wire and increasing the work hardening rate during wire drawing.
  • the inclusion of C makes it possible to increase the strength of the steel wire with less wire drawing strain, and also contributes to improving fatigue properties.
  • the amount of C is set in a range of 0.030% or more and 1.20% or less.
  • the lower limit of the amount of C may be set to 0.40% or more. If the C content of the steel wire is at least the lower limit of the above range, sufficient tensile strength is ensured in the plated steel wire, and the wire drawing work hardening rate is also sufficiently large, making it possible to obtain a steel wire with the desired strength. can.
  • the amount of C is below the upper limit of the above range, the processing cost for reducing center segregation will be within an allowable range.
  • the amount of C is determined by the mechanical properties of the steel wire, but it also affects the plating.
  • C is an element that basically suppresses the Fe-Al reaction, and when the content is high, it causes poor adhesion and non-plating, and when the content is low, it becomes difficult to control the alloy layer to be thin, resulting in poor workability. , reduce fatigue properties. Therefore, also from the viewpoint of plating properties, the C content needs to be in the range of 0.030% or more and 1.20% or less.
  • the amount of Si is set to 0.05% or more and 2.00% or less.
  • the lower limit of the amount of Si may be set to 0.30% or more. Since Si is a deoxidizing agent and an element effective in strengthening ferrite in pearlite, the amount of Si is set to be at least the lower limit of the above range. On the other hand, even if Si exceeding the upper limit of the above range is contained, the effect is saturated. Since Si is also effective in suppressing the growth of the Fe--Al based interfacial alloy layer when immersed in a plating bath, it is contained in an amount of 0.05% or more.
  • Si oxide on the steel surface is removed and shredded after cold wire drawing, so it does not interfere with plating. However, if the Si content exceeds 2.00%, an adverse effect may appear on the plating.
  • the amount of Mn is set to 0.10 to 0.90%. Since Mn is an effective element for deoxidation and desulfurization, it is contained in an amount equal to or higher than the lower limit of the above range. In order to improve the hardenability of the steel and increase the tensile strength of the plated steel wire, it is contained in an amount of 0.10% or more. On the other hand, if the amount of Mn is below the upper limit of the above range, the degree of segregation will not increase and the generation of bainite that reduces the number of twists during patenting treatment will be suppressed.
  • P is set to 0.030% or less in order to suppress a decrease in ductility.
  • the upper limit of the amount of P is preferably 0.025% or less. Since excessive reduction of P increases refining cost, P may be 0.0005% or more.
  • S is set to 0.030% or less in order to suppress deterioration of hot workability.
  • the upper limit of the amount of S is preferably 0.025% or less. Since excessive reduction of S increases refining cost, the S content may be 0.0005% or more.
  • N If N is contained excessively, ductility decreases, so it is set to 0.010% or less. A preferable upper limit of the amount of N is 0.007% or less. The lower limit of the N content may be, for example, 0.001% or more.
  • Cr is an optionally added element and has the effect of increasing the strength of the steel wire by affecting the pearlite structure of the steel wire, so it may be included as necessary. Also, like Si, it is effective in suppressing the growth of the Fe--Al based interfacial alloy layer when immersed in a plating bath. Therefore, 0.10% or more of Cr may be contained in the steel wire. By containing Cr together with Si, the growth of the Fe--Al based interfacial alloy layer can be further suppressed and fatigue properties can be improved.
  • the upper limit of the Cr amount is 0.50% or less. It is meaningless for the amount of Cr to exceed this upper limit due to the influence on the plating and the influence of the material, and if it exceeds 0.5%, the effect of suppressing the plating reaction becomes excessive and poor plating adhesion is likely to occur.
  • refine the crystal grain size in order to increase the strength, improve the strength, refine the crystal grain size, in particular, refine the prior austenite grain size, and improve the cold wire drawability. contains more than 0% of one or more of Ni, Cu, Mo, V, B, Al, Ti, Nb, Zr, Ca, Mg, REM, Co, Sb, As, Sn, Sb, and O. You may.
  • Ni is an element that improves hardenability and is an effective element for improving strength after patenting treatment. However, even if more than 1.00% of Ni is contained, the effect is saturated, so it is preferable that the upper limit is 1.00% or less. Note that Ni is also effective in improving wire drawability, and is preferably contained in an amount of 0.01% or more.
  • Cu Like Ni, Cu is an element effective in improving strength after patenting treatment. In order to obtain this effect, it is preferable to contain Cu in an amount of 0.01% or more. However, even if more than 0.50% of Cu is contained, the effect is saturated, so it is preferable that the upper limit is 0.5% or less.
  • Mo is an element that improves hardenability.
  • the content of Mo is effective in improving the tensile strength after the patenting treatment, and the content is preferably 0.01% or more.
  • the upper limit is 0.5% or less.
  • V is an element that increases the tensile strength after patenting treatment by precipitation strengthening. Further, the inclusion of V is also effective in suppressing a decrease in strength during hot-dip plating, and it is preferable that the amount of V is 0.01% or more. On the other hand, if more than 0.50% of V is contained, the ductility may decrease, so the upper limit is preferably 0.50% or less.
  • B is an element that increases the tensile strength after patenting treatment due to its hardenability improving effect.
  • the content is preferably 0.0001% or more.
  • B is contained in an amount exceeding 0.0070%, an effect commensurate with the content will not be exhibited, so it is preferable to set the upper limit of the B amount to 0.0070% or less.
  • Al is an effective element for deoxidation, and also contributes to preventing coarsening of crystal grains by forming nitrides. However, even if Al exceeds 0.100%, the effect is saturated, so it is preferable to set the upper limit to 0.100% or less.
  • the Al content is preferably 0.001% or more.
  • Ti is an effective element for deoxidation, and contributes to improving strength and preventing coarsening of crystal grains by forming carbides and nitrides.
  • Ti carbonitrides may become coarse and may deteriorate wire drawability and fatigue properties, so it is preferable that the upper limit is 0.10% or less. .
  • Nb is an element that forms carbides and nitrides. It is an effective element for refining austenite grains by forming Nb carbides and nitrides.
  • Nb content 0.001% or more is preferable.
  • the upper limit of the amount of Nb is 0.10% or less. More preferably, it is 0.05% or less.
  • Zr is an element that forms carbides and nitrides, and is contained in an amount of 0.001% or more in order to improve the wire drawability of the steel wire and the ductility of the steel wire. It is preferable to do so. On the other hand, even if more than 0.10% of Zr is contained, the effect is saturated, so the upper limit is preferably 0.10% or less.
  • Ca is effective in reducing hard alumina-based inclusions and improving wire drawability.
  • the Ca content is preferably 0.0002% or more.
  • the Ca content is preferably 0.005% or less.
  • Mg becomes a fine oxide that refines the structure of steel and improves its ductility. In order to reliably obtain this effect, it is preferable that the Mg content is 0.0002% or more. However, when the Mg content exceeds 0.005%, wire breakage tends to occur starting from the oxide. Therefore, the Mg content is preferably 0.005% or less.
  • REM is effective in rendering S harmless. In order to reliably obtain this effect, it is preferable that the REM content is 0.0002% or more. However, when REM is contained excessively, oxides are generated, which causes wire breakage. Therefore, the REM content is preferably 0.02% or less. In this embodiment, REM refers to a total of 17 elements consisting of Sc, Y, and lanthanoids, and the content of REM refers to the total content of these elements.
  • Co enhances the orientation of lamellar cementite of pearlite and improves wire drawability. In order to reliably obtain this effect, it is preferable that the Co content be 0.05% or more. However, even if Co is contained excessively, the effect is saturated, resulting in a large economic loss. Therefore, the Co content is preferably 0.5% or less.
  • Sb, As, and Sn are elements that do not adversely affect the plated steel wire according to this embodiment even if they are contained in trace amounts. Therefore, these elements may be contained as necessary. However, when these elements are contained excessively, manufacturability deteriorates due to a decrease in hot ductility and the like. Therefore, it is preferable that the contents of Sb, As, and Sn are each 0.05% or less.
  • the O content is preferably 0.0100% or less.
  • the concentration of O is preferably 0.0010% or more and 0.0100% or less.
  • the chemical composition of the steel wire is identified by the following method.
  • the plating layer is removed by peeling and dissolving it with an acid containing an inhibitor that suppresses corrosion of the steel wire.
  • the chemical composition of the steel wire is analyzed using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry) or Optical Emission Spectroscopy (OES).
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • OES Optical Emission Spectroscopy
  • the plating layer of this embodiment includes a Fe--Al based interfacial alloy layer and a Zn--Al--Mg alloy layer.
  • the Fe--Al based interfacial alloy layer is mainly formed by the reaction between Al in the plating bath and the base iron of the steel wire during hot-dip plating.
  • the average composition of the plating layer described below is the average composition of the Fe--Al interfacial alloy layer and the Zn--Al--Mg alloy layer.
  • Fe diffuses from the surface of the steel wire and forms an Fe--Al based interfacial alloy layer mainly containing Fe and Al at the interface between the plating and the steel wire. Therefore, the amount of Fe in the plating layer changes with the thickness of the Fe--Al based interfacial alloy layer and the Fe--Al--Mg alloy layer. If the amount of Fe in the plating layer exceeds 15.0%, it means that the Fe-Al interfacial alloy layer is too thick or the Zn-Al-Mg alloy layer is too thin. This results in a decrease in properties or corrosion resistance. Therefore, in order to satisfy the desired fatigue properties, workability, and corrosion resistance of the plated steel wire, the amount of Fe in the plated layer should be 15.0% or less. In order to satisfy various properties of the plated steel wire, it is desirable to reduce the thickness of the Fe--Al based interfacial alloy layer, and for this purpose, the Fe content is preferably 2.0% or less.
  • Al is an element that improves corrosion resistance mainly by forming a dense oxide film on the surface of the plating, rather than having a sacrificial corrosion protection effect like Zn.
  • Increasing the amount of Al increases the effect of improving corrosion resistance, but if the amount of Al exceeds 15.0%, the effect is saturated and the melting point of the plating bath becomes high, which is disadvantageous in terms of operation. Therefore, the upper limit of the Al amount is set to 15.0% or less. More preferably it is 8.0% or less.
  • Mg is an essential element for improving the corrosion resistance of the plating layer.
  • the Mg amount is set in the range of 0.3 to 3.5%. Preferably it is 0.5 to 3.0%. More preferably, the amount of Mg may be greater than 1.0%. Further, the Mg amount may be less than 2.5%.
  • a MgZn two phase can be included in the Zn--Al--Mg alloy layer, thereby further improving corrosion resistance. It is preferable that the plating layer of this embodiment does not contain Si. If Si is contained, Mg 2 Si will be formed preferentially over the MgZn two -phase, and the fatigue resistance and corrosion resistance of the plating layer will deteriorate.
  • Cr is an element contained in the plating bath to promote the initial reaction during the formation of the Fe-Al interfacial alloy layer (hereinafter referred to as Fe-Al initial reaction), so it is included in the plating layer. It becomes like this.
  • the plating layer preferably contains 0.003% or more of Cr.
  • the amount of Cr becomes excessive, the corrosion resistance of the plating layer decreases, so the upper limit is set to 0.5% or less.
  • the preferred amount of Cr is 0.005 to 0.40%, more preferably 0.008 to 0.05%.
  • Cr since Cr is easily lost through oxidation and concentrated in the Fe--Al interfacial alloy layer, the concentration in the plating bath tends to fluctuate. Care must be taken regarding the scope of management.
  • the remainder in the average composition of the plating layer is Zn and impurities.
  • Impurities refer to components contained in raw materials or components mixed in during the manufacturing process, but not intentionally included.
  • trace amounts of components other than Fe contained in the steel may be mixed into the plating layer as impurities due to mutual atomic diffusion between the steel material (base iron) and the plating bath.
  • the plating layer further contains one or more of Ni, Ti, Zr, Sr, Sn, Ca, Co, Mn, B, REM, and Hf in a total average composition of 0.0001 to 2 It may be contained in an amount of .0% by mass.
  • REM refers to a total of 17 elements consisting of Sc, Y, and lanthanoids
  • the content of REM refers to the total content of these elements.
  • the chemical composition can be obtained by measuring the obtained acid solution by ICP emission spectrometry or the like.
  • the acid species is not particularly limited as long as it can dissolve the plating layer.
  • the Fe--Al based interfacial alloy layer of this embodiment contains one or more of Fe 4 Al 13 , Fe 2 Al 5 , and Fe 2 Al 5 Zn 0.4 .
  • the Fe--Al interfacial alloy layer is a layer that is formed when the steel wire comes into contact with the plating bath, mainly due to the reaction between Al contained in the plating bath and Fe contained in the steel wire.
  • the Fe-Al-based interfacial alloy layer of this embodiment has a composition mainly composed of Fe-Al-based alloys such as Fe 4 Al 13 , Fe 2 Al 5 , and Fe 2 Al 5 Zn 0.4 . Confirmed by.
  • These alloys have low so-called sacrificial corrosion protection ability, but in the present invention, it is easy to increase the thickness of the Zn-Al-Mg alloy layer, which has greater corrosion protection ability than conventional plated steel wire, so the plating layer The ability to protect steel wire from corrosion is improved.
  • Confirmation of these Fe-Al alloys is that when the structure of the Fe-Al interface alloy layer is analyzed by electron beam diffraction, Laue spots can be clearly attributed to Fe-Al alloys of any of the three types mentioned above. If the material is a Fe-Al alloy, it is confirmed that the Fe-Al alloy is included.
  • a method for identifying Fe 4 Al 13 , Fe 2 Al 5 , and Fe 2 Al 5 Zn 0.4 in the Fe--Al interfacial alloy layer will be specifically described below.
  • a field emission transmission electron microscope (FE-TEM) is used to identify the Fe-Al alloy. Specifically, a sample was cut out using FIB processing to include the alloy layer in an arbitrary cross section to create an analysis sample, and the alloy layer was irradiated with an electron beam with a beam diameter of 5 nm using FE-TEM. Identify the intermetallic compound from the diffraction pattern.
  • the elements constituting the Fe-Al interfacial alloy layer are measured using an energy dispersive X-ray spectrometer (EDS) attached to a field emission scanning electron microscope (FE-SEM), in addition to Fe and Al, 20 atoms are found.
  • EDS energy dispersive X-ray spectrometer
  • FE-SEM field emission scanning electron microscope
  • elements derived from steel components such as Mn and elements derived from impurities in the plating bath may be detected, but these components are not important in the present invention.
  • Zn is present in an amount of about 0 to 20 atomic % in the Fe--Al based interfacial alloy layer. From the viewpoint of red rust resistance, it is desirable that a certain amount of Zn exist in the Fe--Al based interfacial alloy layer, but it is difficult to actively control this amount.
  • the concentration is about 1 to 100 times the Cr concentration in the bath.
  • Mg is generally rarely included in Fe-Al alloys. However, in some examples of plated steel wires according to the present invention, which will be described later, the presence of Mg was observed in the Fe--Al interface alloy layer. This is thought to be due to the fact that Mg is also taken in at the same time as Zn enters the Fe--Al based interfacial alloy layer.
  • Si significantly affects the thickness of the Fe--Al interfacial alloy layer, it is considered that it exists as Fe 2 Al 8 Si. It is thought that Si enters the Fe-Al-based interfacial alloy layer from the steel.
  • the average composition of the Fe--Al based interfacial alloy layer is measured using EDS attached to the FE-SEM. There are no restrictions on the measurement conditions as long as the composition of the Fe-Al interfacial alloy layer can be measured, but for example, SEM-EDS spot analysis can be used. An example of this is to set a spot at the center of the sample, set an accelerating voltage of 15.0 KV, an irradiation current of 7.5 nA, and an irradiation time of 60 s.
  • these elements are analyzed at a concentration of 1 element % or less in most cases, and at a maximum of about 5 element %.
  • the average thickness of the Fe-Al-based interfacial alloy layer is 0.2 ⁇ m or more and 5.0 ⁇ m or less. If the average thickness is less than 0.2 ⁇ m, barrier properties and plating adhesion cannot be ensured. Furthermore, if the average thickness of the Fe--Al interfacial alloy layer exceeds 5.0 ⁇ m, the fatigue properties of the plated steel wire will deteriorate.
  • the thickness of the Fe--Al based interfacial alloy layer is more preferably 0.2 ⁇ m or more and 2.0 ⁇ m or less.
  • a plated steel wire was horizontally embedded in resin and polished so that its cross section could be observed, and the polished width of the wire was made equal to the diameter of the wire.
  • FE-SEM field emission scanning electron microscope
  • the steel part and pure Zn structure have a high proportion of heavy elements, they appear white in the backscattered electron image. Therefore, we used commercially available image processing software to binarize the pixels contained in the Fe-Al interfacial alloy layer, which is a black image, and the pixels contained in the steel part and pure Zn structure, which are white images. , set the threshold. After removing noise, the average thickness of the Fe--Al interface alloy layer is calculated by counting the number of black pixels.
  • the total number of pixels counted is divided by the number of pixels in the measured length to calculate the average number of pixels in the thickness, and the average number of pixels in the thickness is converted to the actual length to calculate the thickness of the Fe-Al interface alloy layer. Derive the average thickness. Note that since the thickness of the interfacial alloy layer is not uniform, it is desirable to calculate it by processing image data of 100 ⁇ m or more in the longitudinal direction.
  • the Zn-Al-Mg alloy layer is a layer containing Al, Mg, Cr, balance Zn, and impurities, and is formed on the Fe--Al based interfacial alloy layer.
  • the Zn--Al--Mg alloy layer is a Zn alloy plating layer containing Zn, Al, and Mg as main components, and exhibits superior corrosion resistance compared to pure Zn plating.
  • the Fe-Al interfacial alloy layer provided in the plating layer has a high content of Fe, so it is relatively prone to red rust, and even if there is no problem with corrosion protection of the steel wire, it may cause aesthetic problems. .
  • the Zn-Al-Mg alloy layer may contain a small amount of Fe in addition to Al, Mg, Cr, the balance Zn, and impurities, and may contain Ni, Ti, Zr, Sr, Sn, Ca, Co. , Mn, B, REM, and Hf.
  • the average thickness of the Zn-Al-Mg alloy layer is 10 ⁇ m or more and 150 ⁇ m or less. Further, the average thickness of the Zn-Al-Mg alloy layer may be 30 ⁇ m or more and 100 ⁇ m or less. If the average thickness of the Zn-Al-Mg alloy layer is less than 10 ⁇ m, the corrosion resistance of the entire plating layer will be insufficient. Furthermore, if the average thickness exceeds 150 ⁇ m, the Zn--Al--Mg alloy layer becomes susceptible to cracking, and workability and fatigue properties may deteriorate, which is not preferable.
  • a backscattered electron image of the cross section is taken using an FE-SEM in the same manner as the method for measuring the average thickness of the Fe-Al interface alloy layer.
  • the Zn--Al--Mg plating layer has a complex structure, since the main component is Zn, which is a heavy element, it can be easily distinguished from the Fe--Al based interfacial alloy layer, which has a large proportion of Al, which is a light element.
  • the captured image is subjected to binarization image processing using commercially available image processing software.
  • the white area located in the center is considered to be the steel part
  • the black layer above it is considered to be the Fe-Al interfacial alloy layer
  • the layer with white and black parts above it is considered to be the Zn-Al-Mg alloy.
  • the average thickness of the Zn-Al-Mg alloy layer is calculated by counting the number of pixels of the Zn-Al-Mg alloy layer. Note that since the variation in the thickness of the Zn-Al-Mg alloy layer is larger than the variation in the thickness of the Fe-Al-based interfacial alloy layer, it is desirable to calculate by processing image data of 300 ⁇ m or more in the longitudinal direction.
  • the Zn--Al--Mg alloy layer contains 0.1 to 40.0 area % of MgZn two phases as a metal structure.
  • a Zn phase and Al primary crystals may be included.
  • FIG. 1 shows a schematic diagram of a Zn-Al-Mg alloy layer.
  • the MgZn 2 phase is included as a ternary eutectic structure of Zn/Al/MgZn 2 .
  • FIG. 1 shows a plating layer plated in a plating bath containing Zn-5% Al-0.5% Mg-0.01% Cr.
  • the Zn phase or Al primary crystal is a primary phase that crystallizes at the early stage of the solidification process of hot-dip plating.
  • the Al primary crystal contains about 45 atomic % or less of Zn and has a mixed structure of a fine Al phase and a fine Zn phase.
  • the crystallization of MgZn two phases is influenced by the Mg concentration in the plating bath.
  • the entire plating layer exhibits approximately the same potential. For this reason, corrosion in a certain portion may progress in the depth direction. In this case, when the corrosion reaches the steel, the exposed steel acts as an efficient cathode, rapidly anodic dissolution of the plating, and the plating is quickly consumed. Red rust also develops quickly.
  • the plating layer according to the present embodiment has a structure that includes 0.1 to 40.0 area % of MgZn two phases and may also include other Al primary crystals and Zn phase.
  • Each phase or structure has a different corrosion potential, so under wet conditions, until one phase is corroded away, other phases are less likely to corrode. Therefore, localized corrosion, where corrosion progresses only in the depth direction and exposes the steel, is less likely to occur.
  • the plated steel wire of this embodiment in an environment exposed to the atmosphere, Zn in the Al primary corrodes first, then MgZn 2 corrodes, and then, if a Zn phase exists, the Zn phase corrodes, and the Al primary corrodes. Al in the crystal corrodes last.
