JP2010065314A - High-strength hot-dip-galvanized steel sheet and production method thereof - Google Patents

High-strength hot-dip-galvanized steel sheet and production method thereof Download PDF

Info

Publication number
JP2010065314A
JP2010065314A JP2008272828A JP2008272828A JP2010065314A JP 2010065314 A JP2010065314 A JP 2010065314A JP 2008272828 A JP2008272828 A JP 2008272828A JP 2008272828 A JP2008272828 A JP 2008272828A JP 2010065314 A JP2010065314 A JP 2010065314A
Authority
JP
Japan
Prior art keywords
steel sheet
plating
hot
mass
dip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008272828A
Other languages
Japanese (ja)
Other versions
JP5417797B2 (en
Inventor
Yusuke Fushiwaki
祐介 伏脇
Hiroki Nakamaru
裕樹 中丸
Takashi Kono
崇史 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008272828A priority Critical patent/JP5417797B2/en
Publication of JP2010065314A publication Critical patent/JP2010065314A/en
Application granted granted Critical
Publication of JP5417797B2 publication Critical patent/JP5417797B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high-strength hot-dip-galvanized steel sheet which is excellent in plating property without going through a step of forming iron oxide on a surface of the steel sheet. <P>SOLUTION: The high-strength hot-dip-galvanized steel sheet has a plating layer (including those subjected to alloying treatment after hot-dip plating) formed on the surface of a steel sheet having a composition comprising 0.01-2.0 mass% C, 0.2-3.0 mass% Mn, 0.10-1.0 mass% Cr, 0.01-5.0 mass% Al, &le;0.2 mass% P, &le;0.02 mass% S and the balance being Fe and unavoidable impurities, formed by conducting hot-dip-plating in a hot-dip-galvanizing bath containing Al concentration of &ge;0.001 mass%. The hot-dip-galvanized steel sheet has parts in which Al, Mn and Cr concentrations are at least three times larger than those in the ground steel sheet, respectively, in a region in the plating layer within 1 &mu;m from the interface between the plating and the ground steel sheet and/or in a region in the ground steel sheet within 1 &mu;m from the interface between the plating and the ground steel sheet. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、Mn、Cr含有高強度鋼板を母材とする溶融亜鉛系めっき鋼板とその製造方法に関する。   The present invention relates to a hot-dip galvanized steel sheet using a high-strength steel sheet containing Mn and Cr as a base material and a method for producing the same.

近年、自動車、家電、建材等の分野において素材鋼板に防錆性を付与した表面処理鋼板として、安価に製造できかつ防錆性に優れた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板が使用されている。   In recent years, hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets that can be manufactured at low cost and have excellent anti-rust properties have been used as surface-treated steel sheets that have been imparted with rust prevention properties in the fields of automobiles, home appliances, and building materials ing.

一般的に、溶融亜鉛めっき鋼板は、スラブを熱延、冷延あるいは熱処理した薄鋼板を母材として用い、この母材鋼板表面を前処理工程にて脱脂および/または酸洗して洗浄した後、あるいは前処理工程を省略して予熱炉内で母材鋼板表面の油分を燃焼除去した後、還元性雰囲気中で700〜900℃程度の温度で加熱することで焼鈍され、また還元処理される。その後、非酸化性雰囲気中あるいは還元性雰囲気中で鋼板をめっきに適した温度まで冷却して大気に触れることなく微量Al(0.1〜0.2質量%程度)を添加した溶融亜鉛浴中に浸漬することで製造される。また合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき後の鋼板を引き続いて合金化炉内で熱処理し、めっき層をFe−Zn合金化することで製造される。   In general, hot-dip galvanized steel sheets use thin steel sheets obtained by hot-rolling, cold-rolling or heat-treating slabs as the base material, and after cleaning the surface of the base steel sheet by degreasing and / or pickling in the pretreatment step Alternatively, the pretreatment step is omitted and the oil component on the surface of the base steel plate is burned and removed in the preheating furnace, and then annealed by heating at a temperature of about 700 to 900 ° C. in a reducing atmosphere, and the reduction treatment is performed. . Thereafter, in a molten zinc bath in which a small amount of Al (about 0.1 to 0.2% by mass) is added without cooling to a temperature suitable for plating in a non-oxidizing atmosphere or a reducing atmosphere without touching the air. It is manufactured by dipping in The alloyed hot-dip galvanized steel sheet is manufactured by subsequently heat-treating the hot-dip galvanized steel sheet in an alloying furnace and forming a plated layer into an Fe—Zn alloy.

ところで、近年、自動車、家電、建材等の分野で使用される鋼板では高性能化とともに軽量化が推進され、鋼板の高強度化が求められており、防錆性を兼ね備えた高強度溶融亜鉛めっき鋼板や高強度合金化溶融亜鉛めっき鋼板の使用量が増加している。鋼板の高強度化にはMn、Si、P、Al等の固溶強化元素の添加が行われている。しかしながら、Mn含有高強度鋼板を母材とする高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板には以下の問題がある。   By the way, in recent years, steel sheets used in the fields of automobiles, home appliances, building materials, etc. have been promoted to improve performance and light weight, and there has been a demand for higher strength of steel sheets. The amount of steel sheets and high-strength galvannealed steel sheets is increasing. Addition of solid solution strengthening elements such as Mn, Si, P, and Al is performed to increase the strength of the steel sheet. However, high-strength hot-dip galvanized steel sheets and high-strength alloyed hot-dip galvanized steel sheets that use Mn-containing high-strength steel sheets as base materials have the following problems.

前述のように溶融亜鉛めっき鋼板は還元雰囲気中で700〜900℃程度の温度で加熱焼鈍を行った後溶融亜鉛めっき処理を行う。しかし、鋼中のMnは易酸化性元素であり、一般的に用いられる還元雰囲気中で選択表面酸化されて表面に濃化し、酸化物を形成する。Mnの酸化物はめっき処理時の溶融亜鉛との濡れ性を低下させて不めっきを生じさせるので、鋼中Mn濃度の増加とともに濡れ性が急激に低下し不めっきが多発する。また、不めっきに至らなくても、めっき密着性に劣るという問題がある。   As described above, the hot-dip galvanized steel sheet is subjected to hot-dip galvanization after being heat-annealed at a temperature of about 700 to 900 ° C. in a reducing atmosphere. However, Mn in steel is an easily oxidizable element, and is selectively surface oxidized in a generally used reducing atmosphere to be concentrated on the surface to form an oxide. Since the oxide of Mn reduces the wettability with molten zinc at the time of the plating process and causes non-plating, the wettability rapidly decreases with the increase of the Mn concentration in the steel, and non-plating frequently occurs. Moreover, even if it does not lead to non-plating, there exists a problem that it is inferior to plating adhesion.

さらに鋼中のMnが選択表面酸化されて表面に濃化すると、溶融亜鉛めっき後の合金化処理工程において著しい合金化遅延が生じる。その結果生産性を著しく阻害する問題、また生産性を確保するために過剰に高温で合金化処理すると耐パウダリング性の劣化を招く問題があり、そのため高強度合金化溶融亜鉛めっき鋼板では、高い生産性と良好な耐パウダリング性を両立させることが困難である。   Further, when Mn in steel is selectively surface oxidized and concentrated on the surface, a significant alloying delay occurs in the alloying treatment step after hot dip galvanizing. As a result, there is a problem that significantly impedes productivity, and there is a problem that causes deterioration of powdering resistance when alloying at an excessively high temperature in order to ensure productivity. It is difficult to achieve both productivity and good powdering resistance.

このような問題に対して、予め酸化性雰囲気中で鋼板を加熱して表面に酸化鉄を形成した後加熱することで還元焼鈍を行うことにより溶融亜鉛との濡れ性が改善されることが知られている(特許文献1、2参照)。   For such problems, it is known that wettability with molten zinc is improved by performing reduction annealing by heating the steel sheet in an oxidizing atmosphere in advance to form iron oxide on the surface and then heating. (See Patent Documents 1 and 2).

また、特許文献3には、溶融めっきに先立って硫黄または硫黄化合物をS量として0.1〜1000mg/m付着させた後、予熱工程を弱酸化性雰囲気で行い、その後水素を含む非酸化性雰囲気中で焼鈍することで、めっき密着性と耐パウダリング性を向上させる方法が開示されている。 Further, in Patent Document 3, sulfur or a sulfur compound is deposited as an S amount in an amount of 0.1 to 1000 mg / m 2 prior to hot dipping, and then a preheating step is performed in a weakly oxidizing atmosphere, followed by non-oxidation containing hydrogen. A method of improving plating adhesion and powdering resistance by annealing in a neutral atmosphere is disclosed.

しかし、鋼中Mn濃度の高い鋼板の場合、特許文献1、2に記載される方法では、めっき層中にΓ相が発生し易くなり、耐パウダリング性が劣化してしまう。また、酸化量が多くなると、焼鈍炉内ロールに鋼板の酸化物が付着し、押し疵等の欠陥を発生させてしまい、ロールに付着した酸化物を除去するために生産性が低下する問題が発生する。さらに、酸化量の制御が困難であるため、酸化のムラが発生し、めっき後の概観を損ねる原因となる。   However, in the case of a steel sheet having a high Mn concentration in steel, the methods described in Patent Documents 1 and 2 tend to generate a Γ phase in the plating layer, resulting in deterioration of powdering resistance. Moreover, when the amount of oxidation increases, the oxide of the steel sheet adheres to the roll in the annealing furnace, which causes defects such as pressing irons, and the productivity decreases due to the removal of the oxide attached to the roll. appear. Furthermore, since it is difficult to control the amount of oxidation, unevenness of oxidation occurs, and the appearance after plating is impaired.

特許文献3に記載される方法では、酸化量が多くなりすぎてしまい、酸化量の制御が困難であるため、酸化のムラが発生し、めっき後の外観を損ねてしまうことが多くなる
特許第2587724号公報 特開2002−220637号公報 特開平11−50223号公報
In the method described in Patent Document 3, the amount of oxidation is excessively large, and it is difficult to control the amount of oxidation, so that uneven oxidation occurs and the appearance after plating is often impaired.
Japanese Patent No. 2587724 JP 2002-220737 A Japanese Patent Laid-Open No. 11-50223

本発明はかかる事情に鑑みてなされたものであって、高Mn含有鋼板を母材として用い、特許文献1〜3にあるような鋼板表面に酸化鉄を形成させる工程を経ることなく、溶融めっき後合金化処理しないめっき鋼板では、不めっきのない美麗な表面外観と優れためっき密着性を有し、溶融めっき後合金化処理しためっき鋼板では、不めっきのない美麗な表面外観と優れた耐パウダリング性を有する、めっき性に優れた高強度溶融亜鉛系めっき鋼板とその製方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and uses a high Mn content steel sheet as a base material, and without undergoing a step of forming iron oxide on the steel sheet surface as described in Patent Documents 1 to 3, hot dip plating. Plated steel sheet without post-alloying treatment has a beautiful surface appearance without unplating and excellent plating adhesion, and plated steel sheet that has been alloyed after hot dipping has a beautiful surface appearance without unplating and excellent resistance to plating. An object of the present invention is to provide a high-strength hot-dip galvanized steel sheet having powdering properties and excellent plating properties, and a method for producing the same.

