JP2022169341A - Steel sheet and plated steel sheet - Google Patents

Steel sheet and plated steel sheet Download PDF

Info

Publication number
JP2022169341A
JP2022169341A JP2021075318A JP2021075318A JP2022169341A JP 2022169341 A JP2022169341 A JP 2022169341A JP 2021075318 A JP2021075318 A JP 2021075318A JP 2021075318 A JP2021075318 A JP 2021075318A JP 2022169341 A JP2022169341 A JP 2022169341A
Authority
JP
Japan
Prior art keywords
steel sheet
less
layer
steel
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021075318A
Other languages
Japanese (ja)
Inventor
敬太郎 松田
Keitaro Matsuda
卓哉 光延
Takuya Mitsunobe
純 真木
Jun Maki
浩史 竹林
Hiroshi Takebayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2021075318A priority Critical patent/JP2022169341A/en
Publication of JP2022169341A publication Critical patent/JP2022169341A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide a high strength steel sheet and a plated steel sheet having high plating properties and hydrogen embrittlement resistance.SOLUTION: A steel sheet contains, by mass, 0.05 to 0.40% of C, 0.2 to 3.0% of Si and 0.1 to 5.0% of Mn. The steel sheet includes a dendrite type oxide on a surface layer thereof. The dendrite type oxide has an area ratio of 5.0% or more, and has a Si-Mn depletion layer with a thickness of 3.0 μm or more from a surface of the steel sheet. At a 1/2 location of the thickness, Si and Mn contents in the Si-Mn depletion layer not including an oxide are respectively below 10% of Si and Mn contents at a sheet thickness center part of the steel sheet. A plated steel sheet uses the steel sheet.SELECTED DRAWING: Figure 2

Description

本発明は、鋼板及びめっき鋼板に関する。より具体的には、本発明は、高いめっき性及び耐水素脆化性を有する高強度鋼板及びめっき鋼板に関する。 The present invention relates to steel sheets and plated steel sheets. More specifically, the present invention relates to high-strength steel sheets and plated steel sheets having high plateability and hydrogen embrittlement resistance.

近年、自動車、家電製品、建材等の様々な分野で使用される鋼板について高強度化が進められている。例えば、自動車分野においては、燃費向上のために車体の軽量化を目的として、高強度鋼板の使用が増加している。このような高強度鋼板は、典型的に、鋼の強度を向上させるためにC、Si及びMn等の元素を含有する。 BACKGROUND ART In recent years, steel sheets used in various fields such as automobiles, home electric appliances, and building materials are being strengthened. For example, in the field of automobiles, the use of high-strength steel sheets is increasing for the purpose of reducing the weight of automobile bodies in order to improve fuel efficiency. Such high strength steel sheets typically contain elements such as C, Si and Mn to improve the strength of the steel.

高強度鋼板の製造では、一般的に、圧延後に焼鈍処理のような熱処理が行われる。また、高強度鋼板に典型的に含まれる元素のうち易酸化元素であるSiやMnは、上記熱処理時に雰囲気中の酸素と結合し、鋼板の表面近傍に酸化物を含む層を形成することがある。このような層の形態としては、鋼板の外部(表面)にSiやMnを含む酸化物が膜として形成される形態(外部酸化層)と、鋼板の内部(表層)に酸化物が形成される形態(内部酸化層)とが挙げられる。 In the manufacture of high-strength steel sheets, heat treatment such as annealing is generally performed after rolling. In addition, among the elements typically contained in high-strength steel sheets, Si and Mn, which are easily oxidizable elements, combine with oxygen in the atmosphere during the heat treatment, and can form a layer containing oxides near the surface of the steel sheet. be. The form of such a layer includes a form in which an oxide containing Si or Mn is formed as a film on the outside (surface) of the steel sheet (external oxide layer), and an form in which an oxide is formed inside (surface layer) of the steel sheet. morphology (internal oxide layer).

外部酸化層が形成された鋼板の表面上にめっき層(例えばZn系めっき層)を形成する場合、酸化物が膜として鋼板の表面上に存在しているため、鋼成分(例えばFe)とめっき成分(例えばZn)との相互拡散が阻害され、鋼とめっきとの密着性に影響を及ぼし、めっき性が不十分となる(例えば不めっき部が増加する)場合がある。よって、めっき性を向上させる観点からは、外部酸化層が形成された鋼板よりも内部酸化層が形成された鋼板の方が好ましい。 When forming a plating layer (for example, a Zn-based plating layer) on the surface of a steel sheet on which an external oxide layer is formed, the oxide exists as a film on the surface of the steel sheet, so the steel composition (for example, Fe) and the plating Interdiffusion with components (for example, Zn) is hindered, and the adhesion between steel and plating may be affected, resulting in insufficient plateability (for example, increased unplated areas). Therefore, from the viewpoint of improving plateability, a steel sheet having an internal oxide layer is more preferable than a steel sheet having an external oxide layer.

内部酸化層に関連して、特許文献1及び2には、C、Si及びMn等を含む素地鋼板上に亜鉛系めっき層を有するめっき鋼板であって、素地鋼板の表層にSi及び/又はMnの酸化物を含む内部酸化層を有する、引張強度が980MPa以上の高強度めっき鋼板が記載されている。 In relation to the internal oxide layer, Patent Documents 1 and 2 disclose a plated steel sheet having a zinc-based plating layer on a base steel sheet containing C, Si, Mn, etc., wherein Si and/or Mn A high-strength plated steel sheet having a tensile strength of 980 MPa or more is described, which has an internal oxide layer containing oxides of

特開2016-130357号公報JP 2016-130357 A 特開2018-193614号公報JP 2018-193614 A

自動車用部材等に用いられる高強度鋼板は、気温や湿度が大きく変動する大気腐食環境下で使用されることがある。高強度鋼板がこのような大気腐食環境にさらされると、腐食過程で生成される水素が鋼中に侵入することが知られている。鋼中に侵入した水素は、鋼組織のマルテンサイト粒界に偏析し、粒界を脆化させることで鋼板に割れを生じさせ得る。この侵入水素起因で割れが生じる現象は水素脆化割れ(遅れ破壊)と呼ばれる。したがって、水素脆化割れを防止するために、腐食環境下で使用される鋼板においては、腐食環境下での鋼板内部への水素侵入を抑制すること、さらに、鋼板内部へ侵入した水素を系外に排出することが有効である。 High-strength steel sheets used for automotive parts and the like are sometimes used in an atmospheric corrosive environment where temperature and humidity fluctuate greatly. It is known that when high-strength steel sheets are exposed to such an atmospheric corrosion environment, hydrogen generated during the corrosion process penetrates into the steel. Hydrogen that has penetrated into the steel segregates at martensite grain boundaries in the steel structure, embrittles the grain boundaries, and can cause cracks in the steel sheet. A phenomenon in which cracking occurs due to this penetrating hydrogen is called hydrogen embrittlement cracking (delayed fracture). Therefore, in order to prevent hydrogen embrittlement cracking, in steel sheets used in corrosive environments, it is necessary to suppress the penetration of hydrogen into the inside of the steel sheet under the corrosive environment, It is effective to discharge to

特許文献1及び2では、内部酸化層の平均深さを4μm以上に厚く制御し、当該内部酸化層を水素のトラップサイトとして機能させることで、水素の侵入を防ぎ水素脆化を抑制できることが教示されている。しかしながら、上記内部酸化層に存在する酸化物の形態の制御については何ら検討されておらず、耐水素脆化性については改善の余地がある。 Patent Documents 1 and 2 teach that by controlling the average depth of the internal oxide layer to a thickness of 4 μm or more and allowing the internal oxide layer to function as a hydrogen trap site, hydrogen penetration can be prevented and hydrogen embrittlement can be suppressed. It is However, control of the form of oxides present in the internal oxide layer has not been studied at all, and there is room for improvement in resistance to hydrogen embrittlement.

本発明は、このような実情に鑑み、高いめっき性及び耐水素脆化性を有する高強度鋼板及びめっき鋼板を提供することを課題とするものである。 In view of such circumstances, an object of the present invention is to provide a high-strength steel sheet and a plated steel sheet having high plateability and hydrogen embrittlement resistance.

本発明者らは、上記課題を解決するためには、酸化物を鋼板の表層、すなわち鋼板の内部に形成し、さらに、鋼板の表層に存在する酸化物の形態を制御するとともに、このような酸化物の形成に起因して鋼板の表層に生成されるSi-Mn欠乏層を所定の厚さ及び組成の範囲内に制御することが重要であることを見出した。より詳細には、本発明者らは、内部酸化物を形成することで高いめっき性を確保し、かつ、酸化物の形態として金属組織の結晶粒内に存在するデンドライト型酸化物を十分に形成し、当該デンドライト型酸化物を腐食環境下で鋼板中に侵入し得る水素のトラップサイトとして機能させて鋼内部への水素侵入を抑制し、さらには鋼板の表層に所定の厚さ及び組成を有するSi-Mn欠乏層を形成することにより鋼中の水素拡散を促進させて鋼中からの水素排出性を向上させることで、全体として高い耐水素脆化性を得ることができることを見出した。 In order to solve the above problems, the present inventors formed an oxide in the surface layer of the steel sheet, that is, in the interior of the steel sheet, and furthermore controlled the form of the oxide present in the surface layer of the steel sheet. It has been found that it is important to control the Si--Mn depleted layer formed on the surface layer of the steel sheet due to the formation of oxides within a predetermined range of thickness and composition. More specifically, the present inventors ensure high plating properties by forming internal oxides, and sufficiently form dendrite-type oxides present in the crystal grains of the metal structure in the form of oxides. Then, the dendrite-type oxide functions as a trap site for hydrogen that can penetrate into the steel sheet in a corrosive environment to suppress hydrogen penetration into the steel, and furthermore, the surface layer of the steel sheet has a predetermined thickness and composition. It was found that by forming a Si—Mn depleted layer, diffusion of hydrogen in the steel is promoted and the ability to remove hydrogen from the steel is improved, thereby obtaining high resistance to hydrogen embrittlement as a whole.

本発明は、上記知見を基になされたものであり、その主旨は以下のとおりである。
(1)
質量%で、
C:0.05~0.40%、
Si:0.2~3.0%、
Mn:0.1~5.0%、
sol.Al:0~0.4000%未満、
P:0.0300%以下、
S:0.0300%以下、
N:0.0100%以下、
B:0~0.010%、
Ti:0~0.150%、
Nb:0~0.150%、
V:0~0.150%、
Cr:0~2.00%、
Ni:0~2.00%、
Cu:0~2.00%、
Mo:0~1.00%、
W:0~1.00%、
Ca:0~0.100%、
Mg:0~0.100%、
Zr:0~0.100%、
Hf:0~0.100%、及び
REM:0~0.100%を含有し、残部がFe及び不純物からなる成分組成を有する鋼板において、
前記鋼板の表層にデンドライト型酸化物を含み、
前記デンドライト型酸化物の面積率が5.0%以上であり、
前記鋼板の表面から3.0μm以上の厚さを有するSi-Mn欠乏層を含み、
前記厚さの1/2位置における酸化物を含まない前記Si-Mn欠乏層のSi及びMn含有量がそれぞれ前記鋼板の板厚中心部におけるSi及びMn含有量の10%未満である、鋼板。
(2)
前記デンドライト型酸化物の面積率が10.0%以上である、(1)に記載の鋼板。
(3)
前記デンドライト型酸化物の面積率が30.0%以上である、(1)に記載の鋼板。
(4)
前記デンドライト型酸化物の面積率が50.0%以上である、(1)に記載の鋼板。
(5)
(1)~(4)のいずれか1つに記載の鋼板上にZnを含むめっき層を有する、めっき鋼板。
(6)
前記めっき層がZn-(0.3~1.5)%Alの成分組成を有する、(5)に記載のめっき鋼板。
The present invention was made based on the above findings, and the gist thereof is as follows.
(1)
in % by mass,
C: 0.05 to 0.40%,
Si: 0.2 to 3.0%,
Mn: 0.1 to 5.0%,
sol. Al: 0 to less than 0.4000%,
P: 0.0300% or less,
S: 0.0300% or less,
N: 0.0100% or less,
B: 0 to 0.010%,
Ti: 0 to 0.150%,
Nb: 0 to 0.150%,
V: 0 to 0.150%,
Cr: 0 to 2.00%,
Ni: 0 to 2.00%,
Cu: 0 to 2.00%,
Mo: 0 to 1.00%,
W: 0 to 1.00%,
Ca: 0-0.100%,
Mg: 0-0.100%,
Zr: 0 to 0.100%,
A steel sheet containing Hf: 0 to 0.100% and REM: 0 to 0.100%, with the balance being Fe and impurities,
The surface layer of the steel sheet contains a dendrite-type oxide,
The dendrite-type oxide has an area ratio of 5.0% or more,
including a Si—Mn depleted layer having a thickness of 3.0 μm or more from the surface of the steel sheet,
A steel sheet, wherein the Si and Mn contents of the Si—Mn depleted layer containing no oxides at the ½ position of the thickness are respectively less than 10% of the Si and Mn contents at the central portion of the thickness of the steel sheet.
(2)
The steel sheet according to (1), wherein the dendrite-type oxide has an area ratio of 10.0% or more.
(3)
The steel sheet according to (1), wherein the dendrite-type oxide has an area ratio of 30.0% or more.
(4)
The steel sheet according to (1), wherein the dendrite-type oxide has an area ratio of 50.0% or more.
(5)
A plated steel sheet having a plating layer containing Zn on the steel sheet according to any one of (1) to (4).
(6)
The plated steel sheet according to (5), wherein the plated layer has a composition of Zn-(0.3 to 1.5)% Al.

本発明によれば、鋼板の表層にデンドライト型酸化物を所定の面積率で含み、さらには所定の厚さ及び組成を有するSi-Mn欠乏層を含むことで、デンドライト型酸化物が腐食環境下で鋼板の内部に侵入する水素のトラップサイトとして機能し、かつSi-Mn欠乏層が水素の拡散を促進して鋼中からの水素排出性を向上させることが可能となり、その結果、鋼板の内部まで侵入する水素量を大きく抑制するとともに、侵入した水素を放出させ、鋼中に蓄積する水素量を低減することができ、耐水素脆化性を大きく向上させることができる。また、本発明によれば、デンドライト型酸化物は鋼板の内部に形成されるため、めっき層を形成する場合、鋼成分とめっきの成分との相互拡散が十分になされ、高いめっき性を得ることが可能となる。よって、本発明により、高強度鋼板において、高いめっき性及び耐水素脆化性を得ることが可能となる。 According to the present invention, the surface layer of the steel sheet contains a dendritic oxide with a predetermined area ratio, and further includes a Si—Mn depleted layer having a predetermined thickness and composition, so that the dendritic oxide can be generated in a corrosive environment. functions as a trap site for hydrogen penetrating into the inside of the steel sheet, and the Si—Mn depleted layer promotes the diffusion of hydrogen to improve the ability to remove hydrogen from the steel, and as a result, the inside of the steel sheet In addition, the amount of hydrogen that has penetrated can be released to reduce the amount of hydrogen that accumulates in the steel, and the resistance to hydrogen embrittlement can be greatly improved. In addition, according to the present invention, since the dendrite-type oxide is formed inside the steel sheet, when forming the coating layer, the interdiffusion of the steel components and the coating components is sufficiently performed, and high coating properties can be obtained. becomes possible. Therefore, according to the present invention, it is possible to obtain high plateability and hydrogen embrittlement resistance in a high-strength steel sheet.

外部酸化層を有する鋼板の断面についての概略図を示す。1 shows a schematic view of a cross-section of a steel sheet with an external oxide layer; FIG. 本発明に係る例示の鋼板の断面についての概略図を示す。1 shows a schematic view of a cross-section of an exemplary steel plate according to the invention; FIG.