  • the Al in the Al primary crystals which is weak against alkali, corrodes first, and after the Al is completely corroded, the MgZn2 corrodes, and if a Zn phase is present.
  • the Zn phase that reacts with Ca in the cement to form a protective film corrodes.
  • a plating layer consisting of multiple structures can behave like sacrificial corrosion within the plating layer if the combination of each structure is suitable, that is, if the potential difference is clear and the electrochemical connection is good. and each tissue corrodes in turn. Therefore, the plating layer is less likely to cause local corrosion and has excellent corrosion resistance. Furthermore, the eluted Mg 2+ ions are said to have the effect of preventing Zn corrosion products from changing into ZnO, which can easily conduct electricity, and in this respect also contributes to improving corrosion resistance.
  • the Al primary crystals have a dendrite-like morphology, and the MgZn two- phase has a lamellar morphology.
  • corrosion tends to spread within each structure, making it easier for sacrificial corrosion protection to function and promoting uniform corrosion.
  • Mg atoms are dispersed as a solid solution in the plating layer, such as when the Mg content is small, there is no electrochemical connection between each Mg atom, resulting in a sacrificial corrosion protection effect and promotion of uniform corrosion. The effect is small.
  • the plating when the plating is water-cooled in a molten state, the formation of Mg 2 Zn 11 is promoted, which causes a decrease in the amount of MgZn two- phase formation. Therefore, until the plating solidifies, it is preferable to let it cool naturally, and if necessary, it is preferable to cool it by blowing air. Furthermore, even after the plating has solidified, it is desirable to avoid water cooling as much as possible and use only air cooling if possible.
  • the Mg content in the plating bath must be 0.3% by mass or more. Furthermore, if Mg is present in an amount of 1.0% by mass or more or more than 1.0% by mass, the continuity of the MgZn two -phase in the plating layer increases and the effect of improving corrosion resistance becomes stable.
  • the content of the MgZn two phase in the Zn-Al-Mg alloy layer is 0.1 to 40.0 area %, preferably 3.0 to 20.0 area %, more preferably 8. It is 0 to 15.0 area%.
  • This area % is identified by the same method as the identification method of Fe 4 Al 13 , Fe 2 Al 5 , Fe 2 Al 5 Zn 0.4 of the Fe-Al interfacial alloy layer, and the area ratio is calculated.
  • Examples of phases or structures other than MgZn 2 include Al primary crystal and Zn phase.
  • the area ratio of the MgZn two- phase in the Zn--Al--Mg alloy layer is measured by the following method. The area ratio of the MgZn two- phase in the Zn--Al--Mg alloy layer is determined by first taking a backscattered electron image of a cross section using an FE-SEM.
  • the captured images are subjected to binarized image processing using commercially available image processing software, and the pixels of the Zn-Al-Mg alloy layer are By counting the number, the number of pixels in the Zn--Al--Mg alloy layer is calculated.
  • the measurement of the area ratio of the MgZn two- phase in the Zn--Al--Mg alloy layer is preferably calculated by processing image data of 300 ⁇ m or more in the longitudinal direction in order to eliminate local deviations in the structure ratio.
  • the MgZn two phase contains Mg, which is a light element, it becomes a black image next to the Al primary crystal in the backscattered electron image of the Zn-Al-Mg alloy layer. Therefore, a threshold value is set for the Zn--Al--Mg alloy layer using commercially available image processing software so that the MgZn two phase and other phases can be binarized. Furthermore, component analysis by SEM-EDS may be used in conjunction with phase identification to assist in phase identification; in this case, the MgZn 2 phase corresponds to a phase containing 16 mass% ( ⁇ 5%) of Mg and 84 mass% ( ⁇ 5%) of Zn.
  • the number of MgZn two- phase pixels is calculated, and by calculating the ratio to the Zn-Al-Mg alloy layer, the area of the MgZn two- phase can be calculated.
  • the rate can be derived. Since Mg 2 Zn 11 has a larger proportion of Zn than the MgZn 2 phase, it is reflected in the backscattered electron image as a whiter image than the MgZn 2 phase, and can be distinguished from the MgZn 2 phase. Since the Al primary crystal contains a large amount of the light element Al, it has a blacker image than Mg 2 Zn 11 or MgZn 2 , so it can be distinguished from the above phases.
  • the plated steel wire of this embodiment described above can exhibit excellent corrosion resistance, fatigue properties, and workability.
  • the corrosion resistance is evaluated, for example, by using the plated steel wire of this embodiment cut into a length of 150 mm as a sample and performing a salt spray test (JIS Z 2371:2015, SST).
  • Fatigue properties are evaluated using a Nakamura rotary fatigue tester. The stress amplitude that did not break after 107 rotations was taken as the fatigue limit, and the difference in fatigue limit depending on the type of plating and the presence or absence of plating was investigated.
  • the plated steel wire of this embodiment was wound six times around a steel wire of a predetermined diameter, and the presence or absence of cracks was determined by visually observing the surface.
  • the plated steel wire of this embodiment is made into a steel wire by subjecting a hot-rolled wire rod having chemical components within the range of the present invention to a patenting treatment as necessary, and then subjecting it to cold wire drawing. Next, after cleaning the surface of the steel wire, it is subjected to flux treatment, and manufactured by a so-called one-stage immersion plating method in which the steel wire is immersed in one type of plating bath and then pulled out.
  • Patenting processing may or may not be performed.
  • the total area reduction rate is preferably 50 to 95%, for example.
  • drawing or roll processing using a die is performed at least once or twice or more.
  • the oxide film that had adhered to the surface of the wire rod in the pre-process stage of cold wire drawing is removed or fragmented, and the steel wire after drawing is A new surface appears on the surface. Therefore, there are few oxides such as Si on the surface of the steel wire after cold drawing.
  • hot-dip plating on the steel wire after wire drawing, the effect of suppressing the growth of the Fe--Al interfacial alloy layer, which is a characteristic of metal Si, can be exerted without impairing the plating wettability.
  • the drawn steel wire is immersed in an aqueous flux solution at 60° C. for 20 seconds, and then dried.
  • a solution in which various salts such as NaCl, KCl, NaF, SnCl 2 , SnCl 4 , BiCl 3 , surfactants, etc. are dissolved based on ZnCl 2 and acidified with hydrochloric acid as necessary is used.
  • the flux examples include fluxes dissolved in water such that the concentration of NaCl is 30 to 100 g/L, KCl is 30 to 100 g/L, SnCl 2 is 0 to 20 g/L, and ZnCl 2 is 100 to 300 g/L. can be exemplified. Furthermore, a commercially available surfactant for plating flux may be added.
  • the plating bath is a plating bath based on Zn and further containing Al, Mg, and Cr.
  • the Al concentration in the plating bath is 3.0 to 15.0% by mass. If the Al concentration is less than 3.0% by mass, sufficient corrosion resistance cannot be imparted to the plating layer. Furthermore, if the Al concentration exceeds 15.0% by mass, the FeAl alloying reaction becomes intense, making it difficult to control the thickness of the Fe-Al interfacial alloy layer, and increasing Al primary crystals, which tends to reduce fatigue properties. It is in. Preferably it is 8.0% by mass or less. Considering that in the immersion plating method, it is difficult to maintain the bath components at a constant value, the Al concentration is preferably 4.0 to 7.0% by mass.
  • the Cr concentration in the plating bath is 0.003 to 0.5% by mass. If the Cr concentration is 0.003% by mass or more, the FeAl reaction is clearly promoted, and the effect is almost saturated at 0.5% by mass. Since Cr is concentrated in the Fe--Al interfacial alloy layer and has a large loss as dross, the bath concentration tends to decrease. Therefore, it is necessary to maintain a high plating bath concentration. If Cr is not added, the formation and subsequent growth of the Fe--Al interfacial alloy layer will be non-uniform due to the influence of the steel structure of the hard wire, resulting in particularly poor workability and fatigue properties. Further, in a plating bath to which Mg is added as in the present invention, stable plating at a low bath temperature is difficult.
  • the existence form of Cr in the plating layer cannot be confirmed by X-ray diffraction or the like.
  • Cr is an element that is easily lost through oxidation.
  • Mg is added to the plating bath to improve the corrosion resistance of the plating layer.
  • the Mg concentration is 0.3 to 3.5% by mass.
  • Mg in the plating layer has an effect of improving corrosion resistance when it is 0.3% by mass or more, and is almost saturated at 3.5% by mass.
  • operational problems such as generation of dross in the plating bath become serious.
  • Mg clearly improves corrosion resistance, it tends to reduce the workability and fatigue properties of the plating layer. In this way, Mg greatly affects plating quality.
  • Mg has a large influence on the plating reaction, and obstructs the initial flux reaction, making plating defects more likely to occur. Therefore, addition of Cr is essential for stable production.
  • the subsequent FeAl alloying reaction is suppressed and the Fe--Al interfacial alloy layer is thinned, it also has the effect of improving workability and fatigue properties.
  • the amount of Mg added should be determined depending on the required quality and use.
  • the bath temperature of the plating bath is 440°C to 500°C, preferably 460°C to 490°C. If the bath temperature is high, the growth of the Fe-Al interfacial alloy layer will be faster and the threading speed can be increased, resulting in excellent productivity, but the Fe-Al alloying reaction will become uncontrollable, especially if the thickness is There is a risk that a Fe--Al based interfacial alloy layer will be formed, and the plating equipment will be worn out. Further, in the case of hard steel wire, mechanical properties (particularly strength) may deteriorate at temperatures exceeding 500°C.
  • the bath temperature is low, plating defects such as non-plating and foreign matter adhesion are more likely to occur, and in particular, when the Mg concentration is high, plating defects are more likely to occur.
  • the plating bath by intentionally adding Cr to the plating bath, compared to the case where no Cr is added, the plating bath promotes the FeAl alloying reaction even at a low temperature of 500°C or less, and in particular, the thickness is A uniform Fe--Al based interfacial alloy layer can be produced.
  • the immersion time of the steel wire in the plating bath is 10 seconds or more and 100 seconds or less, preferably 10 seconds or more and 30 seconds or less. Particularly when plating hard steel wires, care must be taken as prolonged immersion deteriorates mechanical properties in the same way as high bath temperatures.
  • the plating layer may be left in the air to cool (natural cooling) until it solidifies, or may be air cooling. If rapid cooling such as water cooling or mist cooling is performed after wiping, MgZn 2 becomes difficult to generate, which is not preferable. In terms of performance, corrosion resistance and fatigue resistance may be improved, but this does not significantly affect the present invention. Note that the cooling rates for natural cooling, air cooling, and water cooling differ depending on the wire diameter, and are as follows.
  • the flux was a 60° C. aqueous solution containing 210 g/L of ZnCl 2 , 25 g/L of NaCl, and 6 g/L of SnCl 2 , and a commercially available surfactant for plating flux was added. No pH adjustment was performed, leaving the solution in a cloudy white state. During operation, the wire rod was immersed with sufficient stirring.
  • the plating bath contained Al: 0 to 15% by mass, Mg: 0 to 4.0% by mass, and Cr: 0 to 0.5%, with the balance being Zn and impurities.
  • the bath temperature was 440 to 490°C, and the immersion time was in the range of 25 to 40 seconds. However, No. The plating immersion time in No. 7 was 110 seconds.
  • the thickness of the plating layer is No. Except for Nos. 4, 13, 15, and 18, the target was 50 ⁇ m by gas wiping. In addition, natural cooling was performed until the plating layer solidified.
  • No. Nos. 2 and 3 were produced by a two-step plating method in which pure zinc plating was applied to the steel wire as a first-step plating, and then the steel wire was immersed in a plating bath having the above-mentioned component range as a second-step plating. Also, No. Samples Nos. 11 and 13 were water-cooled while the plating was in a molten state about 2 seconds after being removed from the plating bath.
  • the steel wire Nos. 3A and 3B shown in Table 3A and 3B were prepared in the same manner as above except that the chemical composition of the steel wire was changed to the steels A to b shown in Table 2. Plated steel wires 201-205, 301-315 and 401-415 were manufactured. Note that in all steels, the O content was 0.0010 to 0.0100%.
  • an acid solution was obtained by peeling and dissolving the plating layer with a 5% by volume HCl solution containing an inhibitor that suppresses corrosion of the base iron (steel wire).
  • the chemical composition of the obtained acid solution was measured by ICP emission spectrometry.
  • the average composition of the Fe--Al interfacial alloy layer was determined using EDS spot analysis attached to the FE-SEM, as described above. However, although characteristic X-rays were confirmed, if it was less than 0.1 atomic %, it was written as "less than 0.1.”
  • the measurement conditions for FE-SEM-EDS were: acceleration voltage of 15.0 KV, irradiation current of 7.5 nA, irradiation time of 60 s, measurement position at the center in the thickness direction, and the average composition was obtained by measuring 5 points.
  • the crystal structure of the alloy constituting the Fe--Al interface alloy layer was identified by electron beam diffraction using a transmission electron microscope. Specifically, a sample cut out by FIB processing to include an alloy layer was subjected to FE-TEM analysis, and three arbitrary locations in the alloy layer with different crystal grains were irradiated with an electron beam with a beam diameter of 5 nm. , the obtained electron diffraction images were identified.
  • the average thickness of the Fe-Al-based interfacial alloy layer and the Zn-Al-Mg alloy layer was measured using a field emission scanning electron microscope (FE-SEM). A backscattered electron image of the cross section was taken, and the average thickness was calculated using the method described above. Furthermore, the chemical composition of the Zn--Al--Mg alloy layer was analyzed using the method described above.
  • Corrosion resistance was tested by using a plated steel wire cut to a length of 150 mm as a sample, masking the cut end with paint, and then conducting a salt spray test (JIS Z 2371:2015) for over 360 hours. The time from the start of the test until the appearance of red rust was measured. Then, evaluation was made according to the following evaluation criteria. A and B were passed.
  • the fatigue properties were evaluated using a Nakamura rotary fatigue tester. When the stress amplitude that did not break after 107 rotations was taken as the fatigue limit, the amount of decrease in the fatigue limit of the plated steel wire with respect to the fatigue limit of the unplated steel wire was determined. Then, evaluation was made according to the following evaluation criteria. A and B were passed.
  • a plated steel wire was wound six times around a steel wire with a diameter of 2 mm (self-diameter winding), and the presence or absence of cracks was determined by visually observing the surface. Then, evaluation was made according to the following evaluation criteria. A and B were passed.
  • A There were no cracks or they were minute.
  • B Crack length is 0.5 mm or more and less than 1.0 mm.
  • X The crack length was 1.0 mm or more, the crack width was large, or the plating was partially peeled off.
  • the plated steel wires (No. ⁇ 415), it was excellent in workability, fatigue properties, and corrosion resistance.
  • the Zn--Al--Mg alloy layers in these examples contained Al, Mg, Cr, the remainder Zn, and impurities. Further, the Zn--Al--Mg alloy layers of these examples contained Al primary crystals and a Zn phase.
  • the thickness of the Zn--Al--Mg alloy layer was out of the invention range because the amount of plating was increased. This resulted in poor workability and fatigue properties.
  • the Mg amount was outside the invention range in the average composition of the plating layer. This resulted in a decrease in corrosion resistance.
  • the Mg amount was outside the invention range in the average composition of the plating layer. This resulted in poor workability and fatigue properties.
  • the average composition of the plating layer had both Mg content and Cr content of 0%, which was outside the scope of the invention. This resulted in a decrease in corrosion resistance.
  • the average composition of the plating layer had a Cr content outside the invention range, resulting in poor plating.
  • the Mg amount was outside the invention range in the average composition of the plating layer. This resulted in a decrease in corrosion resistance.
  • the Cr amount was outside the invention range in the average composition of the plating layer. Furthermore, the relatively high Mg content resulted in poor plating. Further, in an example in which the average composition of the plating layer had a Cr content outside the inventive range and the thickness of the Fe--Al interfacial alloy layer was within the inventive range, the thickness of the plating layer was non-uniform.

Abstract

This plated steel wire comprises a plating layer that is arranged on the surface of a steel wire; the plating layer comprises an Fe-Al interfacial alloy layer that is arranged on the steel wire side and a Zn-Al-Mg alloy layer that is arranged on the Fe-Al interfacial alloy layer; the Fe-Al interfacial alloy layer contains one or more substances selected from among Fe4Al13, Fe2Al5 and Fe2Al5Zn0.4, while having an average thickness of 0.2 µm to 5 µm; the Zn-Al-Mg alloy layer is formed of Al, Mg, Cr and the balance made up of Zn and impurities, while having an average thickness of 10 µm to 150 µm and a structure that contains 0.1% by area to 40.0% by area of MgZn2 phase.

Description

めっき鋼線plated steel wire
 本発明は、めっき鋼線に関する。
 本願は、2022年3月31日に、日本に出願された特願2022-058885号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a plated steel wire.
This application claims priority based on Japanese Patent Application No. 2022-058885 filed in Japan on March 31, 2022, the contents of which are incorporated herein.
 亜鉛めっき鋼線は、例えば、架空送電線などの補強用ワイヤーとして広く用いられている。架空送電線の一つに、鋼心アルミより線(ACSR)がある。鋼心アルミより線は、複数本の亜鉛めっき鋼線からなる鋼撚り線と、鋼撚り線の外周側に配置されたアルミより線とから構成される。このように、架空送電線に用いられる亜鉛めっき鋼線には、屋外に設置されることから、優れた耐食性が求められる。また、架空送電線は、鉄塔と鉄塔の間の高所に架線されるため、風に煽られることで引張応力または圧縮応力を繰り返し受けやすい。このため、亜鉛めっき鋼線には優れた疲労特性が求められる。更に、亜鉛めっき線は、撚り加工を受けることから、加工性にも優れることが求められる。 Galvanized steel wire is widely used, for example, as a reinforcing wire for overhead power transmission lines. One type of overhead power transmission line is steel core aluminum stranded wire (ACSR). The steel-core aluminum stranded wire is composed of a steel stranded wire made of a plurality of galvanized steel wires and an aluminum stranded wire arranged on the outer peripheral side of the steel stranded wire. As described above, galvanized steel wires used for overhead power transmission lines are required to have excellent corrosion resistance since they are installed outdoors. In addition, since overhead power transmission lines are installed at high places between steel towers, they are susceptible to repeated tensile stress or compressive stress due to being blown by the wind. For this reason, galvanized steel wire is required to have excellent fatigue properties. Furthermore, since the galvanized wire is subjected to twisting processing, it is required to have excellent workability.
 更に、亜鉛めっき鋼線には、電力線のみならず信号線の支持、橋梁用のワイヤー、金網等の屋外に暴露されて使用される鋼線などの用途がある。これらの用途においても、亜鉛めっき鋼線には、耐食性、疲労特性、加工性が求められる。
 また、亜鉛めっきに関する技術として、鋼板に亜鉛めっきを適用した技術がある。しかし、鋼板に亜鉛めっきを適用した技術における知見は、焼鈍温度や雰囲気など、製造条件が鋼線とは大きく異なることから、鋼線に係る技術に適用することはできない。例えば、特許文献4に示された製造方法は、めっき浴浸漬前の処理にゼンジマー法が用いられており、鋼板を600℃まで加熱して還元処理が施されている。前記のような還元加熱は、疲労特性を低下させることから、鋼線では用いることができない。
Furthermore, galvanized steel wires have uses such as supporting not only power lines but also signal lines, bridge wires, wire meshes, and other exposed steel wires used outdoors. Even in these applications, galvanized steel wire is required to have corrosion resistance, fatigue properties, and workability.
Furthermore, as a technique related to galvanizing, there is a technique in which galvanizing is applied to steel sheets. However, the knowledge in the technology of applying galvanization to steel sheets cannot be applied to the technology related to steel wires because the manufacturing conditions, such as annealing temperature and atmosphere, are significantly different from those of steel wires. For example, in the manufacturing method shown in Patent Document 4, the Sendzimer method is used for treatment before immersion in a plating bath, and the steel plate is heated to 600° C. and subjected to reduction treatment. Reductive heating as described above cannot be used with steel wires because it degrades fatigue properties.
 従来の亜鉛めっき鋼線として、例えば下記特許文献1~3に記載されたものが知られている。
 特許文献1には、鋼材と、鋼材の表面に形成されためっき層と、を有し、めっき層は、鋼材側から、界面合金層、中間合金層及び表面めっき層が順次形成されてなり、界面合金層は、Fe:20~60質量%、Al:10~44質量%、残部が実質的にZn及び不純物からなり、中間合金層は、Fe:20~60質量%、Al:10~44質量%、Cr:0.001~3.0質量%、残部が実質的にZn及び不純物からなり、表面めっき層は、平均濃度で、Al:5質量%以下、残部が実質的にZn及び不純物からなり、界面合金層と中間合金層の厚さが合計で30μm以上であるめっき鋼材が記載されている。
As conventional galvanized steel wires, for example, those described in Patent Documents 1 to 3 below are known.
Patent Document 1 has a steel material and a plating layer formed on the surface of the steel material, and the plating layer is formed by sequentially forming an interfacial alloy layer, an intermediate alloy layer, and a surface plating layer from the steel material side, The interfacial alloy layer consists of Fe: 20 to 60% by mass, Al: 10 to 44% by mass, and the remainder substantially consists of Zn and impurities, and the intermediate alloy layer contains Fe: 20 to 60% by mass, Al: 10 to 44%. Mass%, Cr: 0.001 to 3.0% by mass, the remainder substantially consisting of Zn and impurities, and the surface plating layer has an average concentration of Al: 5% by mass or less, the remainder substantially consisting of Zn and impurities. A plated steel material is described in which the total thickness of the interfacial alloy layer and the intermediate alloy layer is 30 μm or more.