本発明者らは以下の事項を見出した。
焼鈍加熱時に起こる鋼中のMnの選択酸化に伴う鋼板表面への拡散は、鋼中にCrを添加することにより阻害される。鋼中に適量のMnとCrを含有させた鋼板では、焼鈍時に表面濃化して形成されたMn及びCrを含む酸化物が多く形成されるようになる。Mn及びCrを含む酸化物(MnとCrの複合酸化物)はMnのみの酸化物(Mn)に比べて浴中Alで還元されやすく、その粒径も小さいため、MnおよびCrを含む酸化物は容易に還元されることで、鋼板と浴中Alとの反応性が向上する。その結果、鋼中に適量のMnとCrを含有させ鋼板は、鋼板表面と溶融亜鉛との濡れ性が改善され、良好なめっき外観が得られるようになる。また溶融亜鉛めっき後に合金化処理したときは、合金化反応の容易に進み、耐パウダリング性を改善できる。
The present inventors have found the following matters.
Diffusion to the steel sheet surface accompanying the selective oxidation of Mn in the steel that occurs during annealing heating is inhibited by adding Cr to the steel. In steel sheets containing appropriate amounts of Mn and Cr in steel, many oxides containing Mn and Cr formed by surface concentration during annealing are formed. An oxide containing Mn and Cr (a composite oxide of Mn and Cr) is more easily reduced by Al in the bath than an oxide containing only Mn (Mn W O V ), and its particle size is small. The included oxide is easily reduced, so that the reactivity between the steel sheet and Al in the bath is improved. As a result, a steel sheet containing appropriate amounts of Mn and Cr in the steel has improved wettability between the steel sheet surface and molten zinc, and a good plating appearance can be obtained. Further, when alloying is performed after hot dip galvanizing, the alloying reaction proceeds easily, and the powdering resistance can be improved.

また、めっき層、下地鋼板表層部の酸化物存在状態について調査結果から、めっき層のめっき−下地鋼板界面から1μmまでの領域、及び、下地鋼板のめっき−下地鋼板界面から1μmまでの領域の一方または両方の領域において、Al、MnおよびCrの各濃度が、各々下地鋼板中のAl、MnおよびCrの各濃度の3倍以上である部分が存在すると、溶融亜鉛めっきしたときに良好なめっき外観とめっき密着性が得られ、溶融亜鉛めっき後合金化処理したときに良好なめっき外観と耐パウダリング性が得られる。   In addition, from the investigation results on the state of oxide in the plating layer and the surface layer of the underlying steel plate, one of the region from the plating-underlying steel plate interface of the plating layer to 1 μm and the region of the underlying steel plate from the plating-underlying steel plate interface to 1 μm Or, in both regions, if there are portions where the respective concentrations of Al, Mn and Cr are 3 times or more of the respective concentrations of Al, Mn and Cr in the underlying steel plate, good plating appearance is obtained when hot dip galvanizing is performed. Plating adhesion can be obtained, and a good plating appearance and powdering resistance can be obtained when alloying after hot dip galvanization.

本発明はこの知見に更に検討を加えてなされた。上記課題を解決する本発明の手段は、下記のとおりである。   The present invention was made by further studying this finding. Means of the present invention for solving the above-mentioned problems are as follows.

(1)C:0.01〜2.0質量%、Mn:0.2〜3.0質量%、Cr:0.10〜1.0質量%、Al:0.01〜5.0質量%、P:0.2質量%以下、S:0.02質量%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼板表面に、浴中Al濃度が0.001質量%以上である溶融亜鉛系めっき浴で溶融めっきして形成しためっき層または溶融めっき後合金化処理しためっき層を有する高強度溶融亜鉛系めっき鋼板であって、めっき層のめっき−下地鋼板界面から1μmまでの領域、及び、下地鋼板のめっき−下地鋼板界面から1μmまでの領域の一方または両方の領域において、Al、MnおよびCrの各濃度が、各々下地鋼板中のAl、MnおよびCrの各濃度の3倍以上である部分が存在することを特徴とする、めっき性に優れた高強度溶融亜鉛系めっき鋼板。   (1) C: 0.01-2.0 mass%, Mn: 0.2-3.0 mass%, Cr: 0.10-1.0 mass%, Al: 0.01-5.0 mass% , P: 0.2 mass% or less, S: 0.02 mass% or less, and the Al concentration in the bath is 0.001 mass% or more on the surface of the steel sheet having a composition composed of the remaining Fe and inevitable impurities. A high-strength hot-dip galvanized steel sheet having a plated layer formed by hot-dip galvanizing in a hot-dip galvanizing bath or a plated layer that has been alloyed after hot dip plating, and a region from the plating-underlying steel plate interface to 1 μm In each or both of the regions from the plating of the base steel plate to the base steel plate interface to 1 μm, the concentrations of Al, Mn, and Cr are three times the concentrations of Al, Mn, and Cr in the base steel plate, respectively. It is characterized by the existence of the above part High-strength hot-dip galvanized steel sheet with excellent plating properties.

(2) (1)記載の組成を有する鋼板を、焼鈍工程後、浴中Al濃度が0.001質量%以上の溶融亜鉛めっき浴で溶融めっきを施し、またはさらに合金化処理を施して溶融亜鉛系めっき鋼板を製造する際に、焼鈍工程は、炉内雰囲気の露点が−60℃以上0℃以下でかつH:1.0vol%以上含有する還元雰囲気であるH−Nガス雰囲気中で、雰囲気の鋼板に対する相対流速が300mpm以上1000mpm以下になるようにし、鋼板は、600℃以上700℃以下の温度域は加熱時間が1秒以上100秒以下となるように加熱し、700℃以上900℃以下の温度域は加熱時間が5秒以上となるようにすることを特徴とするめっき性に優れた高強度溶融亜鉛系めっき鋼板の製造方法。 (2) After the annealing step, the steel sheet having the composition described in (1) is subjected to hot dip galvanization in a hot dip galvanizing bath having an Al concentration in the bath of 0.001% by mass or more, or further subjected to alloying treatment to obtain hot dip zinc. When manufacturing a galvanized steel sheet, the annealing step is performed in a H 2 —N 2 gas atmosphere, which is a reducing atmosphere in which the dew point of the furnace atmosphere is −60 ° C. or more and 0 ° C. or less and H 2 : 1.0 vol% or more. Then, the relative flow rate with respect to the steel plate in the atmosphere is set to 300 mpm or more and 1000 mpm or less, and the steel plate is heated so that the heating time is 1 second or more and 100 seconds or less in the temperature range of 600 ° C. or more and 700 ° C. or less. A method for producing a high-strength hot-dip galvanized steel sheet having excellent plating properties, characterized in that the heating time is 5 seconds or longer in a temperature range of 900 ° C. or lower.

本発明によれば、高Mn含有鋼板を母材として用いて、溶融めっき後合金化処理しないめっき鋼板では、不めっきのない美麗な表面外観と優れためっき密着性を有し、溶融めっき後合金化処理しためっき鋼板では、高生産性を確保しながら、不めっきのない美麗な表面外観と優れた耐パウダリング性を有し、また強度伸びバランスにも優れた高強度合金化溶融亜鉛系めっき鋼板を得ることができる。   According to the present invention, a high-Mn steel plate is used as a base material, and a plated steel plate that is not alloyed after hot dip plating has a beautiful surface appearance with no plating and excellent plating adhesion, and is an alloy after hot dip plating. The high-strength galvanized plating with excellent surface appearance, excellent powdering resistance, and excellent strength-elongation balance while ensuring high productivity, while the plated steel sheet treated with heat treatment A steel plate can be obtained.

また、還元焼鈍の前に鋼板表面に酸化鉄を形成させるような酸化処理を必要としないため、鋼板表面に形成される酸化鉄が焼鈍炉内のロールに付着して押し疵等の欠陥を発生させる問題や生産性を低下させる問題もない。   In addition, since no oxidation treatment is required to form iron oxide on the steel sheet surface before reduction annealing, iron oxide formed on the steel sheet surface adheres to the roll in the annealing furnace and generates defects such as pushing iron. There is no problem of reducing productivity or productivity.

以下、本発明について詳しく説明する。なお、鋼板の化学成分およびめっき層の各元素の含有量の単位はいずれも「質量%」であるが、特に断らない限り単に「%」で示す。また炉内雰囲気ガス成分の「%」は「vol%」であるが、特に断らない限り単に「%」で示す。   The present invention will be described in detail below. The unit of the chemical composition of the steel sheet and the content of each element of the plating layer is “mass%”, but is simply “%” unless otherwise specified. Further, “%” of the atmospheric gas component in the furnace is “vol%”, but is simply “%” unless otherwise specified.

先ず、鋼板の化学成分について説明する。   First, chemical components of the steel plate will be described.

C:0.01〜2.0%
Cは、鋼板の高強度化に有効な元素であり、さらに残留オーステナイトや低温変態相の生成に効果があり、TS×Elの向上を確保するために有効な元素である。しかし、C含有量が0.01%未満では所望の機械特性(TS×El)を得がたい。一方、2.0%を超えると、溶接性の劣化を招く。以上より、Cは0.01%以上2.0%以下の範囲に限定する。
C: 0.01 to 2.0%
C is an element effective for increasing the strength of the steel sheet, and further effective for generating retained austenite and a low-temperature transformation phase, and is an element effective for ensuring improvement in TS × El. However, if the C content is less than 0.01%, it is difficult to obtain desired mechanical properties (TS × El). On the other hand, if it exceeds 2.0%, the weldability is deteriorated. From the above, C is limited to a range of 0.01% to 2.0%.

