JP2009024210A - Hot-dip zinc alloy plated steel wire - Google Patents

Hot-dip zinc alloy plated steel wire Download PDF

Info

Publication number
JP2009024210A
JP2009024210A JP2007187518A JP2007187518A JP2009024210A JP 2009024210 A JP2009024210 A JP 2009024210A JP 2007187518 A JP2007187518 A JP 2007187518A JP 2007187518 A JP2007187518 A JP 2007187518A JP 2009024210 A JP2009024210 A JP 2009024210A
Authority
JP
Japan
Prior art keywords
steel wire
hot
plating
phase
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007187518A
Other languages
Japanese (ja)
Inventor
Yohei Nakamoto
洋平 中本
Satoshi Sugimaru
聡 杉丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Tokyo Seiko Co Ltd
Original Assignee
Nippon Steel Corp
Tokyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Tokyo Seiko Co Ltd filed Critical Nippon Steel Corp
Priority to JP2007187518A priority Critical patent/JP2009024210A/en
Publication of JP2009024210A publication Critical patent/JP2009024210A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-dip zinc alloy plated steel wire having both of superior corrosion resistance and workability. <P>SOLUTION: The hot-dip zinc alloy plated steel wire has a hot-dip plated layer thereon which has an average composition comprising, by mass%, 4 to 20% of Al, 0.1 to 1.0% of Mg and the balance Zn with unavoidable impurities. The hot-dip plated layer includes an α phase which has an aspect ratio L/C of a length (L) in an axial direction of the steel wire to a length (C) in a cross direction in an amount of 2.0 or more. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、屋外に暴露して使用される、特に海水などに曝される高腐食環境下の養殖設備や構造物に使用される加工性と耐食性を高めた溶融亜鉛合金めっき鋼線に関する。   The present invention relates to a hot dip galvanized steel wire with improved workability and corrosion resistance, which is used by being exposed to the outdoors, especially for aquaculture facilities and structures exposed to seawater and the like in a highly corrosive environment.

鋼線に耐食性を付与する方法として一般に溶融亜鉛めっきが行われているが、さらに耐食性を改善した溶融ZnAl合金めっきしたZnAl合金めっき鋼線が種々の腐食環境に用いられている。しかし、ZnAl合金めっき鋼線といえどもその耐食性には限りがあり、海水などに浸漬される湿潤な高腐食環境下で使用される場合には寿命が短い。このため、溶融ZnAl合金めっき鋼線よりも更に耐食性に優れたものとして、さらにマグネシウムを含む溶融ZnAlMg合金めっき鋼線が河川護岸工事用のかごマットなどに用いられている。このように耐食性を更に改善した溶融ZnAlMg合金めっき鋼線は、例えば特許文献1〜3においてそれぞれ提案されている。
特許第3854468号公報 特許第3857882号公報 特許第3599680号公報
In general, hot dip galvanizing is performed as a method for imparting corrosion resistance to steel wires. However, ZnAl alloy plated steel wires plated with hot dip ZnAl alloy with further improved corrosion resistance are used in various corrosive environments. However, even a ZnAl alloy-plated steel wire has a limited corrosion resistance and has a short life when used in a wet highly corrosive environment immersed in seawater or the like. For this reason, a molten ZnAlMg alloy-plated steel wire containing magnesium is used as a car mat for river revetment work, etc., as it is more excellent in corrosion resistance than a molten ZnAl alloy-plated steel wire. Thus, the hot-dip ZnAlMg alloy plating steel wire which further improved corrosion resistance is proposed, for example in patent documents 1-3.
Japanese Patent No. 3854468 Japanese Patent No. 3857882 Japanese Patent No. 3599680

しかし、特許文献1〜3の溶融ZnAlMg合金めっきは、溶融亜鉛めっきや溶融ZnAl合金めっきに比べてFe−Zn合金層が硬いために加工性に劣るという欠点がある。すなわち、めっき後に伸線加工や圧延加工や曲げ加工を実施すると、合金層に微細なひび割れが発生し、これが成長して亀裂や剥離となって防食被覆層としての機能が損なわれる。   However, the hot-dip ZnAlMg alloy plating of Patent Documents 1 to 3 has a defect that the workability is inferior because the Fe—Zn alloy layer is harder than hot-dip zinc plating or hot-dip ZnAl alloy plating. That is, when wire drawing, rolling, or bending is performed after plating, fine cracks are generated in the alloy layer, which grows and becomes cracks or delamination, thereby impairing the function of the anticorrosion coating layer.

本発明は上記の課題を解決するためになされたものであり、優れた耐食性と加工性を兼ね備えた溶融亜鉛合金めっき鋼線を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a hot dip galvanized steel wire having both excellent corrosion resistance and workability.

本発明に係る溶融亜鉛合金めっき鋼線は、平均組成が質量%で、Al:4〜20%、Mg:0.1〜1.0%を含み、残部がZn及び不可避不純物からなる溶融めっき層を有し、前記溶融めっき層中に鋼線の軸方向(伸線加工方向)の長さLとクロス方向の長さCとのアスペクト比L/Cを2.0以上とするα相を含むことを特徴とする。   The hot dip galvanized steel wire according to the present invention has an average composition of mass%, Al: 4 to 20%, Mg: 0.1 to 1.0%, and the remainder comprising Zn and inevitable impurities. And an α phase in which the aspect ratio L / C between the length L in the axial direction (drawing direction) of the steel wire and the length C in the cross direction is 2.0 or more is included in the hot-dip plated layer It is characterized by that.