<鋼板>
本発明に係る鋼板は、質量%で、
C:0.05~0.40%、
Si:0.2~3.0%、
Mn:0.1~5.0%、
sol.Al:0~0.4000%未満、
P:0.0300%以下、
S:0.0300%以下、
N:0.0100%以下、
B:0~0.010%、
Ti:0~0.150%、
Nb:0~0.150%、
V:0~0.150%、
Cr:0~2.00%、
Ni:0~2.00%、
Cu:0~2.00%、
Mo:0~1.00%、
W:0~1.00%、
Ca:0~0.100%、
Mg:0~0.100%、
Zr:0~0.100%、
Hf:0~0.100%、及び
REM:0~0.100%を含有し、残部がFe及び不純物からなる成分組成を有する鋼板において、
前記鋼板の表層にデンドライト型酸化物を含み、
前記デンドライト型酸化物の面積率が5.0%以上であり、
前記鋼板の表面から3.0μm以上の厚さを有するSi-Mn欠乏層を含み、
前記厚さの1/2位置における酸化物を含まない前記Si-Mn欠乏層のSi及びMn含有量がそれぞれ前記鋼板の板厚中心部におけるSi及びMn含有量の10%未満であることを特徴としている。
<Steel plate>
The steel sheet according to the present invention is mass%,
C: 0.05 to 0.40%,
Si: 0.2 to 3.0%,
Mn: 0.1 to 5.0%,
sol. Al: 0 to less than 0.4000%,
P: 0.0300% or less,
S: 0.0300% or less,
N: 0.0100% or less,
B: 0 to 0.010%,
Ti: 0 to 0.150%,
Nb: 0 to 0.150%,
V: 0 to 0.150%,
Cr: 0 to 2.00%,
Ni: 0 to 2.00%,
Cu: 0 to 2.00%,
Mo: 0 to 1.00%,
W: 0 to 1.00%,
Ca: 0-0.100%,
Mg: 0-0.100%,
Zr: 0 to 0.100%,
A steel sheet containing Hf: 0 to 0.100% and REM: 0 to 0.100%, with the balance being Fe and impurities,
The surface layer of the steel sheet contains a dendrite-type oxide,
The dendrite-type oxide has an area ratio of 5.0% or more,
including a Si—Mn depleted layer having a thickness of 3.0 μm or more from the surface of the steel sheet,
The Si and Mn contents of the Si—Mn depleted layer not containing oxides at the 1/2 position of the thickness are respectively less than 10% of the Si and Mn contents at the center of the plate thickness of the steel plate. and

高強度鋼板の製造においては、所定の成分組成に調整した鋼片を圧延(典型的に熱間圧延及び冷間圧延)した後、所望の組織を得る等の目的のために、一般的に焼鈍処理が行われる。この焼鈍処理において、鋼板中の比較的酸化しやすい成分(例えばSi、Mn)が焼鈍雰囲気中の酸素と結合することで、鋼板の表面近傍に酸化物を含む層が形成される。例えば、図1に示される鋼板1のように、母材鋼3の表面上(すなわち母材鋼3の外部)に外部酸化層2が膜状に形成される。外部酸化層2が母材鋼3の表面上に膜状に形成されると、めっき層(例えば亜鉛系めっき層)を形成した場合に、当該外部酸化層2が、めっき成分(例えばZn)と鋼成分(例えばFe)との相互拡散を阻害するため、鋼とめっきとの間の密着性が十分確保できず、めっき層が形成されない不めっき部が生じる場合がある。 In the manufacture of high-strength steel sheets, after rolling (typically hot rolling and cold rolling) steel billets adjusted to a predetermined chemical composition, they are generally annealed for the purpose of obtaining a desired structure. processing takes place. In this annealing treatment, a layer containing oxides is formed in the vicinity of the surface of the steel sheet by combining relatively easily oxidizable components (eg, Si, Mn) in the steel sheet with oxygen in the annealing atmosphere. For example, like the steel plate 1 shown in FIG. 1, an external oxide layer 2 is formed in a film on the surface of the base steel 3 (that is, on the outside of the base steel 3). When the external oxide layer 2 is formed in the form of a film on the surface of the base material steel 3, when a plating layer (for example, a zinc-based plating layer) is formed, the external oxide layer 2 becomes a plating component (for example, Zn). Since it inhibits interdiffusion with steel components (for example, Fe), sufficient adhesion between the steel and the plating cannot be ensured, and unplated areas where no plating layer is formed may occur.

これに対して、図2に例示されるように、本発明に係る鋼板11は、図1に示される鋼板1のように母材鋼3の表面上に外部酸化層2を形成するのではなく、母材鋼13の内部に酸化物12が存在している。したがって、鋼板11の表面上にめっき層を形成した場合に、母材鋼13の内部に酸化物12を形成した本発明に係る鋼板11は、外部酸化層2を有する鋼板1に比べて、めっき成分と鋼成分との相互拡散が十分に生じ、高いめっき性を得ることが可能となる。よって、本発明者らは、高いめっき性を得る観点から、焼鈍処理時の条件を制御して鋼板の内部に酸化物を形成することが有効であることを見出した。なお、「高いめっき性」という用語は、鋼板について用いられる場合、当該鋼板上にめっき処理を施した際に不めっき部(めっき層が形成されない部分)が少ない(例えば5.0面積%以下)又は全くない状態でめっき層を形成可能であることを示す。また、「高いめっき性」という用語は、めっき鋼板について用いられる場合、不めっき部が極めて少ない(例えば5.0%以下)又は全くない状態のめっき鋼板を示す。 On the other hand, as illustrated in FIG. 2, the steel plate 11 according to the present invention does not form an external oxide layer 2 on the surface of the base steel 3 like the steel plate 1 shown in FIG. , the oxide 12 is present inside the base steel 13 . Therefore, when a coating layer is formed on the surface of the steel sheet 11, the steel sheet 11 according to the present invention in which the oxide 12 is formed inside the base material steel 13 has a higher coating thickness than the steel sheet 1 having the outer oxide layer 2. The interdiffusion of the components and the steel components occurs sufficiently, making it possible to obtain high plating properties. Therefore, the present inventors have found that it is effective to control the conditions during annealing to form oxides inside the steel sheet from the viewpoint of obtaining high plateability. In addition, when the term "high plateability" is used for a steel plate, the non-plated portion (portion where the plated layer is not formed) is small when the steel plate is plated (for example, 5.0 area% or less). Or, it shows that the plating layer can be formed in the absence of any. Also, the term "highly plated" when used for a plated steel sheet indicates a plated steel sheet with very little (eg, 5.0% or less) or no non-plated portion.

また、大気環境で使用される高強度鋼板、特に自動車用高強度鋼板は、気温や湿度が異なる様々な環境に繰り返し曝されて使用される。このような環境は大気腐食環境と呼ばれ、当該大気腐食環境下では、腐食過程において水素が発生することが知られている。そして、この水素は鋼中の表層領域より深くに侵入して、鋼板組織のマルテンサイト粒界に偏析し、粒界を脆化させることで鋼板に水素脆化割れ(遅れ破壊)を引き起こす。マルテンサイトは硬質組織であるため、水素感受性が高く、水素脆化割れが発生しやすい。したがって、水素脆化割れを防止するために、大気腐食環境下で使用される高強度鋼板においては、鋼中の水素蓄積量、より具体的には鋼板の表層領域より深い位置での水素蓄積量を低減することが有効である。本発明者らは、鋼板の表層に存在する酸化物の形態を制御すること、より具体的には、酸化物を所定の面積率を有するデンドライト型酸化物にすること、さらにはデンドライト型酸化物の形成に起因して周囲のSi及びMn濃度が低下することにより生成するSi-Mn欠乏層を所定の厚さ及び組成の範囲内に制御することで、デンドライト型酸化物が、腐食環境下で鋼板の内部に侵入する水素をトラップする機能を発揮し、かつSi-Mn欠乏層が侵入した水素の拡散を促進させて鋼中からの水素排出性を向上させ、その結果、鋼板の内部に蓄積する水素量を抑制し、高い耐水素脆化性が得られることを見出した。 Further, high-strength steel sheets used in an atmospheric environment, particularly high-strength steel sheets for automobiles, are repeatedly exposed to various environments with different temperatures and humidity. Such an environment is called an atmospheric corrosion environment, and it is known that hydrogen is generated in the corrosion process under the atmospheric corrosion environment. Then, this hydrogen penetrates deeper than the surface layer region in the steel, segregates at the martensite grain boundary of the steel sheet structure, and embrittles the grain boundary, thereby causing hydrogen embrittlement cracking (delayed fracture) in the steel sheet. Since martensite is a hard structure, it is highly sensitive to hydrogen and prone to hydrogen embrittlement cracking. Therefore, in order to prevent hydrogen embrittlement cracking, in high-strength steel sheets used in an atmospheric corrosion environment, the amount of hydrogen accumulated in the steel, more specifically, the amount of hydrogen accumulated at a position deeper than the surface layer region of the steel sheet It is effective to reduce The present inventors have attempted to control the morphology of oxides present in the surface layer of a steel sheet, more specifically, to convert oxides into dendrite-type oxides having a predetermined area ratio, By controlling the Si-Mn depleted layer generated by the decrease in the surrounding Si and Mn concentrations due to the formation of the dendrite oxide in a corrosive environment It exhibits the function of trapping hydrogen that penetrates inside the steel sheet, and promotes the diffusion of hydrogen that has penetrated into the Si-Mn depleted layer to improve the ability to remove hydrogen from the steel, and as a result, accumulates inside the steel sheet. The inventors have found that the amount of hydrogen used is suppressed, and high resistance to hydrogen embrittlement can be obtained.

より詳細には、本発明者らは、酸化物の形態と水素のトラップサイトとしての有効性との間の関係を詳細に分析した結果、図2に示すように、母材鋼13の結晶粒内にデンドライト型酸化物12を一定以上の面積率、より具体的には5.0%以上の面積率で存在させることが有効であることを見出した。特定の理論に拘束されるわけではないが、鋼板中の酸化物が有する侵入水素に対するトラップ機能は、当該酸化物の表面積と正の相関があると考えられる。すなわち、酸化物が鋼板の表層で適切な量において存在することで、鋼板の表層での酸化物の表面積が増加し、水素のトラップ機能が向上すると考えられる。よって、本発明者らは、高い耐水素侵入性を得る観点から、鋼板の製造時、特に焼鈍処理時の条件を制御して、腐食環境下で侵入する水素のトラップサイトとして機能するデンドライト型酸化物を適切な量で存在させることが重要であることを見出した。なお、鋼板の表層の金属組織は、典型的に、鋼板の内部(例えば板厚の1/8位置又は1/4位置)より軟質な金属組織で構成されるため、鋼板の表層に水素が存在していても水素脆化割れは特に問題とならない。 More specifically, the present inventors analyzed in detail the relationship between the morphology of oxides and their effectiveness as trap sites for hydrogen. It has been found that it is effective to allow the dendrite-type oxide 12 to exist in the inside at a certain area ratio or more, more specifically at an area ratio of 5.0% or more. Although not bound by any particular theory, it is believed that the trapping function of the oxides in the steel sheet for penetrating hydrogen has a positive correlation with the surface area of the oxides. That is, it is thought that the existence of an appropriate amount of oxides on the surface layer of the steel sheet increases the surface area of the oxides on the surface layer of the steel sheet, thereby improving the hydrogen trapping function. Therefore, from the viewpoint of obtaining high hydrogen penetration resistance, the present inventors controlled the conditions during steel sheet production, particularly during annealing treatment, to obtain dendritic oxide that functions as a trap site for hydrogen that penetrates in a corrosive environment. We have found that it is important to have things present in the right amount. In addition, the metal structure of the surface layer of the steel plate is typically composed of a softer metal structure than the inside of the steel plate (e.g., 1/8 position or 1/4 position of the plate thickness), so hydrogen is present in the surface layer of the steel plate. Hydrogen embrittlement cracking does not pose a particular problem even if it is used.

また、本発明者らは、図2に示すようなデンドライト型酸化物12などの内部酸化物の形成に起因して周囲のSi及びMn濃度が低下することで生成するSi-Mn欠乏層の形態と水素排出性との間の関係を詳細に分析した結果、当該Si-Mn欠乏層を所定の厚さ及び組成の範囲内、より具体的にはSi-Mn欠乏層の厚さが鋼板の表面から3.0μm以上でありかつ当該厚さの1/2位置における酸化物を含まないSi-Mn欠乏層のSi及びMn含有量がそれぞれ鋼板の板厚中心部におけるSi及びMn含有量の10%未満となるように制御することが有効であることを見出した(以下、これらの値をSi欠乏率及びMn欠乏率ともいう)。特定の理論に拘束されるわけではないが、Si及び/又はMnを多く含む鋼の場合、鋼中に固溶するSi及び/又はMnも同様に多くなるため、これらの固溶Si及び/又はMnが水素の拡散を阻害し、結果として鋼中の水素拡散速度が遅くなると考えられる。図2に示すように、デンドライト型酸化物12などの内部酸化物が鋼板の表層に形成されると、鋼中に固溶していたSi及びMnが内部酸化物の形成で消費されることになるため、鋼板の表層には、内部酸化物の形成とともに、周囲のSi及びMn濃度が比較的低下したSi-Mn欠乏層が生成することになる。したがって、当該Si-Mn欠乏層を比較的厚くすること、具体的には当該Si-Mn欠乏層の厚さを鋼板の表面(鋼板の表面にめっき層が存在する場合には、めっき層と鋼板の界面)から3.0μm以上に制御することで水素の拡散経路を十分に確保しつつ、さらにSi-Mn欠乏層のSi及びMn含有量を十分低くすること、具体的にはSi及びMn欠乏率がそれぞれ10%未満となるよう制御することで、水素の拡散を阻害する固溶Si及びMnの量を十分に低減することができるものと考えられる。したがって、厚さ及び組成が上記の範囲内に制御されたSi-Mn欠乏層を含めることで、水素の拡散を促進して鋼中からの水素排出性を顕著に向上させることが可能になると考えられる。よって、上述したデンドライト型酸化物と当該Si-Mn欠乏層を組み合わせることで、耐水素侵入性と水素排出性の両方を向上させることにより、鋼板全体としての耐水素脆化性を極めて大きく向上させることが可能となる。 In addition, the present inventors have investigated the morphology of the Si—Mn depletion layer produced by the reduction in the surrounding Si and Mn concentrations due to the formation of internal oxides such as dendrite-type oxides 12 as shown in FIG. As a result of detailed analysis of the relationship between and hydrogen discharge property, the Si-Mn depleted layer is within a predetermined thickness and composition range, more specifically, the thickness of the Si-Mn depleted layer is the surface of the steel sheet The Si and Mn contents of the Si—Mn depleted layer that is 3.0 μm or more and does not contain oxides at the 1/2 position of the thickness are 10% of the Si and Mn contents at the center of the thickness of the steel sheet, respectively. It was found that it is effective to control the content to be less than (hereinafter, these values are also referred to as Si depletion rate and Mn depletion rate). Although not bound by a particular theory, in the case of steel containing a large amount of Si and / or Mn, the amount of Si and / or Mn dissolved in the steel is also increased. It is believed that Mn inhibits the diffusion of hydrogen, resulting in a slow hydrogen diffusion rate in steel. As shown in FIG. 2, when internal oxides such as dendrite-type oxides 12 are formed on the surface layer of the steel sheet, Si and Mn dissolved in the steel are consumed by the formation of the internal oxides. Therefore, in the surface layer of the steel sheet, along with the formation of internal oxides, a surrounding Si—Mn depleted layer with a relatively low concentration of Si and Mn is formed. Therefore, the Si—Mn depleted layer is made relatively thick, specifically, the thickness of the Si—Mn depleted layer is set to the surface of the steel sheet (if there is a coating layer on the surface of the steel sheet, the coating layer and the steel sheet The Si and Mn content of the Si—Mn depleted layer is sufficiently low while sufficiently securing the diffusion path of hydrogen by controlling the distance from the interface of the ) to 3.0 μm or more, specifically Si and Mn depleted By controlling the ratios to be less than 10%, it is believed that the amounts of solid solution Si and Mn that inhibit hydrogen diffusion can be sufficiently reduced. Therefore, by including a Si—Mn depleted layer whose thickness and composition are controlled within the above ranges, it is believed that it will be possible to promote the diffusion of hydrogen and significantly improve the ability to remove hydrogen from the steel. be done. Therefore, by combining the above-described dendrite-type oxide and the Si—Mn depleted layer, both the resistance to hydrogen penetration and the resistance to hydrogen discharge are improved, thereby significantly improving the resistance to hydrogen embrittlement of the steel sheet as a whole. becomes possible.

また、水素脆化割れは、上で説明したような高強度鋼板を大気腐食環境下で使用した場合だけでなく、当該高強度鋼板を製造する際の焼鈍処理において焼鈍雰囲気中に存在する水素が母材鋼の表層領域よりも深く侵入することで生じる場合があることも知られている。今回、本発明者らは、上記のデンドライト型酸化物及びSi-Mn欠乏層の組み合わせが、腐食環境下での使用に対してだけでなく、製造プロセスにおける焼鈍処理時の鋼板中への水素の侵入抑制及び侵入した水素の排出に対しても有効に作用し、結果として鋼板の製造時及び使用時の両方において高い耐水素脆化性を達成できることを見出した。 In addition, hydrogen embrittlement cracking occurs not only when the high-strength steel sheet described above is used in an atmospheric corrosive environment, but also when hydrogen present in the annealing atmosphere during the annealing process for manufacturing the high-strength steel sheet. It is also known that it can occur by penetrating deeper than the surface layer of the base steel. The present inventors have now found that the above combination of dendrite-type oxides and Si—Mn depleted layers is not only suitable for use in corrosive environments, but also for hydrogen transfer into steel sheets during annealing in the manufacturing process. It has been found that it works effectively for suppressing penetration and discharging the penetrated hydrogen, and as a result, high resistance to hydrogen embrittlement can be achieved both during production and during use of the steel sheet.