Mn:0.2〜3.0%
Mnは、固溶強化により鋼を強化するとともに、鋼の焼入性を向上し、さらに残留オーステナイトや低温変態相の生成を促進する作用を有し、良好な材質を得るための有効な元素である。このような作用は、Mn含有量が0.2%以上で認められる。一方、3.0%を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなりコストの上昇を招く。以上より、Mnは0.2%以上3.0%以下の範囲に限定する。
Mn: 0.2 to 3.0%
Mn strengthens the steel by solid solution strengthening, improves the hardenability of the steel, further promotes the formation of retained austenite and low-temperature transformation phase, and is an effective element for obtaining a good material. is there. Such an effect is recognized when the Mn content is 0.2% or more. On the other hand, if the content exceeds 3.0%, the effect is saturated, and an effect commensurate with the content cannot be expected, leading to an increase in cost. From the above, Mn is limited to the range of 0.2% to 3.0%.

Cr:0.10〜1.0%
Crを添加しない場合、Mnの酸化物は溶融亜鉛との濡れ性が悪いため、不めっき欠陥が発生してしまう。しかしながら、Crを添加することで、焼鈍後の鋼板表面にMnとCrの両方を含む酸化物を形成させ、溶融亜鉛との濡れ性を改善させることができる。このような作用はCr含有量が0.10%以上で認められる。一方、1.0%を超えて含有した場合、Crの表面への選択酸化による濃化量が増加するため、溶融亜鉛との濡れ性を劣化させ、めっき性を阻害してしまう。以上より、Crは0.10%以上1.0%以下の範囲に限定する。Cr含有量を0.4%以上にするとMnとCrの複合酸化物をより形成しやすくできるので、めっき性を向上させ、不めっき等の欠陥の発生を防止する作用が向上する。しかし、0.7%を超えるとこの効果が飽和し、コストの上昇を招く。よって、Cr含有量は0.4%以上0.7%以下の範囲がより好ましい。
Cr: 0.10 to 1.0%
When Cr is not added, the oxide of Mn has poor wettability with molten zinc, so that non-plating defects occur. However, by adding Cr, an oxide containing both Mn and Cr can be formed on the surface of the steel sheet after annealing, and wettability with molten zinc can be improved. Such an effect is recognized when the Cr content is 0.10% or more. On the other hand, when the content exceeds 1.0%, the amount of concentration due to selective oxidation of Cr increases, so that wettability with molten zinc is deteriorated and plating properties are inhibited. From the above, Cr is limited to the range of 0.10% to 1.0%. If the Cr content is 0.4% or more, a composite oxide of Mn and Cr can be formed more easily, so that the effect of improving the plating property and preventing the occurrence of defects such as non-plating is improved. However, if it exceeds 0.7%, this effect is saturated and the cost is increased. Therefore, the Cr content is more preferably in the range of 0.4% to 0.7%.

鋼中のMnとCrは、下式(1)を満足することが好ましい。
0.5≦Mn/Cr≦0.5+1.8/Cr…(1)
但し、MnはMn含有量(%)、CrはCr含有量(%)である。
これはMnとCrの複合酸化物として、とくにスピネル型のMnCrを形成させることがより望ましいためである。これはAlもスピネル型の酸化物の形態(MnAl)をとることが可能なため、Alによる還元効果がより大きく、溶融亜鉛との濡れ性改善効果がより大きくなるためである。Mn/Crが0.5を下回る場合、スピネル形成量は少なくなり、Crが多くなる。一方、0.5+1.8/Crを超える場合、同様にスピネル形成量が少なくなり、MnOが多くなる。
It is preferable that Mn and Cr in the steel satisfy the following formula (1).
0.5 ≦ Mn / Cr ≦ 0.5 + 1.8 / Cr (1)
However, Mn is Mn content (%), Cr is Cr content (%).
This is because it is more desirable to form spinel type MnCr 2 O 4 as a complex oxide of Mn and Cr. This is because Al can also take the form of a spinel oxide (MnAl 2 O 4 ), so that the reduction effect by Al is greater and the wettability improvement effect with molten zinc is greater. When Mn / Cr is less than 0.5, the amount of spinel formation decreases and Cr 2 O 3 increases. On the other hand, when it exceeds 0.5 + 1.8 / Cr, the amount of spinel formation similarly decreases and MnO increases.

Al:0.01〜5.0%
Alは、Siと同様に炭化物の生成を抑制し、残留オーステナイト相の生成を促進する作用を有し、良好な材質を得るために有効な元素である。このような作用は、0.01%以上の含有で認められる。一方、5.0%を超える含有は、鋼中の介在物量を増加させ、延性を低下させる。以上より、Alは0.01%以上5.0%以下の範囲に限定する。
Al: 0.01-5.0%
Al, like Si, suppresses the formation of carbides and promotes the formation of residual austenite phase, and is an effective element for obtaining a good material. Such an effect is recognized when the content is 0.01% or more. On the other hand, the content exceeding 5.0% increases the amount of inclusions in the steel and lowers the ductility. From the above, Al is limited to the range of 0.01% to 5.0%.

その他の添加元素については本発明の効果を妨げるものではなく、特に限定するものではないが、必要に応じて、Si、Ti、Nb、Mo、B、N、V、Zr、Cu、Ni、W等の元素の1種または2種以上を適量加えることで、機械特性やめっき特性を向上させることができる。   Other additive elements do not impede the effect of the present invention and are not particularly limited. However, as necessary, Si, Ti, Nb, Mo, B, N, V, Zr, Cu, Ni, W By adding an appropriate amount of one or more of these elements, mechanical characteristics and plating characteristics can be improved.

Si:0.01〜3.0%
Siは、固溶強化により鋼を強化するとともに、炭化物の生成を抑制し、オーステナイトを安定化し、残留オーステナイト相の生成を促進する作用を有し、伸びを向上させる効果を発現させるために有効な元素である。このような作用は、Si含有量が0.01%以上で認められる。一方、3.0%を超えて含有すると、めっき前焼鈍時においてSiが鋼板表面において選択酸化するため、めっき性が顕著に劣化する。以上より、Siは0.01%以上3.0%以下の範囲が好ましい。
Si: 0.01-3.0%
Si strengthens steel by solid solution strengthening, suppresses the formation of carbides, stabilizes austenite, promotes the formation of residual austenite phase, and is effective for expressing the effect of improving elongation. It is an element. Such an effect is recognized when the Si content is 0.01% or more. On the other hand, if the content exceeds 3.0%, Si is selectively oxidized on the surface of the steel sheet during the pre-plating annealing, so that the plating property is significantly deteriorated. From the above, Si is preferably in the range of 0.01% to 3.0%.

V:0.001〜0.1%、Nb:0.001〜0.1%、Ti:0.001〜0.1%、N:0.00001〜0.1%の1種または2種以上
炭窒化物を形成し、鋼を析出効果により高強度化する作用を有する元素であり、必要に応じて添加できる。このような作用は、V、Nb、Tiを0.001%以上、Nを0.1ppm以上含有して認められる。一方、V、Nb、Tiを0.1%超、Nを1000ppm超含有すると、過度に高強度化し、延性が劣化してしまう。以上より、含有する場合、Vは0.001%以上0.1%以下、Nbは0.001%以上0.1%以下、Tiは0.001%以上0.1%以下、Nは0.00001%以上0.1%以下以下が好ましい。
One or two or more of V: 0.001 to 0.1%, Nb: 0.001 to 0.1%, Ti: 0.001 to 0.1%, N: 0.00001 to 0.1% It is an element that forms carbonitride and has the effect of increasing the strength of steel by the precipitation effect, and can be added as necessary. Such an effect is recognized by containing V, Nb, and Ti of 0.001% or more and N of 0.1 ppm or more. On the other hand, when V, Nb and Ti are contained in excess of 0.1% and N is contained in excess of 1000 ppm, the strength is excessively increased and ductility is deteriorated. From the above, when contained, V is 0.001% to 0.1%, Nb is 0.001% to 0.1%, Ti is 0.001% to 0.1%, and N is 0.00. It is preferably 00001% or more and 0.1% or less.

Mo:0.01〜1.0%、B:0.001〜0.01%の1種または2種以上
鋼の焼入性を向上し、低温変態相の生成を促進する作用を有する元素である。このような作用は、Mo:0.01%以上、B:0.001%以上含有して認められる。一方、Mo:1.0%、B:0.01%を超えて含有しても効果が飽和し、含有量に見合う効果を期待できず、経済的に不利となる。以上より、含有する場合、Moは0.01%以上1.0%以下、Bは0.001%以上0.01%以下が好ましい。
Mo: 0.01 to 1.0%, B: 0.001 to 0.01%, one or more elements An element that has the effect of improving the hardenability of the steel and promoting the formation of a low-temperature transformation phase. is there. Such an effect is recognized by containing Mo: 0.01% or more and B: 0.001% or more. On the other hand, even if the content exceeds Mo: 1.0% and B: 0.01%, the effect is saturated, an effect commensurate with the content cannot be expected, and this is economically disadvantageous. From the above, when contained, Mo is preferably 0.01% or more and 1.0% or less, and B is preferably 0.001% or more and 0.01% or less.

Cu:0.01〜2.0%、Ni:0.01〜2.0%、W:0.001〜0.1%、Zr:0.001〜0.1の1種または2種以上
Si、Mnと複合添加する事により、Γ相の生成を抑制し、めっき密着性を向上させる効果がある。このような作用はCuを0.01%以上、Niを0.01%以上、W、Zrを0.001%以上含有して認められる。一方、Cuを2.0%、Niを2.0%、W、Zrを0.1%超含有しても効果が飽和し、含有量に見合う効果を期待できず、経済的に不利となる。以上より、含有する場合、Cuは0.01%以上2.0%以下、Niは0.01%以上2.0%以下、W、Zrは0.001%以上0.1%以下が好ましい。
One or more of Cu: 0.01 to 2.0%, Ni: 0.01 to 2.0%, W: 0.001 to 0.1%, Zr: 0.001 to 0.1 Si By adding together with Mn, there is an effect of suppressing the formation of the Γ phase and improving the plating adhesion. Such an action is recognized by containing Cu 0.01% or more, Ni 0.01% or more, and W, Zr 0.001% or more. On the other hand, even if Cu is contained in 2.0%, Ni is contained in 2.0%, and W and Zr are contained in excess of 0.1%, the effect is saturated, and an effect corresponding to the content cannot be expected, which is economically disadvantageous. . Accordingly, when contained, Cu is preferably 0.01% to 2.0%, Ni is 0.01% to 2.0%, and W and Zr are preferably 0.001% to 0.1%.