溶融めっき層中のα相のアスペクト比L/Cを2.0以上とすることにより加工性が向上し、めっき層に亀裂や剥離を生じなくなる。このように細長い形状のα相は、総減面率の大きな減面加工として伸線加工や冷間圧延加工あるいはスキンパス(調質圧延)を行うことにより形成される。真歪εが増大するにしたがってα相のアスペクト比L/Cも増大していき、例えば真歪εが0.40以上の減面加工を行うと、α相のアスペクト比L/Cがほぼ2.0以上になる(図4)。   By making the aspect ratio L / C of the α phase in the hot-dipped layer 2.0 or more, workability is improved, and cracks and peeling do not occur in the plated layer. In this way, the elongated α phase is formed by performing wire drawing, cold rolling, or skin pass (temper rolling) as a surface reduction with a large total area reduction. As the true strain ε increases, the aspect ratio L / C of the α phase also increases. For example, when surface reduction processing is performed with the true strain ε of 0.40 or more, the aspect ratio L / C of the α phase is approximately 2 0 or more (FIG. 4).

さらに、上記のめっき鋼線において、溶融めっき層と鋼線との間に形成されるFe−Zn合金層の平均厚みを10μm以下とすることが好ましい。Fe−Zn合金層の平均厚みを10μm以下に調整するためには、鋼線のめっき浴への浸漬時間、めっき浴の温度、めっき浴の組成をそれぞれ所望の範囲に制御する。特に、Fe−Zn合金層の厚みは、鋼線のめっき浴への浸漬時間に強い依存性がある。従って、この浸漬時間を高精度にコントロールすることによりFe−Zn合金層の厚みを所望値に調整することが可能となる。Fe−Zn合金層の平均厚みを10μm以下にすると、加工性が大幅に向上する(図8)。   Furthermore, in the above-described plated steel wire, it is preferable that the average thickness of the Fe—Zn alloy layer formed between the hot-dip plated layer and the steel wire is 10 μm or less. In order to adjust the average thickness of the Fe—Zn alloy layer to 10 μm or less, the immersion time of the steel wire in the plating bath, the temperature of the plating bath, and the composition of the plating bath are controlled in desired ranges, respectively. In particular, the thickness of the Fe—Zn alloy layer is strongly dependent on the immersion time of the steel wire in the plating bath. Therefore, the thickness of the Fe—Zn alloy layer can be adjusted to a desired value by controlling the immersion time with high accuracy. When the average thickness of the Fe—Zn alloy layer is 10 μm or less, the workability is greatly improved (FIG. 8).

本発明によれば、めっき層中のα相のアスペクト比(L/C)を2.0以上の細長い形状に制御することにより、従来品では亀裂や剥離を生じていた自己径ワイヤの巻き付け試験に合格する程度、すなわち巻き付け試験後のめっき表面が図5の(a)と同等の優れた加工性を得ることができる。本発明では、たとえ合金層に亀裂を生じたとしても、めっき層中のアスペクト比2.0以上の細長いα相によって亀裂の進展が阻止されるため、その亀裂がめっき層中を伝播することはない。   According to the present invention, by controlling the alpha phase aspect ratio (L / C) in the plating layer to an elongated shape of 2.0 or more, a winding test of a self-diameter wire that has cracked or peeled off in the conventional product. Thus, the plating surface after the winding test can obtain excellent workability equivalent to that shown in FIG. In the present invention, even if a crack occurs in the alloy layer, since the progress of the crack is prevented by the elongated α phase having an aspect ratio of 2.0 or more in the plating layer, the crack propagates in the plating layer. Absent.

本発明の溶融亜鉛合金めっき鋼線は、平均組成が質量%で、Al:4〜20%、Mg:0.1〜1.0%を含み、残部がZn及び不可避不純物からなる溶融めっき層を有し、この溶融めっき層中には鋼線の長手軸方向(伸線加工方向)の長さLとクロス方向の長さCとのアスペクト比L/Cを2.0以上とするα相が含まれていることを特徴とする。   The hot dip galvanized steel wire of the present invention comprises a hot dip plated layer having an average composition of mass%, Al: 4 to 20%, Mg: 0.1 to 1.0%, the balance being Zn and inevitable impurities. In this hot-dip plated layer, there is an α phase having an aspect ratio L / C of 2.0 or more between the length L in the longitudinal axis direction (drawing direction) of the steel wire and the length C in the cross direction. It is included.

以下、本発明の各構成要素の限定理由を述べる。   Hereinafter, the reason for limitation of each component of the present invention will be described.

1)Al:4〜20質量%
Alは、耐食性を高める効果がある。また、Alはめっき層中の他の元素の酸化防止効果がある。Al量が4質量%未満では、めっき浴中におけるMgの酸化防止効果が得られない。一方、Al量が20質量%を超えると、めっき層が硬く脆くなり、加工性が劣化する。よって、本発明ではAl量を4質量%以上、20質量%以下の範囲とする。
1) Al: 4 to 20% by mass
Al has the effect of increasing the corrosion resistance. Further, Al has an effect of preventing oxidation of other elements in the plating layer. When the amount of Al is less than 4% by mass, the effect of preventing oxidation of Mg in the plating bath cannot be obtained. On the other hand, if the Al content exceeds 20% by mass, the plating layer becomes hard and brittle, and the workability deteriorates. Therefore, in the present invention, the Al amount is set in the range of 4 mass% or more and 20 mass% or less.

2)Mg:0.1〜1.0質量%
Mgは、均一な腐食生成物の成長を促進させて局部的な腐食の進行を防止する耐食性向上効果を有する重要な元素である。Mg量が0.1質量%未満になると耐食性が低下する。さらにMg量が不足すると耐食性が著しく低下して、例えば護岸用かごマット設備において要求される基本的な耐食性レベルを満たすことができない。
2) Mg: 0.1 to 1.0% by mass
Mg is an important element having an effect of improving corrosion resistance that promotes the growth of uniform corrosion products and prevents the progress of local corrosion. When the Mg content is less than 0.1% by mass, the corrosion resistance decreases. Further, if the amount of Mg is insufficient, the corrosion resistance is remarkably lowered, and for example, the basic corrosion resistance level required in a revetment car mat facility cannot be satisfied.