 特許文献2には、めっき地鉄界面にFe-Zn-Al-Mg4元金属間化合物が2~20μmの厚さで存在し、その金属間化合物層に残留歪みが0.01%以上存在し、その外側に質量%でAl:8~15%、Mg:0.1~3%、残部ZnよりなるZn-Al-Mg系合金層が5μm以上存在する耐疲労性を有し耐食性に優れためっき鋼線が記載されている。 Patent Document 2 discloses that a Fe-Zn-Al-Mg quaternary intermetallic compound is present at the interface between the plated base metal and has a thickness of 2 to 20 μm, and a residual strain of 0.01% or more is present in the intermetallic compound layer. Plating with fatigue resistance and excellent corrosion resistance in which a Zn-Al-Mg alloy layer of 5 μm or more is present on the outside, consisting of Al: 8 to 15%, Mg: 0.1 to 3%, and the balance Zn in mass%. Steel wire is listed.
 特許文献3には、鋼線と、めっき本体層、及び、鋼線の表層とめっき本体層との界面に生成したFe-Al系合金生成層を有するZn-Alめっきと、を含む橋梁用高強度Zn-Alめっき鋼線であって、鋼線の母相の成分組成が、質量%で、Cを0.70%以上1.2%以下、Siを0.01%以上2.5%以下、Mnを0.01%以上0.9%以下、含有し、Pを0.02%以下、Sを0.02%以下、Nを0.01%以下、に制限し、残部がFe及び不可避的不純物を含み、鋼線の母相の金属組織組成において、伸線加工パーライト組織が最も多く含まれる種類の組織であり、Zn-Alめっきの平均成分組成が、質量%で、Alを3.0以上15.0%以下含有し、Feを3.0%以下に制限し、Fe-Al系合金生成層の厚さが5μm以下であり、Fe-Al系合金生成層が、鋼線側にあってAl3.2Feの柱状晶を最も多く含む層と、Zn-Alめっき側にあってAlFeの柱状晶を最も多く含む層とからなる複層構造である耐食性と疲労特性に優れた橋梁用高強度Zn-Alめっき鋼線が記載されている。 Patent Document 3 discloses a steel wire for bridges, which includes a steel wire, a plated main body layer, and a Zn-Al plating having a Fe-Al alloy forming layer formed at the interface between the surface layer of the steel wire and the plated main body layer. A strength Zn-Al plated steel wire, in which the composition of the matrix of the steel wire is, in mass%, 0.70% or more and 1.2% or less of C, and 0.01% or more and 2.5% or less of Si. , contains Mn from 0.01% to 0.9%, limits P to 0.02% or less, S to 0.02% or less, and N to 0.01% or less, with the balance being Fe and unavoidable In the metallographic structure of the matrix of steel wire, drawn pearlite structure is the type of structure that contains the most amount of impurities, and the average component composition of Zn-Al plating is 3.5% by mass of Al. 0 to 15.0%, Fe is limited to 3.0% or less, the thickness of the Fe-Al alloying layer is 5 μm or less, and the Fe-Al alloying layer is on the steel wire side. The multi-layer structure consists of a layer containing the most Al 3.2 Fe columnar crystals, and a layer containing the most Al 5 Fe 2 columnar crystals on the Zn-Al plating side, which has excellent corrosion resistance and fatigue properties. An excellent high-strength Zn-Al plated steel wire for bridges is described.
日本国特許第6772724号公報Japanese Patent No. 6772724 日本国特開2003-328101号公報Japanese Patent Application Publication No. 2003-328101 日本国特許第4782246号公報Japanese Patent No. 4782246 日本国特開平10-226865号公報Japanese Patent Application Publication No. 10-226865
 特許文献1~3に記載されためっき鋼材及びめっき鋼線は、いずれも耐食性に優れるものの、耐食性、疲労特性及び加工性について更なる向上の余地がある。 Although the plated steel materials and plated steel wires described in Patent Documents 1 to 3 have excellent corrosion resistance, there is still room for further improvement in corrosion resistance, fatigue properties, and workability.
 本発明は上記事情に鑑みてなされたものであり、耐食性、疲労特性及び加工性に優れためっき鋼線を提供することを課題とする。 The present invention was made in view of the above circumstances, and an object of the present invention is to provide a plated steel wire with excellent corrosion resistance, fatigue properties, and workability.
 上記課題を解決するため、本発明は以下の構成を採用する。
[1] 鋼線と、
 前記鋼線の表面に配置されためっき層と、が備えられ、
 前記めっき層は、前記鋼線側に配置されたFe-Al系界面合金層と、前記Fe-Al系界面合金層上に配置されたZn-Al-Mg合金層とを含み、
 前記鋼線の化学組成が、質量%で、
C :0.030%以上1.20%以下、
Si:0.05%以上2.00%以下、
Mn:0.10%以上0.90%以下、
P :0.030%以下、
S :0.030%以下、
N :0.010%以下、を含有し、
残部がFe及び不純物からなり、
 前記めっき層の平均組成が、質量%で、
Fe:15.0%以下、
Al:3.0%以上15.0%以下、
Mg:0.3%以上3.5%以下、
Cr:0.003%以上0.500%以下を含有し、
残部:Znおよび不純物からなり、
 前記Fe-Al系界面合金層は、FeAl13、FeAl、FeAlZn0.4のいずれか1種または2種以上を含み、平均厚さが0.2μm以上5.0μm以下であり、
 前記Zn-Al-Mg合金層は、Al、Mg、Cr、残部Zn及び不純物を含み、組織中に0.1~40.0面積%のMgZn相を含有し、平均厚さが10μm以上150μm以下であることを特徴とするめっき鋼線。
[2] 前記めっき層の平均組成が、質量%で、
Fe:2%以下、
Al:3.0%以上8.0%以下、
Mg:0.3%以上3.5%以下、
Cr:0.003%以上0.5%以下を含有し、
残部:Znおよび不純物からなり、
 前記Zn-Al-Mg合金層の平均厚さが、30μm以上100μm以下であることを特徴とする、[1]に記載のめっき鋼線。
[3] 前記めっき層が、更に、平均組成で、Ni、Ti、Zr、Sr、Sn、Ca、Co、Mn、B、REM、Hfのいずれか1種または2種以上を、合計で0.0001~2質量%含有する[1]または[2]に記載のめっき鋼線。
[4] 前記鋼線の化学組成が、質量%で
C :0.40%以上1.20%以下、
Si:0.3%以上2.00%以下、
Mn:0.10%以上0.90%以下、
P :0.030%以下、
S :0.030%以下、
N :0.010%以下、を含有し、
残部がFe及び不純物からなることを特徴とする、[1]乃至[3]の何れか一項に記載のめっき鋼線。
[5] 前記鋼線の化学組成が、更に質量%で、Crを0.1%以上0.5%以下含有することを特徴とする、[1]乃至[4]の何れか一項に記載のめっき鋼線。
[6] 前記鋼線の化学組成が、更に質量%で、
Ni:0%超1.00%以下、
Cu:0%超0.50%以下、
Mo:0%超0.50%以下、
V :0%超0.50%以下、
B :0%超0.0070%以下、
Al:0%超0.100%以下、
Ti:0%超0.10%以下、
Nb:0%超0.10%以下、
Zr:0%超0.10%以下、
Ca:0%超0.005%以下、
Mg:0%超0.005%以下、
REM:0%超0.02%以下、
Co:0%超0.5%以下、
Sb:0%超0.05%以下、
As:0%超0.05%以下、
Sn:0%超0.05%以下、
O :0%超0.0100%以下、のうちの1種又は2種以上含有することを特徴とする、[1]乃至[5]の何れか一項に記載のめっき鋼線。
In order to solve the above problems, the present invention employs the following configuration.
[1] Steel wire and
a plating layer disposed on the surface of the steel wire,
The plating layer includes an Fe-Al-based interfacial alloy layer disposed on the steel wire side, and a Zn-Al-Mg alloy layer disposed on the Fe-Al-based interfacial alloy layer,
The chemical composition of the steel wire is in mass%,
C: 0.030% or more and 1.20% or less,
Si: 0.05% or more and 2.00% or less,
Mn: 0.10% or more and 0.90% or less,
P: 0.030% or less,
S: 0.030% or less,
Contains N: 0.010% or less,
The remainder consists of Fe and impurities,
The average composition of the plating layer is in mass%,
Fe: 15.0% or less,
Al: 3.0% or more and 15.0% or less,
Mg: 0.3% or more and 3.5% or less,
Cr: Contains 0.003% or more and 0.500% or less,
The remainder: consists of Zn and impurities,
The Fe--Al interface alloy layer contains one or more of Fe 4 Al 13 , Fe 2 Al 5 , Fe 2 Al 5 Zn 0.4 , and has an average thickness of 0.2 μm or more.5. 0 μm or less,
The Zn-Al-Mg alloy layer contains Al, Mg, Cr, balance Zn and impurities, contains 0.1 to 40.0 area% MgZn two phase in the structure, and has an average thickness of 10 μm or more and 150 μm. A plated steel wire characterized by:
[2] The average composition of the plating layer is in mass%,
Fe: 2% or less,
Al: 3.0% or more and 8.0% or less,
Mg: 0.3% or more and 3.5% or less,
Cr: Contains 0.003% or more and 0.5% or less,
The remainder: consists of Zn and impurities,
The plated steel wire according to [1], wherein the average thickness of the Zn-Al-Mg alloy layer is 30 μm or more and 100 μm or less.
[3] The plating layer further has an average composition of one or more of Ni, Ti, Zr, Sr, Sn, Ca, Co, Mn, B, REM, and Hf in a total of 0. The plated steel wire according to [1] or [2], containing 0001 to 2% by mass.
[4] The chemical composition of the steel wire is C: 0.40% or more and 1.20% or less in mass %,
Si: 0.3% or more and 2.00% or less,
Mn: 0.10% or more and 0.90% or less,
P: 0.030% or less,
S: 0.030% or less,
Contains N: 0.010% or less,
The plated steel wire according to any one of [1] to [3], wherein the remainder consists of Fe and impurities.
[5] The steel wire according to any one of [1] to [4], characterized in that the chemical composition further contains 0.1% or more and 0.5% or less of Cr in mass %. plated steel wire.
[6] The chemical composition of the steel wire is further expressed in mass%,
Ni: more than 0% and less than 1.00%,
Cu: more than 0% and 0.50% or less,
Mo: more than 0% and less than 0.50%,
V: more than 0% and less than 0.50%,
B: more than 0% and less than 0.0070%,
Al: more than 0% and less than 0.100%,
Ti: more than 0% and less than 0.10%,
Nb: more than 0% and less than 0.10%,
Zr: more than 0% and less than 0.10%,
Ca: more than 0% and less than 0.005%,
Mg: more than 0% and less than 0.005%,
REM: more than 0% and less than 0.02%,
Co: more than 0% and less than 0.5%,
Sb: more than 0% and less than 0.05%,
As: more than 0% and less than 0.05%,
Sn: more than 0% and less than 0.05%,
The plated steel wire according to any one of [1] to [5], characterized in that it contains one or more of O: more than 0% and 0.0100% or less.
 本発明によれば、耐食性、疲労特性及び加工性に優れためっき鋼線を提供できる。 According to the present invention, a plated steel wire with excellent corrosion resistance, fatigue properties, and workability can be provided.
図1は、本発明の実施形態であるめっき鋼線の、めっき層の断面組織の模式図である。FIG. 1 is a schematic diagram of a cross-sectional structure of a plating layer of a plated steel wire according to an embodiment of the present invention.
 本発明者らは、耐食性、疲労特性及び加工性に優れためっき鋼線を実現すべく、鋭意検討した。 The present inventors have conducted extensive studies in order to realize a plated steel wire with excellent corrosion resistance, fatigue properties, and workability.
 めっき鋼線には、耐食性と疲労特性が要求される。溶融めっき鋼線で高い耐食性が要求される場合、Zn合金めっきが主に採用される。しかし、従来のZn合金めっき鋼線は、フラックス法で製造するという制約のため、めっきが容易な二段めっきによって製造されるのが主流であり、コスト高であるとともに、Fe含有界面合金層が厚く形成されために疲労特性が不十分な場合があった。 Galvanized steel wire is required to have corrosion resistance and fatigue properties. When high corrosion resistance is required for hot-dip galvanized steel wire, Zn alloy plating is mainly used. However, conventional Zn alloy plated steel wires are mainly manufactured by two-step plating, which is easy to plate, due to the restriction that they are manufactured using the flux method. In some cases, the fatigue properties were insufficient due to the thick formation.
 Zn合金めっき鋼線を二段めっき法で製造する際に、Fe含有界面合金層を薄くするには、一段目のめっきにおいて、めっき層の組成を通常のめっき組成から変更するか、一段目のめっき浴と二段目のめっき浴を別に準備してめっきを行う必要がある。しかしながら、これらは生産性の低下を招く。このため、疲労特性を重視する用途では、Zn合金めっき鋼線に代えて、耐食性が比較的低い純Znめっき鋼線や、Alクラッド鋼線を用いざるを得ない。 To make the Fe-containing interfacial alloy layer thinner when manufacturing Zn alloy-plated steel wire using a two-stage plating method, the composition of the plating layer must be changed from the normal plating composition in the first stage plating, or the composition of the plating layer in the first stage must be It is necessary to separately prepare a plating bath and a second plating bath to perform plating. However, these lead to a decrease in productivity. Therefore, in applications where fatigue characteristics are important, pure Zn-plated steel wire or Al-clad steel wire, which have relatively low corrosion resistance, must be used instead of Zn alloy-plated steel wire.
 しかし、Alクラッド線は、純Znめっき線に比べて耐食性に優れるが、製造コストが高い欠点がある。従って、疲労特性に優れ、純Znめっきより耐食性に優れたZn合金系めっき線が必要とされている。 However, although Al-clad wire has superior corrosion resistance compared to pure Zn-plated wire, it has the drawback of high manufacturing cost. Therefore, there is a need for a Zn alloy plated wire that has excellent fatigue properties and better corrosion resistance than pure Zn plating.
 そこで、本発明者らは、Fe含有界面合金層を薄くするために、一段式の連続溶融めっき法の採用を本発明者らは検討した。また、本発明者らは、めっき層をZn-Al-Mg合金めっき層とすることで、耐食性を高めることを目指した。フラックス法でのZn-Al-Mgめっきは、Mgがめっき反応を阻害するため、一段めっき法では製造が困難であったが、めっき浴にCrを微量添加することにより鋼とめっき浴との反応性が高められ、一段めっきが可能になることを本発明者らは見出した。 Therefore, the present inventors considered adopting a one-stage continuous hot-dip plating method in order to thin the Fe-containing interfacial alloy layer. The present inventors also aimed to improve corrosion resistance by using a Zn-Al-Mg alloy plating layer as the plating layer. Zn-Al-Mg plating using the flux method was difficult to manufacture using the one-step plating method because Mg inhibits the plating reaction, but by adding a small amount of Cr to the plating bath, the reaction between the steel and the plating bath can be improved. The present inventors have found that the properties are improved and one-step plating becomes possible.
 しかし、Zn-Al-Mg合金のめっき浴にCrを添加すると、反応性が高くなりすぎてしまい、条件によってはFe-Al系界面合金層が厚く形成されてしまい、疲労特性の向上が困難になる問題が生じた。 However, when Cr is added to a Zn-Al-Mg alloy plating bath, the reactivity becomes too high, and depending on the conditions, a thick Fe-Al interfacial alloy layer is formed, making it difficult to improve fatigue properties. A problem arose.
 そこで、Fe-Al系界面合金層の成長を抑制するため、鋼中の成分を活用することを本発明者らは検討した。通常、鋼中のSiは、鋼表面においてSi酸化物の形態で存在するため、溶融めっき時に、めっき濡れ性を大きく低下させて不めっき等、めっき不良の原因となる。一方、溶融めっきの前に冷間伸線加工を行った鋼線では、表面のSi酸化物が少なくなるため、めっき濡れ性を損なわずに金属Siの特性であるFe-Al系界面合金層の成長を抑制できることを本発明者らは見出した。 Therefore, in order to suppress the growth of the Fe-Al-based interfacial alloy layer, the present inventors have considered utilizing the components in steel. Usually, Si in steel exists in the form of Si oxide on the steel surface, and therefore, during hot-dip plating, it greatly reduces plating wettability and causes plating defects such as no plating. On the other hand, in steel wires that have been cold drawn before hot-dip plating, the amount of Si oxide on the surface is reduced, so the Fe-Al interfacial alloy layer, which is a characteristic of metallic Si, can be formed without impairing the plating wettability. The present inventors have discovered that growth can be suppressed.
 また、めっき浴中のCrは、Fe-Al合金化の初期反応を促進するが、鋼中のCrは逆にFe-Al合金成長を抑制することを本発明者らは見出した。従って、鋼中のSi及びCrの含有量を高くすることで、両元素の合金成長抑制効果を活用してFe-Al系界面合金層を薄くすることで、同じめっき厚でも、疲労特性および耐食性に有利なZn-Al-Mg合金層を相対的に増やすことができる。 Additionally, the present inventors have discovered that Cr in the plating bath promotes the initial reaction of Fe-Al alloying, but Cr in steel conversely suppresses Fe-Al alloy growth. Therefore, by increasing the content of Si and Cr in steel and making use of the alloy growth suppressing effects of both elements to thin the Fe-Al interface alloy layer, fatigue properties and corrosion resistance can be improved even with the same plating thickness. The Zn--Al--Mg alloy layer, which is advantageous for this purpose, can be relatively increased.
 また、耐食性に有利なZn-Al-Mg合金層を用いることで、耐食性を維持したままめっき厚を小さくすることが可能であるため、加工性も向上させることができる。 Furthermore, by using a Zn-Al-Mg alloy layer that is advantageous in corrosion resistance, it is possible to reduce the plating thickness while maintaining corrosion resistance, and therefore workability can also be improved.
 以上の知見に基づき、本発明者らが本発明を完成させた。以下、本発明の実施形態であるめっき鋼線について説明する。 Based on the above findings, the present inventors completed the present invention. Hereinafter, a plated steel wire that is an embodiment of the present invention will be described.
 本実施形態のめっき鋼線は、鋼線と、鋼線の表面に配置されためっき層と、が備えられ、めっき層は、鋼線側に配置されたFe-Al系界面合金層と、Fe-Al系界面合金層上に配置されたZn-Al-Mg合金層とを含み、鋼線の化学組成が、質量%で、C:0.030%以上1.20%以下、Si:0.05%以上2.00%以下、Mn:0.10%以上0.90%以下、P:0.030%以下、S:0.030%以下、N:0.010%以下、を含有し、残部がFe及び不純物からなり、めっき層の平均組成が、質量%で、Fe:15.0%以下、Al:3.0%以上15.0%以下、Mg:0.3%以上3.5%以下、Cr:0.003%以上0.500%以下、を含有し、残部:Znおよび不純物からなり、Fe-Al系界面合金層は、FeAl13、FeAl、FeAlZn0.4のいずれか1種または2種以上を含み、平均厚さが0.2μm以上5.0μm以下であり、Zn-Al-Mg合金層は、Al、Mg、Cr、残部Zn及び不純物を含み、組織中に0.1~40.0面積%のMgZn相を含有し、平均厚さが10μm以上150μm以下である。 The plated steel wire of this embodiment includes a steel wire and a plating layer disposed on the surface of the steel wire, and the plating layer includes an Fe-Al interface alloy layer disposed on the steel wire side and a Fe-Al based interfacial alloy layer disposed on the steel wire side. - Zn-Al-Mg alloy layer disposed on the Al-based interfacial alloy layer, and the chemical composition of the steel wire is, in mass %, C: 0.030% or more and 1.20% or less, Si: 0. 05% or more and 2.00% or less, Mn: 0.10% or more and 0.90% or less, P: 0.030% or less, S: 0.030% or less, N: 0.010% or less, The remainder consists of Fe and impurities, and the average composition of the plating layer is, in mass%, Fe: 15.0% or less, Al: 3.0% or more and 15.0% or less, Mg: 0.3% or more and 3.5%. % or less, Cr: 0.003% or more and 0.500% or less, the remainder: Zn and impurities, and the Fe-Al interface alloy layer contains Fe 4 Al 13 , Fe 2 Al 5 , Fe 2 Al 5 Zn 0.4 and has an average thickness of 0.2 μm or more and 5.0 μm or less, and the Zn-Al-Mg alloy layer contains Al, Mg, Cr, the balance being Zn and It contains impurities, contains 0.1 to 40.0 area % MgZn two- phase in its structure, and has an average thickness of 10 μm or more and 150 μm or less.
 以下の説明において、化学組成の各元素の含有量の「%」表示は、「質量%」を意味する。また、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、「~」の前後に記載される数値に「超」または「未満」が付されている場合の数値範囲は、これら数値を下限値または上限値として含まない範囲を意味する。 In the following description, the content of each element in the chemical composition expressed as "%" means "mass%". Furthermore, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits. In addition, a numerical range in which "more than" or "less than" is attached to the numerical value written before and after "~" means a range that does not include these numerical values as the lower limit or upper limit.
 鋼線の化学組成の限定理由を説明する。 The reason for limiting the chemical composition of steel wire will be explained.