なお、本発明に用いる鋼板は、上記した化学成分以外は、残部Feおよび不可避的不純物からなる。不可避的不純物としては、Pは深絞り性を劣化せずに高強度化することができる元素であるが、過剰な添加は合金化を遅延したり、二次加工脆性を劣化させたりするので、0.2%以下に制限する。Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となるので極力低い方がよいが、製造コストの面から0.2%以下とする。   In addition, the steel plate used for this invention consists of remainder Fe and an unavoidable impurity except the above-mentioned chemical component. As an unavoidable impurity, P is an element that can increase the strength without degrading the deep drawability. However, excessive addition delays alloying or degrades secondary work brittleness. Limited to 0.2% or less. S is an inclusion such as MnS, which causes deterioration of impact resistance and cracks along the metal flow of the weld, so it is better to be as low as possible. To do.

本発明では、めっき層のめっき−下地鋼板界面から1μmまでの領域、及び、下地鋼板のめっき−下地鋼板界面から1μmまでの領域の一方または両方の領域において、Al、MnおよびCrの各濃度が、各々下地鋼板中のAl、MnおよびCrの各濃度の3倍以上である部分が存在することを規定する。   In the present invention, each concentration of Al, Mn, and Cr is in one or both of the region from the plating-underlying steel plate interface of the plating layer to 1 μm and the region of the undercoating steel plating-underlying steel plate interface to 1 μm. In addition, it is defined that there are portions that are at least three times the respective concentrations of Al, Mn, and Cr in the base steel plate.

焼鈍時に鋼板表面に形成されるMnおよびCrを含む酸化物は、溶融亜鉛めっき時に浴中のAlと反応するため、鋼板表面がMn単独の酸化物の場合に比べて、鋼板と溶融亜鉛の濡れ性が改善する。焼鈍時に鋼板表面に存在した酸化物は溶融亜鉛めっき浸漬時にAlと反応し、溶融状態の亜鉛めっき層内を拡散するか、局部的にZnと反応して溶融状態にある下地鋼板中を拡散する可能性があるが、その拡散距離は高々1μmである。濃化したAlについては、浴中AlがMn−Cr複合酸化物を還元した際に酸化物として存在するものが多いが、鋼中Alが濃化してMn、Crとの複合酸化物を形成することに起因するものもある。そして、溶融亜鉛めっき後または溶融亜鉛めっきし合金化処理後、めっき層のめっき−下地鋼板界面から1μmまでの領域、及び、下地鋼板のめっき−下地鋼板界面から1μmまでの領域の一方または両方の領域において、Al、MnおよびCrの各濃度が、各々下地鋼板中のAl、MnおよびCrの各濃度の3倍以上である部分が存在するときにめっき性が改善され、そうでないときはめっき性が改善されないことが判明した。   Since the oxide containing Mn and Cr formed on the steel sheet surface during annealing reacts with Al in the bath during hot dip galvanization, the steel sheet surface is wetted with molten zinc compared to the case where the steel sheet surface is an oxide of Mn alone. Improves. Oxide present on the steel sheet surface during annealing reacts with Al during immersion in hot dip galvanizing and diffuses in the molten galvanized layer or locally reacts with Zn and diffuses in the underlying steel sheet in the molten state. There is a possibility, but the diffusion distance is at most 1 μm. Concentrated Al is often present as an oxide when Al in the bath reduces the Mn-Cr composite oxide, but Al in the steel concentrates to form a composite oxide with Mn and Cr. Some of them are due to this. Then, after hot dip galvanization or hot dip galvanization and alloying treatment, one or both of the region of the plating layer from the plating-underlying steel plate interface to 1 μm and the region of the undercoating steel plate from the underlaying steel plate interface to 1 μm In the region, the plating property is improved when there is a portion where each concentration of Al, Mn and Cr is 3 times or more of the concentration of Al, Mn and Cr in the underlying steel plate, and otherwise, the plating property Turned out not to improve.

めっき層のめっき−下地鋼板界面から1μmまでの領域、及び、下地鋼板のめっき−下地鋼板界面から1μmまでの領域の各々において、Al、MnおよびCrの濃度を、ビーム径が0.01μmの分析機器(EDX)で測定する。濃化部分の偏析等を考慮して各々20箇所またはそれ以上の箇所を測定する。ビーム径を0.01μmとしたのは、ビーム径が0.01μm超になると、周辺に存在する化合物の影響を受け分析精度が低下するためである。そして、下地鋼板中のAl、Mn、および、Crの濃度の3倍以上である箇所がいずれかの領域に1箇所以上存在したときに、下地鋼板中のAl、MnおよびCrの各濃度の3倍以上である部分が存在すると判定する。 Region from base steel interface to 1 [mu] m, and the plating of the substrate steel sheet - - plating the plating layer in each region from the substrate steel sheet interface to 1 [mu] m, Al, the concentration of Mn and Cr, the beam diameter of 0.01 [mu] m 2 Measure with an analytical instrument (EDX). In consideration of segregation of the concentrated portion, 20 points or more are measured. To that the beam diameter and 0.01 [mu] m 2, when the beam diameter is 0.01 [mu] m 2, more than accuracy of analysis the influence of compounds present in the periphery is lowered. And when one or more places which are 3 times or more the density | concentration of Al, Mn, and Cr in a base steel plate exist in any area | region, 3 of each density | concentration of Al, Mn, and Cr in a base steel plate It is determined that there is a part that is twice or more.

次に、製造方法について説明する。   Next, a manufacturing method will be described.

上記組成を有する鋼板は、熱間圧延後酸洗工程で脱スケール処理された熱延鋼板、冷延圧延された冷延鋼板のいずれでもよい。該鋼板の製造方法は限定されず、常法でよい。   The steel sheet having the above composition may be either a hot-rolled steel sheet that has been descaled in the pickling process after hot rolling or a cold-rolled steel sheet that has been cold-rolled. The manufacturing method of this steel plate is not limited and may be a conventional method.

本発明では、脱脂、酸洗等、通常(公知)の前処理を行った後、鋼板を焼鈍する。前記の処理後鋼板表面に酸化鉄を形成させるような酸化処理を行った後焼鈍を行ってもよいが、本発明では、この酸化処理は特に必要としない。   In the present invention, the steel sheet is annealed after normal (known) pretreatment such as degreasing and pickling. Although annealing may be performed after performing an oxidation treatment for forming iron oxide on the surface of the steel plate after the treatment, this oxidation treatment is not particularly required in the present invention.

焼鈍炉内雰囲気の鋼板に対する相対流速:300mpm以上1000mpm以下
焼鈍炉内雰囲気の鋼板に対する相対流速を大きくすると、雰囲気ガスの鋼板表面への供給量が多くなり、鋼板−雰囲気界面での酸素ポテンシャルが比較的大きくなるため、Mnの鋼板表面への拡散が抑制され、Crの外方拡散が促進され、Crの表面での選択酸化が促進される。その結果、鋼板表面でのMn及びCrの複合酸化物が形成されやすくなる。Mn単独の酸化物(MnwOv)よりもMn及びCrの複合酸化物の方が浴中Alにより還元されやすいため、鋼板表面濃化物がMn単独の酸化物(MnwOv)の場合よりも、MnおよびCrの両方を含む酸化物の方が浴中Alとの反応性が向上する。その結果、MnおよびCrの両方を含む酸化物が形成されると、Mn単独の酸化物(MnwOv)が形成される場合よりも溶融亜鉛との濡れ性が良好となる。相対流速が1000mpmを超えるとこの効果は飽和し、経済的に不利になる。相対流速が300mpmより小さいと、鋼板表面でのMn及びCrの複合酸化物は形成されるがMnの単独酸化物も多く形成されるため、めっき性を改善できなくなる。以上から、相対流速は300mpm以上1000mpm以下に規定する。
Relative flow rate for steel plate in annealing furnace atmosphere: 300 mpm or more and 1000 mpm or less Increasing the relative flow rate for steel plate in annealing furnace increases the supply amount of atmospheric gas to the steel plate surface, and the oxygen potential at the steel plate-atmosphere interface is compared. Therefore, the diffusion of Mn to the steel sheet surface is suppressed, the outward diffusion of Cr is promoted, and the selective oxidation on the Cr surface is promoted. As a result, a complex oxide of Mn and Cr is easily formed on the steel sheet surface. Since the composite oxide of Mn and Cr is more easily reduced by Al in the bath than the oxide of Mn alone (MnwOv), Mn and Cr are more concentrated than the oxide of the Mn alone (MnwOv). The oxide containing both of these improves the reactivity with Al in the bath. As a result, when an oxide containing both Mn and Cr is formed, the wettability with molten zinc becomes better than when an oxide of Mn alone (MnwOv) is formed. When the relative flow rate exceeds 1000 mpm, this effect is saturated and disadvantageous economically. When the relative flow rate is less than 300 mpm, a complex oxide of Mn and Cr is formed on the surface of the steel sheet, but a large amount of a single oxide of Mn is also formed, so that the plating properties cannot be improved. From the above, the relative flow velocity is defined as 300 mpm or more and 1000 mpm or less.

相対流速は、雰囲気ガスを鋼帯進行方向の逆方向に吹き付けたり、ライン速度をアップさせるなどして、容易に調整できる。ただし、相対流速の実現方法については、上記の方法に限定されない。   The relative flow velocity can be easily adjusted by blowing atmospheric gas in the direction opposite to the steel strip traveling direction or increasing the line speed. However, the method for realizing the relative flow velocity is not limited to the above method.

炉内雰囲気:露点が−60℃以上0℃未満かつH1.0%以上含有する還元雰囲気であるH−Nガス雰囲気
露点が0℃超になると、鋼板が酸化されてしまい、還元焼鈍処理には不適である。−60℃未満では、鋼板の還元焼鈍の効果が飽和し、経済的に不利である。また雰囲気はH−Nガス系が好ましく、H濃度は1.0〜90%が好ましい。1.0%未満だと露点を下げても還元が不十分であり、90%超は経済的に不利である。
Furnace atmosphere: the dew point is H 2 -N 2 gas dew point is a reducing atmosphere containing -60 ° C. or higher 0 ℃ less and H 2 1.0% or more becomes 0 ℃ greater than would be steel is oxidized, reduced It is unsuitable for annealing treatment. If it is less than -60 degreeC, the effect of the reduction annealing of a steel plate will be saturated and it will be economically disadvantageous. The atmosphere is preferably an H 2 —N 2 gas system, and the H 2 concentration is preferably 1.0 to 90%. If it is less than 1.0%, the reduction is insufficient even if the dew point is lowered, and if it exceeds 90%, it is economically disadvantageous.