一方、Mg量が1.0質量%を超えると、Fe−Zn合金層が著しく硬化して加工性が低下する。例えば、伸線加工や冷間圧延加工時にFe−Zn合金層に亀裂や剥離が発生する。よって、本発明ではMg量を0.1質量%以上、1.0質量%以下の範囲とする。   On the other hand, when the amount of Mg exceeds 1.0% by mass, the Fe—Zn alloy layer is remarkably hardened and the workability is lowered. For example, cracks and peeling occur in the Fe—Zn alloy layer during wire drawing and cold rolling. Therefore, in the present invention, the Mg amount is in the range of 0.1% by mass to 1.0% by mass.

3)その他の添加元素
Al,Mg以外の他の添加元素として、Ti,Li,Be,Na,K,Ca,Cu,La,Hf,Mo,W,Nb,Ta,Pb,Bi,Sr,V,Cr,Mn,Snなどの種々の元素を添加することができる。
3) Other additive elements As additive elements other than Al and Mg, Ti, Li, Be, Na, K, Ca, Cu, La, Hf, Mo, W, Nb, Ta, Pb, Bi, Sr, V , Cr, Mn, Sn and the like can be added.

耐食性を向上させる効果がある元素としてはLi,Be,Na,K,Ca,Cu,La,Hfなどがある。これらのうち1種又は2種以上の元素を0.01〜1.0%添加することにより耐食性が向上する。   Examples of elements that have an effect of improving corrosion resistance include Li, Be, Na, K, Ca, Cu, La, and Hf. Corrosion resistance is improved by adding 0.01 to 1.0% of one or more of these elements.

Sr,V,Cr,Mn,Snは、加工性を向上させる効果がある。Sr等を0.5%超えて添加すると、偏析が顕著となり、めっき鋼材を加工する際に割れやすくなる。よって、Sr等を添加する場合は0.5%以下とする。   Sr, V, Cr, Mn, and Sn have an effect of improving workability. When Sr etc. is added exceeding 0.5%, segregation becomes remarkable and it becomes easy to crack when processing a plated steel material. Therefore, when adding Sr etc., it is 0.5% or less.

4)不可避不純物
不可避不純物は、めっきライン中の種々の要素から、特にめっき浴からめっき層中に不可避的に混入してくる。不可避不純物には、耐食性に有害なもの、加工性に有害なもの、その効果が不明なものなど種々のものが混在しているが、C,P,S,O,Nなどがある。
4) Inevitable impurities Inevitable impurities are inevitably mixed into the plating layer from various elements in the plating line, particularly from the plating bath. Inevitable impurities include various substances such as those harmful to corrosion resistance, those harmful to workability, and those whose effects are unknown, such as C, P, S, O, and N.

5)α相のアスペクト比L/C:2.0以上
α相は、Al濃度が高いAlリッチZnAl合金相である。α相は凝固過程において初晶として晶出するものである。このα相はMgをほとんど含まない。これに対して、β相は、Al濃度が低いか又はAlをほとんど含まないZn単相またはZnMg合金相である。
5) Aspect ratio of α phase L / C: 2.0 or more The α phase is an Al-rich ZnAl alloy phase having a high Al concentration. The α phase is crystallized as primary crystals during the solidification process. This α phase contains almost no Mg. On the other hand, the β phase is a Zn single phase or a ZnMg alloy phase having a low Al concentration or almost no Al.

本発明では加工性を向上させるために、図1に示すように、α相において鋼線の軸に直交するクロス方向の長さCに対する鋼線の軸方向の長さLのアスペクト比L/Cを2.0以上とする必要がある。α相のアスペクト比L/Cを2.0以上とすることにより、伸線加工時にFe−Zn合金層に亀裂や剥離を生じなくなる。このように細長い形状のα相は、総減面率の大きな減面加工、すなわち伸線加工や冷間圧延加工あるいはスキンパス(調質圧延)を行うことにより形成される。   In the present invention, in order to improve workability, the aspect ratio L / C of the length L in the axial direction of the steel wire to the length C in the cross direction perpendicular to the axis of the steel wire in the α phase is shown in FIG. Needs to be 2.0 or more. By setting the α phase aspect ratio L / C to 2.0 or more, the Fe—Zn alloy layer is not cracked or peeled off during wire drawing. In this way, the elongated α phase is formed by performing a surface reduction process having a large total area reduction rate, that is, a wire drawing process, a cold rolling process, or a skin pass (temper rolling).

総減面率の大きな減面加工では材料内部に発生する真歪εが大きい。真歪εが増大するにしたがってα相のアスペクト比L/Cも増大していき、例えば図4に示すように、真歪εが0.40以上の減面加工を行うと、アスペクト比L/Cが2.5〜2.8程度となるα相を得ることができる。同図4から、2.0以上のアスペクト比L/Cを得るためには少なくとも0.40以上の真歪εが必要になることが分かる。   In the surface reduction processing with a large total area reduction rate, the true strain ε generated in the material is large. As the true strain ε increases, the aspect ratio L / C of the α phase also increases. For example, as shown in FIG. 4, when surface reduction processing with the true strain ε of 0.40 or more is performed, the aspect ratio L / C An α phase in which C is about 2.5 to 2.8 can be obtained. FIG. 4 shows that in order to obtain an aspect ratio L / C of 2.0 or more, a true strain ε of at least 0.40 or more is required.