C:Cは、鋼線の引張強さの増加および伸線加工時の加工硬化率を高めるために有効な元素である。Cの含有によって、より少ない伸線加工歪みで鋼線を高強度化することが可能になり、疲労特性の改善にも寄与する。本実施形態では、C量を0.030%以上1.20%以下の範囲にする。C量の下限を0.40%以上にしてもよい。鋼線のC量が上記範囲の下限以上であれば、めっき鋼線において引張強さが十分に確保され、また伸線加工硬化率も十分大きい値となり、目的とする強度の鋼線を得ることできる。一方、C量が、上記範囲の上限以下であれば、中心偏析を軽減するための処理コストが許容できる範囲となる。 C: C is an effective element for increasing the tensile strength of steel wire and increasing the work hardening rate during wire drawing. The inclusion of C makes it possible to increase the strength of the steel wire with less wire drawing strain, and also contributes to improving fatigue properties. In this embodiment, the amount of C is set in a range of 0.030% or more and 1.20% or less. The lower limit of the amount of C may be set to 0.40% or more. If the C content of the steel wire is at least the lower limit of the above range, sufficient tensile strength is ensured in the plated steel wire, and the wire drawing work hardening rate is also sufficiently large, making it possible to obtain a steel wire with the desired strength. can. On the other hand, if the amount of C is below the upper limit of the above range, the processing cost for reducing center segregation will be within an allowable range.
 C量は、鋼線の機械特性から決まるものであるが、同時にめっきにも影響する。Cは、基本的にFe-Al反応を抑制する元素であり、含有率が高い場合には密着不良、不めっきの原因となり、低い場合には合金層を薄く制御することが困難になり加工性、疲労特性を低下させる。このため、めっき性の観点からも、C量は0.030%以上1.20%以下の範囲にする必要がある。 The amount of C is determined by the mechanical properties of the steel wire, but it also affects the plating. C is an element that basically suppresses the Fe-Al reaction, and when the content is high, it causes poor adhesion and non-plating, and when the content is low, it becomes difficult to control the alloy layer to be thin, resulting in poor workability. , reduce fatigue properties. Therefore, also from the viewpoint of plating properties, the C content needs to be in the range of 0.030% or more and 1.20% or less.
 Si:本実施形態では、Si量を0.05%以上2.00%以下にする。鋼線の硬度を高めるために、Si量の下限を0.30%以上にしてもよい。Siは、脱酸剤であり、また、パーライト中のフェライトの強化に有効な元素であるため、Si量を上記範囲の下限以上とする。一方、上記範囲の上限を超えるSiを含有しても、効果が飽和する。Siは、めっき浴に浸漬させた際のFe-Al系界面合金層の成長の抑制にも有効であるため、0.05%以上を含有させる。 Si: In this embodiment, the amount of Si is set to 0.05% or more and 2.00% or less. In order to increase the hardness of the steel wire, the lower limit of the amount of Si may be set to 0.30% or more. Since Si is a deoxidizing agent and an element effective in strengthening ferrite in pearlite, the amount of Si is set to be at least the lower limit of the above range. On the other hand, even if Si exceeding the upper limit of the above range is contained, the effect is saturated. Since Si is also effective in suppressing the growth of the Fe--Al based interfacial alloy layer when immersed in a plating bath, it is contained in an amount of 0.05% or more.
 なお、本実施形態では、鋼表面のSi酸化物は冷間伸線後に除去、寸断されるためめっきの妨害にはならない。ただし、Si含有量が2.00%を超えるとめっきに悪影響が現れることがある。 Note that in this embodiment, Si oxide on the steel surface is removed and shredded after cold wire drawing, so it does not interfere with plating. However, if the Si content exceeds 2.00%, an adverse effect may appear on the plating.
Mn:本実施形態では、Mn量を0.10~0.90%にする。Mnは、脱酸及び脱硫に有効な元素であるため、上記範囲の下限以上を含有させる。鋼の焼入性を向上させ、めっき鋼線における引張強度を高めるためにも、0.10%以上を含有させる。一方、Mn量が上記範囲の上限以下であれば、偏析度が増加せず、パテンティング処理時にねじり回数を低下させるベイナイトの発生が抑制される。 Mn: In this embodiment, the amount of Mn is set to 0.10 to 0.90%. Since Mn is an effective element for deoxidation and desulfurization, it is contained in an amount equal to or higher than the lower limit of the above range. In order to improve the hardenability of the steel and increase the tensile strength of the plated steel wire, it is contained in an amount of 0.10% or more. On the other hand, if the amount of Mn is below the upper limit of the above range, the degree of segregation will not increase and the generation of bainite that reduces the number of twists during patenting treatment will be suppressed.
P:Pは、延性の低下を抑制するため、0.030%以下とする。なお、P量の上限は、0.025%以下が好ましい。過剰なPの低減は精錬コストが増大するので、Pは0.0005%以上でもよい。 P: P is set to 0.030% or less in order to suppress a decrease in ductility. Note that the upper limit of the amount of P is preferably 0.025% or less. Since excessive reduction of P increases refining cost, P may be 0.0005% or more.
S:Sは、熱間加工性の低下を抑制するため、0.030%以下とする。S量の上限は0.025%以下が好ましい。過剰なSの低減は精錬コストが増大するので、Sは0.0005%以上でもよい。 S: S is set to 0.030% or less in order to suppress deterioration of hot workability. The upper limit of the amount of S is preferably 0.025% or less. Since excessive reduction of S increases refining cost, the S content may be 0.0005% or more.
N:Nは、過剰に含有すると延性が低下するため、0.010%以下とする。好ましいN量の上限は、0.007%以下である。N含有量の下限は例えば0.001%以上でもよい。 N: If N is contained excessively, ductility decreases, so it is set to 0.010% or less. A preferable upper limit of the amount of N is 0.007% or less. The lower limit of the N content may be, for example, 0.001% or more.
Cr:Crは任意添加元素であり、鋼線のパーライト組織に影響して鋼線の強度を高める働きがある元素なので、必要に応じて含有させてもよい。また、Siと同様に、めっき浴に浸漬させた際のFe-Al系界面合金層の成長の抑制に有効である。従って、鋼線中に0.10%以上のCrを含有させてもよい。SiとともにCrを含有させることで、Fe-Al系界面合金層の成長をより抑制して疲労特性を向上できる。Cr量の上限は、0.50%以下とする。Cr量はめっきへの影響、材質の影響からも、この上限を超えることは無意味であり、また0.5%超ではめっき反応抑制効果が過剰になってめっき密着不良を生じやすくなる。 Cr: Cr is an optionally added element and has the effect of increasing the strength of the steel wire by affecting the pearlite structure of the steel wire, so it may be included as necessary. Also, like Si, it is effective in suppressing the growth of the Fe--Al based interfacial alloy layer when immersed in a plating bath. Therefore, 0.10% or more of Cr may be contained in the steel wire. By containing Cr together with Si, the growth of the Fe--Al based interfacial alloy layer can be further suppressed and fatigue properties can be improved. The upper limit of the Cr amount is 0.50% or less. It is meaningless for the amount of Cr to exceed this upper limit due to the influence on the plating and the influence of the material, and if it exceeds 0.5%, the effect of suppressing the plating reaction becomes excessive and poor plating adhesion is likely to occur.
 本実施形態では、強度を高めるために、また、強度の向上や結晶粒径の細粒化、特に、旧オーステナイト粒径を微細化し、冷間での伸線加工性を高めるために、鋼線に、Ni、Cu、Mo、V、B、Al、Ti、Nb、Zr、Ca、Mg、REM、Co、Sb、As、Sn、Sb、Oの1種または2種以上をそれぞれ0%超含有してもよい。 In this embodiment, in order to increase the strength, improve the strength, refine the crystal grain size, in particular, refine the prior austenite grain size, and improve the cold wire drawability. contains more than 0% of one or more of Ni, Cu, Mo, V, B, Al, Ti, Nb, Zr, Ca, Mg, REM, Co, Sb, As, Sn, Sb, and O. You may.
Ni:Niは、焼入性を向上させる元素であり、パテンティング処理後の強度の向上に有効な元素である。しかし、1.00%超のNiを含有させても、効果が飽和するため、上限を1.00%以下とすることが好ましい。なお、Niは、伸線加工性の向上にも有効であり、0.01%以上を含有させることが好ましい。 Ni: Ni is an element that improves hardenability and is an effective element for improving strength after patenting treatment. However, even if more than 1.00% of Ni is contained, the effect is saturated, so it is preferable that the upper limit is 1.00% or less. Note that Ni is also effective in improving wire drawability, and is preferably contained in an amount of 0.01% or more.
Cu:Cuは、Niと同様に、パテンティング処理後の強度の向上に有効な元素である。この効果を得るためには、Cuを0.01%以上含有することが好ましい。しかし、0.50%超のCuを含有しても、効果が飽和するため、上限を0.5%以下とすることが好ましい。 Cu: Like Ni, Cu is an element effective in improving strength after patenting treatment. In order to obtain this effect, it is preferable to contain Cu in an amount of 0.01% or more. However, even if more than 0.50% of Cu is contained, the effect is saturated, so it is preferable that the upper limit is 0.5% or less.
Mo:Moは、焼入性を向上させる元素である。Moの含有は、パテンティング処理後の引張強度の向上に有効であり、0.01%以上を含有することが好ましい。一方、0.50%超のMoを含有しても、効果が飽和するため、上限を0.5%以下とすることが好ましい。 Mo: Mo is an element that improves hardenability. The content of Mo is effective in improving the tensile strength after the patenting treatment, and the content is preferably 0.01% or more. On the other hand, even if more than 0.50% of Mo is contained, the effect is saturated, so it is preferable that the upper limit is 0.5% or less.
V:Vは、析出強化によってパテンティング処理後の引張強度を高める元素である。また、Vの含有は、溶融めっき時の強度低下の抑制に対しても効果があり、V量を0.01%以上にすることが好ましい。一方、0.50%超のVを含有すると、延性が低下することがあるため、上限を0.50%以下にすることが好ましい。 V: V is an element that increases the tensile strength after patenting treatment by precipitation strengthening. Further, the inclusion of V is also effective in suppressing a decrease in strength during hot-dip plating, and it is preferable that the amount of V is 0.01% or more. On the other hand, if more than 0.50% of V is contained, the ductility may decrease, so the upper limit is preferably 0.50% or less.
B:Bは、焼入性向上効果によって、パテンティング処理後の引張強度を高める元素である。焼入れ性を高めるためには、0.0001%以上の含有が好ましい。一方、0.0070%を超えてBを含有しても、含有量に見合う効果が発現されないため、B量の上限を0.0070%以下にすることが好ましい。 B: B is an element that increases the tensile strength after patenting treatment due to its hardenability improving effect. In order to improve hardenability, the content is preferably 0.0001% or more. On the other hand, even if B is contained in an amount exceeding 0.0070%, an effect commensurate with the content will not be exhibited, so it is preferable to set the upper limit of the B amount to 0.0070% or less.
Al:Alは、脱酸に有効な元素であり、窒化物の形成によって、結晶粒の粗大化の防止にも寄与する。しかし、0.100%超のAlを含有しても効果が飽和するため、上限を0.100%以下にすることが好ましい。なお、旧オーステナイト粒径を微細化し、パーライト変態後の鋼線の伸線加工性を高めるためには、Alの含有量を、0.001%以上にすることが好ましい。 Al: Al is an effective element for deoxidation, and also contributes to preventing coarsening of crystal grains by forming nitrides. However, even if Al exceeds 0.100%, the effect is saturated, so it is preferable to set the upper limit to 0.100% or less. In addition, in order to refine the prior austenite grain size and improve the wire drawability of the steel wire after pearlite transformation, the Al content is preferably 0.001% or more.
Ti:Tiは、脱酸に有効な元素であり、また炭化物、窒化物の形成によって強度の向上及び結晶粒の粗大化の防止に寄与する。旧オーステナイト粒径を微細化して、鋼線の伸線加工性を高め、鋼線の延性を向上させるためには、0.001%以上のTiを含有することが好ましい。一方、0.10%超のTiを含有すると、Tiの炭窒化物が粗大になり、伸線加工性や疲労特性を劣化させることがあるため、上限を0.10%以下とすることが好ましい。 Ti: Ti is an effective element for deoxidation, and contributes to improving strength and preventing coarsening of crystal grains by forming carbides and nitrides. In order to refine the prior austenite grain size, improve the wire drawability of the steel wire, and improve the ductility of the steel wire, it is preferable to contain 0.001% or more of Ti. On the other hand, if more than 0.10% of Ti is contained, Ti carbonitrides may become coarse and may deteriorate wire drawability and fatigue properties, so it is preferable that the upper limit is 0.10% or less. .
Nb:Nbは、Tiと同様、炭化物、窒化物を形成する元素である。Nbの炭化物、窒化物によってオーステナイト粒を微細化させるために有効な元素である。特に、旧オーステナイト粒径を微細化し、鋼線の伸線加工性を高め、鋼線の延性を向上させるためには、0.001%以上のNbの含有が好ましい。一方、0.10%超のNbを含有しても、効果が飽和するため、Nb量の上限を0.10%以下とすることが好ましい。より好ましくは0.05%以下である。 Nb: Like Ti, Nb is an element that forms carbides and nitrides. It is an effective element for refining austenite grains by forming Nb carbides and nitrides. In particular, in order to refine the prior austenite grain size, improve the wire drawability of the steel wire, and improve the ductility of the steel wire, Nb content of 0.001% or more is preferable. On the other hand, even if more than 0.10% of Nb is contained, the effect is saturated, so it is preferable that the upper limit of the amount of Nb is 0.10% or less. More preferably, it is 0.05% or less.
Zr:Zrは、Ti、Nbと同様に、炭化物、窒化物を形成する元素であり、鋼線の伸線加工性を高め、鋼線の延性を向上させるために、0.001%以上を含有することが好ましい。一方、0.10%超のZrを含有しても、効果が飽和するため、上限を0.10%以下とすることが好ましい。 Zr: Like Ti and Nb, Zr is an element that forms carbides and nitrides, and is contained in an amount of 0.001% or more in order to improve the wire drawability of the steel wire and the ductility of the steel wire. It is preferable to do so. On the other hand, even if more than 0.10% of Zr is contained, the effect is saturated, so the upper limit is preferably 0.10% or less.
Ca:Caは硬質なアルミナ系の介在物を低減し、伸線加工性を向上するのに有効である。この効果を確実に得るためには、Ca含有量を0.0002%以上とすることが好ましい。しかし、Caを過剰に含有させると、酸化物を生成して断線の原因となる。そのため、Ca含有量は0.005%以下とすることが好ましい。 Ca: Ca is effective in reducing hard alumina-based inclusions and improving wire drawability. In order to reliably obtain this effect, the Ca content is preferably 0.0002% or more. However, when Ca is contained excessively, oxides are generated, causing wire breakage. Therefore, the Ca content is preferably 0.005% or less.
Mg:Mgは微細な酸化物となり、鋼の組織を微細化して延性を向上させる。この効果を確実に得るためには、Mg含有量を0.0002%以上とすることが好ましい。しかし、Mg含有量が0.005%を超えると酸化物を起点として断線が生じやすくなる。そのため、Mg含有量は0.005%以下とすることが好ましい。 Mg: Mg becomes a fine oxide that refines the structure of steel and improves its ductility. In order to reliably obtain this effect, it is preferable that the Mg content is 0.0002% or more. However, when the Mg content exceeds 0.005%, wire breakage tends to occur starting from the oxide. Therefore, the Mg content is preferably 0.005% or less.
REM:REMはSの無害化に有効である。この効果を確実に得るためには、REM含有量を0.0002%以上とすることが好ましい。しかし、REMを過剰に含有させると酸化物を生成して断線の原因となる。そのため、REM含有量は0.02%以下とすることが好ましい。
 なお、本実施形態においてREMとは、Sc、Y及びランタノイドからなる合計17元素を指し、REMの含有量とはこれらの元素の合計含有量を指す。
REM: REM is effective in rendering S harmless. In order to reliably obtain this effect, it is preferable that the REM content is 0.0002% or more. However, when REM is contained excessively, oxides are generated, which causes wire breakage. Therefore, the REM content is preferably 0.02% or less.
In this embodiment, REM refers to a total of 17 elements consisting of Sc, Y, and lanthanoids, and the content of REM refers to the total content of these elements.
Co:Coはパーライトのラメラセメンタイトの配向性を高め、伸線加工性を向上する。この効果を確実に得るためには、Co含有量を0.05%以上とすることが好ましい。しかし、Coを過剰に含有させてもその効果は飽和し、経済的に損失が大きい。そのため、Co含有量は0.5%以下とすることが好ましい。 Co: Co enhances the orientation of lamellar cementite of pearlite and improves wire drawability. In order to reliably obtain this effect, it is preferable that the Co content be 0.05% or more. However, even if Co is contained excessively, the effect is saturated, resulting in a large economic loss. Therefore, the Co content is preferably 0.5% or less.
Sb、AsおよびSn:Sb、AsおよびSnは、これらを微量に含有させても、本実施形態に係るめっき鋼線に悪影響を及ぼさない元素である。そのため、必要に応じてこれらの元素を含有させてもよい。しかし、これらの元素を過剰に含有させると、熱間延性の低下などにより製造性が劣化する。そのため、Sb、AsおよびSnの含有量はそれぞれ0.05%以下とすることが好ましい。 Sb, As, and Sn: Sb, As, and Sn are elements that do not adversely affect the plated steel wire according to this embodiment even if they are contained in trace amounts. Therefore, these elements may be contained as necessary. However, when these elements are contained excessively, manufacturability deteriorates due to a decrease in hot ductility and the like. Therefore, it is preferable that the contents of Sb, As, and Sn are each 0.05% or less.
O:Oは、酸化物を形成するため、過剰に含有させると断線や、疲労強度低下の原因となる。そのためOの含有量は、0.0100%以下とすることが好ましい。一方で、脱酸にはコストが掛かることから、O濃度を0.0010%未満とすることは、経済的な損失が大きい。したがって、Oの濃度は、0.0010%以上0.0100%以下とすることが好ましい。 O: Since O forms an oxide, if it is contained in excess, it may cause wire breakage or decrease in fatigue strength. Therefore, the O content is preferably 0.0100% or less. On the other hand, since deoxidation is costly, reducing the O concentration to less than 0.0010% results in a large economic loss. Therefore, the concentration of O is preferably 0.0010% or more and 0.0100% or less.
 鋼線の化学組成の同定は、以下の方法により行う。
 鋼線の腐食を抑制するインヒビターを含有した酸でめっき層を剥離溶解することで、めっき層を除去する。次に、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)や発光分光分析(OES:Optical Emission Spectroscopy)を用いて、鋼線の化学組成を分析する。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
The chemical composition of the steel wire is identified by the following method.
The plating layer is removed by peeling and dissolving it with an acid containing an inhibitor that suppresses corrosion of the steel wire. Next, the chemical composition of the steel wire is analyzed using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry) or Optical Emission Spectroscopy (OES). Note that C and S may be measured using a combustion-infrared absorption method, N using an inert gas melting-thermal conductivity method, and O using an inert gas melting-non-dispersive infrared absorption method.
 次に、めっき層の平均組成について説明する。本実施形態のめっき層は、Fe-Al系界面合金層とZn-Al-Mg合金層とを含む。Fe-Al系界面合金層は、溶融めっき時に、主に、めっき浴中のAlと鋼線の地鉄とが反応することによって形成される。以下に説明するめっき層の平均組成は、Fe-Al系界面合金層及びZn-Al-Mg合金層の平均組成である。 Next, the average composition of the plating layer will be explained. The plating layer of this embodiment includes a Fe--Al based interfacial alloy layer and a Zn--Al--Mg alloy layer. The Fe--Al based interfacial alloy layer is mainly formed by the reaction between Al in the plating bath and the base iron of the steel wire during hot-dip plating. The average composition of the plating layer described below is the average composition of the Fe--Al interfacial alloy layer and the Zn--Al--Mg alloy layer.
Fe:Feは、鋼線の表面から拡散し、めっきと鋼線との界面に、主に、FeとAlとを含むFe-Al系界面合金層を形成している。したがって、めっき層のFe量は、Fe-Al系界面合金層、Fe-Al-Mg合金層の厚さとともに変化する。めっき層のFe量が15.0%を超えることは、Fe-Al系界面合金層が厚くなりすぎること、あるいはZn-Al-Mg合金層が薄すぎることを意味し、それぞれ、疲労特性、加工性の低下、または耐食性の低下を招く。したがって、めっき鋼線の所望の疲労特性、加工性、耐食性を満足するには、めっき層のFe量を15.0%以下とする。めっき鋼線の諸特性を満足するには、Fe-Al系界面合金層の厚みを薄くすることが望ましく、このためには、Fe量を2.0%以下にすることが好ましい。 Fe: Fe diffuses from the surface of the steel wire and forms an Fe--Al based interfacial alloy layer mainly containing Fe and Al at the interface between the plating and the steel wire. Therefore, the amount of Fe in the plating layer changes with the thickness of the Fe--Al based interfacial alloy layer and the Fe--Al--Mg alloy layer. If the amount of Fe in the plating layer exceeds 15.0%, it means that the Fe-Al interfacial alloy layer is too thick or the Zn-Al-Mg alloy layer is too thin. This results in a decrease in properties or corrosion resistance. Therefore, in order to satisfy the desired fatigue properties, workability, and corrosion resistance of the plated steel wire, the amount of Fe in the plated layer should be 15.0% or less. In order to satisfy various properties of the plated steel wire, it is desirable to reduce the thickness of the Fe--Al based interfacial alloy layer, and for this purpose, the Fe content is preferably 2.0% or less.
Al:Alは、Znのような犠牲防食の効果ではなく、主にめっきの表面に緻密な酸化皮膜を形成することなどによって、耐食性を高める元素である。めっき層の耐食性を向上させるには、3.0%以上のAlを含有するとよい。Al量を増やすと耐食性の向上効果が大きくなるが、Al量が15.0%を超えると効果が飽和し、また、めっき浴の融点が高くなり、操業の点で不利になる。したがって、Al量の上限を15.0%以下にする。より好ましくは8.0%以下である。 Al: Al is an element that improves corrosion resistance mainly by forming a dense oxide film on the surface of the plating, rather than having a sacrificial corrosion protection effect like Zn. In order to improve the corrosion resistance of the plating layer, it is preferable to contain 3.0% or more of Al. Increasing the amount of Al increases the effect of improving corrosion resistance, but if the amount of Al exceeds 15.0%, the effect is saturated and the melting point of the plating bath becomes high, which is disadvantageous in terms of operation. Therefore, the upper limit of the Al amount is set to 15.0% or less. More preferably it is 8.0% or less.
Mg:Mgは、めっき層の耐食性を向上させるため必須の元素である。ただし、Mg量が過剰になると、めっき層が硬くなって割れが発生しやすくなり、加工性、疲労特性が低下する。また、フラックス反応を妨害し、めっき性を顕著に低下させる。従って、Mg量は、0.3~3.5%の範囲とする。好ましくは、0.5~3.0%である。より好ましくは、Mg量は1.0%超でもよい。また、Mg量は2.5%未満としてもよい。Mgを含有させることにより、Zn-Al-Mg合金層中にMgZn相を含有させることができ、これにより、耐食性をより向上できる。
 本実施形態のめっき層は、Siを含有しないことが好ましい。Siを含有すると、MgSiがMgZn相よりも優先的に形成されてしまい、めっき層の疲労性、耐食性が低下してしまう。
Mg: Mg is an essential element for improving the corrosion resistance of the plating layer. However, when the amount of Mg becomes excessive, the plating layer becomes hard and cracks are likely to occur, and workability and fatigue properties are reduced. It also interferes with flux reactions and significantly reduces plating properties. Therefore, the Mg amount is set in the range of 0.3 to 3.5%. Preferably it is 0.5 to 3.0%. More preferably, the amount of Mg may be greater than 1.0%. Further, the Mg amount may be less than 2.5%. By including Mg, a MgZn two phase can be included in the Zn--Al--Mg alloy layer, thereby further improving corrosion resistance.
It is preferable that the plating layer of this embodiment does not contain Si. If Si is contained, Mg 2 Si will be formed preferentially over the MgZn two -phase, and the fatigue resistance and corrosion resistance of the plating layer will deteriorate.
Cr:Crは、Fe-Al系界面合金層の形成時の初期反応(以下、Fe-Al初期反応という)を促進するためにめっき浴に含有される元素であることから、めっき層に含まれるようになる。Fe-Al初期反応を促進するためには、めっき層中に0.003%以上のCrが含有されているとよい。ただし、Cr量が過剰になるとめっき層の耐食性が低下するので、上限を0.5%以下とする。好ましいCr量は0.005~0.40%であり、更に望ましくは0.008~0.05%である。ただし、Crは酸化して失われやすく、またFe-Al系界面合金層中に濃化するため、めっき浴中濃度は変動しやすい。管理範囲には注意が必要である。 Cr: Cr is an element contained in the plating bath to promote the initial reaction during the formation of the Fe-Al interfacial alloy layer (hereinafter referred to as Fe-Al initial reaction), so it is included in the plating layer. It becomes like this. In order to promote the Fe--Al initial reaction, the plating layer preferably contains 0.003% or more of Cr. However, if the amount of Cr becomes excessive, the corrosion resistance of the plating layer decreases, so the upper limit is set to 0.5% or less. The preferred amount of Cr is 0.005 to 0.40%, more preferably 0.008 to 0.05%. However, since Cr is easily lost through oxidation and concentrated in the Fe--Al interfacial alloy layer, the concentration in the plating bath tends to fluctuate. Care must be taken regarding the scope of management.
 Fe-Al初期反応を促進するには、浴温度を高くする、めっき浴中のAl濃度を大きくするなどの方法があるが、このような方法で反応を促進させた場合、線材の機械特性を低下させる、界面合金の生成が不均一になるなどの問題がある。このような問題に対して、Crによる反応促進は、めっき浴の低浴温化が可能であり、界面合金生成が均一になる効果もある。 There are methods to accelerate the Fe-Al initial reaction, such as increasing the bath temperature and increasing the Al concentration in the plating bath. However, when the reaction is promoted by these methods, the mechanical properties of the wire are affected. There are problems such as deterioration and non-uniform formation of interfacial alloys. To address these problems, reaction acceleration using Cr allows the plating bath to be lowered in temperature, and has the effect of making interfacial alloy formation uniform.
 めっき層の平均組成における残部は、Zn及び不純物である。不純物は、原材料に含まれる成分、または、製造の工程で混入する成分であって、意図的に含有させたものではない成分を指す。例えば、めっき層には、鋼材(地鉄)とめっき浴との相互の原子拡散によって、不純物として、鋼中に含まれるFe以外の成分も微量混入することがある。 The remainder in the average composition of the plating layer is Zn and impurities. Impurities refer to components contained in raw materials or components mixed in during the manufacturing process, but not intentionally included. For example, trace amounts of components other than Fe contained in the steel may be mixed into the plating layer as impurities due to mutual atomic diffusion between the steel material (base iron) and the plating bath.
 また、めっき層中には、更に、平均組成で、Ni、Ti、Zr、Sr、Sn、Ca、Co、Mn、B、REM、Hfの1種又は2種以上を合計で0.0001~2.0質量%含有していてもよい。これらの元素を含有することで、めっき層の耐食性を更に改善することができる。
 なお、REMは、Sc、Y及びランタノイドからなる合計17元素を指し、REMの含有量とはこれらの元素の合計含有量を指す。
In addition, the plating layer further contains one or more of Ni, Ti, Zr, Sr, Sn, Ca, Co, Mn, B, REM, and Hf in a total average composition of 0.0001 to 2 It may be contained in an amount of .0% by mass. By containing these elements, the corrosion resistance of the plating layer can be further improved.
Note that REM refers to a total of 17 elements consisting of Sc, Y, and lanthanoids, and the content of REM refers to the total content of these elements.
 めっき層の平均組成の同定は、地鉄(鋼線)の腐食を抑制するインヒビターを含有した酸でめっき層を剥離溶解した酸液を得る。次に、得られた酸液をICP発光分光分析法等で測定することで化学組成を得ることができる。酸種は、めっき層を溶解できる酸であれば、特に制限はない。 To identify the average composition of the plating layer, obtain an acid solution by removing and dissolving the plating layer with an acid containing an inhibitor that suppresses corrosion of the base iron (steel wire). Next, the chemical composition can be obtained by measuring the obtained acid solution by ICP emission spectrometry or the like. The acid species is not particularly limited as long as it can dissolve the plating layer.
 次に、Fe-Al系界面合金層について説明する。本実施形態のFe-Al系界面合金層は、FeAl13、FeAl、FeAlZn0.4のいずれか1種または2種以上を含む。Fe-Al系界面合金層は、鋼線がめっき浴に接触した際に、主に、めっき浴に含まれるAlと鋼線に含まれるFeとが反応することによって形成される層である。本実施形態のFe-Al系界面合金層は、FeAl13、FeAl、FeAlZn0.4といったFe-Al系合金を主体とする組成であることが、電子線回折により確認される。これらの合金は、いわゆる犠牲防食能力が低いが、本発明では、従来のめっき鋼線と比べて防食能が大きいZn-Al-Mg合金層の厚みを大きくすることが容易になるため、めっき層の鋼線を防食する能力は向上する。これらのFe-Al系合金の確認は、Fe-Al系界面合金層の組織を電子線回折により解析した際に明確に帰属できるまたはラウエ斑点が、上記3種のうちのいずれかのFe-Al系合金のものである場合に、Fe-Al系合金が含まれると確認する。
 Fe-Al系界面合金層中のFeAl13、FeAl、FeAlZn0.4の同定方法について、以下に具体的に説明する。
 Fe-Al系合金の同定には、電解放射型透過型電子顕微鏡(FE-TEM)を用いる。具体的には、任意の断面にて合金層を含むようにFIB加工により試料を切り出して分析試料を作成し、FE-TEMにより合金層にビーム径5nmの電子線を照射し得られた電子線回折図から、金属間化合物を同定する。
Next, the Fe--Al based interfacial alloy layer will be explained. The Fe--Al based interfacial alloy layer of this embodiment contains one or more of Fe 4 Al 13 , Fe 2 Al 5 , and Fe 2 Al 5 Zn 0.4 . The Fe--Al interfacial alloy layer is a layer that is formed when the steel wire comes into contact with the plating bath, mainly due to the reaction between Al contained in the plating bath and Fe contained in the steel wire. According to electron beam diffraction, the Fe-Al-based interfacial alloy layer of this embodiment has a composition mainly composed of Fe-Al-based alloys such as Fe 4 Al 13 , Fe 2 Al 5 , and Fe 2 Al 5 Zn 0.4 . Confirmed by. These alloys have low so-called sacrificial corrosion protection ability, but in the present invention, it is easy to increase the thickness of the Zn-Al-Mg alloy layer, which has greater corrosion protection ability than conventional plated steel wire, so the plating layer The ability to protect steel wire from corrosion is improved. Confirmation of these Fe-Al alloys is that when the structure of the Fe-Al interface alloy layer is analyzed by electron beam diffraction, Laue spots can be clearly attributed to Fe-Al alloys of any of the three types mentioned above. If the material is a Fe-Al alloy, it is confirmed that the Fe-Al alloy is included.
A method for identifying Fe 4 Al 13 , Fe 2 Al 5 , and Fe 2 Al 5 Zn 0.4 in the Fe--Al interfacial alloy layer will be specifically described below.
A field emission transmission electron microscope (FE-TEM) is used to identify the Fe-Al alloy. Specifically, a sample was cut out using FIB processing to include the alloy layer in an arbitrary cross section to create an analysis sample, and the alloy layer was irradiated with an electron beam with a beam diameter of 5 nm using FE-TEM. Identify the intermetallic compound from the diffraction pattern.
 Fe-Al系界面合金層を構成する元素を、電解放射型走査型電子顕微鏡(FE-SEM)に付属するエネルギー分散型X線分光装置(EDS)で計測すると、FeおよびAlに加え、20原子%未満のZn、それぞれ5原子%未満のMg,Cr,Si等の元素が検出されうるが、本発明はこの化学組成に限定されるものではない。 When the elements constituting the Fe-Al interfacial alloy layer are measured using an energy dispersive X-ray spectrometer (EDS) attached to a field emission scanning electron microscope (FE-SEM), in addition to Fe and Al, 20 atoms are found. % Zn, less than 5 atomic % each of elements such as Mg, Cr, Si, etc., although the invention is not limited to this chemical composition.
 これらの元素以外にも、Mnなどの鋼の成分由来、めっき浴の不純物由来の元素が検出されることがあるが、本発明においてはこれらの成分は重要ではない。 In addition to these elements, elements derived from steel components such as Mn and elements derived from impurities in the plating bath may be detected, but these components are not important in the present invention.
 Fe-Al系界面合金層において、Znは、0~20原子%程度の存在が確認されている。耐赤錆性の点からは、ZnがFe-Al系界面合金層中に一定量は存在することが望ましいが、この存在量を積極的に制御することは困難である。 It has been confirmed that Zn is present in an amount of about 0 to 20 atomic % in the Fe--Al based interfacial alloy layer. From the viewpoint of red rust resistance, it is desirable that a certain amount of Zn exist in the Fe--Al based interfacial alloy layer, but it is difficult to actively control this amount.
 Crは、低Cr濃度のめっき浴である場合はFe-Al系界面合金層中にめっき浴濃度以上に濃化する。そのため、浴中Cr濃度の1倍から100倍程度の濃度になる。 If the plating bath has a low Cr concentration, Cr will be concentrated in the Fe-Al-based interfacial alloy layer to a level higher than the plating bath concentration. Therefore, the concentration is about 1 to 100 times the Cr concentration in the bath.
 Mgは、一般的にはFe-Al系合金に含まれることは少ない。しかし、後述する本発明にかかるめっき鋼線の一部の実施例では、Fe-Al系界面合金層にMgの存在が観測された。これは、ZnがFe-Al系界面合金層中に入る過程で、Mgも同時に取り込まれると考えられる。 Mg is generally rarely included in Fe-Al alloys. However, in some examples of plated steel wires according to the present invention, which will be described later, the presence of Mg was observed in the Fe--Al interface alloy layer. This is thought to be due to the fact that Mg is also taken in at the same time as Zn enters the Fe--Al based interfacial alloy layer.
 Siは、Fe-Al系界面合金層の厚さに顕著に影響しているため、FeAlSiとして存在すると考えられる。Siは、鋼からFe-Al系界面合金層に入ると考えられる。
 Fe-Al系界面合金層の平均組成は、FE-SEMに付属するEDSを用いて測定する。Fe-Al系界面合金層の組成を計測出来ていれば、測定条件に制限はないが、例えば、SEM-EDSのスポット分析を用いることができ、めっき鋼線の断面において、合金層の厚み方向の中心にスポットを設定し、加速電圧を15.0KV、照射電流を7.5nA、照射時間を60sとして分析することが挙げられる。
Since Si significantly affects the thickness of the Fe--Al interfacial alloy layer, it is considered that it exists as Fe 2 Al 8 Si. It is thought that Si enters the Fe-Al-based interfacial alloy layer from the steel.
The average composition of the Fe--Al based interfacial alloy layer is measured using EDS attached to the FE-SEM. There are no restrictions on the measurement conditions as long as the composition of the Fe-Al interfacial alloy layer can be measured, but for example, SEM-EDS spot analysis can be used. An example of this is to set a spot at the center of the sample, set an accelerating voltage of 15.0 KV, an irradiation current of 7.5 nA, and an irradiation time of 60 s.
 これらの元素は、Znを除けば多くの場合1元素%以下、最大で5元素%程度の濃度として分析される。 With the exception of Zn, these elements are analyzed at a concentration of 1 element % or less in most cases, and at a maximum of about 5 element %.
 Fe-Al系界面合金層の平均厚さは、0.2μm以上5.0μm以下である。平均厚さが0.2μm未満ではバリア性、めっき密着性を確保できなくなる。また、Fe-Al系界面合金層の平均厚さが5.0μmを超えると、めっき鋼線の疲労特性が低下する。Fe-Al系界面合金層の厚みは、より好ましくは0.2μm以上2.0μm以下である。 The average thickness of the Fe-Al-based interfacial alloy layer is 0.2 μm or more and 5.0 μm or less. If the average thickness is less than 0.2 μm, barrier properties and plating adhesion cannot be ensured. Furthermore, if the average thickness of the Fe--Al interfacial alloy layer exceeds 5.0 μm, the fatigue properties of the plated steel wire will deteriorate. The thickness of the Fe--Al based interfacial alloy layer is more preferably 0.2 μm or more and 2.0 μm or less.
 Fe-Al系界面合金層の平均厚さを正確に測定するには、めっき鋼線を断面が観察できるように樹脂に水平埋込および研磨し、線材の研磨幅が線材の径と等しくなった段階で電解放射型走査型電子顕微鏡(FE-SEM)により、めっき層断面の反射電子像を撮影する。 To accurately measure the average thickness of the Fe-Al interfacial alloy layer, a plated steel wire was horizontally embedded in resin and polished so that its cross section could be observed, and the polished width of the wire was made equal to the diameter of the wire. At this stage, a backscattered electron image of the cross section of the plating layer is taken using a field emission scanning electron microscope (FE-SEM).
 軽元素であるAlの割合が大きいFe-Al系界面合金層は、反射電子像では黒い像となる。一方、鋼部および純Zn組織は重元素の割合が多いために、反射電子像では白い像となる。そこで、市販の画像処理ソフトウェアを用いて、黒い像であるFe-Al系界面合金層に含まれる画素と、白い像である鋼部及び純Zn組織に含まれる画素とを二値化できるような、閾値を設定する。そして、ノイズを除去後に、黒の画素数をカウントすることにより、Fe-Al系界面合金層の平均厚さを算出する。具体的には、カウントした合計画素数を測定長さの画素数で割り厚みの平均画素数を算出し、厚みの平均画素数を実長さに変換することでFe-Al系界面合金層の平均厚さを導出する。なお、界面合金層の厚さは均一でないため、長手方向で100μm以上の画像データを処理して算出することが望ましい。 A Fe-Al-based interfacial alloy layer with a large proportion of Al, a light element, appears as a black image in a backscattered electron image. On the other hand, since the steel part and pure Zn structure have a high proportion of heavy elements, they appear white in the backscattered electron image. Therefore, we used commercially available image processing software to binarize the pixels contained in the Fe-Al interfacial alloy layer, which is a black image, and the pixels contained in the steel part and pure Zn structure, which are white images. , set the threshold. After removing noise, the average thickness of the Fe--Al interface alloy layer is calculated by counting the number of black pixels. Specifically, the total number of pixels counted is divided by the number of pixels in the measured length to calculate the average number of pixels in the thickness, and the average number of pixels in the thickness is converted to the actual length to calculate the thickness of the Fe-Al interface alloy layer. Derive the average thickness. Note that since the thickness of the interfacial alloy layer is not uniform, it is desirable to calculate it by processing image data of 100 μm or more in the longitudinal direction.
 次に、Zn-Al-Mg合金層について説明する。Zn-Al-Mg合金層は、Al、Mg、Cr、残部Zn及び不純物を含む層であり、Fe-Al系界面合金層の上に形成される。Zn-Al-Mg合金層は、Zn、Al及びMgを主成分として含むZn合金めっき層であり、純Znめっきに比べて優れた耐食性を発揮する。めっき層に備えられるFe-Al系界面合金層は、Feの含有量が大きいため、比較的赤錆が発生しやすく、鋼線の防食には問題がない場合でも美観の問題が生じる可能性がある。このようなFe-Al系界面合金層を覆うように、耐食性に優れたZn-Al-Mg合金層を形成することで、めっき鋼線の全体の耐食性を高めることができる。なお、Zn-Al-Mg合金層には、Al、Mg、Cr、残部Zn及び不純物の他に、少量のFeが含有されていてもよく、Ni、Ti、Zr、Sr、Sn、Ca、Co、Mn、B、REM、Hfの1種又は2種以上が含有されていてもよい。 Next, the Zn-Al-Mg alloy layer will be explained. The Zn--Al--Mg alloy layer is a layer containing Al, Mg, Cr, balance Zn, and impurities, and is formed on the Fe--Al based interfacial alloy layer. The Zn--Al--Mg alloy layer is a Zn alloy plating layer containing Zn, Al, and Mg as main components, and exhibits superior corrosion resistance compared to pure Zn plating. The Fe-Al interfacial alloy layer provided in the plating layer has a high content of Fe, so it is relatively prone to red rust, and even if there is no problem with corrosion protection of the steel wire, it may cause aesthetic problems. . By forming a Zn-Al-Mg alloy layer with excellent corrosion resistance so as to cover such a Fe-Al-based interfacial alloy layer, the overall corrosion resistance of the plated steel wire can be improved. Note that the Zn-Al-Mg alloy layer may contain a small amount of Fe in addition to Al, Mg, Cr, the balance Zn, and impurities, and may contain Ni, Ti, Zr, Sr, Sn, Ca, Co. , Mn, B, REM, and Hf.
 Zn-Al-Mg合金層の平均厚さは、10μm以上150μm以下とする。また、Zn-Al-Mg合金層の平均厚さは、30μm以上100μm以下であってもよい。Zn-Al-Mg合金層の平均厚さが10μm未満になると、めっき層全体の耐食性が不十分になる。また、平均厚さが150μmを超えると、Zn-Al-Mg合金層が割れやすくなり、加工性、疲労特性が低下するおそれがあるので好ましくない。 The average thickness of the Zn-Al-Mg alloy layer is 10 μm or more and 150 μm or less. Further, the average thickness of the Zn-Al-Mg alloy layer may be 30 μm or more and 100 μm or less. If the average thickness of the Zn-Al-Mg alloy layer is less than 10 μm, the corrosion resistance of the entire plating layer will be insufficient. Furthermore, if the average thickness exceeds 150 μm, the Zn--Al--Mg alloy layer becomes susceptible to cracking, and workability and fatigue properties may deteriorate, which is not preferable.