以下、本発明に係る鋼板について詳しく説明する。なお、本発明に係る鋼板の板厚は、特に限定されないが、例えば、0.1~3.2mmであってよい。 Hereinafter, the steel sheet according to the present invention will be described in detail. The thickness of the steel sheet according to the present invention is not particularly limited, but may be, for example, 0.1 to 3.2 mm.

[鋼板の成分組成]
本発明に係る鋼板に含まれる成分組成について説明する。元素の含有量に関する「%」は、特に断りがない限り、「質量%」を意味する。成分組成における数値範囲において、「~」を用いて表される数値範囲は、特に指定しない限り、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[Component composition of steel plate]
The chemical composition contained in the steel sheet according to the present invention will be described. "%" regarding the content of an element means "% by mass" unless otherwise specified. In the numerical range in the component composition, unless otherwise specified, the numerical range represented using "to" means the range including the numerical values before and after "to" as the lower and upper limits.

(C:0.05~0.40%)
C(炭素)は、鋼の強度を確保する上で重要な元素である。十分な強度を確保するために、C含有量は0.05%以上とする。C含有量は、好ましくは0.07%以上、より好ましくは0.10%以上、さらに好ましくは0.12%以上である。一方、C含有量が過剰であると、溶接性が低下するおそれがある。したがって、C含有量は0.40%以下とする。C含有量は、0.38%以下、0.35%以下、0.32%以下又は0.30%以下であってもよい。
(C: 0.05-0.40%)
C (carbon) is an important element for ensuring the strength of steel. In order to ensure sufficient strength, the C content should be 0.05% or more. The C content is preferably 0.07% or more, more preferably 0.10% or more, still more preferably 0.12% or more. On the other hand, if the C content is excessive, weldability may deteriorate. Therefore, the C content should be 0.40% or less. The C content may be 0.38% or less, 0.35% or less, 0.32% or less, or 0.30% or less.

(Si:0.2~3.0%)
Si(ケイ素)は、鋼の強度を向上させるのに有効な元素である。十分な強度を確保し、さらに、所望の酸化物、特にデンドライト型酸化物を鋼板の内部に十分に生成させるために、Si含有量は0.2%以上とする。Si含有量は、好ましくは0.3%以上、より好ましくは0.5%以上、さらに好ましくは1.0%以上である。一方、Si含有量が過剰であると、外部酸化物が過剰に生成し、ひいては表面性状の劣化を引き起こすおそれがある。したがって、Si含有量は3.0%以下とする。Si含有量は、2.8%以下、2.5%以下、2.3%以下又は2.0%以下であってもよい。
(Si: 0.2 to 3.0%)
Si (silicon) is an effective element for improving the strength of steel. The Si content is set to 0.2% or more to ensure sufficient strength and to sufficiently generate desired oxides, particularly dendrite-type oxides, inside the steel sheet. The Si content is preferably 0.3% or more, more preferably 0.5% or more, and still more preferably 1.0% or more. On the other hand, if the Si content is excessive, an excessive amount of external oxides may be generated, which may lead to deterioration of the surface properties. Therefore, the Si content should be 3.0% or less. The Si content may be 2.8% or less, 2.5% or less, 2.3% or less, or 2.0% or less.

(Mn:0.1~5.0%)
Mn(マンガン)は、硬質組織を得ることで鋼の強度を向上させるのに有効な元素である。十分な強度を確保し、さらに、所望の酸化物、特にデンドライト型酸化物を鋼板の内部に十分に生成させるために、Mn含有量は0.1%以上とする。Mn含有量は、好ましくは0.5%以上、より好ましくは1.0%以上、さらに好ましくは1.5%以上である。一方、Mn含有量が過剰であると、外部酸化物が過剰に生成したり、Mn偏析によって金属組織が不均一になり、加工性が低下したりするおそれがある。したがって、Mn含有量は5.0%以下とする。Mn含有量は、4.5%以下、4.0%以下、3.5%以下又は3.0%以下であってもよい。
(Mn: 0.1-5.0%)
Mn (manganese) is an element effective in improving the strength of steel by obtaining a hard structure. The Mn content is set to 0.1% or more in order to ensure sufficient strength and to sufficiently generate desired oxides, particularly dendrite-type oxides, inside the steel sheet. The Mn content is preferably 0.5% or more, more preferably 1.0% or more, still more preferably 1.5% or more. On the other hand, if the Mn content is excessive, an excessive amount of external oxides may be generated, or the metal structure may become non-uniform due to Mn segregation, resulting in a decrease in workability. Therefore, the Mn content should be 5.0% or less. The Mn content may be 4.5% or less, 4.0% or less, 3.5% or less, or 3.0% or less.

(sol.Al:0~0.4000%未満)
Al(アルミニウム)は、脱酸元素として作用する元素である。Al含有量は0%でもよいが、十分な脱酸の効果を得るためには、Al含有量は0.0010%以上であることが好ましい。Al含有量は、より好ましくは0.0050%以上、さらに好ましくは0.0100%以上、さらにより好ましくは0.0150%以上である。一方、Al含有量が過剰であると加工性の低下や表面性状の劣化を引き起こすおそれがある。したがって、Al含有量は0.4000%未満とする。Al含有量は、0.3900%以下、0.3800%以下、0.3700%以下、0.3500%以下、0.3400%以下、0.3300%以下、0.3000%以下又は0.2000%以下であってもよい。Al含有量は、いわゆる酸可溶Alの含有量(sol.Al)を意味する。
(sol. Al: 0 to less than 0.4000%)
Al (aluminum) is an element that acts as a deoxidizing element. Although the Al content may be 0%, the Al content is preferably 0.0010% or more in order to obtain a sufficient deoxidizing effect. The Al content is more preferably 0.0050% or more, still more preferably 0.0100% or more, and even more preferably 0.0150% or more. On the other hand, if the Al content is excessive, there is a risk of causing deterioration in workability and surface properties. Therefore, the Al content should be less than 0.4000%. Al content is 0.3900% or less, 0.3800% or less, 0.3700% or less, 0.3500% or less, 0.3400% or less, 0.3300% or less, 0.3000% or less, or 0.2000 % or less. The Al content means the so-called acid-soluble Al content (sol. Al).

(P:0.0300%以下)
P(リン)は、一般に鋼に含有される不純物である。Pを過度に含有すると溶接性が低下するおそれがある。したがって、P含有量は0.0300%以下とする。P含有量は、好ましくは0.0200%以下、より好ましくは0.0100%以下、さらに好ましくは0.0050%以下である。P含有量の下限は0%であるが、製造コストの観点から、P含有量は0%超又は0.0001%以上であってもよい。
(P: 0.0300% or less)
P (phosphorus) is an impurity generally contained in steel. Excessive P content may reduce weldability. Therefore, the P content should be 0.0300% or less. The P content is preferably 0.0200% or less, more preferably 0.0100% or less, still more preferably 0.0050% or less. The lower limit of the P content is 0%, but from the viewpoint of manufacturing costs, the P content may be more than 0% or 0.0001% or more.

(S:0.0300%以下)
S(硫黄)は、一般に鋼に含有される不純物である。Sを過度に含有すると溶接性が低下し、さらに、MnSの析出量が増加して曲げ性等の加工性が低下するおそれがある。したがって、S含有量は0.0300%以下とする。S含有量は、好ましくは0.0100%以下、より好ましくは0.0050%以下、さらに好ましくは0.0020%以下である。S含有量の下限は0%であるが、脱硫コストの観点から、S含有量は0%超又は0.0001%以上であってもよい。
(S: 0.0300% or less)
S (sulfur) is an impurity generally contained in steel. If the S content is excessive, the weldability is lowered, and furthermore, the amount of precipitation of MnS increases, which may lead to a decrease in workability such as bendability. Therefore, the S content should be 0.0300% or less. The S content is preferably 0.0100% or less, more preferably 0.0050% or less, still more preferably 0.0020% or less. The lower limit of the S content is 0%, but from the viewpoint of desulfurization cost, the S content may be more than 0% or 0.0001% or more.

(N:0.0100%以下)
N(窒素)は、一般に鋼に含有される不純物である。Nを過度に含有すると溶接性が低下するおそれがある。したがって、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0080%以下、より好ましくは0.0050%以下、さらに好ましくは0.0030%以下である。N含有量の下限は0%であるが、製造コストの観点からN含有量は0%超又は0.0010%以上であってもよい。
(N: 0.0100% or less)
N (nitrogen) is an impurity generally contained in steel. If N is contained excessively, weldability may deteriorate. Therefore, the N content should be 0.0100% or less. The N content is preferably 0.0080% or less, more preferably 0.0050% or less, still more preferably 0.0030% or less. Although the lower limit of the N content is 0%, the N content may be more than 0% or 0.0010% or more from the viewpoint of manufacturing cost.

本発明に係る鋼板の基本成分組成は上記のとおりである。さらに当該鋼板は、必要に応じて、以下の任意元素を含有していてもよい。これらの元素の含有は必須ではなく、これらの元素の含有量の下限は0%である。 The basic chemical composition of the steel sheet according to the present invention is as described above. Further, the steel sheet may contain the following arbitrary elements as necessary. The content of these elements is not essential, and the lower limit of the content of these elements is 0%.

(B:0~0.010%)
B(ホウ素)は、焼入れ性を高めて強度の向上に寄与し、また粒界に偏析して粒界を強化して靭性を向上させる元素である。B含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。B含有量は、0.0001%以上、0.0005%以上又は0.001%以上であってもよい。一方、十分な靭性及び溶接性を確保する観点から、B含有量は0.010%以下であることが好ましく、0.008%以下又は0.006%以下であってもよい。
(B: 0 to 0.010%)
B (boron) is an element that increases hardenability and contributes to strength improvement, and segregates at grain boundaries to strengthen the grain boundaries and improve toughness. The B content may be 0%, but may be contained as necessary in order to obtain the above effects. The B content may be 0.0001% or more, 0.0005% or more, or 0.001% or more. On the other hand, from the viewpoint of ensuring sufficient toughness and weldability, the B content is preferably 0.010% or less, and may be 0.008% or less or 0.006% or less.

(Ti:0~0.150%)
Ti(チタン)は、TiCとして鋼の冷却中に析出し、強度の向上に寄与する元素である。Ti含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Ti含有量は、0.001%以上、0.003%以上、0.005%以上又は0.010%以上であってもよい。一方、Tiを過剰に含有すると粗大なTiNが生成して靭性が損なわれるおそれがある。このため、Ti含有量は0.150%以下であることが好ましく、0.100%以下又は0.050%以下であってもよい。
(Ti: 0 to 0.150%)
Ti (titanium) is an element that precipitates as TiC during cooling of steel and contributes to an improvement in strength. Although the Ti content may be 0%, it may be contained as necessary in order to obtain the above effect. The Ti content may be 0.001% or more, 0.003% or more, 0.005% or more, or 0.010% or more. On the other hand, if Ti is contained excessively, coarse TiN may be generated and the toughness may be impaired. Therefore, the Ti content is preferably 0.150% or less, and may be 0.100% or less or 0.050% or less.

(Nb:0~0.150%)
Nb(ニオブ)は焼入れ性の向上を通じて強度の向上に寄与する元素である。Nb含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Nb含有量は、0.001%以上、0.005%以上、0.010%以上又は0.015%以上であってもよい。一方、十分な靭性及び溶接性を確保する観点から、Nb含有量は、0.150%以下であることが好ましく、0.100%以下又は0.060%以下であってもよい。
(Nb: 0 to 0.150%)
Nb (niobium) is an element that contributes to strength improvement through improvement of hardenability. Although the Nb content may be 0%, it may be contained as necessary in order to obtain the above effects. The Nb content may be 0.001% or more, 0.005% or more, 0.010% or more, or 0.015% or more. On the other hand, from the viewpoint of ensuring sufficient toughness and weldability, the Nb content is preferably 0.150% or less, and may be 0.100% or less or 0.060% or less.

(V:0~0.150%)
V(バナジウム)は焼入れ性の向上を通じて強度の向上に寄与する元素である。V含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。V含有量は、0.001%以上、0.010%以上、0.020%以上又は0.030%以上であってもよい。一方、十分な靭性及び溶接性を確保する観点から、V含有量は、0.150%以下であることが好ましく、0.100%以下又は0.060%以下であってもよい。
(V: 0-0.150%)
V (vanadium) is an element that contributes to strength improvement through improvement of hardenability. Although the V content may be 0%, it may be contained as necessary in order to obtain the above effects. The V content may be 0.001% or more, 0.010% or more, 0.020% or more, or 0.030% or more. On the other hand, from the viewpoint of ensuring sufficient toughness and weldability, the V content is preferably 0.150% or less, and may be 0.100% or less or 0.060% or less.

(Cr:0~2.00%)
Cr(クロム)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効である。Cr含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Cr含有量は、0.01%以上、0.10%以上、0.20%以上、0.50%以上又は0.80%以上であってもよい。一方、Crを過剰に含有するとCr炭化物が多量に形成し、逆に焼入れ性が損なわれるおそれがある。このため、Cr含有量は2.00%以下であることが好ましく、1.80%以下又は1.50%以下であってもよい。
(Cr: 0 to 2.00%)
Cr (chromium) is effective in increasing the hardenability of steel and increasing the strength of steel. Although the Cr content may be 0%, it may be contained as necessary in order to obtain the above effect. The Cr content may be 0.01% or more, 0.10% or more, 0.20% or more, 0.50% or more, or 0.80% or more. On the other hand, if Cr is contained excessively, a large amount of Cr carbide is formed, which may adversely impair the hardenability. Therefore, the Cr content is preferably 2.00% or less, and may be 1.80% or less or 1.50% or less.

(Ni:0~2.00%)
Ni(ニッケル)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効な元素である。Ni含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Ni含有量は、0.01%以上、0.10%以上、0.20%以上、0.50%以上又は0.80%以上であってもよい。一方、Niの過剰な添加はコストの上昇を招く。このため、Ni含有量は2.00%以下であることが好ましく、1.80%以下又は1.50%以下であってもよい。
(Ni: 0 to 2.00%)
Ni (nickel) is an element effective in increasing the hardenability of steel and increasing the strength of steel. Although the Ni content may be 0%, it may be contained as necessary in order to obtain the above effects. The Ni content may be 0.01% or more, 0.10% or more, 0.20% or more, 0.50% or more, or 0.80% or more. On the other hand, excessive addition of Ni causes an increase in cost. Therefore, the Ni content is preferably 2.00% or less, and may be 1.80% or less or 1.50% or less.

(Cu:0~2.00%)
Cu(銅)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効な元素である。Cu含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Cu含有量は、0.001%以上、0.005%以上又は0.01%以上であってもよい。一方、靭性低下や鋳造後のスラブの割れや溶接性の低下を抑制する観点から、Cu含有量は2.00%以下であることが好ましく、1.80%以下、1.50%以下又は1.00%以下であってもよい。
(Cu: 0 to 2.00%)
Cu (copper) is an element effective in increasing the hardenability of steel and increasing the strength of steel. Although the content of Cu may be 0%, it may be contained as necessary in order to obtain the above effect. The Cu content may be 0.001% or more, 0.005% or more, or 0.01% or more. On the other hand, from the viewpoint of suppressing deterioration of toughness, cracking of the slab after casting, and deterioration of weldability, the Cu content is preferably 2.00% or less, 1.80% or less, 1.50% or less, or 1 00% or less.

(Mo:0~1.00%)
Mo(モリブデン)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効な元素である。Mo含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Mo含有量は、0.01%以上、0.10%以上、0.20%以上又は0.30%以上であってもよい。一方、靭性と溶接性の低下を抑制する観点から、Mo含有量は1.00%以下であることが好ましく、0.90%以下又は0.80%以下であってもよい。
(Mo: 0-1.00%)
Mo (molybdenum) is an element effective in increasing the hardenability of steel and increasing the strength of steel. The Mo content may be 0%, but may be contained as necessary in order to obtain the above effects. Mo content may be 0.01% or more, 0.10% or more, 0.20% or more, or 0.30% or more. On the other hand, from the viewpoint of suppressing deterioration of toughness and weldability, the Mo content is preferably 1.00% or less, and may be 0.90% or less or 0.80% or less.