6)Fe−Zn合金層の厚み:10μm以下
Fe−Zn合金層の厚みは10μm以下とすることが好ましい。Fe−Zn合金層の厚みを10μm以下に調整するためには、鋼線のめっき浴への浸漬時間、めっき浴の温度、めっき浴の組成をそれぞれ所望の範囲に制御する必要がある。このうち特に、鋼線のめっき浴への浸漬時間が重要である。鋼線のめっき浴への浸漬時間は、例えば3秒以上、60秒以下の範囲とすることが望ましい(めっき浴温度;450℃、めっき浴組成;Mg=0.1〜1.0%、Al=4〜20%、残部Zn)。浸漬時間が60秒を超えると、Fe−Zn合金層の厚みが10μmを超えて厚くなりすぎるからである。図8に示すように、Fe−Zn合金層の平均厚みを10μm以下にするとめっき鋼線の加工性が大幅に向上する。なお、加工性の評価は後述する同径鋼線の巻付試験により評価した。
6) Thickness of Fe—Zn alloy layer: 10 μm or less The thickness of the Fe—Zn alloy layer is preferably 10 μm or less. In order to adjust the thickness of the Fe—Zn alloy layer to 10 μm or less, it is necessary to control the immersion time of the steel wire in the plating bath, the temperature of the plating bath, and the composition of the plating bath within desired ranges, respectively. Of these, the immersion time of the steel wire in the plating bath is particularly important. The immersion time of the steel wire in the plating bath is preferably in the range of, for example, 3 seconds or more and 60 seconds or less (plating bath temperature: 450 ° C., plating bath composition; Mg = 0.1 to 1.0%, Al = 4-20%, balance Zn). This is because when the immersion time exceeds 60 seconds, the thickness of the Fe—Zn alloy layer exceeds 10 μm and becomes too thick. As shown in FIG. 8, when the average thickness of the Fe—Zn alloy layer is 10 μm or less, the workability of the plated steel wire is greatly improved. The workability was evaluated by a winding test of the same diameter steel wire described later.

7)めっき付着量
伸線後の単位面積当たりの平均めっき付着量は、素線径φ1.91mmの場合で換算した値として、150〜400g/m2の範囲とすることが望ましい。平均めっき付着量が150g/m2を下回ると、基本特性である耐食性が損なわれる。一方、平均めっき付着量が400g/m2を上回ると、純めっき層が引張応力に耐えられず、めっき表面に亀裂が発生する等の不都合を生じる。
7) Plating adhesion amount The average plating adhesion amount per unit area after wire drawing is preferably in the range of 150 to 400 g / m 2 as a value converted in the case of the wire diameter φ1.91 mm. When the average plating adhesion amount is less than 150 g / m 2 , the basic property of corrosion resistance is impaired. On the other hand, when the average plating adhesion amount exceeds 400 g / m 2 , the pure plating layer cannot withstand the tensile stress, and the plating surface is cracked.

以下、図2を参照して本発明のめっき鋼線を製造するための方法を説明する。   Hereinafter, with reference to FIG. 2, the method for manufacturing the plated steel wire of this invention is demonstrated.

先ず、JIS G3506に規定された硬鋼線を準備する(工程S1)。準備した鋼線の直径はφ5.0mm、SWRH72A(平均組成:0.72%C-0.25%Si-0.45%Mn)である。   First, a hard steel wire defined in JIS G3506 is prepared (step S1). The diameter of the prepared steel wire is φ5.0 mm and SWRH72A (average composition: 0.72% C-0.25% Si-0.45% Mn).

この鋼線を伸線加工または冷間圧延により、初期径φ5.0mmから仕上径3.6mmまでに減面加工した(工程S2)。なお、この工程S2の加工は、本発明において任意であり、工程S2を省略して工程S1から次の工程S3を実施してもよい。   This steel wire was subjected to surface reduction processing from an initial diameter of 5.0 mm to a finished diameter of 3.6 mm by wire drawing or cold rolling (step S2). In addition, the process of this process S2 is arbitrary in this invention, you may abbreviate | omit process S2 and may implement the following process S3 from process S1.

次に、減面加工した鋼線をめっき処理する。めっき処理には二段めっき法を用いる。二段めっき法では、先ず前記鋼線を溶融亜鉛めっき浴または5質量%以下の濃度でAlを含む溶融亜鉛アルミニウムめっき浴に浸漬通過させて下地めっき層を形成した(工程S3)。めっき浴温度を約450℃とし、鋼線のめっき浴への浸漬時間を3秒以上、60秒以下の範囲に制御した。   Next, the surface-reduced steel wire is plated. A two-step plating method is used for the plating treatment. In the two-stage plating method, first, the steel wire was immersed and passed through a hot dip galvanizing bath or a hot dip galvanized aluminum plating bath containing Al at a concentration of 5% by mass or less to form a base plating layer (step S3). The plating bath temperature was about 450 ° C., and the immersion time of the steel wire in the plating bath was controlled in the range of 3 seconds to 60 seconds.

引き続き前記下地めっきした鋼線を、0.1〜1.0質量%のMgおよび4〜20質量%のAlを含む溶融亜鉛アルミニウム・マグネシウム浴に浸漬通過させてZnAlMg合金めっき層を形成した(工程S4)。めっき浴組成をMg:0.5%、Al:9.5%、残部Znとし、めっき浴温度を約450℃とし、鋼線のめっき浴への浸漬時間を3秒以上、60秒以下の範囲に制御した。これによりZn-11%Al-0.5%Mgの組成のめっき層が下地めっき層の上に形成した。なお、平均めっき付着量を495g/m2とした。 Subsequently, the steel wire plated with the base was immersed in a molten zinc aluminum / magnesium bath containing 0.1 to 1.0% by mass of Mg and 4 to 20% by mass of Al to form a ZnAlMg alloy plating layer (step) S4). The plating bath composition is Mg: 0.5%, Al: 9.5%, the remaining Zn, the plating bath temperature is about 450 ° C., and the immersion time of the steel wire in the plating bath is in the range of 3 seconds to 60 seconds. Controlled. As a result, a plating layer having a composition of Zn-11% Al-0.5% Mg was formed on the base plating layer. The average plating adhesion amount was 495 g / m 2 .