 Zn-Al-Mg合金層の平均厚さの測定では、まず、Fe-Al系界面合金層の平均厚さの測定方法と同様にして、FE-SEMを用いて断面の反射電子像を撮影する。Zn-Al-Mgめっき層は複雑な組織であるが、重元素であるZnが主成分であるため、軽元素であるAlの割合が大きなFe-Al系界面合金層とは容易に区別できる。Fe-Al系界面合金層の平均厚さの測定方法と同様にして、撮影した画像に対して、市販の画像処理ソフトウェアを用いて二値化の画像処理を行う。このとき、中心に位置する白い領域が鋼部とみなし、その上の黒い層をFe-Al系界面合金層とみなし、その上の白い部分や黒い部分が混在した層をZn-Al-Mg合金層とみなす。ノイズ除去後、Zn-Al-Mg合金層のピクセル数をカウントすることにより、Zn-Al-Mg合金層の平均厚さを算出する。なお、Zn-Al-Mg合金層の厚さの変動はFe-Al系界面合金層の厚さの変動より大きいため、長手方向で300μm以上の画像データを処理して算出することが望ましい。 To measure the average thickness of the Zn-Al-Mg alloy layer, first, a backscattered electron image of the cross section is taken using an FE-SEM in the same manner as the method for measuring the average thickness of the Fe-Al interface alloy layer. . Although the Zn--Al--Mg plating layer has a complex structure, since the main component is Zn, which is a heavy element, it can be easily distinguished from the Fe--Al based interfacial alloy layer, which has a large proportion of Al, which is a light element. In the same manner as the method for measuring the average thickness of the Fe--Al interfacial alloy layer, the captured image is subjected to binarization image processing using commercially available image processing software. At this time, the white area located in the center is considered to be the steel part, the black layer above it is considered to be the Fe-Al interfacial alloy layer, and the layer with white and black parts above it is considered to be the Zn-Al-Mg alloy. Considered as a layer. After noise removal, the average thickness of the Zn-Al-Mg alloy layer is calculated by counting the number of pixels of the Zn-Al-Mg alloy layer. Note that since the variation in the thickness of the Zn-Al-Mg alloy layer is larger than the variation in the thickness of the Fe-Al-based interfacial alloy layer, it is desirable to calculate by processing image data of 300 μm or more in the longitudinal direction.
 Zn-Al-Mg合金層には、金属組織として、0.1~40.0面積%のMgZn相が含まれる。MgZn相以外に、Zn相、Al初晶が含まれていてもよい。図1に、Zn-Al-Mg合金層の模式図を示す。MgZn相は、Zn/Al/MgZnの三元共晶組織として含まれる。なお、図1は、Zn-5%Al-0.5%Mg-0.01%Crの成分系のめっき浴でめっきされためっき層である。Zn相またはAl初晶は、溶融めっきの凝固過程の初期に晶出する初相である。Al初晶は、より具体的にはおよそ45原子%以下のZnを含み、微細なAl相と微細なZn相との混合組織である。MgZn相の晶出は、めっき浴のMg濃度に影響される。 The Zn--Al--Mg alloy layer contains 0.1 to 40.0 area % of MgZn two phases as a metal structure. In addition to the MgZn two phases, a Zn phase and Al primary crystals may be included. FIG. 1 shows a schematic diagram of a Zn-Al-Mg alloy layer. The MgZn 2 phase is included as a ternary eutectic structure of Zn/Al/MgZn 2 . Note that FIG. 1 shows a plating layer plated in a plating bath containing Zn-5% Al-0.5% Mg-0.01% Cr. The Zn phase or Al primary crystal is a primary phase that crystallizes at the early stage of the solidification process of hot-dip plating. More specifically, the Al primary crystal contains about 45 atomic % or less of Zn and has a mixed structure of a fine Al phase and a fine Zn phase. The crystallization of MgZn two phases is influenced by the Mg concentration in the plating bath.
 純Znめっきのような単一成分・単一組織のめっきは、めっき層全体がほぼ同じの電位を示す。このため、ある部分の腐食が深さ方向に進行することがある。この場合、腐食が鋼に到達すると、露出した鋼は効率が良いカソードとして機能してめっきのアノード溶解が急速に進み、めっきは速やかに消耗する。また赤錆発生も早い。 In single-component/single-structure plating such as pure Zn plating, the entire plating layer exhibits approximately the same potential. For this reason, corrosion in a certain portion may progress in the depth direction. In this case, when the corrosion reaches the steel, the exposed steel acts as an efficient cathode, rapidly anodic dissolution of the plating, and the plating is quickly consumed. Red rust also develops quickly.
 一方、本実施形態に係るめっき層は、0.1~40.0面積%のMgZn相を含み、他のAl初晶、Zn相を含んでもよい構造である。各々の相または組織は、異なる腐食電位を有するため、水濡れ条件では、ある相が腐食消失するまで、他の相は腐食が進みにくい。このため、腐食が深さ方向にのみ進んで鋼が露出するような局部腐食は起きにくい。 On the other hand, the plating layer according to the present embodiment has a structure that includes 0.1 to 40.0 area % of MgZn two phases and may also include other Al primary crystals and Zn phase. Each phase or structure has a different corrosion potential, so under wet conditions, until one phase is corroded away, other phases are less likely to corrode. Therefore, localized corrosion, where corrosion progresses only in the depth direction and exposes the steel, is less likely to occur.
 本実施形態のめっき鋼線は、大気暴露環境において、まずAl初晶中のZnが腐食し、次にMgZnが腐食し、続いてZn相が存在するならばZn相が腐食し、Al初晶中のAlが最後に腐食する。また、めっき鋼線を金網としてコンクリートに埋設した場合は、アルカリに弱いAl初晶中のAlが最初に腐食し、Alが完全に腐食した後に、MgZnが腐食し、Zn相が存在するならば、最後にセメントのCaと反応して保護性被膜を形成していたZn相が腐食する。このように、複数の組織からなるめっき層は、各組織の組み合わせが好適であれば、すなわち電位差が明確で電気化学的なつながりが良好であれば、めっき層内で犠牲防食のような挙動を示し、各組織が順に腐食する。このため、めっき層としては局部腐食をおこしにくく、耐食性に優れる。また、溶出したMg2+イオンは、Zn腐食生成物が、電気を流しやすいZnOに変化することを防ぐ効果があるとされ、この点でも耐食性向上に貢献する。 In the plated steel wire of this embodiment, in an environment exposed to the atmosphere, Zn in the Al primary corrodes first, then MgZn 2 corrodes, and then, if a Zn phase exists, the Zn phase corrodes, and the Al primary corrodes. Al in the crystal corrodes last. In addition, when a plated steel wire is buried in concrete as a wire mesh, the Al in the Al primary crystals, which is weak against alkali, corrodes first, and after the Al is completely corroded, the MgZn2 corrodes, and if a Zn phase is present. For example, the Zn phase that reacts with Ca in the cement to form a protective film corrodes. In this way, a plating layer consisting of multiple structures can behave like sacrificial corrosion within the plating layer if the combination of each structure is suitable, that is, if the potential difference is clear and the electrochemical connection is good. and each tissue corrodes in turn. Therefore, the plating layer is less likely to cause local corrosion and has excellent corrosion resistance. Furthermore, the eluted Mg 2+ ions are said to have the effect of preventing Zn corrosion products from changing into ZnO, which can easily conduct electricity, and in this respect also contributes to improving corrosion resistance.
 Al初晶はデンドライト状の形態であり、MgZn相はラメラ状の形態である。これらの連続性がある組織は、それぞれの組織内で腐食が広がりやすいため、犠牲防食が機能しやすく、均一腐食を促進する。Mgの含有量が小さい場合など、Mg原子はめっき層内に固溶して分散して存在する場合は、各Mg原子間に電気化学的な繋がりがないため、犠牲防食効果、均一腐食の促進効果は小さい。 The Al primary crystals have a dendrite-like morphology, and the MgZn two- phase has a lamellar morphology. In these continuous structures, corrosion tends to spread within each structure, making it easier for sacrificial corrosion protection to function and promoting uniform corrosion. When Mg atoms are dispersed as a solid solution in the plating layer, such as when the Mg content is small, there is no electrochemical connection between each Mg atom, resulting in a sacrificial corrosion protection effect and promotion of uniform corrosion. The effect is small.
 一定の腐食電位を有するMgZn相を明確に形成するには、めっき後は徐冷することが望ましい。鋼線の溶融めっきでは、多くの場合めっき直後に水冷している。本めっきを急冷した場合は、Mgは固溶状態になる、あるいはMgZn11が生成するなど、存在形態、組織が変わる可能性がある。固溶した場合は上記のように耐食性改善効果が小さい。また、MgZn11が生成すると、同じMg量から多量の金属間化合物が析出するため、加工性、疲労特性低下の原因となる。線材は熱容量が小さいため冷却速度は大きくなりがちである反面、熱容量が小さいゆえに直接の正確な測温は困難であり、面積が小さく曲面であるため非接触での温度測定も困難であり、冷却速度を数字で捉えることはできない。しかし、めっき直後の水冷は組織に大きく影響し、耐食性だけでなく、加工性など他の特性も低下する傾向にある。 In order to clearly form two MgZn phases with a constant corrosion potential, it is desirable to slowly cool the plate after plating. In hot-dip plating of steel wire, in most cases, the wire is water-cooled immediately after plating. When the main plating is rapidly cooled, the existence form and structure may change, such as Mg entering a solid solution state or Mg 2 Zn 11 being generated. When dissolved in solid solution, the effect of improving corrosion resistance is small as described above. Furthermore, when Mg 2 Zn 11 is generated, a large amount of intermetallic compounds are precipitated from the same amount of Mg, which causes deterioration in workability and fatigue properties. Since wire rods have a small heat capacity, the cooling rate tends to be high. However, due to the small heat capacity, it is difficult to directly and accurately measure the temperature, and the small area and curved surface make it difficult to measure the temperature without contact. Speed cannot be measured in numbers. However, water cooling immediately after plating has a large effect on the structure, and tends to deteriorate not only corrosion resistance but also other properties such as workability.
 また、めっきを溶融状態で水冷すると、MgZn11の生成を促進し、MgZn相の生成量の減少の原因となる。このため、めっき凝固までは、自然放冷が望ましく、必要に応じて送風冷却とすることが好ましい。更にめっき凝固後も、水冷は極力避けて、可能であれば送風冷却のみとすることが望ましい。 Furthermore, when the plating is water-cooled in a molten state, the formation of Mg 2 Zn 11 is promoted, which causes a decrease in the amount of MgZn two- phase formation. Therefore, until the plating solidifies, it is preferable to let it cool naturally, and if necessary, it is preferable to cool it by blowing air. Furthermore, even after the plating has solidified, it is desirable to avoid water cooling as much as possible and use only air cooling if possible.
 安定してMgZn相を形成させるには、めっき浴中のMgは0.3質量%以上であることが必要である。更に、Mgが1.0質量%以上もしくは1.0質量%超存在すれば、MgZn相のめっき層中での連続性が増加して耐食性の改善効果が安定する。Zn-Al-Mg合金層中のMgZn相の含有量は、断面視で、0.1~40.0面積%であり、好ましくは3.0~20.0面積%、より好ましくは8.0~15.0面積%である。
 この面積%は、Fe-Al系界面合金層のFeAl13、FeAl、FeAlZn0.4の同定方法と同様の方法により同定し、その面積率を算出することで得ることができる。MgZn以外の相または組織としては、Al初晶、Zn相を例示できる。
 Zn-Al-Mg合金層のMgZn相の面積率は、具体的には以下の方法により測定する。
 Zn-Al-Mg合金層のMgZn相の面積率は、まず、FE-SEMを用いて断面の反射電子像を撮影する。Zn-Al-Mg合金層の平均厚さの測定方法と同様に、撮影した画像に対して市販の画像処理ソフトウェアを用いて二値化の画像処理を行い、Zn-Al-Mg合金層のピクセル数をカウントすることにより、Zn-Al-Mg合金層の画素数を算出する。なお、Zn-Al-Mg合金層におけるMgZn相の面積率の測定は、局所的な組織割合の偏りを排除するため、長手方向で300μm以上の画像データを処理して算出することが望ましい。
MgZn相は軽元素であるMgが含まれるため、Zn-Al-Mg合金層の反射電子像では、Al初晶に次いで黒い像となる。従って、Zn-Al-Mg合金層を市販の画像処理ソフトウェアを用いて、MgZn相と他相とを二値化できるような閾値を設定する。また、相同定の補佐としてSEM-EDSによる成分分析を併用しても良く、その場合、MgZn相はMgが16mass%(±5%)、Znが84(±5%)の相にあたる。二値化により得られた、MgZn相のピクセル数をカウントすることにより、MgZn相の画素数を算出し、Zn-Al-Mg合金層に対する割合を算出することで、MgZn相の面積率を導出できる。
 MgZn11は、MgZn相よりもZnの割合が大きくなるため、MgZn相よりも白い像として反射電子像に反映され、MgZn相との識別ができる。
 Al初晶は軽元素のAlを多く含むため、MgZn11や、MgZnよりも黒い像となることから、上記の相と区別することができる。
In order to stably form two MgZn phases, the Mg content in the plating bath must be 0.3% by mass or more. Furthermore, if Mg is present in an amount of 1.0% by mass or more or more than 1.0% by mass, the continuity of the MgZn two -phase in the plating layer increases and the effect of improving corrosion resistance becomes stable. The content of the MgZn two phase in the Zn-Al-Mg alloy layer is 0.1 to 40.0 area %, preferably 3.0 to 20.0 area %, more preferably 8. It is 0 to 15.0 area%.
This area % is identified by the same method as the identification method of Fe 4 Al 13 , Fe 2 Al 5 , Fe 2 Al 5 Zn 0.4 of the Fe-Al interfacial alloy layer, and the area ratio is calculated. Obtainable. Examples of phases or structures other than MgZn 2 include Al primary crystal and Zn phase.
Specifically, the area ratio of the MgZn two- phase in the Zn--Al--Mg alloy layer is measured by the following method.
The area ratio of the MgZn two- phase in the Zn--Al--Mg alloy layer is determined by first taking a backscattered electron image of a cross section using an FE-SEM. Similar to the method for measuring the average thickness of the Zn-Al-Mg alloy layer, the captured images are subjected to binarized image processing using commercially available image processing software, and the pixels of the Zn-Al-Mg alloy layer are By counting the number, the number of pixels in the Zn--Al--Mg alloy layer is calculated. Note that the measurement of the area ratio of the MgZn two- phase in the Zn--Al--Mg alloy layer is preferably calculated by processing image data of 300 μm or more in the longitudinal direction in order to eliminate local deviations in the structure ratio.
Since the MgZn two phase contains Mg, which is a light element, it becomes a black image next to the Al primary crystal in the backscattered electron image of the Zn-Al-Mg alloy layer. Therefore, a threshold value is set for the Zn--Al--Mg alloy layer using commercially available image processing software so that the MgZn two phase and other phases can be binarized. Furthermore, component analysis by SEM-EDS may be used in conjunction with phase identification to assist in phase identification; in this case, the MgZn 2 phase corresponds to a phase containing 16 mass% (±5%) of Mg and 84 mass% (±5%) of Zn. By counting the number of MgZn two- phase pixels obtained by binarization, the number of MgZn two- phase pixels is calculated, and by calculating the ratio to the Zn-Al-Mg alloy layer, the area of the MgZn two- phase can be calculated. The rate can be derived.
Since Mg 2 Zn 11 has a larger proportion of Zn than the MgZn 2 phase, it is reflected in the backscattered electron image as a whiter image than the MgZn 2 phase, and can be distinguished from the MgZn 2 phase.
Since the Al primary crystal contains a large amount of the light element Al, it has a blacker image than Mg 2 Zn 11 or MgZn 2 , so it can be distinguished from the above phases.
 以上説明した本実施形態のめっき鋼線は、優れた耐食性、疲労特性、および加工性を発揮することができる。
 なお、耐食性の評価は、例えば150mm長さに切断した本実施形態のめっき鋼線を試料とし、塩水噴霧試験(JIS Z 2371:2015、SST)を行うことで評価する。
The plated steel wire of this embodiment described above can exhibit excellent corrosion resistance, fatigue properties, and workability.
The corrosion resistance is evaluated, for example, by using the plated steel wire of this embodiment cut into a length of 150 mm as a sample and performing a salt spray test (JIS Z 2371:2015, SST).
 疲労特性は、中村式回転疲労試験機により評価する。10回の回転で破断しなかった応力振幅を疲労限とし、めっきの種類、めっきの有無による疲労限の差異を調査する。 Fatigue properties are evaluated using a Nakamura rotary fatigue tester. The stress amplitude that did not break after 107 rotations was taken as the fatigue limit, and the difference in fatigue limit depending on the type of plating and the presence or absence of plating was investigated.
 加工性については、本実施形態のめっき鋼線を所定の径の鋼線に6回巻き付け、その表面を目視観察により割れの有無を判定する。 Regarding workability, the plated steel wire of this embodiment was wound six times around a steel wire of a predetermined diameter, and the presence or absence of cracks was determined by visually observing the surface.
 次に、本実施形態のめっき鋼線の製造方法を説明する。本実施形態のめっき鋼線は、本発明範囲の化学成分を有する熱間圧延後の線材に対して、必要に応じてパテンティング処理した後、冷間伸線加工を行って鋼線とする。次いで、鋼線表面を清浄化した後、フラックス処理し、1種類のめっき浴に浸漬させてから引き上げるいわゆる一段の浸漬めっき方法によって製造する。 Next, a method for manufacturing the plated steel wire of this embodiment will be explained. The plated steel wire of this embodiment is made into a steel wire by subjecting a hot-rolled wire rod having chemical components within the range of the present invention to a patenting treatment as necessary, and then subjecting it to cold wire drawing. Next, after cleaning the surface of the steel wire, it is subjected to flux treatment, and manufactured by a so-called one-stage immersion plating method in which the steel wire is immersed in one type of plating bath and then pulled out.
 熱間圧延工程およびパテンティング処理は、特に制限はない。パテンティング処理は行っても行わなくてもよい。 There are no particular restrictions on the hot rolling process and patenting treatment. Patenting processing may or may not be performed.
 冷間伸線加工は、例えば、総減面率を50~95%にするとよい。冷間伸線加工では、ダイスを利用した引き抜き加工またはロール加工が少なくとも1回以上または2回以上に渡って行われる。このような引き抜き加工またはロール加工を行うことにより、冷間伸線加工の前工程の段階で線材の表面に付着していた酸化膜が除去、あるいは細分化されて、伸線後の鋼線の表面には新生面が現れる。このため、冷間伸線後の鋼線表面にはSi等の酸化物が少ない。このような伸線加工後の鋼線に対して溶融めっきを行うことで、めっき濡れ性を損なわずに金属Siの特性であるFe-Al系界面合金層の成長の抑制効果が発現される。 In cold wire drawing, the total area reduction rate is preferably 50 to 95%, for example. In cold wire drawing, drawing or roll processing using a die is performed at least once or twice or more. By performing such drawing processing or rolling processing, the oxide film that had adhered to the surface of the wire rod in the pre-process stage of cold wire drawing is removed or fragmented, and the steel wire after drawing is A new surface appears on the surface. Therefore, there are few oxides such as Si on the surface of the steel wire after cold drawing. By performing hot-dip plating on the steel wire after wire drawing, the effect of suppressing the growth of the Fe--Al interfacial alloy layer, which is a characteristic of metal Si, can be exerted without impairing the plating wettability.
 フラックス処理は、例えば60℃のフラックス水溶液に伸線加工後の鋼線を20秒浸漬し、乾燥する。フラックスとしては、ZnClをベースに、NaCl、KCl,NaF、SnCl、SnCl4、BiCl等の各種の塩、界面活性剤等を溶解し、必要に応じて塩酸酸性とした溶液を用いる。めっき前の鋼線にフラックスを塗布することにより、鋼線表面の酸化物が除去され、めっき反応が安定化する。フラックスとしては例えば、NaClが30~100g/L、KClが30~100g/L、SnClが0~20g/L、ZnClが100~300g/Lの濃度となるように水に溶解されたフラックスを例示できる。更に、市販のめっきフラックス用界面活性剤を添加してもよい。 In the flux treatment, for example, the drawn steel wire is immersed in an aqueous flux solution at 60° C. for 20 seconds, and then dried. As the flux, a solution in which various salts such as NaCl, KCl, NaF, SnCl 2 , SnCl 4 , BiCl 3 , surfactants, etc. are dissolved based on ZnCl 2 and acidified with hydrochloric acid as necessary is used. By applying flux to the steel wire before plating, oxides on the surface of the steel wire are removed and the plating reaction is stabilized. Examples of the flux include fluxes dissolved in water such that the concentration of NaCl is 30 to 100 g/L, KCl is 30 to 100 g/L, SnCl 2 is 0 to 20 g/L, and ZnCl 2 is 100 to 300 g/L. can be exemplified. Furthermore, a commercially available surfactant for plating flux may be added.
 めっき浴は、Znをベースとし、更にAl、Mg及びCrが含まれるめっき浴である。めっき浴におけるAl濃度としては、3.0~15.0質量%とする。Al濃度が3.0質量%未満では、めっき層に十分な耐食性を付与できない。また、Al濃度が15.0質量%超ではFeAl合金化反応が激しくなり、Fe-Al系界面合金層の厚みの制御が困難となり、またAl初晶が増加するため、疲労性が低下する傾向にある。好ましくは8.0質量%以下である。浸漬めっき法では、浴成分を一定値に維持することが困難であること考慮すると、Al濃度は4.0~7.0質量%が望ましい。 The plating bath is a plating bath based on Zn and further containing Al, Mg, and Cr. The Al concentration in the plating bath is 3.0 to 15.0% by mass. If the Al concentration is less than 3.0% by mass, sufficient corrosion resistance cannot be imparted to the plating layer. Furthermore, if the Al concentration exceeds 15.0% by mass, the FeAl alloying reaction becomes intense, making it difficult to control the thickness of the Fe-Al interfacial alloy layer, and increasing Al primary crystals, which tends to reduce fatigue properties. It is in. Preferably it is 8.0% by mass or less. Considering that in the immersion plating method, it is difficult to maintain the bath components at a constant value, the Al concentration is preferably 4.0 to 7.0% by mass.
 めっき浴中のCr濃度は0.003~0.5質量%とする。Cr濃度が0.003質量%以上であれば、明確にFeAl反応が促進され、0.5質量%でその効果はほぼ飽和する。CrはFe-Al系界面合金層に濃縮し、また、ドロスとしての損失が大きいため、浴濃度が低下しやすい。このため、めっき浴濃度としては高めに維持することが必要である。
 Crを添加しない場合は、硬線の鋼組織の影響などにより、Fe-Al系界面合金層の生成、その後の成長が不均一になり、特に加工性、疲労特性が低下する。また、本発明のようにMgを添加しためっき浴では、低浴温での安定しためっきが困難である。ただし、めっき層中のCrの存在形態は、X線回折等によっても確認できない。
 なお、めっき浴中にCrを含ませる場合、Crは酸化して失われやすい元素である。最終的に得られるめっき鋼線のめっき層において所望のCr量を確保するためには、めっき浴中に意図的にCrを添加して、Cr濃度を維持することが重要である。すなわち、めっき浴に不純物として含まれる水準のCrでは、本発明のめっき鋼線を実現できない。
The Cr concentration in the plating bath is 0.003 to 0.5% by mass. If the Cr concentration is 0.003% by mass or more, the FeAl reaction is clearly promoted, and the effect is almost saturated at 0.5% by mass. Since Cr is concentrated in the Fe--Al interfacial alloy layer and has a large loss as dross, the bath concentration tends to decrease. Therefore, it is necessary to maintain a high plating bath concentration.
If Cr is not added, the formation and subsequent growth of the Fe--Al interfacial alloy layer will be non-uniform due to the influence of the steel structure of the hard wire, resulting in particularly poor workability and fatigue properties. Further, in a plating bath to which Mg is added as in the present invention, stable plating at a low bath temperature is difficult. However, the existence form of Cr in the plating layer cannot be confirmed by X-ray diffraction or the like.
Note that when Cr is included in the plating bath, Cr is an element that is easily lost through oxidation. In order to ensure a desired amount of Cr in the plating layer of the finally obtained plated steel wire, it is important to intentionally add Cr to the plating bath to maintain the Cr concentration. That is, the plated steel wire of the present invention cannot be realized with a level of Cr contained as an impurity in the plating bath.
 めっき浴には、めっき層の耐食性を向上させるためにMgを添加する。Mg濃度は、0.3~3.5質量%とする。めっき層のMgは0.3質量%以上で耐食性の改善効果があり、3.5質量%でほぼ飽和する。Mgが3.5質量%を超えると、めっき浴にドロスが発生するなど操業上の問題が大きくなる。また、Mgは耐食性を明らかに向上させるが、めっき層の加工性、疲労特性を低下させる傾向がある。このようにMgはめっき品質に大きく影響する。また、Mgはめっき反応への影響も大きく、初期フラックス反応を妨害するためめっき欠陥を生じやすくする。このため、Cr添加が、安定した製造には必須である。さらにその後のFeAl合金化反応を抑制しFe-Al系界面合金層を薄化するため、この点では、加工性、疲労特性を向上させる効果もある。このようにMgは品質、製造への影響が大きいため、その添加量は要求される品質、用途に応じて決定されるべきものである。 Mg is added to the plating bath to improve the corrosion resistance of the plating layer. The Mg concentration is 0.3 to 3.5% by mass. Mg in the plating layer has an effect of improving corrosion resistance when it is 0.3% by mass or more, and is almost saturated at 3.5% by mass. When Mg exceeds 3.5% by mass, operational problems such as generation of dross in the plating bath become serious. Further, although Mg clearly improves corrosion resistance, it tends to reduce the workability and fatigue properties of the plating layer. In this way, Mg greatly affects plating quality. Furthermore, Mg has a large influence on the plating reaction, and obstructs the initial flux reaction, making plating defects more likely to occur. Therefore, addition of Cr is essential for stable production. Furthermore, since the subsequent FeAl alloying reaction is suppressed and the Fe--Al interfacial alloy layer is thinned, it also has the effect of improving workability and fatigue properties. As described above, since Mg has a large influence on quality and manufacturing, the amount of Mg added should be determined depending on the required quality and use.
 めっき浴の浴温は、440℃~500℃、好ましくは460℃~490℃である。浴温が高いと、Fe-Al系界面合金層の成長が速くなり通線速度を大きくすることができるため生産性に優れるが、FeAl合金化反応が制御できなくなり、特に厚さが不均一なFe-Al系界面合金層を生成する恐れがあり、めっき設備の消耗も激しくなる。また、硬鋼線の場合は500℃超では機械特性(特に強度)が低下する場合がある。浴温が低い場合には、不めっき、異物付着等のめっき欠陥が生じやすくなり、特にMg濃度が大きい場合にはめっき欠陥をより生じやすい。本実施形態では、めっき浴にCrを意図的に添加することで、Crが無添加の場合に比べて、めっき浴が500℃以下の低温でもFeAl合金化反応を促進し、また特に厚さが均一なFe-Al系界面合金層を生成させることができる。 The bath temperature of the plating bath is 440°C to 500°C, preferably 460°C to 490°C. If the bath temperature is high, the growth of the Fe-Al interfacial alloy layer will be faster and the threading speed can be increased, resulting in excellent productivity, but the Fe-Al alloying reaction will become uncontrollable, especially if the thickness is There is a risk that a Fe--Al based interfacial alloy layer will be formed, and the plating equipment will be worn out. Further, in the case of hard steel wire, mechanical properties (particularly strength) may deteriorate at temperatures exceeding 500°C. When the bath temperature is low, plating defects such as non-plating and foreign matter adhesion are more likely to occur, and in particular, when the Mg concentration is high, plating defects are more likely to occur. In this embodiment, by intentionally adding Cr to the plating bath, compared to the case where no Cr is added, the plating bath promotes the FeAl alloying reaction even at a low temperature of 500°C or less, and in particular, the thickness is A uniform Fe--Al based interfacial alloy layer can be produced.
 めっき浴への鋼線の浸漬時間は10秒以上100秒以下、望ましくは10秒以上30秒以下である。特に硬鋼線のめっきでは、長時間の浸漬は高浴温と同様に機械特性を低下させるため注意を要する。 The immersion time of the steel wire in the plating bath is 10 seconds or more and 100 seconds or less, preferably 10 seconds or more and 30 seconds or less. Particularly when plating hard steel wires, care must be taken as prolonged immersion deteriorates mechanical properties in the same way as high bath temperatures.
 めっき浴から引き上げ後に、必要に応じて、エアナイフ、アラミド不織布によるワイピング等によってめっき付着量の調整を行う。また、必要に応じて、めっき直後に冷却処理を行う。 After taking it out of the plating bath, adjust the amount of plating by using an air knife, wiping with an aramid nonwoven fabric, etc., if necessary. Further, if necessary, cooling treatment is performed immediately after plating.
 冷却処理は、ワイピング後に、めっき層が凝固するまで、そのまま大気中で放置して空冷(自然放冷)すればよく、送風冷却でもよい。ワイピング後に水冷やミスト冷却等の急冷を行うと、MgZnが生成しにくくなってしまうので好ましくない。性能面では、耐食性と疲労性が改善することもあるが、本発明に大きな影響を及ぼすものではない。
 なお、自然放冷、送風冷却、水冷における冷却速度は線径によって異なり、それぞれは以下の通りとなる。
<自然放冷>
線径:0.5~2.0mmの場合、10℃/s以下
線径:2.0~10mmの場合、5℃/s以下
<送風冷却>
線径:0.5~2.0mmの場合、20~40℃/s
線径:2.0~10mmの場合、10~20℃/s
<水冷>
線径:0.5~2.0mmの場合、300~500℃/s
線径:2.0~10mmの場合、100~300℃/s
 以上のようにして、本実施形態のめっき鋼線を製造することができる。
In the cooling treatment, after wiping, the plating layer may be left in the air to cool (natural cooling) until it solidifies, or may be air cooling. If rapid cooling such as water cooling or mist cooling is performed after wiping, MgZn 2 becomes difficult to generate, which is not preferable. In terms of performance, corrosion resistance and fatigue resistance may be improved, but this does not significantly affect the present invention.
Note that the cooling rates for natural cooling, air cooling, and water cooling differ depending on the wire diameter, and are as follows.
<Natural cooling>
Wire diameter: 0.5 to 2.0 mm, 10°C/s or less Wire diameter: 2.0 to 10 mm, 5°C/s or less <Blow cooling>
Wire diameter: 20-40℃/s for 0.5-2.0mm
Wire diameter: 10-20℃/s for 2.0-10mm
<Water cooling>
Wire diameter: 300-500℃/s for 0.5-2.0mm
Wire diameter: 100-300℃/s for 2.0-10mm
As described above, the plated steel wire of this embodiment can be manufactured.
 以下、実施例により本発明の効果を具体的に説明する。
 C:0.62%、Si:0.18%、Mn:0.55%、P:0.006%、S:0.008%、N0.007%、Al0.031%を含有し、残部がFe及び不純物からなる鋼材を、熱間圧延して線径5.5mmの線材とし、パテンティング処理後、この線材を冷間伸線加工して、線径2.0mmの鋼線を製造した。鋼線を脱脂、酸洗後、60℃のフラックス水溶液に20秒浸漬し、乾燥後、溶融めっきを施した。
 なお、上記鋼材のO含有量は0.0010~0.0100%であった。
EXAMPLES Hereinafter, the effects of the present invention will be specifically explained with reference to Examples.
Contains C: 0.62%, Si: 0.18%, Mn: 0.55%, P: 0.006%, S: 0.008%, N 0.007%, Al 0.031%, and the remainder is A steel material consisting of Fe and impurities was hot rolled into a wire rod with a wire diameter of 5.5 mm, and after patenting treatment, this wire rod was cold drawn to produce a steel wire with a wire diameter of 2.0 mm. After degreasing and pickling, the steel wire was immersed in an aqueous flux solution at 60° C. for 20 seconds, dried, and then hot-dipped.
Note that the O content of the steel material was 0.0010 to 0.0100%.
 フラックスは、ZnCl:210g/L、NaCl:25g/L、SnCl:6g/Lを含む60℃の水溶液とし、更に、市販のめっきフラックス用界面活性剤を添加した。pH調整は行わず、白濁液の状態とした。操業中は、充分に撹拌しながら線材を浸漬した。 The flux was a 60° C. aqueous solution containing 210 g/L of ZnCl 2 , 25 g/L of NaCl, and 6 g/L of SnCl 2 , and a commercially available surfactant for plating flux was added. No pH adjustment was performed, leaving the solution in a cloudy white state. During operation, the wire rod was immersed with sufficient stirring.
 めっき浴は、Al:0~15質量%、Mg:0~4.0質量%、Cr:0~0.5%を含有し、残部Znおよび不純物の組成とした。浴温度は440~490℃とし、浸漬時間は25~40秒の範囲とした。ただし、No.7のめっき浸漬時間は110秒とした。めっき層の厚みは、No.4、13、15、18を除いて、ガスワイピングによって50μm狙いとした。また、めっき層が凝固するまで、自然放冷を行った。 The plating bath contained Al: 0 to 15% by mass, Mg: 0 to 4.0% by mass, and Cr: 0 to 0.5%, with the balance being Zn and impurities. The bath temperature was 440 to 490°C, and the immersion time was in the range of 25 to 40 seconds. However, No. The plating immersion time in No. 7 was 110 seconds. The thickness of the plating layer is No. Except for Nos. 4, 13, 15, and 18, the target was 50 μm by gas wiping. In addition, natural cooling was performed until the plating layer solidified.
 ただし、No.2および3は、一段めっきとして、鋼線に純亜鉛めっきを付着させ、ついで、2段めっきとして、上記の成分範囲のめっき浴に浸漬させる二段めっき法により製造した。また、No.11および13は、めっき浴からの引き上げの約2秒後の、めっきが溶融状態で水冷した。 However, No. Nos. 2 and 3 were produced by a two-step plating method in which pure zinc plating was applied to the steel wire as a first-step plating, and then the steel wire was immersed in a plating bath having the above-mentioned component range as a second-step plating. Also, No. Samples Nos. 11 and 13 were water-cooled while the plating was in a molten state about 2 seconds after being removed from the plating bath.
 このようにして、表1A及び表1Bに示すように、No.1~20及び101~115のめっき鋼線を製造した。 In this way, as shown in Tables 1A and 1B, No. Plated steel wires Nos. 1 to 20 and 101 to 115 were manufactured.
 また、鋼線の化学成分を、表2に示す鋼A~bとしたこと以外は、上記と同様にして、表3A及び表3Bに示すNo.201~205、301~315及び401~415のめっき鋼線を製造した。
 なお、いずれの鋼においても、O含有量は0.0010~0.0100%であった。
In addition, the steel wire Nos. 3A and 3B shown in Table 3A and 3B were prepared in the same manner as above except that the chemical composition of the steel wire was changed to the steels A to b shown in Table 2. Plated steel wires 201-205, 301-315 and 401-415 were manufactured.
Note that in all steels, the O content was 0.0010 to 0.0100%.
 めっき層の平均組成の同定は、地鉄(鋼線)の腐食を抑制するインヒビターを含有した5体積%HCl溶液でめっき層を剥離溶解した酸液を得た。次に、得られた酸液をICP発光分光分析法で測定することで化学組成を測定した。 To identify the average composition of the plating layer, an acid solution was obtained by peeling and dissolving the plating layer with a 5% by volume HCl solution containing an inhibitor that suppresses corrosion of the base iron (steel wire). Next, the chemical composition of the obtained acid solution was measured by ICP emission spectrometry.
 Fe-Al系界面合金層の平均組成の同定は、上述の通り、FE-SEMに付属するEDSのスポット分析を用いて測定した。ただし、特性X線が確認はされたが、0.1原子%未満の場合は「0.1未満」と記載した。
 FE-SEM-EDSによる測定条件は、加速電圧を15.0KV、照射電流を7.5nA、照射時間を60sとし、測定位置は厚み方向の中央とし、5箇所測定して平均組成とした。
The average composition of the Fe--Al interfacial alloy layer was determined using EDS spot analysis attached to the FE-SEM, as described above. However, although characteristic X-rays were confirmed, if it was less than 0.1 atomic %, it was written as "less than 0.1."
The measurement conditions for FE-SEM-EDS were: acceleration voltage of 15.0 KV, irradiation current of 7.5 nA, irradiation time of 60 s, measurement position at the center in the thickness direction, and the average composition was obtained by measuring 5 points.
 Fe-Al系界面合金層を構成する合金の結晶構造の同定は、上述の通り、透過型電子顕微鏡を用いた電子線回折で行った。具体的には、合金層を含むようにFIB加工で切り出した試料をFE-TEM分析に供し、合金層のうち結晶粒が異なるもののうち、任意の3箇所にビーム径5nmにて電子線照射し、得られた電子線回折像の同定を実施した。 As described above, the crystal structure of the alloy constituting the Fe--Al interface alloy layer was identified by electron beam diffraction using a transmission electron microscope. Specifically, a sample cut out by FIB processing to include an alloy layer was subjected to FE-TEM analysis, and three arbitrary locations in the alloy layer with different crystal grains were irradiated with an electron beam with a beam diameter of 5 nm. , the obtained electron diffraction images were identified.
 Fe-Al系界面合金層およびZn-Al-Mg合金層の平均厚さは、電解放射型走査型電子顕微鏡(FE-SEM)により、Fe-Al系界面合金層の鋼線の長手方向に沿う断面の反射電子像を撮影し、先に説明した方法により平均厚さを算出した。
 また、上述の方法により、Zn-Al-Mg合金層の化学組成を分析した。
The average thickness of the Fe-Al-based interfacial alloy layer and the Zn-Al-Mg alloy layer was measured using a field emission scanning electron microscope (FE-SEM). A backscattered electron image of the cross section was taken, and the average thickness was calculated using the method described above.
Furthermore, the chemical composition of the Zn--Al--Mg alloy layer was analyzed using the method described above.
 耐食性は、150mm長さに切断しためっき鋼線を試料とし、切断端面を塗料でマスキング後、塩水噴霧試験(JIS Z 2371:2015)を360時間以上行った。試験開始から赤錆発生までの時間を測定した。そして、下記の評価基準に従って評価した。A及びBを合格とした。 Corrosion resistance was tested by using a plated steel wire cut to a length of 150 mm as a sample, masking the cut end with paint, and then conducting a salt spray test (JIS Z 2371:2015) for over 360 hours. The time from the start of the test until the appearance of red rust was measured. Then, evaluation was made according to the following evaluation criteria. A and B were passed.
 A:赤錆発生までの時間が360時間以上。
 B:赤錆発生までの時間が180時間以上360時間未満。
 X:赤錆発生までの時間が180時間未満。
A: Time until red rust appears is 360 hours or more.
B: Time until red rust occurs is 180 hours or more and less than 360 hours.
X: Time until red rust occurs is less than 180 hours.
 疲労特性については、中村式回転疲労試験機により評価した。10回の回転で破断しなかった応力振幅を疲労限とした場合に、めっきしない状態の鋼線の疲労限に対する、めっき鋼線の疲労限の低下量を求めた。そして、下記の評価基準に従って評価した。A及びBを合格とした。 The fatigue properties were evaluated using a Nakamura rotary fatigue tester. When the stress amplitude that did not break after 107 rotations was taken as the fatigue limit, the amount of decrease in the fatigue limit of the plated steel wire with respect to the fatigue limit of the unplated steel wire was determined. Then, evaluation was made according to the following evaluation criteria. A and B were passed.
A:疲労限低下量が100MPa未満。
B:疲労限低下量が100~200MPa。
X:疲労限低下量が200MPa超。
A: Fatigue limit reduction amount is less than 100 MPa.
B: Fatigue limit reduction amount is 100 to 200 MPa.
X: Fatigue limit reduction amount exceeds 200 MPa.
 加工性については、めっき鋼線を直径2mmの鋼線に6回巻き付け(自径巻)、その表面を目視観察により割れの有無を判定した。そして、下記の評価基準に従って評価した。A及びBを合格とした。 Regarding workability, a plated steel wire was wound six times around a steel wire with a diameter of 2 mm (self-diameter winding), and the presence or absence of cracks was determined by visually observing the surface. Then, evaluation was made according to the following evaluation criteria. A and B were passed.
 A:クラックが無い、あるいは微細だった。
 B:クラック長さが0.5mm以上1.0mm未満。
 X:クラック長さが1.0mm以上、クラック幅が大、またはめっきが一部剥離した。
A: There were no cracks or they were minute.
B: Crack length is 0.5 mm or more and less than 1.0 mm.
X: The crack length was 1.0 mm or more, the crack width was large, or the plating was partially peeled off.
 表1A~表3Bの結果から明らかなように、本発明の範囲にあるめっき鋼線(No.14~20,101~115、201~205、302、303、306、307、309~315、404~415)であれば、加工性、疲労特性、耐食性に優れていた。なお、これらの例のZn-Al-Mg合金層には、Al、Mg、Cr、残部Zn及び不純物が含まれていた。また、これらの例のZn-Al-Mg合金層には、Al初晶およびZn相が含まれていた。 As is clear from the results in Tables 1A to 3B, the plated steel wires (No. ~415), it was excellent in workability, fatigue properties, and corrosion resistance. Note that the Zn--Al--Mg alloy layers in these examples contained Al, Mg, Cr, the remainder Zn, and impurities. Further, the Zn--Al--Mg alloy layers of these examples contained Al primary crystals and a Zn phase.
 No.1は、めっき層の平均組成において、Al量、Mg量及びCr量が発明範囲から外れ、Fe-Al系界面合金層が形成されず、対応する位置にはFeZn合金が存在した。また、Zn-Al-Mg合金層も形成されず、ほぼ純Zn層が形成された。これにより、耐食性が低下した。
 No.2は、めっき層の平均組成において、Mg量及びCr量が発明範囲から外れ、Fe-Al系界面合金層の平均厚さが発明範囲から外れた。これにより、耐食性が低下した。
 No.3は、めっき層の平均組成において、Cr量が発明範囲から外れ、Fe-Al系界面合金層の平均厚さが発明範囲から外れた。これにより、加工性及び疲労特性が低下した。
No. In No. 1, in the average composition of the plating layer, the amount of Al, the amount of Mg, and the amount of Cr were out of the invention range, an Fe--Al interface alloy layer was not formed, and an FeZn alloy was present at the corresponding position. Further, no Zn--Al--Mg alloy layer was formed, and an almost pure Zn layer was formed. This resulted in a decrease in corrosion resistance.
No. In No. 2, in the average composition of the plating layer, the Mg amount and Cr amount were out of the invention range, and the average thickness of the Fe-Al based interfacial alloy layer was out of the invention range. This resulted in a decrease in corrosion resistance.
No. In No. 3, in terms of the average composition of the plating layer, the Cr content was outside the invention range, and the average thickness of the Fe--Al interfacial alloy layer was outside the invention range. This resulted in poor workability and fatigue properties.