(W:0~1.00%)
W(タングステン)は、鋼の焼入れ性を高めて、鋼の強度を高めるのに有効な元素である。W含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。W含有量は、0.001%以上、0.005%以上又は0.01%以上であってもよい。一方、靭性と溶接性の低下を抑制する観点から、W含有量は1.00%以下であることが好ましく、0.90%以下、0.80%以下、0.50%以下又は0.10%以下であってもよい。
(W: 0-1.00%)
W (tungsten) is an element effective in increasing the hardenability of steel and increasing the strength of steel. Although the W content may be 0%, it may be contained as necessary in order to obtain the above effects. The W content may be 0.001% or more, 0.005% or more, or 0.01% or more. On the other hand, from the viewpoint of suppressing deterioration of toughness and weldability, the W content is preferably 1.00% or less, 0.90% or less, 0.80% or less, 0.50% or less, or 0.10%. % or less.

(Ca:0~0.100%)
Ca(カルシウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素である。Ca含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Ca含有量は、0.0001%以上、0.0005%以上又は0.001%以上であってもよい。一方、Caを過剰に含有すると表面性状の劣化が顕在化する場合がある。このため、Ca含有量は0.100%以下であることが好ましく、0.080%以下、0.050%以下、0.010%以下又は0.005%以下であってもよい。
(Ca: 0 to 0.100%)
Ca (calcium) is an element that contributes to inclusion control, particularly fine dispersion of inclusions, and has an effect of increasing toughness. Although the Ca content may be 0%, it may be contained as necessary in order to obtain the above effects. The Ca content may be 0.0001% or more, 0.0005% or more, or 0.001% or more. On the other hand, if Ca is contained excessively, deterioration of surface properties may become apparent. Therefore, the Ca content is preferably 0.100% or less, and may be 0.080% or less, 0.050% or less, 0.010% or less, or 0.005% or less.

(Mg:0~0.100%)
Mg(マグネシウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素である。Mg含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Mg含有量は、0.0001%以上、0.0005%以上又は0.001%以上であってもよい。一方、Mgを過剰に含有すると表面性状の劣化が顕在化する場合がある。このため、Mg含有量は0.100%以下であることが好ましく、0.090%以下、0.080%以下、0.050%以下又は0.010%以下であってもよい。
(Mg: 0 to 0.100%)
Mg (magnesium) is an element that contributes to inclusion control, particularly fine dispersion of inclusions, and has an effect of increasing toughness. Although the Mg content may be 0%, it may be contained as necessary in order to obtain the above effect. The Mg content may be 0.0001% or more, 0.0005% or more, or 0.001% or more. On the other hand, when Mg is contained excessively, deterioration of the surface properties may become obvious. Therefore, the Mg content is preferably 0.100% or less, and may be 0.090% or less, 0.080% or less, 0.050% or less, or 0.010% or less.

(Zr:0~0.100%)
Zr(ジルコニウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素である。Zr含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Zr含有量は、0.001%以上、0.005%以上又は0.010%以上であってもよい。一方、Zrを過剰に含有すると表面性状の劣化が顕在化する場合がある。このため、Zr含有量は0.100%以下であることが好ましく、0.050%以下、0.040%以下又は0.030%以下であってもよい。
(Zr: 0 to 0.100%)
Zr (zirconium) is an element that contributes to inclusion control, particularly fine dispersion of inclusions, and has the effect of increasing toughness. Although the Zr content may be 0%, it may be contained as necessary in order to obtain the above effect. The Zr content may be 0.001% or more, 0.005% or more, or 0.010% or more. On the other hand, if Zr is contained excessively, deterioration of the surface properties may become apparent. Therefore, the Zr content is preferably 0.100% or less, and may be 0.050% or less, 0.040% or less, or 0.030% or less.

(Hf:0~0.100%)
Hf(ハフニウム)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素である。Hf含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。Hf含有量は、0.0001%以上、0.0005%以上又は0.001%以上であってもよい。一方、Hfを過剰に含有すると表面性状の劣化が顕在化する場合がある。このため、Hf含有量は0.100%以下であることが好ましく、0.050%以下、0.030%以下又は0.010%以下であってもよい。
(Hf: 0 to 0.100%)
Hf (hafnium) is an element that contributes to inclusion control, particularly fine dispersion of inclusions, and has an effect of increasing toughness. Although the Hf content may be 0%, it may be contained as necessary in order to obtain the above effect. The Hf content may be 0.0001% or more, 0.0005% or more, or 0.001% or more. On the other hand, when Hf is excessively contained, deterioration of the surface properties may become apparent. Therefore, the Hf content is preferably 0.100% or less, and may be 0.050% or less, 0.030% or less, or 0.010% or less.

(REM:0~0.100%)
REM(希土類元素)は、介在物制御、特に介在物の微細分散化に寄与し、靭性を高める作用を有する元素である。REM含有量は0%であってよいが、上記効果を得るため、必要に応じて含有していてもよい。REM含有量は、0.0001%以上、0.0005%以上又は0.001%以上であってもよい。一方、REMを過剰に含有すると表面性状の劣化が顕在化する場合がある。このため、REM含有量は0.100%以下であることが好ましく、0.050%以下、0.030%以下又は0.010%以下であってもよい。なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をいう。REMは通常ミッシュメタルとして添加される。
(REM: 0-0.100%)
REM (rare earth element) is an element that contributes to inclusion control, particularly fine dispersion of inclusions, and has an effect of increasing toughness. Although the REM content may be 0%, it may be contained as necessary in order to obtain the above effects. The REM content may be 0.0001% or greater, 0.0005% or greater, or 0.001% or greater. On the other hand, if the REM content is excessive, deterioration of the surface properties may become apparent. Therefore, the REM content is preferably 0.100% or less, and may be 0.050% or less, 0.030% or less, or 0.010% or less. Note that REM is an abbreviation for Rare Earth Metal, and refers to an element belonging to the lanthanide series. REM is usually added as a misch metal.

本発明に係る鋼板において、上記成分組成以外の残部は、Fe及び不純物からなる。ここで、不純物とは、鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分等である。 In the steel sheet according to the present invention, the balance other than the above composition consists of Fe and impurities. The term "impurities" as used herein refers to components and the like that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when steel sheets are manufactured industrially.

本発明において、鋼板の成分組成の分析は、当業者に公知の元素分析法を用いればよく、例えば、誘導結合プラズマ質量分析法(ICP-MS法)により行われる。ただし、C及びSについては燃焼-赤外線吸収法を用い、Nについては不活性ガス融解-熱伝導度法を用いて測定するとよい。これらの分析は、鋼板をJIS G0417:1999に準拠した方法で採取したサンプルで行えばよい。 In the present invention, the chemical composition of the steel sheet may be analyzed using an elemental analysis method known to those skilled in the art, such as inductively coupled plasma mass spectrometry (ICP-MS method). However, C and S should be measured using the combustion-infrared absorption method, and N should be measured using the inert gas fusion-thermal conductivity method. These analyzes may be performed on samples obtained from steel sheets by a method conforming to JIS G0417:1999.

[表層]
本発明において、鋼板の「表層」とは、鋼板の表面(めっき鋼板の場合は鋼板とめっき層の界面)から板厚方向に所定の深さまでの領域を意味し、「所定の深さ」は典型的には50μm以下である。
[surface]
In the present invention, the "surface layer" of a steel sheet means a region from the surface of the steel sheet (the interface between the steel sheet and the coating layer in the case of a plated steel sheet) to a predetermined depth in the thickness direction, and the "predetermined depth" is It is typically 50 μm or less.

図2に例示されるように、本発明に係る鋼板11は、当該鋼板11の表層にデンドライト型酸化物12を含む。このデンドライト型酸化物12が母材鋼13の内部に存在する(すなわち内部酸化物として存在する)ことにより、図1に示される母材鋼3の表面上に外部酸化層2が存在する場合に比べ、鋼板11が高いめっき性を有することが可能となる。これは、内部酸化物の形成に関連して、めっき(例えばZn系めっき)を鋼板の表面上に形成する際にめっき成分と鋼成分との相互拡散を阻害する外部酸化層が存在しないか又は十分に薄い厚さでしか存在しないために、めっき成分と鋼成分との相互拡散が十分になされた結果と考えられる。したがって、鋼板の表層、すなわち鋼板の内部にデンドライト型酸化物を含む本発明に係る鋼板及びめっき鋼板は、高いめっき性を有する。 As illustrated in FIG. 2 , the steel sheet 11 according to the present invention includes dendrite-type oxides 12 in the surface layer of the steel sheet 11 . Since the dendritic oxide 12 exists inside the base steel 13 (that is, as an internal oxide), when the external oxide layer 2 exists on the surface of the base steel 3 shown in FIG. In comparison, the steel plate 11 can have high plateability. In relation to the formation of internal oxides, this is because there is no external oxide layer that inhibits interdiffusion between plating components and steel components when coating (for example, Zn-based coating) is formed on the surface of the steel sheet. This is considered to be the result of sufficient interdiffusion between the coating components and the steel components, since they exist only in a sufficiently thin thickness. Therefore, the steel sheet and the plated steel sheet according to the present invention containing dendrite-type oxides in the surface layer of the steel sheet, that is, in the interior of the steel sheet, have high plateability.

[デンドライト型酸化物]
本発明において、「デンドライト型酸化物」とは、鋼内部における結晶粒内にデンドライト状に存在する酸化物をいう。ここでいう結晶粒内とは電子線後方散乱回折(EBSD)測定において結晶方位差が10°未満であるものをいう。また、「デンドライト状」とは、主枝(一次アーム)から枝部分(二次アーム)が針状又は葉状に複数に枝分かれして三次元的に成長してなる樹枝状の形状をいい、例えば、0.5~5.0μmの長さの一次アームから50~300nmの長さの二次アームが成長していることをいう。一次アームは、1.0~5.0μmの長さであると好ましく、2.0~5.0μmの長さであるとより好ましい。二次アームは、70~250nmの長さであると好ましく、100~250nmの長さであるとより好ましい。一次アーム及び二次アームの長さは、鋼板の断面を走査型電子顕微鏡(SEM)で観察することで測定することができる。実際には、デンドライト型酸化物は鋼板結晶粒内において、典型的に樹枝状に三次元的に存在しているため、鋼板の表層の断面を観察した場合は、当該デンドライト型酸化物は、典型的に、一本の一次アームから両側に複数の二次アームが枝分かれした形状か、又は、二次アームのみが点状にほぼ等しい間隔で(例えば隣り合う各点の間隔の差が10%以下)略直線的に存在する形状として観察される。図2においては、例として、一本の一次アームから両側に複数の二次アームが枝分かれした形状として観察されたデンドライト型酸化物12と、二次アームのみが点状に略直線的に存在する形状として観察されたデンドライト型酸化物12が示される。特定の実施形態において、本発明におけるデンドライト型酸化物は、例えば、鋼板の表面から8μm未満、7μm未満又は6μm未満までの領域にのみ存在する場合がある。別の特定の実施形態において、デンドライト型酸化物は、鋼板の表面から1μm以上8μm未満、2μm以上8μm未満、又は3μm以上8μm未満の領域にのみ存在する場合がある。
[Dendrite-type oxide]
In the present invention, the term "dendritic oxide" means an oxide that exists in the form of dendrites in crystal grains inside steel. The term "inside the crystal grain" as used herein means that the difference in crystal orientation is less than 10° in electron beam backscatter diffraction (EBSD) measurement. In addition, the term "dendritic" refers to a dendritic shape in which branch portions (secondary arms) branch from a main branch (primary arm) into a plurality of needle-like or leaf-like branches and grow three-dimensionally. , that the secondary arm with a length of 50-300 nm grows from the primary arm with a length of 0.5-5.0 μm. The primary arm is preferably 1.0-5.0 μm long, more preferably 2.0-5.0 μm long. The secondary arm is preferably 70-250 nm long, more preferably 100-250 nm long. The lengths of the primary arm and secondary arm can be measured by observing the cross section of the steel plate with a scanning electron microscope (SEM). In fact, the dendritic oxide typically exists three-dimensionally in a dendritic form within the grains of the steel sheet. Specifically, a shape in which a plurality of secondary arms are branched on both sides from a single primary arm, or only the secondary arms are dotted with approximately equal intervals (for example, the difference in intervals between adjacent points is 10% or less) ) is observed as a substantially linear shape. In FIG. 2, as an example, the dendritic oxide 12 observed as a shape in which a plurality of secondary arms are branched on both sides from a single primary arm, and only the secondary arms exist in a dotted shape and substantially straight lines. A dendritic oxide 12 observed as a shape is shown. In certain embodiments, the dendritic oxide in the present invention may be present, for example, only in a region of less than 8 μm, less than 7 μm, or less than 6 μm from the surface of the steel sheet. In another specific embodiment, the dendritic oxide may be present only in a region 1 μm or more and less than 8 μm, 2 μm or more and less than 8 μm, or 3 μm or more and less than 8 μm from the surface of the steel sheet.

(面積率)
本発明において、デンドライト型酸化物の面積率は5.0%以上である。デンドライト型酸化物の面積率をこのような範囲に制御することで、鋼板内部の結晶粒内にデンドライト型酸化物を十分な量で存在させることができ、デンドライト型酸化物が腐食環境下での水素侵入を抑制する水素のトラップサイトとして良好に機能する。一方、デンドライト型酸化物の面積率が5.0%未満であると、水素のトラップサイトとして機能するには量が十分でなく、腐食環境下での水素侵入を十分に抑制できず、良好な耐水素侵入性ひいては良好な耐水素脆化性を得られないおそれがある。デンドライト型酸化物の面積率は、好ましくは10.0%以上又は20.0%以上、より好ましくは30.0%以上、さらに好ましくは50.0%以上である。デンドライト型酸化物は多量に存在するほど好ましいため、デンドライト型酸化物の面積率は、上限は特に限定されないが、例えば70.0%以下又は60.0%以下であってもよい。
(area ratio)
In the present invention, the area ratio of the dendrite-type oxide is 5.0% or more. By controlling the area ratio of the dendrite-type oxide to such a range, a sufficient amount of the dendrite-type oxide can be present in the crystal grains inside the steel sheet, and the dendrite-type oxide can be used in a corrosive environment. It functions well as a hydrogen trap site that suppresses hydrogen penetration. On the other hand, if the area ratio of the dendritic oxide is less than 5.0%, the amount is not sufficient to function as a hydrogen trap site, and hydrogen penetration under a corrosive environment cannot be sufficiently suppressed, resulting in a favorable There is a possibility that good resistance to hydrogen penetration and, in turn, resistance to hydrogen embrittlement cannot be obtained. The area ratio of the dendrite-type oxide is preferably 10.0% or more or 20.0% or more, more preferably 30.0% or more, and still more preferably 50.0% or more. Since a large amount of the dendrite-type oxide is preferable, the area ratio of the dendrite-type oxide is not particularly limited, but may be, for example, 70.0% or less or 60.0% or less.

デンドライト型酸化物の面積率は走査型電子顕微鏡(SEM)で測定される。具体的な測定は、以下のとおりである。鋼板の表層の断面をSEMにより観察し、例えば図2のようなデンドライト型酸化物を含むSEM画像を得る。当該SEM画像から観察領域として、1.0μm(深さ方向)×1.0μm(幅方向)の領域を合計10箇所選択する。各領域の観察位置としては、深さ方向(鋼板の表面と垂直な方向)については、鋼板表面から0.5μm~5.0μmまでの深さの領域のうちの1.0μmとし、幅方向(鋼板の表面と平行な方向)については、上記SEM画像の任意の位置の1.0μmとする。次いで、上記のように選択した各領域のSEM画像を抽出し、酸化物部分と鋼部分とを分けるために二値化し、各二値化像からデンドライト型酸化物部分の総面積を算出する。こうして求めた10箇所の領域の合計のデンドライト型酸化物の総面積を10箇所の領域の総面積(10μm2)で割ることによって、本発明における「デンドライト型の面積率」を求める。なお、上記の観察領域としては、デンドライト型でない酸化物を当該領域内に含むものは選択しない。 The area ratio of dendrite-type oxides is measured with a scanning electron microscope (SEM). Specific measurements are as follows. A cross-section of the surface layer of the steel sheet is observed with an SEM, and an SEM image containing dendrite-type oxides such as that shown in FIG. 2 is obtained. A total of 10 regions of 1.0 μm (depth direction)×1.0 μm (width direction) are selected as observation regions from the SEM image. As for the observation position of each region, the depth direction (the direction perpendicular to the surface of the steel plate) is 1.0 μm in the depth region from the steel plate surface to 0.5 μm to 5.0 μm, and the width direction ( The direction parallel to the surface of the steel sheet) is 1.0 μm at an arbitrary position in the SEM image. An SEM image of each selected region as described above is then extracted and binarized to separate the oxide and steel portions, and the total area of the dendritic oxide portion is calculated from each binarized image. By dividing the total area of the dendritic oxide of the 10 regions thus obtained by the total area (10 μm 2 ) of the 10 regions, the “dendritic area ratio” in the present invention is obtained. As the observation region, a region containing non-dendritic oxide is not selected.