このような二段めっき法(工程S3〜S4)によるめっき処理を鋼線に施すことにより、最終的なFe−Zn合金層の厚さを10μm以下に抑えることができた。   By subjecting the steel wire to the plating process by such a two-step plating method (steps S3 to S4), the final thickness of the Fe—Zn alloy layer could be suppressed to 10 μm or less.

次いで、溶融ZnAlMg合金めっきした鋼線を、伸線加工するか、または冷間圧延するか、またはスキンパスした(工程S5)。溶融ZnAlMg合金めっき鋼線を伸線加工、冷間圧延またはスキンパスにより、総減面率が真歪εで0.4以上となるように減面加工した。このような減面加工により、α相のアスペクト比L/Cを2.0以上に制御した。なお、伸線加工は、乾式または湿式のいずれで行ってもよい。   Next, the hot-rolled ZnAlMg alloy-plated steel wire was drawn, cold-rolled, or skin-passed (step S5). The hot-dip ZnAlMg alloy-plated steel wire was subjected to surface reduction by wire drawing, cold rolling or skin pass so that the total area reduction was 0.4 or more in terms of true strain ε. By such surface reduction processing, the aspect ratio L / C of the α phase was controlled to 2.0 or more. The wire drawing may be performed either dry or wet.

次に、種々の実施例を比較例と参照しながら説明する。   Next, various examples will be described with reference to comparative examples.

<α相アスペクト比L/C測定およびめっき層組織>
図3を参照して実施例A,Bおよび比較例C,Dのサンプルめっき層の組織について説明する。
<Α phase aspect ratio L / C measurement and plating layer structure>
The structures of the sample plating layers of Examples A and B and Comparative Examples C and D will be described with reference to FIG.

実施例および比較例のサンプルは次のようにしてそれぞれ作製した。   Samples of Examples and Comparative Examples were prepared as follows.

実施例A:冷間伸線5.0mm→3.6mm、めっき後3.72mm、伸線加工3.72mm→2.34mm、ε=0.93
実施例B:冷間伸線5.0mm→3.6mm、めっき後3.72mm、伸線加工3.72mm→2.95mm、ε=0.46
比較例C:冷間伸線5.0mm→3.6mm、めっき後3.72mm、伸線加工3.72mm→3.30mm、ε=0.24
比較例D:冷間伸線5.0mm→3.6mm、めっき後3.72mm、伸線加工なし、ε=0
めっき層の金属組織は、走査型電子顕微鏡(SEM)で3視野以上を観察した。
Example A: Cold wire drawing 5.0 mm → 3.6 mm, 3.72 mm after plating, wire drawing 3.72 mm → 2.34 mm, ε = 0.93
Example B: Cold wire drawing 5.0 mm → 3.6 mm, 3.72 mm after plating, wire drawing 3.72 mm → 2.95 mm, ε = 0.46
Comparative Example C: Cold wire drawing 5.0 mm → 3.6 mm, 3.72 mm after plating, wire drawing 3.72 mm → 3.30 mm, ε = 0.24
Comparative Example D: Cold drawing 5.0 mm → 3.6 mm, 3.72 mm after plating, no drawing, ε = 0
The metallographic structure of the plating layer was observed over 3 fields of view with a scanning electron microscope (SEM).

図3の(a)に、実施例Aのサンプルめっき層の組織を示す。   The structure of the sample plating layer of Example A is shown in FIG.

図3の(b)に、実施例Bのサンプルめっき層の組織を示す。   The structure of the sample plating layer of Example B is shown in FIG.

図3の(c)に、比較例Cのサンプルめっき層の組織を示す。   The structure of the sample plating layer of Comparative Example C is shown in FIG.

図3の(d)に、比較例Dのサンプルめっき層の組織を示す。   The structure of the sample plating layer of Comparative Example D is shown in FIG.

実施例A,Bの各サンプルではα相のアスペクト比L/Cが2.0以上であった。   In each sample of Examples A and B, the aspect ratio L / C of the α phase was 2.0 or more.

比較例C,Dのサンプルではα相のアスペクト比L/Cが2.0以下であった。   In the samples of Comparative Examples C and D, the α phase aspect ratio L / C was 2.0 or less.

また、SEMの各視野から任意にα相の粒を10個選択してアスペクト比L/Cを測定し、その平均値を求めた。求めた平均アスペクト比L/Cと真歪εとの関係を図4にプロットした。   Further, ten α-phase grains were arbitrarily selected from each field of view of the SEM, the aspect ratio L / C was measured, and the average value was obtained. The relationship between the obtained average aspect ratio L / C and true strain ε is plotted in FIG.

図4は、横軸に真歪εをとり、縦軸にα相のアスペクト比L/Cをとって、伸線加工の総減面率とアスペクト比との関係を示す特性図である。Zn-11.4%Al-0.32%Mgめっき層について測定した。この図から明らかなように、真歪εが0.40以上の範囲ではα相の平均アスペクト比L/Cが2.0を超えることを確認した。   FIG. 4 is a characteristic diagram showing the relationship between the total area reduction ratio of the wire drawing and the aspect ratio, with the true strain ε on the horizontal axis and the aspect ratio L / C of the α phase on the vertical axis. It measured about the Zn-11.4% Al-0.32% Mg plating layer. As is clear from this figure, it was confirmed that the average aspect ratio L / C of the α phase exceeded 2.0 when the true strain ε was in the range of 0.40 or more.