 No.4は、めっき付着量を大きくしたため、Zn-Al-Mg合金層の厚みが発明範囲から外れた。これにより、加工性及び疲労特性が低下した。
 No.5は、めっき層の平均組成において、Mg量が発明範囲から外れた。これにより、耐食性が低下した。
No. In No. 4, the thickness of the Zn--Al--Mg alloy layer was out of the invention range because the amount of plating was increased. This resulted in poor workability and fatigue properties.
No. In No. 5, the Mg amount was outside the invention range in the average composition of the plating layer. This resulted in a decrease in corrosion resistance.
 No.6は、めっき層の平均組成において、Cr量が発明範囲から外れ、Fe-Al系界面合金層の平均厚さが発明範囲から外れた。これにより、加工性及び疲労特性が低下した。
 No.7は、めっき浴浸漬時間を110秒と長くしたため、Fe-Al系界面合金層の平均厚さが発明範囲から外れた。これにより、加工性及び疲労特性が低下した。
No. In No. 6, in terms of the average composition of the plating layer, the Cr content was out of the invention range, and the average thickness of the Fe--Al interfacial alloy layer was out of the invention range. This resulted in poor workability and fatigue properties.
No. In No. 7, the immersion time in the plating bath was as long as 110 seconds, so the average thickness of the Fe--Al interfacial alloy layer was outside the range of the invention. This resulted in poor workability and fatigue properties.
 No.8は、めっき層の平均組成において、Mg量が発明範囲から外れた。これにより、加工性及び疲労特性が低下した。
 No.9は、めっき層の平均組成において、Mg量、Cr量がいずれも0%であり発明範囲から外れた。これにより、耐食性が低下した。
 No.10は、めっき層の平均組成において、Cr量が発明範囲から外れたため、めっき不良となった。
No. In No. 8, the Mg amount was outside the invention range in the average composition of the plating layer. This resulted in poor workability and fatigue properties.
No. In No. 9, the average composition of the plating layer had both Mg content and Cr content of 0%, which was outside the scope of the invention. This resulted in a decrease in corrosion resistance.
No. In No. 10, the average composition of the plating layer had a Cr content outside the invention range, resulting in poor plating.
 No.11は、めっき層の平均組成において、Al量が発明範囲から外れた。これにより、加工性が低下した。また、めっき浴からの引き上げの約2秒後の、めっきが溶融状態で水冷したためにMgZn相が生成しなかった。 No. In No. 11, in the average composition of the plating layer, the amount of Al was outside the invention range. This resulted in reduced workability. Furthermore, since the plating was water-cooled in a molten state about 2 seconds after being pulled out of the plating bath, two MgZn phases were not generated.
 No.12は、めっき層の平均組成において、Al量が発明範囲から外れ、Fe-Al系界面合金層の平均厚さが発明範囲から外れた。これにより、加工性及び疲労特性が低下した。
 No.13は、めっき付着量を小さくしたため、Zn-Al-Mg合金層の平均厚さが発明範囲から外れた。これにより、耐食性が低下した。また、めっき浴からの引き上げの約2秒後の、めっきが溶融状態で水冷したためにMgZn相が生成しなかった。
No. In No. 12, in terms of the average composition of the plating layer, the amount of Al was outside the invention range, and the average thickness of the Fe-Al interfacial alloy layer was outside the invention range. This resulted in poor workability and fatigue properties.
No. In No. 13, the average thickness of the Zn--Al--Mg alloy layer was out of the invention range because the amount of plating deposited was reduced. This resulted in a decrease in corrosion resistance. Furthermore, since the plating was water-cooled in a molten state about 2 seconds after being pulled out of the plating bath, two MgZn phases were not generated.
 No.301は、鋼中のC量が少ないためにFe-Al系界面合金層が成長しすぎてしまい、Fe-Al系界面合金層の平均厚さが発明範囲から外れた。これにより、加工性及び疲労特性が低下した。
 No.304、308は、それぞれ鋼中のC、Siが発明範囲から外れたために、不めっきが発生した。また、めっき層の組成の適切な測定が困難になった。
 No.305は、鋼中のSi量が少なく、Fe-Al系界面合金層が厚くなった。これにより、加工性及び疲労特性が低下した。
No. In No. 301, the Fe--Al interfacial alloy layer grew too much due to the small amount of C in the steel, and the average thickness of the Fe--Al interfacial alloy layer was out of the invention range. This resulted in poor workability and fatigue properties.
No. In No. 304 and No. 308, non-plating occurred because C and Si in the steel were out of the invention range, respectively. In addition, it became difficult to appropriately measure the composition of the plating layer.
No. In No. 305, the amount of Si in the steel was small and the Fe--Al interface alloy layer was thick. This resulted in poor workability and fatigue properties.
 No.401は、めっき層の平均組成において、Al量、Mg量及びCr量が発明範囲から外れ、Fe-Al系界面合金層が形成されず、対応する位置にはFeZn合金が存在した。また、Zn-Al-Mg合金層も形成されず、ほぼ純Zn層が形成された。これにより、耐食性が低下した。 No. In No. 401, in the average composition of the plating layer, the amount of Al, the amount of Mg, and the amount of Cr were out of the invention range, an Fe--Al interfacial alloy layer was not formed, and an FeZn alloy was present at the corresponding position. Further, no Zn--Al--Mg alloy layer was formed, and an almost pure Zn layer was formed. This resulted in a decrease in corrosion resistance.
 No.402は、めっき層の平均組成において、Mg量が発明範囲から外れた。これにより、耐食性が低下した。 No. In No. 402, the Mg amount was outside the invention range in the average composition of the plating layer. This resulted in a decrease in corrosion resistance.
 No.403は、めっき層の平均組成において、Cr量が発明範囲から外れた。さらにMgが比較的高いためめっき不良となった。
 また、めっき層の平均組成においてCr量が発明範囲から外れ、且つ、Fe-Al系界面合金層の厚みが発明範囲内の例では、めっき層の厚さが不均一であった。
No. In No. 403, the Cr amount was outside the invention range in the average composition of the plating layer. Furthermore, the relatively high Mg content resulted in poor plating.
Further, in an example in which the average composition of the plating layer had a Cr content outside the inventive range and the thickness of the Fe--Al interfacial alloy layer was within the inventive range, the thickness of the plating layer was non-uniform.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (11)

  1.  鋼線と、
     前記鋼線の表面に配置されためっき層と、が備えられ、
     前記めっき層は、前記鋼線側に配置されたFe-Al系界面合金層と、前記Fe-Al系界面合金層上に配置されたZn-Al-Mg合金層とを含み、
     前記鋼線の化学組成が、質量%で、
    C :0.030%以上1.20%以下、
    Si:0.05%以上2.00%以下、
    Mn:0.10%以上0.90%以下、
    P :0.030%以下、
    S :0.030%以下、
    N :0.010%以下、を含有し、
    残部がFe及び不純物からなり、
     前記めっき層の平均組成が、質量%で、
    Fe:15.0%以下、
    Al:3.0%以上15.0%以下、
    Mg:0.3%以上3.5%以下、
    Cr:0.003%以上0.500%以下、を含有し、
    残部:Znおよび不純物からなり、
     前記Fe-Al系界面合金層は、FeAl13、FeAl、FeAlZn0.4のいずれか1種または2種以上を含み、平均厚さが0.2μm以上5.0μm以下であり、
     前記Zn-Al-Mg合金層は、Al、Mg、Cr、残部Zn及び不純物を含み、組織中に0.1~40.0面積%のMgZn相を含有し、平均厚さが10μm以上150μm以下であることを特徴とするめっき鋼線。
    steel wire and
    a plating layer disposed on the surface of the steel wire,
    The plating layer includes an Fe-Al-based interfacial alloy layer disposed on the steel wire side, and a Zn-Al-Mg alloy layer disposed on the Fe-Al-based interfacial alloy layer,
    The chemical composition of the steel wire is in mass%,
    C: 0.030% or more and 1.20% or less,
    Si: 0.05% or more and 2.00% or less,
    Mn: 0.10% or more and 0.90% or less,
    P: 0.030% or less,
    S: 0.030% or less,
    Contains N: 0.010% or less,
    The remainder consists of Fe and impurities,
    The average composition of the plating layer is in mass%,
    Fe: 15.0% or less,
    Al: 3.0% or more and 15.0% or less,
    Mg: 0.3% or more and 3.5% or less,
    Contains Cr: 0.003% or more and 0.500% or less,
    The remainder: consists of Zn and impurities,
    The Fe--Al interface alloy layer contains one or more of Fe 4 Al 13 , Fe 2 Al 5 , Fe 2 Al 5 Zn 0.4 , and has an average thickness of 0.2 μm or more.5. 0 μm or less,
    The Zn-Al-Mg alloy layer contains Al, Mg, Cr, balance Zn and impurities, contains 0.1 to 40.0 area% MgZn two phase in the structure, and has an average thickness of 10 μm or more and 150 μm. A plated steel wire characterized by:
  2.  前記めっき層の平均組成が、質量%で、
    Fe:2.0%以下、
    Al:3.0%以上8.0%以下、
    Mg:0.3%以上3.5%以下、
    Cr:0.003%以上0.500%以下を含有し、
    残部:Znおよび不純物からなり、
     前記Zn-Al-Mg合金層の平均厚さが、30μm以上100μm以下であることを特徴とする、請求項1に記載のめっき鋼線。
    The average composition of the plating layer is in mass%,
    Fe: 2.0% or less,
    Al: 3.0% or more and 8.0% or less,
    Mg: 0.3% or more and 3.5% or less,
    Cr: Contains 0.003% or more and 0.500% or less,
    The remainder: consists of Zn and impurities,
    The plated steel wire according to claim 1, wherein the average thickness of the Zn-Al-Mg alloy layer is 30 μm or more and 100 μm or less.
  3.  前記めっき層が、更に、平均組成で、Ni、Ti、Zr、Sr、Sn、Ca、Co、Mn、B、REM、Hfのいずれか1種または2種以上を、合計で0.0001~2.0質量%含有する請求項1に記載のめっき鋼線。 The plating layer further has an average composition of one or more of Ni, Ti, Zr, Sr, Sn, Ca, Co, Mn, B, REM, and Hf in a total of 0.0001 to 2. The plated steel wire according to claim 1, containing .0% by mass.
  4.  前記めっき層が、更に、平均組成で、Ni、Ti、Zr、Sr、Sn、Ca、Co、Mn、B、REM、Hfのいずれか1種または2種以上を、合計で0.0001~2.0質量%含有する請求項2に記載のめっき鋼線。 The plating layer further has an average composition of one or more of Ni, Ti, Zr, Sr, Sn, Ca, Co, Mn, B, REM, and Hf in a total of 0.0001 to 2. The plated steel wire according to claim 2, containing .0% by mass.
  5.  前記鋼線の化学組成が、質量%で
    C :0.40%以上1.20%以下、
    Si:0.30%以上2.00%以下、
    Mn:0.10%以上0.90%以下、
    P :0.030%以下、
    S :0.030%以下、
    N :0.010%以下、を含有し、
    残部がFe及び不純物からなることを特徴とする、請求項1乃至請求項4の何れか一項に記載のめっき鋼線。
    The chemical composition of the steel wire is C: 0.40% or more and 1.20% or less in mass %,
    Si: 0.30% or more and 2.00% or less,
    Mn: 0.10% or more and 0.90% or less,
    P: 0.030% or less,
    S: 0.030% or less,
    Contains N: 0.010% or less,
    The plated steel wire according to any one of claims 1 to 4, wherein the remainder consists of Fe and impurities.
  6.  前記鋼線の化学組成が、更に質量%で、Crを0.10%以上0.50%以下含有することを特徴とする、請求項1乃至請求項4の何れか一項に記載のめっき鋼線。 The plated steel according to any one of claims 1 to 4, wherein the chemical composition of the steel wire further contains 0.10% or more and 0.50% or less of Cr in mass%. line.
  7.  前記鋼線の化学組成が、更に質量%で、Crを0.10%以上0.50%以下含有することを特徴とする、請求項5に記載のめっき鋼線。 The plated steel wire according to claim 5, wherein the chemical composition of the steel wire further contains 0.10% or more and 0.50% or less Cr in mass %.
  8.  前記鋼線の化学組成が、更に質量%で、
    Ni:0%超1.00%以下、
    Cu:0%超0.50%以下、
    Mo:0%超0.50%以下、
    V :0%超0.50%以下、
    B :0%超0.0070%以下、
    Al:0%超0.100%以下、
    Ti:0%超0.10%以下、
    Nb:0%超0.10%以下、
    Zr:0%超0.10%以下、
    Ca:0%超0.005%以下、
    Mg:0%超0.005%以下、
    REM:0%超0.02%以下、
    Co:0%超0.5%以下、
    Sb:0%超0.05%以下、
    As:0%超0.05%以下、
    Sn:0%超0.05%以下、
    O :0%超0.0100%以下、のうちの1種又は2種以上含有することを特徴とする、請求項1乃至請求項4の何れか一項に記載のめっき鋼線。
    The chemical composition of the steel wire further includes, in mass %,
    Ni: more than 0% and less than 1.00%,
    Cu: more than 0% and 0.50% or less,
    Mo: more than 0% and less than 0.50%,
    V: more than 0% and less than 0.50%,
    B: more than 0% and less than 0.0070%,
    Al: more than 0% and less than 0.100%,
    Ti: more than 0% and less than 0.10%,
    Nb: more than 0% and less than 0.10%,
    Zr: more than 0% and less than 0.10%,
    Ca: more than 0% and less than 0.005%,
    Mg: more than 0% and less than 0.005%,
    REM: more than 0% and less than 0.02%,
    Co: more than 0% and less than 0.5%,
    Sb: more than 0% and less than 0.05%,
    As: more than 0% and less than 0.05%,
    Sn: more than 0% and less than 0.05%,
    The plated steel wire according to any one of claims 1 to 4, characterized in that it contains one or more of O: more than 0% and 0.0100% or less.
  9.  前記鋼線の化学組成が、更に質量%で、
    Ni:0%超1.00%以下、
    Cu:0%超0.50%以下、
    Mo:0%超0.50%以下、
    V :0%超0.50%以下、
    B :0%超0.0070%以下、
    Al:0%超0.100%以下、
    Ti:0%超0.10%以下、
    Nb:0%超0.10%以下、
    Zr:0%超0.10%以下、
    Ca:0%超0.005%以下、
    Mg:0%超0.005%以下、
    REM:0%超0.02%以下、
    Co:0%超0.5%以下、
    Sb:0%超0.05%以下、
    As:0%超0.05%以下、
    Sn:0%超0.05%以下、
    O :0%超0.0100%以下、のうちの1種又は2種以上含有することを特徴とする、請求項5に記載のめっき鋼線。
    The chemical composition of the steel wire further includes, in mass %,
    Ni: more than 0% and less than 1.00%,
    Cu: more than 0% and 0.50% or less,
    Mo: more than 0% and less than 0.50%,
    V: more than 0% and less than 0.50%,
    B: more than 0% and less than 0.0070%,
    Al: more than 0% and less than 0.100%,
    Ti: more than 0% and less than 0.10%,
    Nb: more than 0% and less than 0.10%,
    Zr: more than 0% and less than 0.10%,
    Ca: more than 0% and less than 0.005%,
    Mg: more than 0% and less than 0.005%,
    REM: more than 0% and less than 0.02%,
    Co: more than 0% and less than 0.5%,
    Sb: more than 0% and less than 0.05%,
    As: more than 0% and less than 0.05%,
    Sn: more than 0% and less than 0.05%,
    The plated steel wire according to claim 5, characterized in that it contains one or more of O: more than 0% and 0.0100% or less.
  10.  前記鋼線の化学組成が、更に質量%で、
    Ni:0%超1.00%以下、
    Cu:0%超0.50%以下、
    Mo:0%超0.50%以下、
    V :0%超0.50%以下、
    B :0%超0.0070%以下、
    Al:0%超0.100%以下、
    Ti:0%超0.10%以下、
    Nb:0%超0.10%以下、
    Zr:0%超0.10%以下、
    Ca:0%超0.005%以下、
    Mg:0%超0.005%以下、
    REM:0%超0.02%以下、
    Co:0%超0.5%以下、
    Sb:0%超0.05%以下、
    As:0%超0.05%以下、
    Sn:0%超0.05%以下、
    O :0%超0.0100%以下、のうちの1種又は2種以上含有することを特徴とする、請求項6に記載のめっき鋼線。
    The chemical composition of the steel wire further includes, in mass %,
    Ni: more than 0% and less than 1.00%,
    Cu: more than 0% and 0.50% or less,
    Mo: more than 0% and less than 0.50%,
    V: more than 0% and less than 0.50%,
    B: more than 0% and less than 0.0070%,
    Al: more than 0% and less than 0.100%,
    Ti: more than 0% and less than 0.10%,
    Nb: more than 0% and less than 0.10%,
    Zr: more than 0% and less than 0.10%,
    Ca: more than 0% and less than 0.005%,
    Mg: more than 0% and less than 0.005%,
    REM: more than 0% and less than 0.02%,
    Co: more than 0% and less than 0.5%,
    Sb: more than 0% and less than 0.05%,
    As: more than 0% and less than 0.05%,
    Sn: more than 0% and less than 0.05%,
    The plated steel wire according to claim 6, characterized in that it contains one or more of O: more than 0% and 0.0100% or less.
  11.  前記鋼線の化学組成が、更に質量%で、
    Ni:0%超1.00%以下、
    Cu:0%超0.50%以下、
    Mo:0%超0.50%以下、
    V :0%超0.50%以下、
    B :0%超0.0070%以下、
    Al:0%超0.100%以下、
    Ti:0%超0.10%以下、
    Nb:0%超0.10%以下、
    Zr:0%超0.10%以下、
    Ca:0%超0.005%以下、
    Mg:0%超0.005%以下、
    REM:0%超0.02%以下、
    Co:0%超0.5%以下、
    Sb:0%超0.05%以下、
    As:0%超0.05%以下、
    Sn:0%超0.05%以下、
    O :0%超0.0100%以下、のうちの1種又は2種以上含有することを特徴とする、請求項7に記載のめっき鋼線。
    The chemical composition of the steel wire further includes, in mass %,
    Ni: more than 0% and less than 1.00%,
    Cu: more than 0% and 0.50% or less,
    Mo: more than 0% and less than 0.50%,
    V: more than 0% and less than 0.50%,
    B: more than 0% and less than 0.0070%,
    Al: more than 0% and less than 0.100%,
    Ti: more than 0% and less than 0.10%,
    Nb: more than 0% and less than 0.10%,
    Zr: more than 0% and less than 0.10%,
    Ca: more than 0% and less than 0.005%,
    Mg: more than 0% and less than 0.005%,
    REM: more than 0% and less than 0.02%,
    Co: more than 0% and less than 0.5%,
    Sb: more than 0% and less than 0.05%,
    As: more than 0% and less than 0.05%,
    Sn: more than 0% and less than 0.05%,
    The plated steel wire according to claim 7, characterized in that it contains one or more of O: more than 0% and 0.0100% or less.
PCT/JP2023/013463 2022-03-31 2023-03-31 Plated steel wire WO2023191027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022058885 2022-03-31
JP2022-058885 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023191027A1 true WO2023191027A1 (en) 2023-10-05

Family

ID=88202328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013463 WO2023191027A1 (en) 2022-03-31 2023-03-31 Plated steel wire

Country Status (1)

Country Link
WO (1) WO2023191027A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030405A (en) * 2000-03-31 2002-01-31 Nippon Steel Corp Plated steel having high corrosion resistance and excellent in workability and its production method
JP2009024210A (en) * 2007-07-18 2009-02-05 Tokyo Seiko Co Ltd Hot-dip zinc alloy plated steel wire
WO2019124485A1 (en) * 2017-12-20 2019-06-27 日本製鉄株式会社 Hot-dip plated steel wire and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030405A (en) * 2000-03-31 2002-01-31 Nippon Steel Corp Plated steel having high corrosion resistance and excellent in workability and its production method
JP2009024210A (en) * 2007-07-18 2009-02-05 Tokyo Seiko Co Ltd Hot-dip zinc alloy plated steel wire
WO2019124485A1 (en) * 2017-12-20 2019-06-27 日本製鉄株式会社 Hot-dip plated steel wire and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4782246B2 (en) High-strength Zn-Al plated steel wire for bridges with excellent corrosion resistance and fatigue characteristics and method for producing the same
CA2850044C (en) Hot-dip galvanized steel sheet and manufacturing method thereof
KR102272166B1 (en) plated steel
US9970092B2 (en) Galvanized steel sheet and method of manufacturing the same
JP4464720B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
EP3950975A1 (en) Steel sheet
JP7276618B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
TWI479033B (en) Galvannealed steel sheet
JP4331915B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same
JP2007270176A (en) Hot-dip galvannealed steel sheet excellent in surface appearance and adhesion to plated layer
KR102385640B1 (en) Hot-dip galvanized steel wire and its manufacturing method
WO2023191027A1 (en) Plated steel wire
JP6825720B2 (en) Aluminum covered steel wire and its manufacturing method
JP2014028989A (en) Hot-dip galvanized steel tube
WO2022244592A1 (en) Alloyed hot-dip galvanized steel sheet
JP7059885B2 (en) Hot-dip plated wire and its manufacturing method
WO2023135980A1 (en) High-strength steel sheet and method for producing same
JP2022169341A (en) Steel sheet and plated steel sheet
KR20240033693A (en) plated steel plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781035

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024512888

Country of ref document: JP