[酸化物の成分組成]
本発明において、デンドライト型酸化物(以下、単に酸化物ともいう)は、酸素に加え、上述した鋼板中に含まれる元素のうち1種又は2種以上を含むものであって、典型的に、Si、O及びFeを含み、場合によりさらにMnを含む成分組成を有する。より具体的には、酸化物は、典型的にSi:5~25%、Mn:0~10%、O:40~65%、及びFe:10~30%を含む。当該酸化物は、これらの元素以外にも上述した鋼板に含まれ得る元素(例えばCrなど)を含んでもよい。
[Component composition of oxide]
In the present invention, the dendrite-type oxide (hereinafter also simply referred to as oxide) contains one or more of the elements contained in the steel sheet described above in addition to oxygen, and typically includes: It has a component composition containing Si, O and Fe, and optionally further containing Mn. More specifically, the oxide typically contains Si: 5-25%, Mn: 0-10%, O: 40-65%, and Fe: 10-30%. The oxide may contain an element (for example, Cr) that may be contained in the steel sheet described above, in addition to these elements.

[Si-Mn欠乏層]
本発明に係る鋼板は、当該鋼板の表面から3.0μm以上の厚さを有するSi-Mn欠乏層を含み、当該厚さの1/2位置における酸化物を含まないSi-Mn欠乏層のSi及びMn含有量がそれぞれ鋼板の板厚中心部におけるSi及びMn含有量の10%未満である。デンドライト型酸化物の形成に起因して鋼板の表層に生成されるSi-Mn欠乏層を3.0μm以上の厚さとし、当該Si-Mn欠乏層のSi及びMn欠乏率をそれぞれ10%未満に制御することで、水素の拡散を阻害する固溶Si及びMnの量を十分に低減することができ、その結果として水素の拡散を促進して鋼中からの水素排出性を顕著に向上させることが可能となる。Si-Mn欠乏層の厚さを大きくすることで鋼中からの水素の拡散をより促進させることができるため、Si-Mn欠乏層の厚さは、好ましくは4.0μm以上、より好ましくは5.0μm以上、最も好ましくは7.0μm以上である。Si-Mn欠乏層の厚さの上限は特に限定されないが、例えばSi-Mn欠乏層の厚さは50.0μm以下であってよい。
[Si—Mn depleted layer]
The steel sheet according to the present invention includes a Si—Mn depleted layer having a thickness of 3.0 μm or more from the surface of the steel sheet, and does not contain oxides at 1/2 positions of the thickness Si of the Si—Mn depleted layer and Mn contents are each less than 10% of the Si and Mn contents in the thickness center of the steel sheet. The Si—Mn depleted layer formed on the surface layer of the steel sheet due to the formation of dendrite-type oxides has a thickness of 3.0 μm or more, and the Si and Mn depleted layers of the Si—Mn depleted layer are each controlled to less than 10%. By doing so, the amount of solid solution Si and Mn that inhibits the diffusion of hydrogen can be sufficiently reduced, and as a result, the diffusion of hydrogen can be promoted and the ability to discharge hydrogen from steel can be significantly improved. It becomes possible. By increasing the thickness of the Si—Mn depleted layer, the diffusion of hydrogen from the steel can be promoted, so the thickness of the Si—Mn depleted layer is preferably 4.0 μm or more, more preferably 5 0 μm or more, most preferably 7.0 μm or more. Although the upper limit of the thickness of the Si--Mn depleted layer is not particularly limited, the thickness of the Si--Mn depleted layer may be, for example, 50.0 μm or less.

同様に、Si-Mn欠乏層のSi及びMn欠乏率をより小さくすることで鋼中の固溶Si及びMnの量をさらに低減することができる。このため、Si-Mn欠乏層のSi欠乏率は、好ましくは8%以下、より好ましくは6%以下、最も好ましくは4%以下である。Si欠乏率の下限値は、特に限定されないが0%であってもよい。同様に、Si-Mn欠乏層のMn欠乏率は、好ましくは8%以下、より好ましくは6%以下、最も好ましくは4%以下である。Mn欠乏率の下限値は、特に限定されないが0%であってもよい。本発明において、「酸化物を含まない」との表現は、上記のデンドライト型酸化物だけでなく、他のいかなる酸化物も含まないことを意味するものであり、このような酸化物を含まない領域はSEMによる断面観察及びエネルギー分散型X線分光器(EDS)により特定することが可能である。また、本発明に係るSi-Mn欠乏層は、デンドライト型酸化物等の内部酸化物を単に形成しただけでは所望の厚さ及び組成の範囲に制御することはできず、後で詳しく説明するように、製造プロセスにおいて内部酸化の進行を適切に制御することが重要となる。 Similarly, by making the Si and Mn depletion rates of the Si—Mn depleted layer smaller, the amounts of solid solution Si and Mn in the steel can be further reduced. Therefore, the Si depletion rate of the Si—Mn depleted layer is preferably 8% or less, more preferably 6% or less, and most preferably 4% or less. The lower limit of the Si depletion rate is not particularly limited, but may be 0%. Similarly, the Mn depletion rate of the Si—Mn depleted layer is preferably 8% or less, more preferably 6% or less, and most preferably 4% or less. The lower limit of the Mn deficiency rate is not particularly limited, but may be 0%. In the present invention, the expression "free of oxides" means not only the dendritic oxides described above, but also free of any other oxides. The region can be identified by cross-sectional observation by SEM and energy dispersive X-ray spectroscopy (EDS). In addition, the Si—Mn depleted layer according to the present invention cannot be controlled within the desired thickness and composition ranges by simply forming an internal oxide such as a dendritic oxide. Furthermore, it is important to appropriately control the progress of internal oxidation in the manufacturing process.

Si-Mn欠乏層の厚さは、図2中のDで示されるように、鋼板11の表面(めっき鋼板の場合は鋼板とめっき層の界面)から鋼板11の板厚方向(鋼板の表面に垂直な方向)に進んだ場合における鋼板11の表面からデンドライト型酸化物12が存在する最も遠い位置までの距離をいう。Si-Mn欠乏層の厚さは、上述のデンドライト型酸化物の面積率を測定したSEM画像と同一の画像から求めればよい。また、Si-Mn欠乏層の厚さの1/2位置における酸化物を含まない領域のSi及びMn含有量は、上記SEM画像から決定されたSi-Mn欠乏層の厚さの1/2位置において無作為に選択された酸化物を含まない10箇所の点をエネルギー分散型X線分光器付き透過型電子顕微鏡(TEM-EDS)を用いて分析し、得られたSi及びMn濃度の測定値を算術平均することによって決定される。また、鋼板の板厚中心部におけるSi及びMn含有量は、当該板厚中心部の断面をSEMで観察し、そのSEM画像から板厚中心部において無作為に選択された10箇所の点をエネルギー分散型X線分光器付き透過型電子顕微鏡(TEM-EDS)を用いて分析し、得られたSi及びMn濃度の測定値を算術平均することによって決定される。最後に、Si-Mn欠乏層の厚さの1/2位置におけるSi及びMn含有量をそれぞれ鋼板の板厚中心部におけるSi及びMn含有量で除したものを百分率で表現した値がSi及びMn欠乏率として決定される。 The thickness of the Si—Mn depleted layer is, as indicated by D in FIG. vertical direction) from the surface of the steel sheet 11 to the furthest position where the dendrite-type oxide 12 exists. The thickness of the Si--Mn depleted layer can be obtained from the same SEM image as the above-mentioned SEM image for measuring the area ratio of the dendrite-type oxide. In addition, the Si and Mn contents of the oxide-free region at the 1/2 position of the thickness of the Si—Mn depleted layer are determined from the SEM image, and the 1/2 position of the thickness of the Si—Mn depleted layer Measured values of Si and Mn concentrations obtained by analyzing 10 randomly selected points that do not contain oxides using a transmission electron microscope with an energy dispersive X-ray spectrometer (TEM-EDS) is determined by arithmetically averaging In addition, the Si and Mn contents in the center of the thickness of the steel plate are obtained by observing the cross section of the center of the thickness with an SEM, and from the SEM image, 10 randomly selected points in the center of the thickness are energy It is determined by arithmetically averaging the Si and Mn concentration measurements obtained using a transmission electron microscope with dispersive X-ray spectroscopy (TEM-EDS). Finally, the values obtained by dividing the Si and Mn contents at the 1/2 position of the thickness of the Si—Mn depleted layer by the Si and Mn contents at the center of the thickness of the steel sheet, respectively, are expressed as percentages. Si and Mn determined as the deficiency rate.

<めっき鋼板>
本発明に係るめっき鋼板は、上述した本発明に係る鋼板上にZnを含むめっき層を有する。このめっき層は鋼板の片面に形成されていても、両面に形成されていてもよい。Znを含むめっき層としては、例えば、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、電気亜鉛めっき層、電気合金亜鉛めっき層などが挙げられる。より具体的には、めっき種としては、例えば、Zn-0.2%Al(GI)、Zn-(0.3~1.5)%Al、Zn-4.5%Al、Zn-0.09%Al-10%Fe(GA)、Zn-1.5%Al-1.5%Mg、Zn-11%Al-3%Mg-0.2%Si、Zn-11%Ni、又はZn-15%Mgなどを用いることができる。
<Plated steel sheet>
The plated steel sheet according to the present invention has a plating layer containing Zn on the steel sheet according to the present invention described above. This plating layer may be formed on one side of the steel sheet, or may be formed on both sides. The plating layer containing Zn includes, for example, a hot-dip galvanized layer, an alloyed hot-dip galvanized layer, an electro-galvanized layer, an electro-alloyed galvanized layer, and the like. More specifically, plating types include, for example, Zn-0.2% Al (GI), Zn-(0.3 to 1.5)% Al, Zn-4.5% Al, Zn-0. 09% Al-10% Fe (GA), Zn-1.5% Al-1.5% Mg, Zn-11% Al-3% Mg-0.2% Si, Zn-11% Ni, or Zn- 15% Mg or the like can be used.

[めっき層の成分組成]
本発明におけるZnを含むめっき層に含まれる成分組成について説明する。元素の含有量に関する「%」は、特に断りがない限り、「質量%」を意味する。めっき層についての成分組成における数値範囲において、「~」を用いて表される数値範囲は、特に指定しない限り、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[Component composition of plating layer]
The component composition contained in the plating layer containing Zn in the present invention will be described. "%" regarding the content of an element means "% by mass" unless otherwise specified. In the numerical range of the component composition of the plating layer, unless otherwise specified, the numerical range represented using "~" means the range including the numerical values before and after "~" as the lower and upper limits. do.

(Al:0~60.0%)
Alは、Znと共に含まれるか又は合金化することでめっき層の耐食性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、Al含有量は0%であってもよい。ZnとAlとを含むめっき層を形成するために、Al含有量は0.01%以上であることが好ましく、例えば、0.1%以上、0.5%以上、1.0%以上、又は3.0%以上であってよい。一方、Alを過度に含有しても耐食性を向上させる効果が飽和するため、Al含有量は、60.0%以下であることが好ましく、例えば、55.0%以下、50.0%以下、40.0%以下、30.0%以下、20.0%以下、10.0%以下、又は5.0%以下であってよい。
(Al: 0-60.0%)
Al is an element that improves the corrosion resistance of the plating layer by being contained together with Zn or being alloyed with it, so it may be contained as necessary. Therefore, the Al content may be 0%. In order to form a plating layer containing Zn and Al, the Al content is preferably 0.01% or more, for example, 0.1% or more, 0.5% or more, 1.0% or more, or It may be 3.0% or more. On the other hand, even if Al is contained excessively, the effect of improving the corrosion resistance is saturated, so the Al content is preferably 60.0% or less, for example, 55.0% or less, 50.0% or less, It may be 40.0% or less, 30.0% or less, 20.0% or less, 10.0% or less, or 5.0% or less.

(Mg:0~15.0%)
Mgは、Zn及びAlと共に含まれるか又は合金化することでめっき層の耐食性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、Mg含有量は0%であってもよい。ZnとAlとMgとを含むめっき層を形成するために、Mg含有量は0.01%以上であることが好ましく、例えば、0.1%以上、0.5%以上、1.0%以上、又は3.0%以上であってよい。一方、Mgを過度に含有すると、めっき浴中にMgが溶解しきれずに酸化物として浮遊し、このめっき浴で亜鉛めっきするとめっき表層に酸化物が付着して外観不良を起こし、あるいは、不めっき部が発生するおそれがある。このため、Mg含有量は、15.0%以下であることが好ましく、例えば、10.0%以下、5.0%以下であってよい。
(Mg: 0-15.0%)
Mg is an element that improves the corrosion resistance of the plating layer by being contained together with Zn and Al or being alloyed with it, so it may be contained as necessary. Therefore, the Mg content may be 0%. In order to form a plating layer containing Zn, Al, and Mg, the Mg content is preferably 0.01% or more, for example, 0.1% or more, 0.5% or more, 1.0% or more. , or 3.0% or more. On the other hand, when Mg is contained excessively, Mg cannot be completely dissolved in the plating bath and floats as an oxide, and when zinc is plated in this plating bath, the oxide adheres to the plating surface layer, causing poor appearance or non-plating. part may occur. Therefore, the Mg content is preferably 15.0% or less, and may be, for example, 10.0% or less, or 5.0% or less.

(Fe:0~15.0%)
Feは、鋼板上にZnを含むめっき層を形成した後にめっき鋼板を熱処理した場合に鋼板から拡散することでめっき層中に含まれ得る。したがって、熱処理がされていない状態においては、Feはめっき層中に含まれないため、Fe含有量は0%であってもよい。また、Fe含有量は、1.0%以上、2.0%以上、3.0%以上、4.0%以上又は5.0%以上であってもよい。一方、Fe含有量は、15.0%以下であることが好ましく、例えば、12.0%以下、10.0%以下、8.0%以下又は6.0%以下であってもよい。
(Fe: 0 to 15.0%)
Fe can be contained in the coating layer by diffusing from the steel sheet when the coating layer containing Zn is formed on the steel sheet and then heat-treated. Therefore, the Fe content may be 0% since Fe is not contained in the plated layer when the heat treatment is not performed. Also, the Fe content may be 1.0% or more, 2.0% or more, 3.0% or more, 4.0% or more, or 5.0% or more. On the other hand, the Fe content is preferably 15.0% or less, and may be, for example, 12.0% or less, 10.0% or less, 8.0% or less, or 6.0% or less.

(Si:0~3.0%)
Siは、Znを含むめっき層、特にZn-Al-Mgめっき層に含まれるとさらに耐食性を向上させる元素であるため、必要に応じて含有していてもよい。したがって、Si含有量は0%であってもよい。耐食性向上の観点から、Si含有量は、例えば、0.005%以上、0.01%以上、0.05%以上、0.1%以上又は0.5%以上であってもよい。また、Si含有量は、3.0%以下、2.5%以下、2.0%以下、1.5%以下又は1.2%以下であってもよい。
(Si: 0 to 3.0%)
Si is an element that further improves corrosion resistance when contained in a Zn-containing plating layer, particularly a Zn--Al--Mg plating layer, and thus may be contained as necessary. Therefore, the Si content may be 0%. From the viewpoint of improving corrosion resistance, the Si content may be, for example, 0.005% or more, 0.01% or more, 0.05% or more, 0.1% or more, or 0.5% or more. Also, the Si content may be 3.0% or less, 2.5% or less, 2.0% or less, 1.5% or less, or 1.2% or less.

めっき層の基本の成分組成は上記のとおりである。さらに、めっき層は、任意選択で、Sb:0~0.50%、Pb:0~0.50%、Cu:0~1.00%、Sn:0~1.00%、Ti:0~1.00%、Sr:0~0.50%、Cr:0~1.00%、Ni:0~1.00%、及びMn:0~1.00%のうち1種又は2種以上を含有してもよい。特に限定されないが、めっき層を構成する上記基本成分の作用及び機能を十分に発揮させる観点から、これらの任意添加元素の合計含有量は5.00%以下とすることが好ましく、2.00%以下とすることがより好ましい。 The basic component composition of the plating layer is as described above. Furthermore, the plating layer is optionally Sb: 0 to 0.50%, Pb: 0 to 0.50%, Cu: 0 to 1.00%, Sn: 0 to 1.00%, Ti: 0 to 1.00%, Sr: 0 to 0.50%, Cr: 0 to 1.00%, Ni: 0 to 1.00%, and Mn: 0 to 1.00%, one or more may contain. Although not particularly limited, the total content of these optional additive elements is preferably 5.00% or less, and 2.00%, from the viewpoint of sufficiently exhibiting the actions and functions of the basic components that constitute the plating layer. More preferably:

めっき層において上記成分以外の残部はZn及び不純物からなる。めっき層における不純物とは、めっき層を製造する際に、原料を始めとして、製造工程の種々の要因によって混入する成分等である。めっき層においては、不純物として、上で説明した基本成分及び任意添加成分以外の元素が、本発明の効果を妨げない範囲内で微量に含まれていてもよい。 In the plated layer, the balance other than the above components consists of Zn and impurities. Impurities in the plating layer are components and the like that are mixed due to various factors in the manufacturing process, including raw materials, when manufacturing the plating layer. The plating layer may contain, as impurities, a trace amount of elements other than the above-described basic components and optional additive components within a range that does not interfere with the effects of the present invention.

めっき層の成分組成は、鋼板の腐食を抑制するインヒビターを加えた酸溶液にめっき層を溶解し、得られた溶液をICP(高周波誘導結合プラズマ)発光分光法によって測定することにより決定することができる。 The chemical composition of the plating layer can be determined by dissolving the plating layer in an acid solution containing an inhibitor that suppresses corrosion of the steel sheet, and measuring the resulting solution by ICP (inductively coupled plasma) emission spectroscopy. can.

めっき層の厚さは、例えば3~50μmであってよい。また、めっき層の付着量は、特に限定されないが、例えば、片面当たり10~170g/m2であってよい。本発明において、めっき層の付着量は、地鉄の腐食を抑制するインヒビターを加えた酸溶液にめっき層を溶解し、酸洗前後の重量変化から決定される。 The thickness of the plating layer may be, for example, 3-50 μm. Also, the amount of the plated layer deposited is not particularly limited, but may be, for example, 10 to 170 g/m 2 per side. In the present invention, the adhesion amount of the plating layer is determined by dissolving the plating layer in an acid solution to which an inhibitor for suppressing corrosion of the base iron is added, and from the change in weight before and after pickling.

[引張強度]
本発明に係る鋼板及びめっき鋼板は、高強度を有していることが好ましく、具体的には440MPa以上の引張強度を有することが好ましい。例えば、引張強度は500MPa以上、600MPa以上、700MPa以上、又は800MPa以上であってもよい。引張強度の上限は特に限定されないが、靭性確保の観点から例えば2000MPa以下であればよい。引張強度の測定は、圧延方向に直角な方向を長手方向とするJIS5号引張試験片を採取し、JIS Z 2241(2011)に準拠して行えばよい。
[Tensile strength]
The steel sheet and plated steel sheet according to the present invention preferably have high strength, and specifically preferably have a tensile strength of 440 MPa or more. For example, the tensile strength may be 500 MPa or greater, 600 MPa or greater, 700 MPa or greater, or 800 MPa or greater. Although the upper limit of the tensile strength is not particularly limited, it may be, for example, 2000 MPa or less from the viewpoint of ensuring toughness. The tensile strength may be measured according to JIS Z 2241 (2011) by taking a JIS No. 5 tensile test piece whose longitudinal direction is perpendicular to the rolling direction.

本発明に係る鋼板及びめっき鋼板は、高強度であり、高いめっき性及び耐水素脆化性を有するため、自動車、家電製品、建材等の広い分野において好適に使用することができるが、特に自動車分野で使用されるのが好ましい。自動車用に用いられる鋼板は、通常、めっき処理(典型的にZn系めっき処理)が行われるため、本発明に係る鋼板を自動車用鋼板として使用した場合に、高いめっき性を有するという本発明の効果が好適に発揮される。また、自動車用に用いられる鋼板及びめっき鋼板は大気腐食環境下で使用されることが多く、その場合に当該環境下で発生する水素の侵入に起因する水素脆化割れが顕著に問題になり得る。そのため、本発明に係る鋼板及びめっき鋼板を自動車用鋼板として使用した場合に、高い耐水素脆化性を有するという本発明の効果が好適に発揮される。 The steel sheet and plated steel sheet according to the present invention have high strength, high platability, and high resistance to hydrogen embrittlement. It is preferably used in the field. Steel sheets used for automobiles are usually subjected to plating treatment (typically Zn-based plating treatment). The effect is exhibited suitably. In addition, steel sheets and plated steel sheets used for automobiles are often used in an atmospheric corrosive environment, and in that case, hydrogen embrittlement cracking due to the intrusion of hydrogen generated in the environment can become a significant problem. . Therefore, when the steel sheet and plated steel sheet according to the present invention are used as steel sheets for automobiles, the effect of the present invention of having high resistance to hydrogen embrittlement is suitably exhibited.

<鋼板の製造方法>
以下で、本発明に係る鋼板の好ましい製造方法について説明する。以下の説明は、本発明に係る鋼板を製造するための特徴的な方法の例示を意図するものであって、当該鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
<Manufacturing method of steel plate>
A preferred method for manufacturing a steel sheet according to the present invention will be described below. The following description is intended to exemplify the characteristic method for manufacturing the steel sheet according to the present invention, and the steel sheet is limited to those manufactured by the manufacturing method described below. not intended.

本発明に係る鋼板は、例えば、成分組成を調整した溶鋼を鋳造して鋼片を形成する鋳造工程、鋼片を熱間圧延して熱延鋼板を得る熱延工程、熱延鋼板を巻取る巻取工程、巻取った熱延鋼板を冷間圧延して冷延鋼板を得る冷延工程、冷延鋼板の表面に転位を導入する研削工程、及び研削した冷延鋼板を焼鈍する焼鈍工程を行うことで得ることができる。代替的に、熱延工程後に巻き取らず、酸洗してそのまま冷延工程を行ってもよい。 The steel sheet according to the present invention includes, for example, a casting process in which molten steel having an adjusted chemical composition is cast to form a steel slab, a hot rolling process in which the steel slab is hot rolled to obtain a hot-rolled steel sheet, and a hot-rolled steel sheet is coiled. A coiling process, a cold rolling process of cold-rolling the coiled hot-rolled steel sheet to obtain a cold-rolled steel sheet, a grinding process of introducing dislocations into the surface of the cold-rolled steel sheet, and an annealing process of annealing the ground cold-rolled steel sheet. You can get it by doing. Alternatively, the cold rolling process may be performed as it is after pickling without winding after the hot rolling process.

[鋳造工程]
鋳造工程の条件は特に限定されない。例えば、高炉や電炉等による溶製に引き続き、各種の二次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造などの方法で鋳造すればよい。
[Casting process]
Conditions for the casting process are not particularly limited. For example, following smelting by a blast furnace or an electric furnace, various secondary smelting may be performed, and then casting may be performed by a method such as ordinary continuous casting or casting by an ingot method.

[熱延工程]
上記のように鋳造した鋼片を熱間圧延して熱延鋼板を得ることができる。熱延工程は、鋳造した鋼片を直接又は一旦冷却した後に再加熱して熱間圧延することにより行われる。再加熱を行う場合には、鋼片の加熱温度は、例えば1100℃~1250℃であればよい。熱延工程においては、通常、粗圧延と仕上圧延とが行われる。各圧延の温度や圧下率は、所望の金属組織や板厚に応じて適宜変更すればよい。例えば仕上げ圧延の終了温度を900~1050℃、仕上圧延の圧下率を10~50%としてもよい。
[Hot rolling process]
A hot-rolled steel sheet can be obtained by hot-rolling the steel slab cast as described above. The hot-rolling process is performed by hot-rolling a cast steel slab directly or by reheating it after cooling it once. When reheating is performed, the heating temperature of the steel slab may be, for example, 1100.degree. C. to 1250.degree. Rough rolling and finish rolling are usually performed in the hot rolling process. The temperature and rolling reduction for each rolling may be appropriately changed according to the desired metal structure and plate thickness. For example, the finishing temperature of finish rolling may be 900 to 1050° C., and the rolling reduction of finish rolling may be 10 to 50%.

[巻取工程]
熱延鋼板は所定の温度で巻取ることができる。巻取温度は、所望の金属組織等に応じて適宜変更すればよく、例えば500~800℃であればよい。巻取る前又は巻取った後に巻き戻して、熱延鋼板に所定の熱処理を与えてもよい。代替的に、巻取工程は行わずに熱延工程後に酸洗して後述する冷延工程を行うこともできる。
[Winding process]
A hot-rolled steel sheet can be coiled at a predetermined temperature. The coiling temperature may be appropriately changed according to the desired metal structure and the like, and may be, for example, 500 to 800°C. The hot-rolled steel sheet may be subjected to a predetermined heat treatment by unwinding before or after winding. Alternatively, the coiling process may not be performed, and after the hot rolling process, pickling may be performed and the cold rolling process described below may be performed.

[冷延工程]
熱延鋼板に酸洗等を行った後、熱延鋼板を冷間圧延して冷延鋼板を得ることができる。冷間圧延の圧下率は、所望の金属組織や板厚に応じて適宜変更すればよく、例えば20~80%であればよい。冷延工程後は、例えば空冷して室温まで冷却すればよい。
[Cold rolling process]
After subjecting the hot-rolled steel sheet to pickling or the like, the hot-rolled steel sheet can be cold-rolled to obtain a cold-rolled steel sheet. The rolling reduction of cold rolling may be appropriately changed according to the desired metal structure and plate thickness, and may be, for example, 20 to 80%. After the cold-rolling process, for example, it may be air-cooled to room temperature.

[研削工程]
最終的に得られる鋼板の表層においてデンドライト型酸化物を十分に形成させ、さらに所望の厚さ及び組成を有するSi-Mn欠乏層を形成させるためには、冷延鋼板を焼鈍する前に研削工程を行うことが有効である。当該研削工程により、冷延鋼板の表面に多量の転位を導入することができる。酸素等の拡散は粒内よりも粒界の方が速いため、冷延鋼板の表面に多量の転位を導入することで粒界の場合と同様に多くのパスを形成することができる。このため、焼鈍時に酸素がこれらの転位に沿って鋼の内部まで拡散(侵入)しやすくなり、またSi及びMnの拡散速度も向上するため、結果として酸素が鋼の内部のSi及び/又はMnと結び付いてデンドライト型酸化物を形成するのを促進することが可能となる。また、このような内部酸化物の形成促進に伴い、周囲のSi及びMn濃度の低下も促進されるため、所望の厚さ及び組成を有するSi-Mn欠乏層の形成も促進させることができる。研削工程は、特に限定されないが、例えば、重研削ブラシを用いて研削量10~200g/m2の条件下で冷延鋼板の表面を研削することにより実施することができる。重研削ブラシによる研削量は、当業者に公知の任意の適切な方法によって調整することができ、特に限定されないが、例えば、重研削ブラシの本数、回転数、ブラシ圧下量、及び使用する塗布液などを適切に選択することによって調整することができる。このような研削工程を実施することで、後述する焼鈍工程において所望のデンドライト型酸化物を形成するとともに、所望の厚さ及び組成すなわち3.0μm以上の厚さを有しかつSi及びMn欠乏率がそれぞれ10%未満となるSi-Mn欠乏層を確実かつ効率的に鋼板の表層に形成することが可能となる。
[Grinding process]
In order to sufficiently form dendrite-type oxides in the surface layer of the finally obtained steel sheet and to form a Si—Mn depleted layer having a desired thickness and composition, a grinding step is performed before annealing the cold-rolled steel sheet. It is effective to This grinding process can introduce a large amount of dislocations into the surface of the cold-rolled steel sheet. Since the diffusion of oxygen and the like is faster in grain boundaries than in grains, introducing a large amount of dislocations on the surface of the cold-rolled steel sheet enables the formation of many paths as in the case of grain boundaries. For this reason, oxygen tends to diffuse (penetrate) into the steel along these dislocations during annealing, and the diffusion rate of Si and Mn also increases. It is possible to promote the formation of a dendritic oxide by combining with In addition, as the formation of such an internal oxide is promoted, the concentration of Si and Mn in the surrounding area is also reduced, thereby promoting the formation of a Si—Mn depleted layer having a desired thickness and composition. The grinding step is not particularly limited, but can be carried out, for example, by grinding the surface of the cold-rolled steel sheet with a heavy grinding brush at a grinding amount of 10 to 200 g/m 2 . The amount of grinding by the heavy grinding brush can be adjusted by any appropriate method known to those skilled in the art, and is not particularly limited. can be adjusted by appropriately selecting By performing such a grinding step, the desired dendritic oxide is formed in the annealing step described later, and the desired thickness and composition, that is, the thickness of 3.0 μm or more, and the Si and Mn depletion rate of less than 10% each can be reliably and efficiently formed on the surface layer of the steel sheet.

[焼鈍工程]
上記研削工程を行った冷延鋼板に焼鈍を行う。焼鈍は、冷延鋼板に対して圧延方向に張力をかけた状態で行うのが好ましい。とりわけ、焼鈍温度が500℃以上の領域では、それ以外の領域に比べて張力を高くして焼鈍を行なうことが好ましく、具体的には焼鈍温度が500℃以上の領域では、冷延鋼板に対して圧延方向に3~150MPa、特に15~150MPaの張力をかけた状態で焼鈍を行うのが好ましい。焼鈍時に張力をかけると冷延鋼板の表面に多量の転位をより効果的に導入することが可能となる。したがって、焼鈍時に酸素がこれらの転位に沿って鋼の内部まで拡散(侵入)しやすくなり、またSi及びMnの拡散速度も向上するため、鋼板の内部に酸化物が生成されやすくなる。その結果、所望の面積率のデンドライト型酸化物の形成、並びに所望の厚さ及び組成を有するSi-Mn欠乏層の形成にとって有利となる。
[Annealing process]
Annealing is performed on the cold-rolled steel sheet that has been subjected to the grinding process. Annealing is preferably performed in a state in which tension is applied to the cold-rolled steel sheet in the rolling direction. In particular, in the region where the annealing temperature is 500 ° C. or higher, it is preferable to perform annealing with a higher tension than in other regions. Specifically, in the region where the annealing temperature is 500 ° C. or higher, the cold rolled steel sheet is Annealing is preferably performed with a tension of 3 to 150 MPa, particularly 15 to 150 MPa, applied in the rolling direction. When tension is applied during annealing, a large amount of dislocations can be effectively introduced to the surface of the cold-rolled steel sheet. Therefore, during annealing, oxygen tends to diffuse (penetrate) into the steel along these dislocations, and the diffusion rate of Si and Mn also increases, so oxides tend to form inside the steel sheet. As a result, it is advantageous for forming a dendrite-type oxide with a desired area ratio and forming a Si--Mn depleted layer having a desired thickness and composition.

デンドライト型酸化物を十分な量で生成させる観点から、焼鈍工程の保持温度は700~870℃であることが好ましく、好ましくは740~840℃であることがより好ましい。焼鈍工程の保持温度が700℃未満であると、デンドライト型酸化物が十分に生成されないおそれがあり、耐水素侵入性が不十分になる場合がある。上記保持温度までの昇温速度は、特に限定されないが1~10℃/秒で行えばよい。また、昇温は、1~10℃/秒の第1昇温速度と、当該第1昇温速度とは異なる1~10℃/秒の第2昇温速度とにより、2段階で行ってもよい。 From the viewpoint of generating a sufficient amount of dendrite-type oxide, the holding temperature in the annealing step is preferably 700 to 870°C, more preferably 740 to 840°C. If the holding temperature in the annealing step is less than 700° C., the dendrite-type oxide may not be sufficiently formed, and the resistance to hydrogen penetration may become insufficient. The rate of temperature increase to the holding temperature is not particularly limited, but may be 1 to 10° C./sec. Also, the temperature rise may be performed in two steps, with a first temperature rise rate of 1 to 10° C./sec and a second temperature rise rate of 1 to 10° C./sec different from the first temperature rise rate. good.

上記保持温度での保持時間は、150秒超~300秒であることが好ましく、200~280秒であることがより好ましい。保持時間が150秒以下であると、デンドライト型酸化物が十分に生成されないおそれがある。一方、保持時間が300秒超であると、外部酸化物が過剰に成長し、デンドライト型酸化物が十分に生成されないおそれがあり、めっき性及び耐水素侵入性が不十分になるおそれがある。 The holding time at the above holding temperature is preferably more than 150 seconds to 300 seconds, more preferably 200 to 280 seconds. If the holding time is 150 seconds or less, the dendrite-type oxide may not be generated sufficiently. On the other hand, if the holding time is longer than 300 seconds, the external oxide may grow excessively, the dendritic oxide may not be sufficiently formed, and the plating properties and resistance to hydrogen penetration may become insufficient.

焼鈍工程における雰囲気の露点は、デンドライト型酸化物を十分な量で生成させる観点から、好ましくは-20~10℃であり、より好ましくは-10~5℃である。露点が低すぎると、鋼板の表面上に外部酸化層が形成され、内部酸化物が十分に形成されないおそれがあり、めっき性及び耐水素侵入性が不十分になる場合がある。一方、露点が高すぎると、鋼板表面に外部酸化物としてFe酸化物が生成し、デンドライト型酸化物が十分に生成されないおそれがあり、めっき性及び耐水素侵入性ひいては耐水素脆化性が不十分になるおそれがある。また、焼鈍工程における雰囲気は、還元雰囲気、より具体的には窒素及び水素を含む還元雰囲気、例えば水素1~10%の還元雰囲気(例えば、水素4%及び窒素バランス)であってよい。 The dew point of the atmosphere in the annealing step is preferably -20 to 10°C, more preferably -10 to 5°C, from the viewpoint of generating a sufficient amount of dendrite-type oxide. If the dew point is too low, an external oxide layer may be formed on the surface of the steel sheet, and internal oxide may not be sufficiently formed, resulting in insufficient plating properties and resistance to hydrogen penetration. On the other hand, if the dew point is too high, Fe oxide is formed as an external oxide on the surface of the steel sheet, and there is a risk that the dendritic oxide may not be formed sufficiently, resulting in poor plating properties, hydrogen penetration resistance, and hydrogen embrittlement resistance. may be sufficient. Also, the atmosphere in the annealing step may be a reducing atmosphere, more specifically a reducing atmosphere containing nitrogen and hydrogen, such as a reducing atmosphere containing 1-10% hydrogen (eg, 4% hydrogen and nitrogen balance).

さらに、焼鈍工程を行う際の鋼板の内部酸化層を除去しておくことが有効である。上述した圧延工程、特に熱延工程の間に鋼板の表層に内部酸化層が形成される場合がある。そのような圧延工程で形成された内部酸化層は、焼鈍工程においてデンドライト型酸化物を形成するのを阻害するおそれがあるため、当該内部酸化層は酸洗処理等により焼鈍前に除去しておくことが好ましい。より具体的には、焼鈍工程を行う際の冷延鋼板の内部酸化層の深さは、0.5μm以下、好ましくは0.3μm以下、より好ましくは0.2μm以下、さらに好ましくは0.1μm以下にしておくとよい。 Furthermore, it is effective to remove the internal oxide layer of the steel sheet when performing the annealing process. An internal oxide layer may be formed on the surface layer of the steel sheet during the above-described rolling process, particularly during the hot rolling process. Since the internal oxide layer formed in such a rolling process may hinder the formation of a dendrite-type oxide in the annealing process, the internal oxide layer is removed by pickling or the like before annealing. is preferred. More specifically, the depth of the internal oxide layer of the cold-rolled steel sheet during the annealing process is 0.5 μm or less, preferably 0.3 μm or less, more preferably 0.2 μm or less, and still more preferably 0.1 μm. You should do the following.

上述した各工程を行うことにより、鋼板の表層にデンドライト型酸化物を十分な量で含むとともに、所望の厚さ及び組成を有するSi-Mn欠乏層を含む鋼板を得ることができる。 By carrying out the steps described above, it is possible to obtain a steel sheet containing a sufficient amount of dendritic oxide in the surface layer of the steel sheet and containing a Si—Mn depleted layer having a desired thickness and composition.

<めっき鋼板の製造方法>
以下で、本発明に係るめっき鋼板の好ましい製造方法について説明する。以下の説明は、本発明に係るめっき鋼板を製造するための特徴的な方法の例示を意図するものであって、当該めっき鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
<Manufacturing method of plated steel sheet>
A preferred method for producing a plated steel sheet according to the present invention will be described below. The following description is intended to exemplify the characteristic method for manufacturing the plated steel sheet according to the present invention, and the plated steel sheet is limited to those manufactured by the manufacturing method described below. is not intended to be

本発明に係るめっき鋼板は、上述のように製造した鋼板上にZnを含むめっき層を形成するめっき処理工程を行うことで得ることができる。 The plated steel sheet according to the present invention can be obtained by performing a plating treatment step of forming a plating layer containing Zn on the steel sheet manufactured as described above.

[めっき処理工程]
めっき処理工程は、当業者に公知の方法に従って行えばよい。めっき処理工程は、例えば、溶融めっきにより行ってもよく、電気めっきにより行ってもよい。好ましくは、めっき処理工程は溶融めっきにより行われる。めっき処理工程の条件は、所望のめっき層の成分組成、厚さ及び付着量等を考慮して適宜設定すればよい。めっき処理の後、合金化処理を行ってもよい。典型的には、めっき処理工程の条件は、Al:0~60.0%、Mg:0~15.0%、Fe:0~15%、及びSi:0~3%を含み、残部がZn及び不純物からなるめっき層を形成するように設定するとよい。より具体的には、めっき処理工程の条件は、例えば、Zn-0.2%Al(GI)、Zn-0.09%Al(GA)、Zn-1.5%Al-1.5%Mg、又はZn-11%Al-3%Mg-0.2%Siを形成するように適宜設定すればよい。
[Plating process]
The plating process may be performed according to a method known to those skilled in the art. The plating treatment step may be performed by, for example, hot dip plating or electroplating. Preferably, the plating step is performed by hot dip plating. The conditions of the plating process may be appropriately set in consideration of the composition, thickness, adhesion amount, etc. of the desired plating layer. An alloying treatment may be performed after the plating treatment. Typically, the conditions for the plating process include Al: 0-60.0%, Mg: 0-15.0%, Fe: 0-15%, and Si: 0-3%, with the balance being Zn. and impurities to form a plating layer. More specifically, the conditions of the plating process are, for example, Zn-0.2% Al (GI), Zn-0.09% Al (GA), Zn-1.5% Al-1.5% Mg , or Zn-11% Al-3% Mg-0.2% Si.

以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples.

(鋼板試料の作製)
成分組成を調整した溶鋼を鋳造して鋼片を形成し、鋼片を熱間圧延し、酸洗した後に冷間圧延して冷延鋼板を得た。次いで、室温まで空冷し、冷延鋼板に酸洗処理を施して圧延により形成された内部酸化層を表1に記載の焼鈍前の内部酸化層深さ(μm)まで除去した。次いで、各冷延鋼板からJIS G0417:1999に準拠した方法でサンプルを採取し、鋼板の成分組成をICP-MS法等により分析した。測定した鋼板の成分組成を表1に示す。使用した鋼板の板厚は全て1.6mmであった。
(Preparation of steel plate sample)
Molten steel having an adjusted chemical composition was cast to form a steel slab, and the steel slab was hot-rolled, pickled, and then cold-rolled to obtain a cold-rolled steel sheet. Next, the cold-rolled steel sheet was air-cooled to room temperature, and the cold-rolled steel sheet was pickled to remove the internal oxide layer formed by rolling to the internal oxide layer depth (μm) before annealing shown in Table 1. Next, a sample was taken from each cold-rolled steel sheet by a method conforming to JIS G0417:1999, and the chemical composition of the steel sheet was analyzed by the ICP-MS method or the like. Table 1 shows the chemical compositions of the measured steel sheets. All of the steel plates used had a plate thickness of 1.6 mm.

次いで、各冷延鋼板について、NaOH水溶液を塗布した後、重研削ブラシを用いて10~200g/m2の研削量にて冷延鋼板の表面を研削した(試料No.35は研削無し)。その後、表1に示す露点、保持温度及び保持時間により焼鈍処理(焼鈍雰囲気:水素4%及び窒素バランス)を行い、各鋼板試料を作製した。全ての鋼板試料において、焼鈍時の昇温速度は、500℃までは6.0℃/秒とし、500℃から保持温度までは2.0℃/秒とした。上記焼鈍処理において、冷延鋼板に対して圧延方向に1MPa以上の張力をかけた状態で焼鈍処理を行い、焼鈍温度が500℃以上の領域でそれ以外の領域に比べて圧延方向により高い張力、具体的には3~150MPaの張力をかけた状態で焼鈍を行った(試料No.34はこのような張力の適用無し)。重研削ブラシによる研削の有無、及び焼鈍処理の条件(焼鈍温度500℃以上の領域での3~150MPaの張力適用の有無、露点(℃)、保持温度(℃)、及び保持時間(秒))を表1に示す。なお、各鋼板試料について、圧延方向に直角な方向を長手方向とするJIS5号引張試験片を採取し、引張試験をJIS Z 2241(2011)に準拠して行った結果、No.16及び18については、引張強度が440MPa未満であり、それ以外については引張強度が440MPa以上であった。 Next, after applying an aqueous NaOH solution to each cold-rolled steel sheet, the surface of the cold-rolled steel sheet was ground with a heavy grinding brush at a grinding amount of 10 to 200 g/m 2 (no grinding for sample No. 35). After that, annealing treatment (annealing atmosphere: 4% hydrogen and nitrogen balance) was performed at the dew point, holding temperature and holding time shown in Table 1 to prepare each steel plate sample. In all the steel plate samples, the heating rate during annealing was 6.0°C/sec up to 500°C, and 2.0°C/sec from 500°C to the holding temperature. In the above annealing treatment, the cold-rolled steel sheet is annealed with a tension of 1 MPa or more in the rolling direction, and the annealing temperature is higher in the region where the annealing temperature is 500 ° C. or higher in the rolling direction than in other regions, Specifically, annealing was performed with a tension of 3 to 150 MPa applied (no such tension was applied to sample No. 34). Presence or absence of grinding with a heavy grinding brush, and annealing treatment conditions (presence or absence of application of tension of 3 to 150 MPa in the annealing temperature range of 500 ° C. or higher, dew point (° C.), holding temperature (° C.), and holding time (seconds)) are shown in Table 1. For each steel plate sample, a JIS No. 5 tensile test piece having a longitudinal direction perpendicular to the rolling direction was collected, and a tensile test was performed according to JIS Z 2241 (2011). 16 and 18 had a tensile strength of less than 440 MPa, and the others had a tensile strength of 440 MPa or more.

(鋼板試料の表層の分析)
上記のように作成した各鋼板試料を25mm×15mmに切断し、切断後の試料を樹脂に埋め込み鏡面研磨を施し、各鋼板試料の断面をSEMにより観察して、そのSEM画像より1.0μm×1.0μmの領域を合計10箇所観察した。観察位置としては、深さ方向(鋼板の表面と垂直な方向)については、鋼板表面から2.0~3.0μmの範囲の1.0μmとし、幅方向(鋼板の表面と垂直な方向)については、上記SEM画像の任意の位置の1.0μmとした。次いで、得られた各鋼板試料についての各領域のSEM画像を二値化し、二値化像からデンドライト型酸化物部分の面積を算出した。こうして求めた10個の二値化像におけるデンドライト型酸化物の面積から、各鋼板試料についての「デンドライト型酸化物の面積率」を求めた。各鋼板試料についてのデンドライト型酸化物の面積率(%)を表1に示す。なお、上記SEM画像において、一次アームから両側に複数の二次アームが枝分かれした形状として観察されたデンドライト型酸化物の一次アーム及び二次アームの長さを測定したところ、試料No.2~8及び20~33については、一次アーム:0.5~5.0μmかつ二次アーム:50~300nmであった。
(Analysis of surface layer of steel plate sample)
Each steel plate sample prepared as described above was cut into 25 mm × 15 mm, the cut sample was embedded in resin and mirror-polished, and the cross section of each steel plate sample was observed by SEM. A total of 10 areas of 1.0 μm were observed. The observation position is 1.0 μm in the range of 2.0 to 3.0 μm from the steel plate surface for the depth direction (direction perpendicular to the surface of the steel plate), and for the width direction (direction perpendicular to the surface of the steel plate). is 1.0 μm at an arbitrary position in the SEM image. Next, the SEM image of each region of each steel plate sample obtained was binarized, and the area of the dendrite-type oxide portion was calculated from the binarized image. From the areas of the dendritic oxides in the 10 binarized images obtained in this manner, the "area ratio of the dendritic oxides" for each steel plate sample was obtained. Table 1 shows the area ratio (%) of the dendrite-type oxide for each steel plate sample. In the above SEM image, when the lengths of the primary arm and the secondary arm of the dendritic oxide observed as a shape in which a plurality of secondary arms branched on both sides from the primary arm were measured, the sample No. For 2-8 and 20-33, primary arm: 0.5-5.0 μm and secondary arm: 50-300 nm.

Si-Mn欠乏層の厚さは、デンドライト型酸化物の面積率を測定したSEM画像において、鋼板の表面から鋼板の板厚方向(鋼板の表面に垂直な方向)に進んだ場合における鋼板の表面からデンドライト型酸化物が存在する最も遠い位置までの距離を測定することにより決定した。また、Si-Mn欠乏層の厚さの1/2位置における酸化物を含まない領域のSi及びMn含有量は、上記SEM画像から決定されたSi-Mn欠乏層の厚さの1/2位置において無作為に選択された酸化物を含まない10箇所の点をTEM-EDSを用いて分析し、得られたSi及びMn濃度の測定値を算術平均することによって決定した。また、鋼板の板厚中心部におけるSi及びMn含有量は、当該板厚中心部の断面をSEMで観察し、そのSEM画像から板厚中心部において無作為に選択された10箇所の点をTEM-EDSを用いて分析し、得られたSi及びMn濃度の測定値を算術平均することによって決定した。最後に、Si-Mn欠乏層の厚さの1/2位置におけるSi及びMn含有量をそれぞれ鋼板の板厚中心部におけるSi及びMn含有量で除したものを百分率で表現した値をSi及びMn欠乏率として決定した。また、各鋼板試料について、デンドライト型酸化物の成分組成を分析したところ、いずれのデンドライト酸化物もSi、O及びFeを含み、多くの酸化物でさらにMnを含み、それゆえいずれの酸化物の成分組成もSi:5~25%、Mn:0~10%、O:40~65%、及びFe:10~30%を含むものであった。 The thickness of the Si—Mn depleted layer is the surface of the steel sheet when proceeding in the thickness direction of the steel sheet (direction perpendicular to the surface of the steel sheet) from the surface of the steel sheet in the SEM image in which the area ratio of the dendritic oxide is measured. to the furthest position where the dendritic oxide is present. In addition, the Si and Mn contents of the oxide-free region at the 1/2 position of the thickness of the Si—Mn depleted layer are determined from the SEM image, and the 1/2 position of the thickness of the Si—Mn depleted layer Ten randomly selected oxide-free points were analyzed using TEM-EDS and the Si and Mn concentration measurements obtained were determined by arithmetic averaging. In addition, the Si and Mn contents in the center of the plate thickness of the steel plate are obtained by observing the cross section of the center of the plate thickness with an SEM, and 10 randomly selected points in the center of the plate thickness from the SEM image. - analyzed using EDS and determined by arithmetic averaging of the resulting Si and Mn concentration measurements. Finally, the Si and Mn contents obtained by dividing the Si and Mn contents at the 1/2 position of the thickness of the Si—Mn depleted layer by the Si and Mn contents at the center of the thickness of the steel sheet, respectively, are expressed as percentages. determined as the deficiency rate. In addition, when the chemical composition of the dendrite-type oxide was analyzed for each steel plate sample, all dendrite oxides contained Si, O and Fe, and many oxides further contained Mn. The component composition also contained Si: 5-25%, Mn: 0-10%, O: 40-65%, and Fe: 10-30%.

(めっき鋼板試料の作製)
各鋼板試料を100mm×200mmのサイズに切断した後、表1に示すめっき種を形成するためのめっき処理を行うことによりめっき鋼板試料を作製した。表1において、めっき種Aは「合金化溶融亜鉛めっき鋼板(GA)」、めっき種Bは「溶融Zn-0.2%Alめっき鋼板(GI)」、めっき種Cは「溶融Zn-(0.3~1.5)%Alめっき鋼板(Al量を表中に記載)」を意味する。溶融亜鉛めっき工程では、切断した試料を440℃の溶融亜鉛めっき浴に3秒間浸漬した。浸漬後、100mm/秒で引き抜き、N2ワイピングガスによりめっき付着量を50g/m2に制御した。めっき種Aについては、その後460℃で合金化処理を行った。
(Preparation of plated steel sheet sample)
After each steel plate sample was cut into a size of 100 mm×200 mm, a plated steel plate sample was prepared by performing a plating treatment for forming the types of plating shown in Table 1. In Table 1, plating type A is "alloyed hot-dip galvanized steel sheet (GA)", plating type B is "hot-dip Zn-0.2% Al-plated steel sheet (GI)", and plating type C is "hot-dip Zn-(0 .3 to 1.5)% Al-plated steel sheet (the amount of Al is described in the table)”. In the hot dip galvanizing step, the cut sample was immersed in a 440° C. hot dip galvanizing bath for 3 seconds. After immersion, it was pulled out at 100 mm/sec, and the coating weight was controlled to 50 g/m 2 with N 2 wiping gas. For the plating type A, alloying treatment was performed at 460°C after that.