<加工性の評価方法>
次に図5を参照して溶融めっき層を評価する方法について説明する。
巻付け試験法を用いてめっき層の加工性を評価した。巻付け試験法は、適当な長さ(例えば30cm)に切断しためっきワイヤの外周に同径のめっきワイヤを8周巻き付け、巻き付けワイヤの外観を図5の(a)〜(d)に示すように4段階に分けて点数を付け、加点評価することにより行った。
<Processing evaluation method>
Next, a method for evaluating the hot-dip plating layer will be described with reference to FIG.
The workability of the plating layer was evaluated using a winding test method. In the winding test method, the plating wire having the same diameter is wound eight times around the outer periphery of the plating wire cut to an appropriate length (for example, 30 cm), and the appearance of the winding wire is as shown in FIGS. The score was divided into four stages and scored and evaluated.

<評価結果>
図5の(a)に示すように、サンプル全体にわたって光学顕微鏡で観察できる亀裂が確認されないものを3点(最高評点)とした。
<Evaluation results>
As shown to (a) of FIG. 5, the thing which does not confirm the crack which can be observed with an optical microscope over the whole sample was made into 3 points | pieces (highest score).

図5の(b)に示すように、サンプル全体で10箇所以下の亀裂が光学顕微鏡で確認できるものを2点とした。   As shown in (b) of FIG. 5, two samples with 10 or fewer cracks that could be confirmed with an optical microscope in the entire sample were used.

図5の(c)に示すように、サンプル全体で10箇所を超える亀裂が光学顕微鏡で確認できるものを1点とした。   As shown in (c) of FIG. 5, a sample in which more than 10 cracks in the entire sample can be confirmed with an optical microscope was taken as one point.

図5の(d)に示すように、サンプル全体で1箇所以上の地鉄(母材)が(肉眼で)見える大きな亀裂又は剥離が認められるものを0点(評点なし)とした。   As shown in (d) of FIG. 5, a sample in which large cracks or peelings in which one or more ground irons (base materials) were visible (by the naked eye) in the entire sample was recognized as 0 (no rating).

図6は、横軸にα相のアスペクト比L/Cをとり、縦軸に巻付け試験結果(点数)をとって、Zn-11.4%Al-0.32%Mgめっき層の結果を示す特性図である。   FIG. 6 shows the results of the Zn-11.4% Al-0.32% Mg plating layer, with the aspect ratio L / C of the α phase on the horizontal axis and the winding test result (score) on the vertical axis. FIG.

図7は、横軸にα相のアスペクト比L/Cをとり、縦軸に巻付け試験結果(点数)をとって、Zn-11.5%Al-0.31%Mgめっき層の結果を示す特性図である。Fe-Zn合金層の厚みを10μm超えとした比較例であり、α相のアスペクト比L/Cが2以上であっても巻き付け試験の評点が悪いことが分かる。   FIG. 7 shows the results of the Zn-11.5% Al-0.31% Mg plating layer, with the aspect ratio L / C of the α phase on the horizontal axis and the winding test result (score) on the vertical axis. FIG. This is a comparative example in which the thickness of the Fe—Zn alloy layer exceeds 10 μm, and it can be seen that the winding test score is poor even when the aspect ratio L / C of the α phase is 2 or more.

図8は、横軸に合金層厚み(μm)をとり、縦軸に巻付け試験結果(点数)をとって、Zn-11.5%Al-0.31%Mgめっき層(真歪ε=0.46)の結果を示す特性図である。   In FIG. 8, the horizontal axis represents the alloy layer thickness (μm), the vertical axis represents the winding test result (score), and the Zn-11.5% Al-0.31% Mg plating layer (true strain ε = It is a characteristic view which shows the result of 0.46).

表1にMg含有量を種々変えた実施例1〜5および比較例1,2における伸線加工性についてそれぞれ調べた結果を示した。   Table 1 shows the results of examining wire drawing workability in Examples 1 to 5 and Comparative Examples 1 and 2 in which the Mg content was variously changed.

実施例1〜5では、めっき層に亀裂を生じることなく伸線加工することができた。   In Examples 1 to 5, the wire drawing could be performed without causing cracks in the plating layer.

比較例1(Mg:1.95%)では、伸線加工中にダイス内でめっき層または合金層に亀裂が発生し、健全な状態に伸線することができなかった。   In Comparative Example 1 (Mg: 1.95%), cracks occurred in the plating layer or the alloy layer in the die during wire drawing, and the wire could not be drawn in a healthy state.

比較例2(Mg:1.10%)では、伸線加工すること自体は可能であるが、全体としてはやや不良となる。

Figure 2009024210
In Comparative Example 2 (Mg: 1.10%), the drawing process itself is possible, but the whole is slightly defective.
Figure 2009024210

<腐食試験方法>
JIS Z2371に規定された塩水噴霧試験を用いてめっき層の耐食性を評価した。
<Corrosion test method>
The corrosion resistance of the plating layer was evaluated using a salt spray test specified in JIS Z2371.

<評価結果>
図9は、横軸にMg量をとり、縦軸に腐食試験結果(g/m2)をとって、Mg量を種々変えたZn-11%Al-xMgめっき層の結果を示す特性図である。供試材として初期径3.2mmから仕上径2.14mmまで段階的に伸線した鋼線を用いた。この図から明らかなようにMg量が増加するにしたがって耐食性が向上することが分かる。
<Evaluation results>
FIG. 9 is a characteristic diagram showing the results of a Zn-11% Al—xMg plating layer with the Mg amount on the horizontal axis and the corrosion test result (g / m 2 ) on the vertical axis, with various Mg amounts. is there. A steel wire drawn in stages from an initial diameter of 3.2 mm to a finishing diameter of 2.14 mm was used as a test material. As can be seen from this figure, the corrosion resistance improves as the amount of Mg increases.