鋼板温度が600℃以上700℃以下の温度域での加熱時間が1秒以上100秒以下
600℃〜700℃では、鋼板組織の再結晶が不十分な温度域であるが、鋼中のCrやMnの鋼板表面への拡散は起こってしまう。鋼板組織の再結晶が不十分な場合、結晶粒径が著しく小さく、拡散経路となる粒界の数が非常に多いため、CrやMnの表面濃化が多くなる。この結果、焼鈍後の鋼板表面に存在するCrまたは/およびMnを含む酸化物の粒径(長径と短径の平均)が非常に大きくなり、めっき性が劣化する。従ってこの温度域での加熱時間はなるべく短い方が良い。100秒を超えるとめっき性が劣化する。一方、1秒未満ではCrやMnの表面への濃化は少なく、この効果は飽和する。従って600℃以上700℃以下の温度域での加熱時間を1秒以上100秒以下にすることが必要である。
The heating time in the temperature range where the steel sheet temperature is 600 ° C. or more and 700 ° C. or less is 1 second or more and 100 seconds or less. In 600 ° C. to 700 ° C., the recrystallization of the steel sheet structure is an insufficient temperature range. Diffusion of Mn into the steel sheet surface occurs. When the recrystallization of the steel sheet structure is insufficient, the crystal grain size is remarkably small and the number of grain boundaries serving as diffusion paths is very large, so that the surface concentration of Cr and Mn increases. As a result, the particle size (average of the major axis and the minor axis) of the oxide containing Cr or / and Mn present on the surface of the steel sheet after annealing becomes very large, and the plating properties deteriorate. Accordingly, the heating time in this temperature range is preferably as short as possible. If it exceeds 100 seconds, the plating property deteriorates. On the other hand, if it is less than 1 second, the concentration of Cr or Mn on the surface is small, and this effect is saturated. Therefore, it is necessary to set the heating time in the temperature range of 600 ° C. to 700 ° C. to 1 second to 100 seconds.

鋼板温度が700℃以上900℃以下の温度域で加熱時間が5秒以上
鋼板表面の還元および鋼板組織の再結晶のための加熱温度は700℃未満だと鋼板表面の還元および鋼板組織の再結晶が不十分であり、また、900℃以上ではその効果が飽和し、経済的に不利であるため、700℃以上900℃とする。さらに、加熱時間は5秒未満だと還元が不十分であるため、5秒以上とする。
When the heating temperature for the reduction of the steel sheet surface and the recrystallization of the steel sheet structure is less than 700 ° C., the reduction of the steel sheet surface and the recrystallization of the steel sheet structure is performed at a temperature range of 700 ° C. to 900 ° C. In addition, the effect is saturated at 900 ° C. or higher, which is economically disadvantageous. Furthermore, if the heating time is less than 5 seconds, the reduction is insufficient, so that it is 5 seconds or more.

溶融亜鉛めっき前の焼鈍後鋼板表面に存在する粒状のMnまたは/およびCrを含む酸化物のうち、その粒径が0.1μm以下である酸化物の割合(個数割合)が70%以上であることが好ましい。鋼板表面と溶融亜鉛との濡れ性を改善する効果がより優れるためである。なお、粒径は、長径と短径の平均である。   Of the oxide containing granular Mn and / or Cr present on the surface of the steel sheet after annealing before hot dip galvanization, the ratio (number ratio) of the oxide having a particle size of 0.1 μm or less is 70% or more. It is preferable. This is because the effect of improving the wettability between the steel sheet surface and molten zinc is more excellent. The particle diameter is the average of the major axis and the minor axis.

表面酸化物をスピネル型のMnCrとすることで粒径が0.1μm以下である酸化物の割合を70%以上とすることが可能となる。スピネル型のMnCrはMnOやCrに比べ粒径が非常に小さくなる傾向がある。具体的には、鋼中Cr、Mnを、0.4≦Cr≦0.7、0.5Cr≦Mn≦0.5Cr+1.8を満足させることで可能である。Cr、Mnいずれか一方が少ない場合、または多い場合、形成される表面酸化物のスピネル型の占める割合が小さくなるため、粒径が0.1μm以下である酸化物の割合を70%以上とすることができなくなる。具体的には、Crが非常に少ないと、表面酸化物のMnOの占める割合が多くなり、Mnが非常に少ないとCrの占める割合が多くなってしまう。以上から、鋼中のCrとMnは上記を満足することが望ましい。 By making the surface oxide spinel type MnCr 2 O 4 , the ratio of the oxide having a particle size of 0.1 μm or less can be made 70% or more. Spinel type MnCr 2 O 4 tends to have a very small particle size compared to MnO and Cr 2 O 3 . Specifically, Cr and Mn in steel can be satisfied by satisfying 0.4 ≦ Cr ≦ 0.7 and 0.5Cr ≦ Mn ≦ 0.5Cr + 1.8. When the amount of either Cr or Mn is small or large, the proportion of the spinel type in the formed surface oxide becomes small, so the proportion of oxide having a particle size of 0.1 μm or less is made 70% or more. I can't do that. Specifically, when Cr is very small, the proportion of MnO in the surface oxide increases, and when Mn is very small, the proportion of Cr 2 O 3 increases. From the above, it is desirable that Cr and Mn in steel satisfy the above.

この理由は明確ではないが、以下のように推察される。一般的にMnまたは/およびCrを含む酸化物の粒径が大きくなると、浴中Alが反応性の良いFe露出面と接触しにくくなり、反応性が低下し、濡れ性が劣化する。Crを適量添加することで、めっき前還元焼鈍後のMn含有鋼板表面のMnまたは/およびCrを含む酸化物の粒径が0.1μm以下であるものの割合が多くなり、またMn及びCrを含む酸化物の方がMnのみの酸化物に比べて浴中Alにより還元され易く、浴中Alとの反応性が向上する。一方、Crを添加しない場合及びCrを1.0%超添加した場合、表面の酸化物の粒径が0.1μmを超える場合があり、このとき溶融亜鉛との濡れ性は劣化する。1μmの領域内で観察される粒状のMnまたは/およびCrを含む酸化物のうち、その粒径が0.1μm以下である酸化物の割合が70%を下回った場合、めっき性が劣化する。 The reason for this is not clear, but is presumed as follows. In general, when the particle diameter of an oxide containing Mn or / and Cr is increased, Al in the bath becomes difficult to come into contact with the exposed Fe exposed surface, the reactivity is lowered, and the wettability is deteriorated. By adding an appropriate amount of Cr, the ratio of the Mn-containing steel sheet surface after Mn-containing steel sheet after the pre-plating reduction annealing whose Mn and / or Cr-containing oxide particle size is 0.1 μm or less increases, and also contains Mn and Cr. The oxide is more easily reduced by Al in the bath than the oxide containing only Mn, and the reactivity with Al in the bath is improved. On the other hand, when Cr is not added and when Cr is added in excess of 1.0%, the particle size of the oxide on the surface may exceed 0.1 μm, and at this time, wettability with molten zinc deteriorates. Of the oxide containing Mn and / or Cr particulate observed in the region of 1 [mu] m 2, if the proportion of the oxide particle size is 0.1μm or less is less than 70%, is deteriorated platability .

粒径が0.1μm以下である酸化物の割合は、焼鈍後の鋼板表面を、電子顕微鏡観察によって1μmの領域を観察し、酸化物の組成、粒径を特定し、Mnまたは/およびCrを含む酸化物のうち、その粒径が0.1μm以下である酸化物の割合を求めることができる。なお、割合は、10箇所について観察、測定し、その平均値である。 Ratio of particle size oxide is 0.1μm or less, the steel sheet surface after annealing, to observe the region of 1 [mu] m 2 by electron microscopy, the composition of the oxide, to identify particle size, Mn and / or Cr The ratio of the oxide whose particle size is 0.1 μm or less among the oxides containing can be determined. In addition, a ratio is observed and measured about 10 places, and is the average value.

還元焼鈍処理後に非酸化性あるいは還元性雰囲気中でめっきに適した温度まで冷却され、めっき浴中に浸漬してめっきする。   After the reductive annealing treatment, it is cooled to a temperature suitable for plating in a non-oxidizing or reducing atmosphere, and immersed in a plating bath for plating.

溶融亜鉛めっき処理は従来から行われている方法に従えばよい。例えば、めっき浴温は440〜520℃程度、鋼板のめっき浴浸漬温度はほぼめっき浴温に等しくする。   The hot dip galvanizing process may be performed according to a conventionally performed method. For example, the plating bath temperature is about 440 to 520 ° C., and the plating bath immersion temperature of the steel sheet is substantially equal to the plating bath temperature.

浴中Al濃度:0.001%以上
亜鉛めっき浴中のAl濃度は0.001%以上とすることが望ましい。これは浴中Alが焼鈍時に形成されるMn及びCrの複合酸化物と反応することにより、複合酸化物と溶融亜鉛との濡れ性が改善される。Al濃度が0.001%よりも低い場合、この効果は発現されない。また、浴中Al濃度は0.1〜0.2%とするのが一般的ではあるが、上限は特に限定するものではない。あるいは、めっき鋼板の用途によってはめっき温度、めっき浴組成等の上記めっき条件を変更する場合があるが、めっき条件の違いは本発明の効果に何ら寄与するものではなく、特に限定するものではない。例えば、めっき浴中にAl以外にPb、Sb、Fe、Mg、Mn、Ni、Ca、Ti、V、Cr、Co、Sn等の元素が混入していても本発明の効果は何ら変わらない。
Al concentration in the bath: 0.001% or more The Al concentration in the galvanizing bath is preferably 0.001% or more. This is because the Al in the bath reacts with the composite oxide of Mn and Cr formed during annealing, so that the wettability between the composite oxide and molten zinc is improved. This effect is not manifested when the Al concentration is lower than 0.001%. Further, the Al concentration in the bath is generally 0.1 to 0.2%, but the upper limit is not particularly limited. Or, depending on the use of the plated steel sheet, the plating conditions such as the plating temperature and the plating bath composition may be changed. However, the difference in the plating conditions does not contribute to the effect of the present invention and is not particularly limited. . For example, even if elements such as Pb, Sb, Fe, Mg, Mn, Ni, Ca, Ti, V, Cr, Co, and Sn other than Al are mixed in the plating bath, the effect of the present invention is not changed.