(めっき層の成分組成分析)
めっき層の成分組成は、30mm×30mmに切断したサンプルをインヒビター(朝日化学工業製イビット)入りの10%HCl水溶液に浸漬し、めっき層を酸洗剥離した後、水溶液中に溶解しためっき成分をICP発光分光法によって測定することにより決定した。
(Component composition analysis of plating layer)
The component composition of the plating layer was obtained by immersing a sample cut to 30 mm x 30 mm in a 10% HCl aqueous solution containing an inhibitor (Ibit, manufactured by Asahi Chemical Industry Co., Ltd.), pickling and peeling the plating layer, and removing the plating components dissolved in the aqueous solution. Determined by measuring by ICP emission spectroscopy.

(めっき性評価)
各めっき鋼板試料について、鋼板の表面の不めっき部の面積率を測定することでめっき性の評価を行った。具体的には、めっき層を形成した各めっき鋼板試料の表面の1mm×1mmの領域を光学顕微鏡で観察し、観察した画像からめっき層が形成された部分(めっき部)とめっき層が形成されなかった部分(不めっき部)とを判別し、不めっき部の面積率(不めっき部の面積/観察した画像の面積)を算出し、以下の基準によりめっき性を評価し、その結果を表1に示す。〇が合格、×が不合格である。
評価〇:5.0%以下
評価×:5.0%超
(Plating evaluation)
For each plated steel sheet sample, the plating property was evaluated by measuring the area ratio of the unplated portion on the surface of the steel sheet. Specifically, an area of 1 mm × 1 mm on the surface of each plated steel sheet sample on which the plating layer was formed was observed with an optical microscope, and from the observed image, the part where the plating layer was formed (plating part) and the plating layer were formed. The area ratio of the non-plated portion (area of the non-plated portion/area of the observed image) is calculated, the plating property is evaluated according to the following criteria, and the results are shown. 1. 〇 is a pass, and × is a fail.
Evaluation ○: 5.0% or less Evaluation ×: More than 5.0%

(耐水素脆化性の評価)
各めっき鋼板に、素地まで達する縦平行カットを2本入れた後、SDT(塩水浸漬試験)を模擬し、5%NaCl水溶液中において50℃で480時間浸漬した。その後、各めっき鋼板試料について、昇温脱離法により拡散性水素量を測定した。具体的には、ガスクロマトグラフィを備えた加熱炉中でめっき鋼板試料を400℃まで加熱し、250℃まで下がるまでに放出した水素量の総和を測定した。測定した拡散性水素量に基づき、以下の基準により、耐水素脆化性(試料中の水素蓄積量)を評価し、その結果を表1に示す。◎及び〇が合格、×が不合格である。
評価◎:0.2ppm以下
評価〇:0.2ppm超0.4ppm以下
評価×:0.4ppm超
(Evaluation of hydrogen embrittlement resistance)
Each plated steel sheet was immersed in a 5% NaCl aqueous solution at 50° C. for 480 hours to simulate an SDT (salt water immersion test) after making two vertical parallel cuts reaching the substrate. Thereafter, the amount of diffusible hydrogen was measured for each plated steel sheet sample by the temperature programmed desorption method. Specifically, a plated steel sheet sample was heated to 400°C in a heating furnace equipped with gas chromatography, and the total amount of hydrogen released until the temperature dropped to 250°C was measured. Based on the measured amount of diffusible hydrogen, resistance to hydrogen embrittlement (amount of accumulated hydrogen in the sample) was evaluated according to the following criteria. ⊚ and 0 are acceptable, and × is unacceptable.
Evaluation ◎: 0.2 ppm or less Evaluation ◯: More than 0.2 ppm and less than or equal to 0.4 ppm Evaluation ×: More than 0.4 ppm

Figure 2022169341000002
Figure 2022169341000002

試料No.2~8及び20~33は、成分組成、デンドライト型酸化物の面積率、並びにSi-Mn欠乏層の厚さ及び組成が適切であったため、高いめっき性及び耐水素脆化性を有していた。一方、試料No.1及び19は、焼鈍前の内部酸化層深さが厚く、十分にデンドライト型酸化物を形成できず、また所望のSi-Mn欠乏層も形成されなかったため、高い耐水素脆化性を得られなかった。試料No.9は焼鈍時の露点が低く、外部酸化層が形成され、デンドライト型酸化物が生成せず、また所望のSi-Mn欠乏層も形成されなかったため、高いめっき性及び耐水素脆化性を得られなかった。試料No.10は焼鈍時の露点が高く、外部酸化物が生成し、十分にデンドライト型酸化物が形成されず、また所望のSi-Mn欠乏層も形成されなかったため、高いめっき性及び耐水素脆化性を得られなかった。試料No.11は焼鈍時の保持温度が高く、外部酸化物が生成して十分にデンドライト型酸化物が形成されず、また所望のSi-Mn欠乏層も形成されなかったため、高いめっき性及び耐水素脆化性を得られなかった。試料No.12は焼鈍時の保持温度が低く、十分にデンドライト型酸化物が形成されず、また所望のSi-Mn欠乏層も形成されなかったため、高い耐水素脆化性を得られなかった。試料No.13は、焼鈍時の保持時間が短く、十分にデンドライト型酸化物が形成されず、また所望のSi-Mn欠乏層も形成されなかったため、高い耐水素脆化性を得られなかった。試料No.14は、焼鈍時の保持時間が長く、外部酸化物が生成され、十分にデンドライト型酸化物が形成されず、また所望のSi-Mn欠乏層も形成されなかったため、高いめっき性及び耐水素脆化性を得られなかった。試料No.15はSi量が過剰であり、外部酸化物が成長し、十分にデンドライト型酸化物が形成されず、また所望のSi-Mn欠乏層も形成されなかったため、高いめっき性及び耐水素脆化性を得られなかった。試料No.16及び18はそれぞれSi量及びMn量が0(ゼロ)であり、デンドライト型酸化物が形成されず、また所望のSi-Mn欠乏層も形成されなかったため、高い耐水素脆化性を得られなかった。試料No.17はMn量が過剰であり、外部酸化物が成長し、十分にデンドライト型酸化物が形成されず、また所望のSi-Mn欠乏層も形成されなかったため、高いめっき性及び耐水素脆化性を得られなかった。試料No.34は焼鈍時に所定の張力を適用しなかったため、十分にデンドライト型酸化物が形成されず、また所望のSi-Mn欠乏層も形成されなかった。その結果として高い耐水素脆化性を得られなかった。試料No.35は焼鈍前の研削を行わなかったため、十分にデンドライト型酸化物が形成されず、また所望のSi-Mn欠乏層も形成されなかった。その結果として高い耐水素脆化性を得られなかった。 Sample no. Nos. 2 to 8 and 20 to 33 had high platability and hydrogen embrittlement resistance because the component composition, the area ratio of the dendrite-type oxide, and the thickness and composition of the Si—Mn depleted layer were appropriate. rice field. On the other hand, sample no. In Nos. 1 and 19, the depth of the internal oxide layer before annealing was large, and the dendritic oxide could not be sufficiently formed, and the desired Si—Mn depleted layer was not formed, so high hydrogen embrittlement resistance could not be obtained. I didn't. Sample no. No. 9 has a low dew point during annealing, forms an external oxide layer, does not form a dendritic oxide, and does not form the desired Si—Mn depleted layer, so that high plating properties and resistance to hydrogen embrittlement are obtained. I couldn't. Sample no. In No. 10, the dew point during annealing was high, an external oxide was formed, a dendritic oxide was not sufficiently formed, and the desired Si—Mn depleted layer was not formed, so high plating properties and hydrogen embrittlement resistance were obtained. did not get Sample no. In No. 11, the holding temperature during annealing was high, and an external oxide was formed, a dendritic oxide was not sufficiently formed, and the desired Si—Mn depleted layer was not formed, resulting in high plating properties and resistance to hydrogen embrittlement. I didn't get the sex. Sample no. In No. 12, the holding temperature during annealing was low, and the dendritic oxide was not sufficiently formed, and the desired Si--Mn depleted layer was not formed, so high hydrogen embrittlement resistance could not be obtained. Sample no. In No. 13, the holding time during annealing was short, the dendritic oxide was not sufficiently formed, and the desired Si—Mn depleted layer was not formed, so high hydrogen embrittlement resistance could not be obtained. Sample no. In No. 14, the holding time during annealing was long, an external oxide was generated, a sufficient dendritic oxide was not formed, and the desired Si—Mn depleted layer was not formed, so that the plateability and hydrogen embrittlement resistance were high. chemistries could not be obtained. Sample no. In No. 15, the amount of Si is excessive, the outer oxide grows, the dendritic oxide is not sufficiently formed, and the desired Si-Mn depleted layer is not formed, so high plating properties and hydrogen embrittlement resistance did not get Sample no. In Nos. 16 and 18, the amount of Si and the amount of Mn were respectively 0 (zero), no dendritic oxide was formed, and the desired Si—Mn depleted layer was not formed, so high hydrogen embrittlement resistance was not obtained. I didn't. Sample no. In No. 17, the amount of Mn is excessive, the outer oxide grows, the dendritic oxide is not sufficiently formed, and the desired Si-Mn depleted layer is not formed, so high plating properties and hydrogen embrittlement resistance did not get Sample no. In No. 34, since a predetermined tension was not applied during annealing, the dendritic oxide was not sufficiently formed, and the desired Si--Mn depleted layer was not formed. As a result, high hydrogen embrittlement resistance could not be obtained. Sample no. In No. 35, since no grinding was performed before annealing, a sufficient dendritic oxide was not formed, and the desired Si--Mn depleted layer was not formed. As a result, high hydrogen embrittlement resistance could not be obtained.

本発明によれば、高いめっき性及び耐水素脆化性を有する高強度鋼板及びめっき鋼板を提供することが可能となり、当該鋼板及びめっき鋼板は自動車、家電製品、建材等の用途、特に自動車用に好適に用いることができ、自動車用鋼板及び自動車用めっき鋼板として高い衝突安全性、長寿命化が期待される。したがって、本発明は産業上の価値が極めて高い発明といえるものである。 According to the present invention, it is possible to provide a high-strength steel sheet and a plated steel sheet having high plateability and hydrogen embrittlement resistance, and the steel sheet and the plated steel sheet are used for automobiles, home appliances, building materials, etc., especially for automobiles. It can be suitably used for steel sheets for automobiles and plated steel sheets for automobiles, and high collision safety and long life are expected. Therefore, the present invention can be said to be an invention of extremely high industrial value.

1 鋼板
2 外部酸化層
3 母材鋼
11 鋼板
12 デンドライト型酸化物
13 母材鋼
REFERENCE SIGNS LIST 1 steel plate 2 external oxide layer 3 base steel 11 steel plate 12 dendritic oxide 13 base steel

Claims (6)

質量%で、
C:0.05~0.40%、
Si:0.2~3.0%、
Mn:0.1~5.0%、
sol.Al:0~0.4000%未満、
P:0.0300%以下、
S:0.0300%以下、
N:0.0100%以下、
B:0~0.010%、
Ti:0~0.150%、
Nb:0~0.150%、
V:0~0.150%、
Cr:0~2.00%、
Ni:0~2.00%、
Cu:0~2.00%、
Mo:0~1.00%、
W:0~1.00%、
Ca:0~0.100%、
Mg:0~0.100%、
Zr:0~0.100%、
Hf:0~0.100%、及び
REM:0~0.100%を含有し、残部がFe及び不純物からなる成分組成を有する鋼板において、
前記鋼板の表層にデンドライト型酸化物を含み、
前記デンドライト型酸化物の面積率が5.0%以上であり、
前記鋼板の表面から3.0μm以上の厚さを有するSi-Mn欠乏層を含み、
前記厚さの1/2位置における酸化物を含まない前記Si-Mn欠乏層のSi及びMn含有量がそれぞれ前記鋼板の板厚中心部におけるSi及びMn含有量の10%未満である、鋼板。
in % by mass,
C: 0.05 to 0.40%,
Si: 0.2 to 3.0%,
Mn: 0.1 to 5.0%,
sol. Al: 0 to less than 0.4000%,
P: 0.0300% or less,
S: 0.0300% or less,
N: 0.0100% or less,
B: 0 to 0.010%,
Ti: 0 to 0.150%,
Nb: 0 to 0.150%,
V: 0 to 0.150%,
Cr: 0 to 2.00%,
Ni: 0 to 2.00%,
Cu: 0 to 2.00%,
Mo: 0 to 1.00%,
W: 0 to 1.00%,
Ca: 0-0.100%,
Mg: 0-0.100%,
Zr: 0 to 0.100%,
A steel sheet containing Hf: 0 to 0.100% and REM: 0 to 0.100%, with the balance being Fe and impurities,
The surface layer of the steel sheet contains a dendrite-type oxide,
The dendrite-type oxide has an area ratio of 5.0% or more,
including a Si—Mn depleted layer having a thickness of 3.0 μm or more from the surface of the steel sheet,
A steel sheet, wherein the Si and Mn contents of the Si—Mn depleted layer containing no oxides at the ½ position of the thickness are respectively less than 10% of the Si and Mn contents at the central portion of the thickness of the steel sheet.
前記デンドライト型酸化物の面積率が10.0%以上である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein the dendrite-type oxide has an area ratio of 10.0% or more. 前記デンドライト型酸化物の面積率が30.0%以上である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein the dendrite-type oxide has an area ratio of 30.0% or more. 前記デンドライト型酸化物の面積率が50.0%以上である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein the dendrite-type oxide has an area ratio of 50.0% or more. 請求項1~4のいずれか1項に記載の鋼板上にZnを含むめっき層を有する、めっき鋼板。 A plated steel sheet having a plating layer containing Zn on the steel sheet according to any one of claims 1 to 4. 前記めっき層がZn-(0.3~1.5)%Alの成分組成を有する、請求項5に記載のめっき鋼板。 The plated steel sheet according to claim 5, wherein the plated layer has a chemical composition of Zn-(0.3 to 1.5)% Al.
JP2021075318A 2021-04-27 2021-04-27 Steel sheet and plated steel sheet Pending JP2022169341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021075318A JP2022169341A (en) 2021-04-27 2021-04-27 Steel sheet and plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021075318A JP2022169341A (en) 2021-04-27 2021-04-27 Steel sheet and plated steel sheet

Publications (1)

Publication Number Publication Date
JP2022169341A true JP2022169341A (en) 2022-11-09

Family

ID=83944212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021075318A Pending JP2022169341A (en) 2021-04-27 2021-04-27 Steel sheet and plated steel sheet

Country Status (1)

Country Link
JP (1) JP2022169341A (en)

Similar Documents

Publication Publication Date Title
JP5879390B2 (en) Hot-pressed galvanized steel sheet with excellent surface characteristics, hot-press formed parts using the same, and manufacturing method thereof
EP2762590B1 (en) Galvanized steel sheet and method of manufacturing same
WO2022230064A1 (en) Steel sheet and plated steel sheet
JP2010065314A (en) High-strength hot-dip-galvanized steel sheet and production method thereof
CN116694988A (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
WO2022230400A1 (en) Steel sheet and plated steel sheet
WO2013111362A1 (en) Alloyed hot-dip zinc-coated steel sheet
JP2022169341A (en) Steel sheet and plated steel sheet
WO2022230059A1 (en) Steel sheet and plated steel sheet
WO2022230399A1 (en) Steel sheet and plated steel sheet
WO2022230402A1 (en) Alloyed hot-dip galvanized steel sheet
WO2022230401A1 (en) Steel sheet and plated steel sheet
JP2022169169A (en) Steel sheet and plated steel sheet
WO2023054705A1 (en) Plated steel sheet
KR101978014B1 (en) High-strength steel sheet, high-strength hot-dip zinc-coated steel sheet, and methods for producing said steel sheets
US20230095166A1 (en) Hot pressed member and method of producing same, and coated steel sheet for hot press forming
WO2024053663A1 (en) Plated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231215