図10は、横軸に真歪εをとり、縦軸に腐食試験結果(g/m2)をとって、Zn-14.8%Al-0.59%Mgめっき層の結果を示す特性図である。図中にて特性プロット線Aは溶融Zn-14.8Al-0.59Mgめっき(実施例)の結果を、特性プロット線Bは溶融ZnAlめっき(比較例)の結果を、特性プロット線Cは溶融亜鉛めっき(比較例)の結果を示した。図から明らかなように、溶融ZnAlMgめっきのほうが溶融ZnAlめっきや溶融亜鉛めっきよりも耐食性に優れていることが分かる。 FIG. 10 is a characteristic diagram showing the results of a Zn-14.8% Al-0.59% Mg plating layer, with the true strain ε on the horizontal axis and the corrosion test result (g / m 2 ) on the vertical axis. It is. In the figure, the characteristic plot line A is the result of molten Zn-14.8Al-0.59Mg plating (Example), the characteristic plot line B is the result of molten ZnAl plating (Comparative Example), and the characteristic plot line C is hot dip galvanized. The results of (Comparative Example) are shown. As is apparent from the figure, it can be seen that hot-dip ZnAlMg plating is superior in corrosion resistance to hot-dip ZnAl plating and hot-dip galvanizing.

本発明の溶融亜鉛合金めっき鋼線は、金網用ワイヤ、養殖用ワイヤ、コンクリート補強用ファイバー、橋梁用ワイヤ、PWSワイヤ、PC鋼線、ロープ、スプリングなど広範な分野にわたり様々な用途に用いることができる。   The hot dip galvanized steel wire of the present invention can be used for various applications such as wire for wire, aquaculture wire, fiber for concrete reinforcement, wire for bridge, PWS wire, PC steel wire, rope and spring. it can.

α相のアスペクト比L/Cを説明するためにα相を模式的に示す図。The figure which shows alpha phase typically in order to explain aspect ratio L / C of alpha phase. 本発明の溶融亜鉛合金めっき鋼線の製造方法を示す工程図。Process drawing which shows the manufacturing method of the hot dip galvanized steel wire of this invention. (a)〜(d)は伸線加工後の純めっき層組織をそれぞれ示すSEM写真。(A)-(d) is the SEM photograph which each shows the pure plating layer structure | tissue after a wire drawing process. Zn-Al-Mg合金めっき層におけるα相のアスペクト比L/Cと真歪εとの相関を示す特性線図。The characteristic diagram which shows the correlation with aspect-ratio L / C of alpha phase in a Zn-Al-Mg alloy plating layer, and true distortion (epsilon). (a)は巻付け試験の評価点が3点のサンプルを示す外観写真、(b)は巻付け試験の評価点が2点のサンプルを示す外観写真、(c)は巻付け試験の評価点が1点のサンプルを示す外観写真、(d)は巻付け試験の評価点が0点のサンプルを示す外観写真。(A) Appearance photograph showing a sample with three evaluation points of the winding test, (b) Appearance photograph showing a sample with two evaluation points of the winding test, (c) Evaluation points of the winding test Is an appearance photograph showing a sample with one point, and (d) is an appearance photograph showing a sample with an evaluation score of 0 in the winding test. 図4と同じ成分系のZn-Al-Mg合金めっき層におけるα相のアスペクト比L/Cと巻付け試験結果との関係を示す特性線図。The characteristic line figure which shows the relationship between the aspect-ratio L / C of (alpha) phase in a Zn-Al-Mg alloy plating layer of the same component system as FIG. 4, and a winding test result. 他の成分系のZn-Al-Mg合金めっき層におけるα相のアスペクト比L/Cと巻付け試験結果との関係を示す特性線図。The characteristic diagram which shows the relationship between the aspect-ratio L / C of (alpha) phase in a Zn-Al-Mg alloy plating layer of another component system, and a winding test result. 図7と同じ成分系のZn-Al-Mg合金めっき層における合金層厚みと巻付け試験結果との関係を示す特性線図。The characteristic line figure which shows the relationship between the alloy layer thickness in the Zn-Al-Mg alloy plating layer of the same component system as FIG. 7, and a winding test result. 合金めっき層のMg含有量と腐食減量との関係を示す特性線図。The characteristic diagram which shows the relationship between Mg content of an alloy plating layer, and corrosion weight loss. Znめっき層、ZnAl合金めっき層、ZnAlMg合金めっき層を対比して真歪εと腐食減量との相関を示す特性線図。The characteristic diagram which shows the correlation with a true strain (epsilon) and corrosion weight loss by contrasting a Zn plating layer, a ZnAl alloy plating layer, and a ZnAlMg alloy plating layer.

Claims (2)

平均組成が質量%で、Al:4〜20%、Mg:0.10〜1.00%を含み、残部がZn及び不可避不純物からなる溶融めっき層を有し、前記溶融めっき層中に鋼線の軸方向の長さLとクロス方向の長さCとのアスペクト比L/Cを2.0以上とするα相を含むことを特徴とする溶融亜鉛合金めっき鋼線。 The average composition is mass%, Al: 4-20%, Mg: 0.10-1.00%, the remainder has a hot-dip plated layer made of Zn and inevitable impurities, and the hot-dip plated layer has a steel wire A hot-dip galvanized steel wire comprising an α phase having an aspect ratio L / C of 2.0 or more between the length L in the axial direction and the length C in the cross direction. 前記溶融めっき層と鋼線との間に形成されるFe−Zn合金層の平均厚みを10μm以下としたことを特徴とする請求項1記載の溶融亜鉛合金めっき鋼線。 The hot dip galvanized steel wire according to claim 1, wherein an average thickness of the Fe-Zn alloy layer formed between the hot dip plated layer and the steel wire is 10 m or less.
JP2007187518A 2007-07-18 2007-07-18 Hot-dip zinc alloy plated steel wire Pending JP2009024210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007187518A JP2009024210A (en) 2007-07-18 2007-07-18 Hot-dip zinc alloy plated steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187518A JP2009024210A (en) 2007-07-18 2007-07-18 Hot-dip zinc alloy plated steel wire

Publications (1)

Publication Number Publication Date
JP2009024210A true JP2009024210A (en) 2009-02-05

Family

ID=40396309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007187518A Pending JP2009024210A (en) 2007-07-18 2007-07-18 Hot-dip zinc alloy plated steel wire

Country Status (1)

Country Link
JP (1) JP2009024210A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214145A (en) * 2010-03-17 2011-10-27 Nippon Steel Corp Plated steel material and steel pipe having high corrosion resistance and excellent workability, and method for producing the same
JP2017008390A (en) * 2015-06-24 2017-01-12 新日鐵住金株式会社 Plated steel of high corrosion resistance, and manufacturing method thereof
WO2018199362A1 (en) * 2017-04-27 2018-11-01 키스와이어 에스디엔 비에이치디 Plated steel wire with zinc alloy plating layer having multilayer structure formed thereon, and method for manufacturing same
JP2020029606A (en) * 2018-08-24 2020-02-27 日亜鋼業株式会社 Galvanized irregular-shaped bar steel, manufacturing method thereof and manufacturing system
WO2023191027A1 (en) * 2022-03-31 2023-10-05 日本製鉄株式会社 Plated steel wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031079A1 (en) * 1999-10-25 2001-05-03 Nippon Steel Corporation Metal plated steel wire having excellent resistance to corrosion and workability and method for production thereof
JP2002030404A (en) * 2000-03-31 2002-01-31 Nippon Steel Corp Plated steel having high corrosion resistance and improved workability and its production method
JP2003328101A (en) * 2002-05-16 2003-11-19 Nippon Steel Corp Hot dip coated steel wire and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031079A1 (en) * 1999-10-25 2001-05-03 Nippon Steel Corporation Metal plated steel wire having excellent resistance to corrosion and workability and method for production thereof
JP2002030404A (en) * 2000-03-31 2002-01-31 Nippon Steel Corp Plated steel having high corrosion resistance and improved workability and its production method
JP2003328101A (en) * 2002-05-16 2003-11-19 Nippon Steel Corp Hot dip coated steel wire and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214145A (en) * 2010-03-17 2011-10-27 Nippon Steel Corp Plated steel material and steel pipe having high corrosion resistance and excellent workability, and method for producing the same
JP2017008390A (en) * 2015-06-24 2017-01-12 新日鐵住金株式会社 Plated steel of high corrosion resistance, and manufacturing method thereof
WO2018199362A1 (en) * 2017-04-27 2018-11-01 키스와이어 에스디엔 비에이치디 Plated steel wire with zinc alloy plating layer having multilayer structure formed thereon, and method for manufacturing same
JP2020029606A (en) * 2018-08-24 2020-02-27 日亜鋼業株式会社 Galvanized irregular-shaped bar steel, manufacturing method thereof and manufacturing system
WO2023191027A1 (en) * 2022-03-31 2023-10-05 日本製鉄株式会社 Plated steel wire

Similar Documents

Publication Publication Date Title
JP6787002B2 (en) Al-Mg hot-dip galvanized steel
JP4782246B2 (en) High-strength Zn-Al plated steel wire for bridges with excellent corrosion resistance and fatigue characteristics and method for producing the same
KR101100055B1 (en) Hot-dip ??-?? alloy coated steel sheet and process for the production thereof
EP3502299B1 (en) Hot-rolled galvanizing steel sheet having excellent galling resistance, formability and sealer-adhesion property and method for manufacturing same
JP2003268519A (en) Galvanized steel sheet having excellent corrosion resistance after coating and image clarity in coating
JPWO2018131171A1 (en) Plated steel
WO2014119268A1 (en) HOT-DIP Al-Zn GALVANIZED STEEL PLATE AND METHOD FOR PRODUCING SAME
KR100446789B1 (en) Plated steel product having high corrosion resistance and excellent formability and method for production thereof
WO2019130534A1 (en) MOLTEN Zn-BASED PLATED STEEL SHEET HAVING SUPERIOR CORROSION RESISTANCE AFTER BEING COATED
WO2003074751A1 (en) Surface treated steel plate and method for production thereof
JP2010070810A (en) Plated steel having high corrosion resistance and excellent workability and method for producing the same
JP2009024210A (en) Hot-dip zinc alloy plated steel wire
TWI521092B (en) Hot dip a1-zn plated steel sheet and method of manufacturing the same
KR101692118B1 (en) Coating composition, and method for coating of steel using the same, and coating steel coated coating composition
WO2020213680A1 (en) Plated steel material
CN111566252B (en) Fusion plated steel wire and method for producing same
JP3737987B2 (en) Hot-dip galvanized steel wire with high corrosion resistance and excellent workability
JP5532086B2 (en) Hot-dip galvanized steel pipe
JP2002047521A (en) Highly corrosion resistant plated steel and its production method
JP2003328101A (en) Hot dip coated steel wire and production method thereof
JP2769843B2 (en) Manufacturing method of alloy plated steel wire
JP7499849B2 (en) Hot-dip Al-Zn coated steel sheet and its manufacturing method
WO2023238934A1 (en) Zn-al-mg hot-dip plated steel sheet
WO2024214328A1 (en) Molten al-zn-based plated steel sheet and method for manufacturing same
WO2024214329A1 (en) MOLTEN Al-Zn-BASED PLATED STEEL SHEET AND METHOD FOR MANUFACTURING SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Effective date: 20120522

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A02 Decision of refusal

Effective date: 20121002

Free format text: JAPANESE INTERMEDIATE CODE: A02