めっき後のめっき厚さを調整する方法は特に限定するものではないが、一般的にガスワイピングが使用され、ガスワイピングのガス圧、ワイピングノズル/鋼板間距離等により調整される。このとき、めっき層の厚さは特に限定するものではないが、片面あたり20〜150g/mが好ましい。20g/m未満では防錆性が充分得られない。一方、150g/m超えでは防錆性が飽和し、一方で加工性、経済性を損なうので好ましくは150g/m以下とする。但し、めっき層の厚さの違いは本発明の効果を妨げるものではなく、特に限定するものではない。 The method of adjusting the plating thickness after plating is not particularly limited, but generally, gas wiping is used, and is adjusted by the gas pressure of gas wiping, the distance between the wiping nozzle / steel plate and the like. At this time, the thickness of the plating layer is not particularly limited, but is preferably 20 to 150 g / m 2 per side. If it is less than 20 g / m 2 , sufficient rust prevention properties cannot be obtained. On the other hand, in the 150 g / m 2 exceeds corrosion resistance is saturated, while the workability, so impair the economical efficiency is preferably at 150 g / m 2 or less. However, the difference in the thickness of the plating layer does not hinder the effect of the present invention and is not particularly limited.

本発明では前記溶融亜鉛めっきの後に必要に応じて合金化処理を施す。前述のように本発明によれば、鋼板表面に酸化鉄を形成させるような酸化処理を必要としないため、Γ相が過剰に形成することもなく、その結果、耐パウダリング性に優れた合金化溶融亜鉛めっき鋼板を、生産性を阻害することなく製造することができる。合金化処理方法はガス加熱、インダクション加熱や通電加熱等の従来から行われているどのような加熱方法を用いてもよく、特に限定するものではない。   In the present invention, an alloying treatment is performed as necessary after the hot dip galvanizing. As described above, according to the present invention, since an oxidation treatment for forming iron oxide on the steel sheet surface is not required, the Γ phase is not excessively formed, and as a result, an alloy having excellent powdering resistance. The hot-dip galvanized steel sheet can be manufactured without impairing productivity. The alloying treatment method may be any heating method conventionally used, such as gas heating, induction heating, and current heating, and is not particularly limited.

また、合金化処理条件は特に限定するものではなく、例えば合金化処理板温は460〜600℃程度、合金化保持時間は5〜60秒程度とするのが一般的ではあるが、合金化処理条件の違いが本発明の効果を妨げるものではない。   The alloying treatment conditions are not particularly limited. For example, the alloying treatment plate temperature is generally about 460 to 600 ° C., and the alloying holding time is about 5 to 60 seconds. The difference in conditions does not hinder the effects of the present invention.

本発明によれば、高Mn含有鋼板を母材として用い、溶融めっき後合金化処理しないめっき鋼板は、不めっきのない美麗な表面外観と優れためっき密着性を有し、溶融めっき後合金化処理しためっき鋼板は、高生産性を確保しながら、不めっきのない美麗な表面外観と優れた耐パウダリング性を有し、強度伸びバランスに優れた高強度合金化溶融亜鉛系めっき鋼板を得ることができる。   According to the present invention, a plated steel sheet which uses a high Mn content steel sheet as a base material and is not alloyed after hot dipping has a beautiful surface appearance without unplating and excellent plating adhesion, and is alloyed after hot dipping. Treated plated steel sheet provides high strength alloyed hot dip galvanized steel sheet that has a beautiful surface appearance without plating and excellent powdering resistance while ensuring high productivity. be able to.

また、還元焼鈍の前に鋼板表面に酸化鉄を形成させるような酸化処理を必要としないため、鋼板表面に形成される酸化鉄が焼鈍炉内のロールに付着して押し疵等の欠陥を発生させる問題や生産性を低下させる問題もない。   In addition, since no oxidation treatment is required to form iron oxide on the steel sheet surface before reduction annealing, iron oxide formed on the steel sheet surface adheres to the roll in the annealing furnace and generates defects such as pushing iron. There is no problem of reducing productivity or productivity.

なお、本発明が対象とする溶融亜鉛系めっき鋼板は、めっき浴中にAlを0.1〜0.2%程度含むZn浴で溶融亜鉛めっきしたままのめっき鋼板(所謂溶融亜鉛めっき鋼板)、溶融亜鉛めっき後さらに合金化処理を施しためっき鋼板(所謂合金化溶融亜鉛めっき鋼板)が代表的であるが、このめっき鋼板だけでなく、浴中Al濃度が上記より低いZn浴または高いZn浴で溶融めっきした溶融めっき鋼板、および溶融めっき後さらに合金化処理を施した合金化溶融めっき鋼板を含む。   In addition, the hot dip galvanized steel sheet targeted by the present invention is a plated steel sheet (so-called hot dip galvanized steel sheet) that has been hot dip galvanized in a Zn bath containing about 0.1 to 0.2% Al in the plating bath, A typical example is a plated steel sheet (so-called alloyed hot-dip galvanized steel sheet) that has been further alloyed after hot dip galvanizing, but not only this plated steel sheet but also a Zn bath having a lower or higher Al concentration in the bath. And a galvannealed steel sheet that has been subjected to an alloying treatment after the galvanizing.

以下、本発明を、実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

(1)供試めっき鋼板の作製
表1に示した鋼組成を有し、残部Fe及び不可避的不純物からなる鋼スラブを加熱炉で1260℃、60分加熱し、引き続き2.8mmまで熱間圧延をして540℃で巻き取った。その後酸洗で黒皮スケールを除去して、1.6mmまで冷間圧延した。
(1) Preparation of test-plated steel sheet A steel slab having the steel composition shown in Table 1 and comprising the remainder Fe and inevitable impurities was heated in a heating furnace at 1260 ° C. for 60 minutes, and then hot-rolled to 2.8 mm. And wound up at 540 ° C. Thereafter, the black scale was removed by pickling and cold rolled to 1.6 mm.

Figure 2010065314
Figure 2010065314

冷間圧延した鋼板を、プレ酸化(DFF)型焼鈍炉を備えるCGLまたはRTF型焼鈍炉を備えるCGLを用いて、焼鈍した後溶融亜鉛めっきし、またさらに合金化処理を行った。   The cold-rolled steel sheet was annealed and then hot-dip galvanized using a CGL equipped with a pre-oxidation (DFF) type annealing furnace or a CGL equipped with an RTF type annealing furnace, and further subjected to alloying treatment.

プレ酸化(DFF)型焼鈍炉は、直火型加熱炉(Direct Fired Furnace)とRTF型の還元焼鈍炉を備え、直火型加熱炉(Direct Fired Furnace)は、O、CO、COの炉内濃度を制御し、鋼板のFe酸化量を制御することが可能である。 The pre-oxidation (DFF) type annealing furnace includes a direct fired furnace (Direct Fired Furnace) and an RTF type reduction annealing furnace, and the direct fired heating furnace (Direct Fired Furnace) is composed of O 2 , CO, and CO 2 . It is possible to control the concentration in the furnace and the amount of Fe oxidation of the steel sheet.

RTF型焼鈍炉は、RTF(Radiant Tube Furnace)型の加熱焼鈍炉を備え、雰囲気はN−H(H:3〜8%が一般的)であり、Feに対しては還元雰囲気である。 The RTF type annealing furnace includes an RTF (Radiant Tube Furnace) type heating annealing furnace, and the atmosphere is N 2 —H 2 (H 2 is generally 3 to 8%). is there.

プレ酸化(DFF)型焼鈍炉を備えるCGLでは、DFFは空気比:0.9で550〜650℃まで加熱し、鋼板表面を酸化し、還元焼鈍炉(RTF)で800℃で加熱することで還元焼鈍した(N−H雰囲気でH濃度が5%)後引き続き、460℃のAl含有Zn浴(Al濃度0.14%)にて溶融亜鉛めっきを施した。一部はZn浴のAl濃度を変えて溶融亜鉛めっきを施した。めっき付着量はガスワイピングにより片面当たり20〜150g/mに調節した。合金化処理温度は540℃で行い、処理時間を調整してFe濃度が10%になるようにした。 In CGL equipped with a pre-oxidation (DFF) type annealing furnace, DFF heats up to 550-650 ° C. at an air ratio: 0.9, oxidizes the steel sheet surface, and heats at 800 ° C. in a reduction annealing furnace (RTF). After reduction annealing (H 2 concentration in N 2 —H 2 atmosphere is 5%), hot dip galvanization was subsequently performed in an Al-containing Zn bath at 460 ° C. (Al concentration 0.14%). Some of them were hot dip galvanized by changing the Al concentration in the Zn bath. The plating adhesion amount was adjusted to 20 to 150 g / m 2 per side by gas wiping. The alloying treatment temperature was 540 ° C., and the treatment time was adjusted so that the Fe concentration was 10%.

RTF型焼鈍炉を備えるCGLでは、RTFの加熱温度を種々変えて加熱することで還元焼鈍した。還元焼鈍後は、前述のDFF型焼鈍炉を備えるCGLでの条件と同様の条件とした。RTFはN−H雰囲気とし、雰囲気のH濃度、露点、雰囲気の鋼板に対する相対流速を変更した。露点は、高湿N−H流量を増減することで調整した。相対流速は、炉内への総ガス流量を増減すること、及びライン速度を増減することで調整した。なお、相対流速はガス流速とライン速度から、相対速度を算出することで求めた。 In CGL equipped with an RTF type annealing furnace, reduction annealing was performed by changing the heating temperature of the RTF in various ways. After the reduction annealing, the conditions were the same as those in CGL equipped with the above-described DFF type annealing furnace. The RTF was an N 2 —H 2 atmosphere, and the H 2 concentration of the atmosphere, the dew point, and the relative flow rate with respect to the steel plate of the atmosphere were changed. The dew point was adjusted by increasing or decreasing the high humidity N 2 —H 2 flow rate. The relative flow velocity was adjusted by increasing / decreasing the total gas flow rate into the furnace and increasing / decreasing the line speed. The relative flow rate was obtained by calculating the relative speed from the gas flow rate and the line speed.

(2)焼鈍後、めっきポットの溶融亜鉛を空にしてめっきポットを空通し、合金化炉も空通して、溶融亜鉛めっき前の焼鈍後鋼板を採取した。この鋼板表面を電子顕微鏡観察し、1μmの領域内に観察される粒状のMnまたは/およびCrを含む酸化物のうち、その粒径(長径と短径の平均)が0.1μm以下である酸化物の割合が70%以上であるか否かを調査し、1μmの領域内に観察される粒状のMnまたは/およびCrを含む酸化物のうち、その粒径(長径と短径の平均)が0.1μm以下である酸化物の割合が70%以上である場合を○、70%未満である場合を×とした。割合は、10箇所について観察、測定し、その平均値である。 (2) After annealing, the molten zinc in the plating pot was emptied, the plating pot was evacuated, the alloying furnace was also evacuated, and the steel sheet after annealing before hot dip galvanizing was collected. The steel plate surface is observed with an electron microscope, and the particle size (average of major axis and minor axis) is 0.1 μm or less among the granular oxides containing Mn and / or Cr observed in the region of 1 μm 2. It is investigated whether the ratio of the oxide is 70% or more, and among the oxides containing granular Mn or / and Cr observed in the region of 1 μm 2 , the particle diameter (average of major axis and minor axis) ) Is 0.1 μm or less, the case where the ratio of the oxide is 70% or more is indicated by “◯”, and the case where it is less than 70% is indicated by “X”. The ratio is an average value observed and measured at 10 locations.

(3)合金化処理しためっき鋼板の断面電子顕微鏡観察(ビーム径が0.01μmの測定機器(EDX))によって、めっき層のめっき−下地鋼板界面から1μmまでの領域及び下地鋼板のめっき−下地鋼板界面から1μmまでの領域内の面積0.01μmの領域を20箇所観察し、Al、MnおよびCrの各濃度が、各々下地鋼板中のAl、MnおよびCrの各濃度の3倍以上の濃度に濃化している領域が1箇所以上観察される場合を○、観察されない場合を×とした。下地鋼板のAl、Mn、Crの濃度は表1に記載した濃度を用いた。 (3) By observation with a cross-sectional electron microscope of the alloyed plated steel sheet (measuring instrument (EDX) with a beam diameter of 0.01 μm 2 ), plating of the plating layer—plating of the region from the base steel sheet interface to 1 μm and the base steel sheet— Observe 20 areas of 0.01 μm 2 in the area from the base steel plate interface to 1 μm, and each concentration of Al, Mn and Cr is more than 3 times the concentration of Al, Mn and Cr in the base steel plate, respectively. The case where one or more areas concentrated in the density of 1 was observed was marked as ◯, and the case where it was not observed was marked as x. The concentrations shown in Table 1 were used for the concentrations of Al, Mn, and Cr in the base steel plate.

(4)めっき外観の評価
溶融亜鉛めっきままのめっき鋼板の表面外観を目視観察し、不めっき有無を評価した。不めっきが全くない場合は良好(◎)、不めっきが多少はあるが表面品質を損ねる程ではない軽微な欠陥の場合は概ね良好(○)、不めっきがあり表面品質が劣る場合は不良(×)とした。○、◎が合格である。合金化処理後のめっき鋼板の表面外観を目視観察し、合金化遅延による外観ムラの有無を評価した。ムラがないものは良好、ムラがあるものは不良とした。
さらに、両方の評価がいずれも良好なものは、○:外観良好と判定し、少なくともいずれか一方が不良のものは、×:外観不良と判定した。
(4) Evaluation of plating appearance The surface appearance of the plated steel sheet as hot dip galvanized was visually observed to evaluate the presence or absence of non-plating. Good if there is no unplating (◎), good in case of minor defects that are somewhat unplated but do not impair the surface quality (○), bad if there is unplating and the surface quality is inferior ( X). ○ and ◎ are acceptable. The surface appearance of the plated steel sheet after the alloying treatment was visually observed, and the presence or absence of appearance unevenness due to the alloying delay was evaluated. Those with no unevenness were judged good, and those with unevenness were judged bad.
Further, when both evaluations were good, it was judged that ◯: good appearance, and at least one of them was bad, x: judged as poor appearance.

(5)溶融亜鉛めっきままのめっき鋼板のめっき密着性の評価
ボールインパクト試験を行い、テープ剥離した際のめっき剥離状態を評価した。試験条件は、直径1/2インチの半球状突起の上に載せた溶融亜鉛めっき鋼板上に、2.8kgの重りを1mの高さから落下させた後、凸側面のテープ剥離を行い、めっき剥離程度に応じて以下の通り評価した。○、◎が合格である。
◎:めっき剥離なし(良好)
○:めっき剥離僅かにあり(概ね良好)
×:めっき剥離あり(不良)
(5) Evaluation of plating adhesion of a galvanized steel sheet as hot-dip galvanized A ball impact test was conducted to evaluate the plating peeling state when the tape was peeled off. The test conditions were as follows: a 2.8 kg weight was dropped from a height of 1 m onto a hot dip galvanized steel sheet placed on a hemispherical projection having a diameter of 1/2 inch, and then the tape was peeled off from the convex side, followed by plating. The following evaluation was made according to the degree of peeling. ○ and ◎ are acceptable.
A: No peeling of plating (good)
○: Slight peeling of plating (generally good)
×: Plating peeling (defect)

(6)合金化処理しためっき鋼板の耐パウダリング性の評価
耐パウダリング性は、めっき鋼板に粘着テープを貼り、テープ貼り付け面を内側にして曲げ半径1.6mmで90°曲げ戻しを行った場合の単位長さ当たりの剥離量を蛍光X線によりZnカウント数を測定し、下記の基準に照らしてランク1、2、3のものを良好(◎)、4のものを概ね良好(○)、5のものを不良(×)として評価した。○、◎が合格である。
蛍光X線カウント数 :ランク
0−500未満 :1(良)
500−1000未満 :2
1000−3000未満:3
3000−5000未満:4
5000以上 :5(劣)
(6) Evaluation of powdering resistance of galvanized steel sheet treated with alloying Powdering resistance is applied by applying adhesive tape to the plated steel sheet and bending back 90 ° at a bending radius of 1.6 mm with the tape application surface inside. The amount of peeling per unit length was measured with a fluorescent X-ray, and the Zn count was measured with a fluorescent X-ray. ) 5 were evaluated as bad (x). ○ and ◎ are acceptable.
X-ray fluorescence count: Rank 0 to less than 500: 1 (good)
Less than 500-1000: 2
Less than 1000-3000: 3
Less than 3000-5000: 4
5000 or more: 5 (poor)

(7)耐食性の評価
寸法70mm×150mmの合金化溶融亜鉛めっき鋼板について、JIS Z 2371(2000年)に基づく塩水噴霧試験を3日間行い、腐食生成物をクロム酸(濃度200g/L、80℃)を用いて1分間洗浄除去し、試験前後のめっき腐食減量片面あたり(g/m・日)を重量法にて測定し、下記基準で評価した。
○(良好):20g/m・日未満
×(不良):20g/m・日以上
(7) Evaluation of corrosion resistance The alloyed hot-dip galvanized steel sheet with dimensions of 70 mm x 150 mm was subjected to a salt spray test based on JIS Z 2371 (2000) for 3 days, and the corrosion product was treated with chromic acid (concentration 200 g / L, 80 ° C). ) For 1 minute, and measured per weight (g / m 2 · day) of plating corrosion weight loss before and after the test by the weight method, and evaluated according to the following criteria.
○ (Good): Less than 20 g / m 2 · day x (Bad): 20 g / m 2 · day or more

(8)機械的特性の評価
機械的特性の評価は、合金化処理溶融亜鉛めっき鋼板からJIS5号引張試験片を採取し、引張試験を行って測定した引張強さTS(MPa)及び伸びEl(%)より、TS×Elの値が20000MPa・%以上である場合を良好な強度延性バランスを示すとして、機械的特性良好(○)とし、TS×Elの値が20000MPa・%以未満である場合を機械的特性不良(×)とした。TS×Elの値が20000MPa・%以上であれば、自動車用用途として十分な強度・伸びバランスを有すると考えられるためである。
(8) Evaluation of mechanical properties Mechanical properties were evaluated by taking a JIS No. 5 tensile specimen from an alloyed hot-dip galvanized steel sheet and performing a tensile test to measure the tensile strength TS (MPa) and elongation El ( %), When the value of TS × El is 20000 MPa ·% or more, the mechanical strength is good (◯), indicating a good balance of strength and ductility, and the value of TS × El is less than 20000 MPa ·%. Was defined as a mechanical property defect (×). This is because if the value of TS × El is 20000 MPa ·% or more, it is considered that the strength / elongation balance is sufficient for automotive applications.

供試材の構成、製造条件及び評価結果を表2〜表7に示す。   Tables 2 to 7 show the composition, production conditions, and evaluation results of the test materials.

Figure 2010065314
Figure 2010065314

Figure 2010065314
Figure 2010065314

Figure 2010065314
Figure 2010065314

Figure 2010065314
Figure 2010065314

Figure 2010065314
Figure 2010065314

Figure 2010065314
Figure 2010065314

表2〜表7から明らかなように、本発明法で製造された実施例のめっき鋼板は、Mnを高濃度で含有するにも係わらず、溶融亜鉛めっきまま、合金化処理後のいずれの場合もめっき外観が良好であり、まためっき密着性、耐パウダリング性が良好である。また、強度延性バランスに優れ、また生産性が低下する問題もない。   As is apparent from Tables 2 to 7, the plated steel sheets of the examples produced by the method of the present invention were either hot-dip galvanized or alloyed after being alloyed despite containing high concentrations of Mn. Also, the plating appearance is good, and the plating adhesion and powdering resistance are good. In addition, the strength and ductility balance is excellent, and there is no problem that productivity is lowered.

本発明の本発明の高強度溶融亜鉛系めっき鋼板は、溶融めっき後合金化処理しない場合は、不めっきのない美麗な表面外観と優れためっき密着性を有し、溶融めっき後合金化処理した場合は、高生産性を確保しながら、不めっきのない美麗な表面外観と優れた耐パウダリング性を有し、また強度伸びバランスに優れるので、鋼板の高強度化と防錆性とが求められる自動車、家電、建材等の分野で使用する鋼板として好適に利用することができる。   The high-strength hot-dip galvanized steel sheet of the present invention, when not alloyed after hot-dip plating, has a beautiful surface appearance without unplating and excellent plating adhesion, and was alloyed after hot-dip plating. In this case, while ensuring high productivity, it has a beautiful surface appearance without plating, excellent powdering resistance, and an excellent balance of strength and elongation. It can be suitably used as a steel plate used in fields such as automobiles, home appliances, and building materials.

本発明の高強度溶融亜鉛系めっき鋼板の製造方法は、前述の高強度溶融亜鉛系めっき鋼板を高生産性を確保しながら製造する方法として利用することができる。   The method for producing a high-strength hot-dip galvanized steel sheet according to the present invention can be used as a method for producing the aforementioned high-strength hot-dip galvanized steel sheet while ensuring high productivity.

Claims (2)

C:0.01〜2.0質量%、Mn:0.2〜3.0質量%、Cr:0.10〜1.0質量%、Al:0.01〜5.0質量%、P:0.2質量%以下、S:0.02質量%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼板表面に、浴中Al濃度が0.001質量%以上である溶融亜鉛系めっき浴で溶融めっきして形成しためっき層または溶融めっき後合金化処理しためっき層を有する高強度溶融亜鉛系めっき鋼板であって、めっき層のめっき−下地鋼板界面から1μmまでの領域、及び、下地鋼板のめっき−下地鋼板界面から1μmまでの領域の一方または両方の領域においてAl、MnおよびCrの各濃度が、各々下地鋼板中のAl、MnおよびCrの各濃度の3倍以上である部分が存在することを特徴とする、めっき性に優れた高強度溶融亜鉛系めっき鋼板。 C: 0.01-2.0 mass%, Mn: 0.2-3.0 mass%, Cr: 0.10-1.0 mass%, Al: 0.01-5.0 mass%, P: A molten zinc system containing 0.2% by mass or less and S: 0.02% by mass or less and having a composition comprising the balance Fe and unavoidable impurities and having an Al concentration in the bath of 0.001% by mass or more. A high-strength hot-dip galvanized steel sheet having a plated layer formed by hot-dip plating in a plating bath or a plated layer that has been alloyed after hot-plating, a region from the plating-underlying steel plate interface of the plated layer to 1 μm; and A portion in which each concentration of Al, Mn and Cr is 3 times or more of each concentration of Al, Mn and Cr in the base steel plate in one or both of the regions from the plating of the base steel plate to the base steel plate to 1 μm Characterized by the presence of A high-strength hot-dip galvanized steel sheet with excellent clarity. 請求項1記載の組成を有する鋼板を、焼鈍工程後、浴中Al濃度が0.001質量%以上の溶融亜鉛めっき浴で溶融めっきを施し、またはさらに合金化処理を施して溶融亜鉛系めっき鋼板を製造する際に、焼鈍工程は、炉内雰囲気の露点が−60℃以上0℃以下でかつH2:1.0vol%以上含有する還元雰囲気であるH−Nガス雰囲気中で、雰囲気の鋼板に対する相対流速が300mpm以上1000mpm以下になるようにし、鋼板は、600℃以上700℃以下の温度域は加熱時間が1秒以上100秒以下となるように加熱し、700℃以上900℃以下の温度域は加熱時間が5秒以上となるようにすることを特徴とするめっき性に優れた高強度溶融亜鉛系めっき鋼板の製造方法。 The steel sheet having the composition of claim 1 is subjected to a hot dip galvanizing bath having an Al concentration in the bath of 0.001% by mass or more after the annealing step, or further subjected to an alloying treatment to obtain a hot dip galvanized steel sheet. in making the annealing process, and the dew point of the furnace atmosphere is -60 ° C. or higher 0 ℃ less H 2: in H 2 -N 2 gas atmosphere is a reducing atmosphere containing at least 1.0 vol%, the atmosphere The steel plate is heated so that the heating time is 1 second or more and 100 seconds or less in a temperature range of 600 ° C. or more and 700 ° C. or less, and 700 ° C. or more and 900 ° C. or less. A method for producing a high-strength hot-dip galvanized steel sheet having excellent plating properties, characterized in that the heating time is 5 seconds or more.
JP2008272828A 2008-08-12 2008-10-23 High strength hot dip galvanized steel sheet and method for producing the same Expired - Fee Related JP5417797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008272828A JP5417797B2 (en) 2008-08-12 2008-10-23 High strength hot dip galvanized steel sheet and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008207543 2008-08-12
JP2008207543 2008-08-12
JP2008272828A JP5417797B2 (en) 2008-08-12 2008-10-23 High strength hot dip galvanized steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010065314A true JP2010065314A (en) 2010-03-25
JP5417797B2 JP5417797B2 (en) 2014-02-19

Family

ID=42191144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272828A Expired - Fee Related JP5417797B2 (en) 2008-08-12 2008-10-23 High strength hot dip galvanized steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP5417797B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241211A (en) * 2011-05-17 2012-12-10 Nippon Steel Corp Method for manufacturing p-containing high-strength hot-dip galvanized steel sheet
JP2013142198A (en) * 2012-01-13 2013-07-22 Nippon Steel & Sumitomo Metal Corp Method for producing hot-dip galvanized steel sheet having excellent plating wettability and pickup resistance
WO2013136534A1 (en) * 2012-03-15 2013-09-19 Jfeスチール株式会社 Method for adjusting furnace atmosphere in continuous galvanizing line
CN104520464A (en) * 2012-08-07 2015-04-15 新日铁住金株式会社 Zinc-plated steel sheet for hot press molding
KR101611664B1 (en) * 2013-10-30 2016-04-12 주식회사 포스코 Galvanized steel sheet having excellent surface property and coating adhesion and method for manufacturing the same
WO2017017961A1 (en) * 2015-07-29 2017-02-02 Jfeスチール株式会社 Cold rolled steel sheet, plated steel sheet and methods for producing same
JP2017133102A (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 High yield ratio type high strength galvanized steel sheet and manufacturing method therefor
WO2017131056A1 (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 High-yield ratio high-strength galvanized steel sheet, and method for producing same
WO2017131055A1 (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 High-yield ratio high-strength galvanized steel sheet, and method for producing same
JP2018003050A (en) * 2016-06-28 2018-01-11 Jfeスチール株式会社 Method for manufacturing hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
US11326243B2 (en) * 2016-06-28 2022-05-10 Baoshan Iron & Steel Co., Ltd. Low-density hot dip galvanized steel and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204580A (en) * 1997-01-16 1998-08-04 Kawasaki Steel Corp Hot-dip galvanized hot rolled steel plate with high strength
JP2007039780A (en) * 2004-10-07 2007-02-15 Jfe Steel Kk Hot-dip galvanized steel sheet, galvannealed steel sheet and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204580A (en) * 1997-01-16 1998-08-04 Kawasaki Steel Corp Hot-dip galvanized hot rolled steel plate with high strength
JP2007039780A (en) * 2004-10-07 2007-02-15 Jfe Steel Kk Hot-dip galvanized steel sheet, galvannealed steel sheet and manufacturing method therefor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241211A (en) * 2011-05-17 2012-12-10 Nippon Steel Corp Method for manufacturing p-containing high-strength hot-dip galvanized steel sheet
JP2013142198A (en) * 2012-01-13 2013-07-22 Nippon Steel & Sumitomo Metal Corp Method for producing hot-dip galvanized steel sheet having excellent plating wettability and pickup resistance
WO2013136534A1 (en) * 2012-03-15 2013-09-19 Jfeスチール株式会社 Method for adjusting furnace atmosphere in continuous galvanizing line
US9902135B2 (en) 2012-08-07 2018-02-27 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet for hot forming
CN104520464A (en) * 2012-08-07 2015-04-15 新日铁住金株式会社 Zinc-plated steel sheet for hot press molding
CN104520464B (en) * 2012-08-07 2016-08-24 新日铁住金株式会社 Hot forming electrogalvanized steel plate
KR101611664B1 (en) * 2013-10-30 2016-04-12 주식회사 포스코 Galvanized steel sheet having excellent surface property and coating adhesion and method for manufacturing the same
WO2017017961A1 (en) * 2015-07-29 2017-02-02 Jfeスチール株式会社 Cold rolled steel sheet, plated steel sheet and methods for producing same
JP6150022B1 (en) * 2015-07-29 2017-06-21 Jfeスチール株式会社 Cold-rolled steel sheet, plated steel sheet, and production method thereof
US10704117B2 (en) 2015-07-29 2020-07-07 Jfe Steel Corporation Cold-rolled steel sheet, coated steel sheet, method for manufacturing cold-rolled steel sheet, and method for manufacturing coated steel sheet
CN107849662A (en) * 2015-07-29 2018-03-27 杰富意钢铁株式会社 Cold-rolled steel sheet, coated steel sheet and their manufacture method
WO2017131055A1 (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 High-yield ratio high-strength galvanized steel sheet, and method for producing same
JP6249140B1 (en) * 2016-01-27 2017-12-20 Jfeスチール株式会社 High yield ratio type high strength galvanized steel sheet and method for producing the same
WO2017131056A1 (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 High-yield ratio high-strength galvanized steel sheet, and method for producing same
CN108603262A (en) * 2016-01-27 2018-09-28 杰富意钢铁株式会社 High yield is than type high strength galvanized steel plate and its manufacturing method
CN108603262B (en) * 2016-01-27 2020-03-20 杰富意钢铁株式会社 High yield ratio type high strength galvanized steel sheet and method for producing same
JP2017133102A (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 High yield ratio type high strength galvanized steel sheet and manufacturing method therefor
US11473180B2 (en) 2016-01-27 2022-10-18 Jfe Steel Corporation High-yield-ratio high-strength galvanized steel sheet and method for manufacturing the same
JP2018003050A (en) * 2016-06-28 2018-01-11 Jfeスチール株式会社 Method for manufacturing hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
US11326243B2 (en) * 2016-06-28 2022-05-10 Baoshan Iron & Steel Co., Ltd. Low-density hot dip galvanized steel and manufacturing method therefor

Also Published As

Publication number Publication date
JP5417797B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5417797B2 (en) High strength hot dip galvanized steel sheet and method for producing the same
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4972775B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion
JP5907221B2 (en) Steel sheet with alloyed hot-dip galvanized layer with excellent plating wettability and plating adhesion and method for producing the same
JP5708884B2 (en) Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP5982905B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
WO2010061954A1 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5513216B2 (en) Method for producing galvannealed steel sheet
KR20140128458A (en) High-strength hot-dip galvanized steel plate and method for producing same
JP5888267B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5552863B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5552859B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR101789958B1 (en) Galvannealed steel sheet and method for producing the same
JP5552862B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5552864B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5593771B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP2010018874A (en) Hot-dip galvannealed steel sheet and production method thereof
JP5444752B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
KR101650665B1 (en) High strength hot dip galvannealed steel sheet of excellent phosphatability and ductility, and a production process therefor
JP5593770B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5309653B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
KR101978014B1 (en) High-strength steel sheet, high-strength hot-dip zinc-coated steel sheet, and methods for producing said steel sheets
JP2011026674A (en) High-strength hot-dip galvanized steel sheet having excellent plating peeling resistance
JP5552861B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5552860B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R150 Certificate of patent or registration of utility model

Ref document number: 5417797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees