WO2018199362A1 - Plated steel wire with zinc alloy plating layer having multilayer structure formed thereon, and method for manufacturing same - Google Patents
Plated steel wire with zinc alloy plating layer having multilayer structure formed thereon, and method for manufacturing same Download PDFInfo
- Publication number
- WO2018199362A1 WO2018199362A1 PCT/KR2017/004515 KR2017004515W WO2018199362A1 WO 2018199362 A1 WO2018199362 A1 WO 2018199362A1 KR 2017004515 W KR2017004515 W KR 2017004515W WO 2018199362 A1 WO2018199362 A1 WO 2018199362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- zinc alloy
- steel wire
- plating
- weight
- Prior art date
Links
- 238000007747 plating Methods 0.000 title claims abstract description 260
- 229910001297 Zn alloy Inorganic materials 0.000 title claims abstract description 178
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 145
- 239000010959 steel Substances 0.000 title claims abstract description 145
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000011701 zinc Substances 0.000 claims abstract description 110
- 229910007570 Zn-Al Inorganic materials 0.000 claims abstract description 35
- 229910018134 Al-Mg Inorganic materials 0.000 claims abstract description 19
- 229910018467 Al—Mg Inorganic materials 0.000 claims abstract description 19
- 229910019089 Mg-Fe Inorganic materials 0.000 claims abstract description 17
- 229910000640 Fe alloy Inorganic materials 0.000 claims abstract description 13
- 238000005246 galvanizing Methods 0.000 claims abstract description 11
- 229910001335 Galvanized steel Inorganic materials 0.000 claims abstract description 7
- 239000008397 galvanized steel Substances 0.000 claims abstract description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 83
- 229910052749 magnesium Inorganic materials 0.000 claims description 68
- 229910052782 aluminium Inorganic materials 0.000 claims description 62
- 239000000203 mixture Substances 0.000 claims description 32
- 229910052787 antimony Inorganic materials 0.000 claims description 28
- 229910052797 bismuth Inorganic materials 0.000 claims description 28
- 238000010622 cold drawing Methods 0.000 claims description 18
- 229910052742 iron Inorganic materials 0.000 claims description 18
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 17
- 239000012535 impurity Substances 0.000 claims description 15
- 238000005491 wire drawing Methods 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 description 104
- 238000005260 corrosion Methods 0.000 description 55
- 230000007797 corrosion Effects 0.000 description 55
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 34
- 150000003839 salts Chemical class 0.000 description 26
- 238000012360 testing method Methods 0.000 description 20
- 239000007921 spray Substances 0.000 description 14
- 238000004040 coloring Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 238000012545 processing Methods 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 229910000905 alloy phase Inorganic materials 0.000 description 4
- 238000000840 electrochemical analysis Methods 0.000 description 4
- 229910017706 MgZn Inorganic materials 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910018084 Al-Fe Inorganic materials 0.000 description 2
- 229910018192 Al—Fe Inorganic materials 0.000 description 2
- 241000288140 Gruiformes Species 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229910007563 Zn—Bi Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/261—After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/38—Wires; Tubes
Definitions
- the present invention relates to a plated steel wire having a zinc alloy layer formed of a multi-layer structure and a manufacturing method thereof, and more particularly to a mooring steel rope, a hoisting steel rope, an industrial steel wire and a bridge.
- Zinc alloy which is used in cables, etc., and has a multi-layered zinc alloy plating layer in which alloy phases composed of elements such as zinc, aluminum, magnesium, and iron are dispersed, and has excellent corrosion resistance and fatigue resistance. It relates to a plated steel wire and a method for producing the plated layer formed.
- Hot dip galvanized steel wires have been used in mooring steel ropes, hoisting steel ropes, industrial steel wires and cable cables for offshore oil and gas production facilities.
- the main factors affecting the service life of steel ropes and cables used for this purpose are the corrosion and fatigue properties of the plated steel wire.
- Hot-dip galvanized or Zn-Al-plated steel wire is used for steel ropes and cables, but high strength and long life are required at the same time due to the recent weight reduction.
- strength of steel ropes and cables is increased, cracks are easily generated in the plating alloy layer during cold drawing, and thus, corrosion resistance and fatigue characteristics are deteriorated.
- the steel wire for steel rope is made through a wire drawing process after hot-dip alloy plating, if the wire workability is not good peeling of the plating layer, there is a problem that the fatigue properties are lowered. Therefore, it is important to secure the ductility and wear resistance of the plated steel wire at the same time.
- Steel ropes and cables may be composed of a plurality of wires.
- steel ropes and cables composed of a plurality of wires tend to cause corrosion quickly due to a loss of plating layer due to wear between the wires during use. Accordingly, there is a demand for plating characteristics having excellent corrosion resistance and excellent wear resistance.
- the present invention has been created to solve the above-mentioned problems, and more particularly, it is used in mooring steel rope, hoisting steel rope, industrial steel wire and bridge cable.
- a zinc alloy plating layer in which alloy phases composed of elements such as zinc, aluminum, magnesium, and iron are dispersed in a multilayered structure, a plated steel wire having a zinc alloy plated layer formed of a multilayered structure having excellent corrosion resistance and fatigue resistance and its manufacture It is about a method.
- Plating steel wire formed with a zinc alloy layer formed of a multi-layer structure of the present invention for solving the above problems is a steel wire; and the zinc alloy plated layer formed on the steel wire, a multilayer structure; Silver comprises a first layer comprising at least one or more of Zn-Fe, Zn-Fe-Al structure, and Zn-Fe-Al structure, Zn, Zn-Al, Zn-Al-Mg-Fe A second layer comprising at least one of the tissues and a third layer comprising at least three or more of the Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al tissues; It is characterized by. Plating steel wire with a zinc alloy plating layer formed of a multilayer structure.
- composition of the zinc alloy plating layer of the plated steel wire having a zinc alloy layer formed of a multilayer structure of the present invention for solving the above problems is Al: 0.3 or more to 2.0% by weight, Mg: 0.3 or more to 1.5 or less by weight, The remainder contains Zn and unavoidable impurities, the sum of Al and Mg is from 0.6 to 3.5% by weight, and the ratio of Al to Al / Mg (Al / (Al + Mg)) is from 0.3 to 0.70. It is preferable.
- composition of the zinc alloy plating layer of the plated steel wire with a zinc alloy layer formed of a multilayer structure of the present invention for solving the above problems is Al: 0.3 or more to 3.5% by weight, Mg: 0.3 or more to 3.0 or less by weight, The remainder contains Zn and unavoidable impurities, the sum of Al and Mg is 0.6 or more and 6.5 or less by weight, and the ratio of Al to Al and Mg (Al / (Al + Mg)) is 0.3 or more and 0.70. It is preferable.
- the ratio of the thickness of the first layer and the thickness of the second layer to the thickness of the zinc alloy plated layer of the plated steel wire having the zinc alloy layer having the multilayer structure of the present invention for solving the above problems is 0.2 or more to 0.6.
- the zinc alloy plating layer may include any one of Bi or Sb, or Bi and Sb, and each of Bi and Sb is preferably less than 1.0 wt%.
- Zn-Fe is coated on the steel wire by galvanizing steel wire in a zinc plating bath having Zn of 98% by weight or more.
- a first plating step of forming an alloy layer The galvanized steel wire passed through the first plating step, Al: 0.3 or more to 2.0% by weight, Mg: 0.3 or more to 1.5% by weight, the rest includes Zn and unavoidable impurities, the sum of Al and Mg is 0.6 or more
- a zinc alloy plating layer is applied to the zinc plated steel wire by performing zinc alloy plating in a zinc alloy plating bath having a weight ratio of less than or equal to 3.5% by weight and an Al ratio (Al / (Al + Mg)) to a sum of Al and Mg of 0.30 or more and 0.70 or less.
- a second layer comprising a Zn-Fe-Al structure and comprising at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe structures, and Zn, Zn-Al-Mg, Mg
- a third layer comprising at least three or more of the -Zn and Zn-Al tissues.
- the zinc alloy plating bath of the method for manufacturing a plated steel wire having a zinc alloy layer formed of a multi-layer structure of the present invention for solving the above-described problems any one of Bi or Sb, or Bi and Sb together, Bi and Sb is It is preferably included in less than 1.0% by weight each.
- Zn-Fe is coated on the steel wire by galvanizing steel wire in a zinc plating bath having Zn of 98% by weight or more.
- a first plating step of forming an alloy layer The galvanized steel wire passed through the first plating step, Al: 0.3 or more to 3.5% by weight, Mg: 0.3 or more to 3.0% by weight, the rest includes Zn and unavoidable impurities, the sum of Al and Mg is 0.6 or more Zinc alloy plating in a zinc alloy plating bath having a weight ratio of less than or equal to 6.5% by weight, and an Al ratio (Al / (Al + Mg)) to a sum of Al and Mg of 0.30 or more and 0.70 or less.
- a second layer comprising a Zn-Fe-Al structure and comprising at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe structures, and Zn, Zn-Al-Mg, Mg
- a third layer comprising at least three or more of the -Zn and Zn-Al tissues.
- the method for manufacturing a plated steel wire having a zinc alloy layer formed of a multilayered structure of the present invention for solving the above-mentioned problems is to cold draw a zinc alloy plated steel wire formed through the second plating step at a processing amount of 90% or less. It is preferable to further include a drawing process, and the zinc alloy plating bath, Bi or Sb, or Bi and Sb together, it is preferable that Bi and Sb are each included less than 1.0% by weight.
- the zinc alloy plating layer having a multilayer structure of the present invention includes a Zn-Fe-Al structure and a first layer including at least one of Zn-Fe and Zn-Fe-Al structures, and Zn, Zn-Al.
- a second layer comprising at least one of Zn-Al-Mg-Fe tissues and at least three or more of Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al tissues; Including three layers, it has excellent corrosion resistance and fatigue resistance, and has the advantage of providing a plated steel wire having excellent cold workability.
- the first layer of the zinc alloy plating layer can improve the steel wire and bonding force through the Zn-Fe structure
- the second layer of the zinc alloy plating layer is Zn, Zn-Al, Zn-Al-Fe, Zn-Al-Mg-Fe It can exhibit excellent wear resistance and corrosion resistance through the structure
- the third layer 23 of the zinc alloy plating layer has the advantage that can exhibit excellent corrosion resistance through Zn, Zn-Al-Mg, Mg-Zn, Zn-Al structure.
- FIG. 1 is a view showing a plated steel wire having a zinc alloy plated layer formed of a multilayer structure according to an embodiment of the present invention.
- FIG. 2 is a view showing a zinc alloy plating layer formed through a zinc alloy plating bath having a composition of Zn, Al-0.3 wt% and Mg-0.3 wt% according to an embodiment of the present invention.
- FIG 3 is a view illustrating a zinc alloy plating layer formed through a zinc alloy plating bath having a composition of Zn, Al-0.9 wt% and Mg-0.8 wt% according to an embodiment of the present invention.
- FIG. 4 is a view showing a zinc alloy plating layer formed through a zinc alloy plating bath having a composition of Zn, Al-1.9 weight% and Mg-1.5 weight% according to an embodiment of the present invention.
- FIG. 5 is a view showing a zinc alloy plating layer formed through a zinc alloy plating bath having a composition of Zn, Al-2.5 wt% and Mg-2.0 wt% according to an embodiment of the present invention.
- FIG. 6 is a view illustrating a zinc alloy plating layer formed through a zinc alloy plating bath having a composition of Zn, Al-5.0 wt% and Mg-5.0 wt% according to an embodiment of the present invention.
- Figure 9 shows a graph measuring the corrosion rate by changing the Al and Mg content of the zinc alloy plating bath according to an embodiment of the present invention.
- 11 is a table showing the results of the salt spray test by changing the Al and Mg content of the zinc alloy plating bath, and the amount of fresh processing according to an embodiment of the present invention.
- the first plating step is, according to an embodiment of the present invention, the first plating step, the second plating step (Zn, Al-0.9 weight%, Mg-0.8 weight%), the wire processing step (90% wire processing amount) It is a figure which shows a plating steel wire.
- the present invention is used in mooring steel ropes, hoisting steel ropes, industrial steel wires and cables for bridges, and alloy phases composed of elements such as zinc, aluminum, magnesium, and iron.
- As the zinc alloy plated layer is dispersed in a multi-layer structure, and relates to a plated steel wire formed with a zinc alloy plated layer formed of a multi-layer structure excellent in corrosion resistance and fatigue resistance and a method of manufacturing the same.
- Plating steel wire with a zinc alloy plated layer formed of a multilayer structure of the present invention can be used for the same color and color.
- the same color is used for cables, ropes and wires that need to be cold drawn after zinc alloy plating, and the color can be used for cables, ropes and wires that do not need to be cold drawn after zinc alloy plating.
- the same color and color for the production is produced by varying the composition ratio of the zinc alloy plating bath in the second plating step to be described later.
- the second plating step may be the final process, but for coloring, the same is used after the cold drawing process.
- the same color includes mooring steel ropes, offshore crane ropes, land crane ropes and mining ropes. ) And bridge ropes and cables.
- a plated steel wire having a zinc alloy plating layer formed of a multilayer structure of the present invention is plated on a steel wire 10 and the steel wire 10, and includes a zinc alloy plating layer 20 having a multilayer structure.
- the steel wire 10 is made of a steel wire used for mooring steel rope, hoisting steel rope, industrial steel wire and bridge cables.
- the zinc alloy plating layer 20 has a multilayer structure, and includes a first layer 21 including Zn-Fe and Zn-Fe-Al structures, and a first layer 21 and Zn-Fe-Al structures.
- a second layer 22 including at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe structures, and Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al structures. It may comprise a third layer 23 comprising at least three or more of the tissue.
- the first layer 21 may include a Zn-Fe structure, but in the second plating step to be described later, Zn-Fe structure may be removed so that only Zn-Fe-Al structure may be left, and Zn-Fe and Zn-Fe-Al tissue may remain at the same time.
- the ratio of the first layer 21 and the second layer 22 is preferably 20% or more and 60% or less. That is, the ratio of the first layer 21 and the second layer 22 to the zinc alloy plating layer 20 may be 0.2 or more and 0.6 or less. Specifically, the ratio of the thickness of the first layer 21 to the thickness of the second layer 22 with respect to the thickness of the zinc alloy plating layer 20 may be 0.2 to 0.6 or less. ((Thickness of the first layer 21 + thickness of the second layer 22) / the value of the thickness of the zinc alloy plating layer 20 may be made of 0.2 or more to 0.6.)
- the ratio of the first layer 21 and the second layer 22 in the zinc alloy plating layer 20 is less than 20%, plating adhesion and abrasion resistance are insufficient, and in the zinc alloy plating layer 20, the first If the ratio of the layer 21 and the second layer 22 is greater than 60%, cracking of the plating layer may occur. Therefore, the ratio of the first layer 21 and the second layer 22 in the zinc alloy plating layer 20 is preferably 20% or more and 60% or less.
- the composition of the zinc alloy plating layer 20 is Al: 0.3 or more and 2.0 or less weight%, Mg: 0.3 or more and 1.5 or less weight%, and the rest. Is Zn and unavoidable impurities, the sum of Al and Mg is not less than 0.6 and not more than 3.5, and the ratio of Al to Al and Mg (Al / (Al + Mg)) is not less than 0.3 and not more than 0.70. have.
- the composition of the zinc alloy plating layer 20 is Al: 0.3 or more and 3.5 or less weight%, Mg: 0.3 or more and 3.0 or less weight%, The remainder contains Zn and unavoidable impurities, and the sum of Al and Mg is 0.6 or more and 6.5 or less, and the ratio of Al to Al and Mg (Al / (Al + Mg)) is 0.3 or more and 0.70 days. Can be.
- the sum of Al and Mg means the aluminum content and the magnesium content
- the ratio of Al to the sum of Al and Mg means the ratio of the aluminum content to the sum of the aluminum content and the magnesium content
- the corrosion resistance is insufficient when Al is less than 0.3% by weight, and when it exceeds 2.0% by weight, the cold drawing property is lowered. It is preferable to contain 0.3 weight% or more and 2.0 weight% or less.
- the corrosion resistance is insufficient when Al is less than 0.3% by weight, and when it exceeds 3.5% by weight, the corrosion resistance is insignificant. Since plating workability also falls due to the Ross problem, Al preferably contains 0.3 to 3.5% by weight.
- the corrosion resistance is insufficient when Mg is less than 0.3% by weight, and when the content exceeds 1.5% by weight, the cold workability is deteriorated. It is preferable to contain 0.3 to 1.5 weight% of silver.
- Mg content contains 0.3 to 3.0 weight%.
- the corrosion resistance is improved.
- the corrosion resistance is insufficient when the sum of Al and Mg content is less than 0.6 wt%, and the cold workability is deteriorated when it exceeds 3.5 wt%.
- the sum is preferably 0.6 to 3.5% by weight.
- corrosion resistance is insufficient when the sum of Al and Mg content is less than 0.6% by weight, and the effect of improving corrosion resistance is not large when it exceeds 6.5% by weight. Therefore, the sum of Al and Mg content in the plating bath is preferably 0.6 to 6.5% by weight.
- the Al content is the sum of the Al content and the Mg content. If the ratio Al / (Al + Mg) is less than 0.3, oxidation of the plating bath occurs severely with the increase of Mg content, and defects of the plating layer are caused due to floating of intergranular compound particles of dross type MgZn 2 in the plating bath. Can be generated.
- Al / (Al + Mg) which is the ratio of Al content to the sum of Al content and Mg content, exceeds 0.70, the ratio of the Mg alloy layer to the plating layer may decrease, which may lower corrosion resistance. Therefore, it is preferable to keep Al / (Al + Mg) at 0.3 or more and 0.70 or less.
- the plated steel wire formed with a zinc alloy plated layer formed of the multilayer structure of the present invention described above is as follows.
- the steel wire 10 may include a first plating step of plating in a zinc plating bath, and a first plating step of plating a galvanized steel wire in a zinc alloy plating bath. It includes two plating steps.
- the first plating step is to form a Zn-Fe alloy layer on the steel wire 10 by galvanizing the steel wire 10 in a zinc plating bath having Zn of 98% by weight or more.
- the Zn-Fe alloy layer is formed by reacting Zn with the steel wire 10 containing Fe.
- the composition of the galvanizing bath is preferably Zn is formed in more than 98% by weight. If the composition of Zn is less than 98% by weight, the appearance quality is insufficient due to impurities, and since the impurities are dissolved in the second plating step described later to contaminate the zinc alloy plating bath, the content of Zn is maintained at 98% by weight or more.
- the second plating step is a step of forming a zinc alloy plating layer by zinc alloy plating the zinc plated steel wire passed through the first plating step in a zinc alloy plating bath.
- the composition of the zinc alloy plating bath is the zinc alloy according to the case of using the plated steel wire for the same color for cold drawing and the case of using the plated steel wire for the coloring without the cold drawing process.
- the composition of the plating bath is formed differently.
- the composition of the zinc alloy plating bath is Al: 0.3 or more and 2.0 or less by weight, Mg: 0.3 or more and 1.5 or less by weight, and the rest is Zn and unavoidable impurities. It includes, and the sum of Al and Mg is 0.6 or more to 3.5 or less by weight, and the ratio of Al to Al (M / (Al + Mg)) to the sum of Al and Mg is 0.30 or more and 0.70 or less.
- the composition of the zinc alloy plating bath is Al: 0.3 or more and 3.5 or less weight%, Mg: 0.3 or more and 3.0 or less weight%, and the rest is Zn and unavoidable impurities. It includes, and the sum of Al and Mg is 0.6 or more to 6.5 or less by weight, the ratio of Al to Al (M / (Al + Mg)) to the sum of Al and Mg is formed from 0.30 to 0.70 or less.
- the zinc alloy plating layer 20 having a multi-layer structure is formed on the steel wire 10.
- the zinc alloy plating layer 20 includes a first layer 21 including Zn-Fe and Zn-Fe-Al structures, and a Zn-Fe-Al structure. At least three of Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al tissues, and a second layer 22 including at least one of Zn-Al and Zn-Al-Mg-Fe tissues. It may comprise a third layer 23 comprising more than one tissue.
- the process of forming the multi-layer structure of the zinc alloy plating layer 20 is as follows. Part of the Zn-Fe alloy layer formed in the first plating step is reacted with Al and Mg in the second plating step, the second comprising a structure consisting of at least three or more of Fe, Mg, Al, Zn Layer 22 will be formed.
- the Zn-Fe alloy layer formed in the first plating step is formed of the first layer 21 and the second layer 22 through the second plating step.
- the ratio of the Zn-Fe alloy layer of the first plating step is formed at an appropriate level so as to obtain the first layer 21 and the second layer 22 in the second plating step.
- the third layer 23 is formed by reacting Zn, Mg, and Al according to the composition of the zinc alloy plating bath of the second plating step, and includes a structure composed of Zn, Mg, and Al.
- the first layer 21 is formed of at least one or more of the Zn-Fe, Zn-Fe-Al structure
- the second layer 22 includes a Zn-Fe-Al structure
- Zn At least one of Zn-Al and Zn-Al-Mg-Fe structures is formed
- the third layer 23 is formed of at least 3 of Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al structures. More than one tissue is formed.
- the zinc alloy plating layer 20 has a multilayer structure through the first plating step and the second plating step, but the zinc alloy plating layer may be formed according to the composition of the zinc alloy plating bath of the second plating step. 20) may vary in form.
- FIGS 2 to 6 show the zinc alloy plating layer 20 formed by changing the content of Al and Mg of the zinc alloy plating bath according to an embodiment of the present invention.
- FIG. 2 shows the zinc alloy plating bath 20 by forming the zinc alloy plating bath in Zn, Al-0.3 weight% and Mg-0.3 weight%
- FIG. 3 shows the zinc alloy plating bath in Zn, Al-. 0.9 wt%, Mg-0.8 wt% to form the zinc alloy plating layer 20
- Figure 4 shows the zinc alloy plating bath is composed of Zn, Al-1.9 wt%, Mg-1.5 wt%
- the zinc alloy plating layer 20 is formed.
- the Zn-Fe alloy layer formed in the first plating step reacts with Al, and Zn-Fe More of the second layer 22, including at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe, is formed, and the Zn-Fe alloy layer is reduced. I can do it.
- the second layer 22 includes a Zn-Fe-Al structure in which a Zn-Fe alloy layer reacts with Al, and includes at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe structures. It has excellent abrasion resistance, including the composed tissue. Accordingly, as the second layer 22 increases, wear resistance may be improved while corrosion resistance is excellent.
- the third layer 23 is formed to include a structure consisting of Zn, Mg, Al, at least three or more of the Zn, Zn-Al-Mg, Mg-Zn, Zn-Al tissue is formed .
- phases such as Zn-Al-Mg, Mg-Zn, Zn-Al, etc. may be increased, thereby greatly improving corrosion resistance.
- FIG. 5 shows the zinc alloy plating bath 20 by forming the zinc alloy plating bath in Zn, Al-2.5 wt% and Mg-2.0 wt%
- FIG. 6 shows the zinc alloy plating bath in Zn, Al ⁇ . 5.0 wt%, Mg-5.0 wt% is to form the zinc alloy plating layer 20.
- the Zn-Fe structure of the first layer 21 remains in the first layer 21 until the Al content is 0.9% by weight, but when the Al content increases to 1.9% by weight, the Zn-Fe structure remains locally at the interface.
- the bonding force between the steel wire 20 and the first layer 21 is lowered, thereby reducing cold workability and freshness. That is, when the Zn-Fe structure in the first layer 21 disappears and the concentration of the Al structure (Zn-Fe-Al structure concentration) is increased, the bonding strength of the interface is lowered, which causes cracks at the interface during the drawing process. Will occur.
- the same color plating steel wire which needs to be cold drawn after the first plating step and the second plating step has a composition of the zinc alloy plating bath of the second plating step, wherein Al is 2.0 or less by weight and Mg is 1.5 It is preferable to set it as the weight% below.
- Al is less than 0.3% by weight in the composition of the zinc alloy plating bath, the corrosion resistance is insufficient, and when it exceeds 2.0% by weight Since cold wire workability falls, it is preferable that Al is 0.3 to 2.0 weight%.
- the Mg content is preferably 0.3 to 1.5% by weight.
- the content of Mg is preferably 0.3 to 3.0% by weight or less.
- Al and Mg are both elements which improve the corrosion resistance of the plating layer, when the content of these elements is increased, the corrosion resistance is improved.
- the corrosion resistance is insufficient when the sum of Al and Mg weight% in the zinc alloy plating bath is less than 0.6 wt%, and when it exceeds 3.5%, the cold workability is deteriorated. Since the sum of Al and Mg content is preferably 0.6 to 3.5% by weight.
- the sum of Al and Mg weight% in the zinc alloy plating bath is less than 0.6 weight%, the corrosion resistance is insufficient, and when it exceeds 6.5% Since the effect of improving corrosion resistance is not great, the sum of Al and Mg contents is preferably 0.6 to 6.5% by weight.
- Al / (Al + Mg) which is the ratio of Al content to the sum of Al content and Mg content in the zinc alloy plating bath, exceeds 0.70, the ratio of the Mg alloy layer to the plating layer may decrease, which may reduce corrosion resistance. have. Therefore, it is preferable to keep Al / (Al + Mg) at 0.3 or more and 0.70 or less.
- the temperature of the zinc plating bath in the first plating step and the zinc alloy plating bath in the second plating step is 430 ° C. or more and 470 ° C. or less. It is preferred to remain at.
- the temperature of the zinc plating bath and the zinc alloy plating bath is less than 430 ° C., the viscosity of the molten alloy is high, so that the plating appearance becomes rough.
- the temperature of the zinc alloy plating bath is preferably maintained at 430 °C or more to 470 °C or less.
- the method of manufacturing a plated steel wire having a zinc alloy plated layer having a multilayer structure according to the present invention is performed by the zinc plating. It may further comprise a wire drawing step of cold drawing the steel wire to a processing amount of less than 90%.
- the amount of drawn processing is (1- (fresh plated steel wire diameter / plated steel wire diameter) 2 ) x 100.
- the fresh working amount of cold drawing is preferably 90% or less because not only the salt quality related to the fatigue life is lowered but also cracking occurs in the plating layer.
- the diameter of the drawn steel wire is equal to the diameter of the plated steel wire, so that the amount of drawn wire becomes 0%. That is, the amount of drawn wire can be made from more than 0% to 90%.
- Example 1 was confirmed the corrosion resistance according to the Al and Mg content of the zinc alloy plating bath.
- the steel plate 10 having a diameter of 8 mm and having the components shown in Table 1 of FIG. 7 is zinc plated in the first plating step, and the second plating step in the zinc alloy plating bath having the composition of Table 2 of FIG. 8. Seven samples were prepared by the following procedure.
- the temperature of the galvanizing bath to perform the first plating step was 450 °C, immersed in the galvanizing bath for 23 seconds, the composition of the galvanizing bath was Zn 99.6% by weight, the rest contained impurities.
- the composition of the second plating step is as shown in Table 2 of Figure 8, the temperature of the zinc alloy plating bath was 445 °C, the immersion time was 20 seconds. Gas wiping used nitrogen gas.
- Corrosion resistance evaluation was performed by the salt spray test (salt spray standard test according to KS-C-0223) and electrochemical test (Electrochemical test).
- the salt spray test is to measure the time elapsed until the area where red blue occurs on the surface of the specimen to 5%, the results are shown in Table 2 (Salt Pray) of FIG.
- Electrochemical test Electrochemical test (Electrochemical test) was evaluated using a potentiostat (Potentiostat), the results are shown in FIG. Specifically, Figure 9 is a graph showing the corrosion rate according to the Al and Mg content means that the corrosion rate is lower the higher the corrosion rate.
- Al + Mg the sum of Al content and Mg content
- the salt spray test showed relatively low corrosion resistance at 650 hours, and Al + Mg. From this 0.6% by weight, the salt spray test showed 2243 hours of excellent corrosion resistance. In particular, Al + Mg was 3.4 wt%, the salt spray test was 4625 hours, it was shown that the corrosion resistance is very excellent. If Al + Mg is more than 4.5% by weight, the increase in salt spray time is slight. This seems to be due to the coarsening of the Al-Zn binaries.
- Example 1 seven samples of the zinc alloy plated steel wire that passed the second plating step were drawn at 85%, 90%, and 92% fresh throughput to prepare 21 samples, and a salt test and a salt spray test were performed. To evaluate the level of quality.
- the amount of drawn processing is calculated as (1- (fresh plated steel wire diameter / plated steel wire diameter) 2 ) x 100. At this time, the drawing speed was 5 m / sec, the average reduction rate per die was 19%.
- the specimen length is 8 inches and the torsional speed is tested 60 times per minute.
- the salt test measures the number of times of twisting while rotating the wire 360 degrees until the steel wire is broken. If the salt test value is high, the fatigue resistance is good. If the salt test value is low, the fatigue resistance is poor.
- the salt spray test is for evaluating the corrosion resistance as described above.
- the salt test results of Example 2 are shown in Table 3 of FIG. 10, and the salt spray test results of Example 2 are shown in Table 4 of FIG.
- saline quality was obtained in the Mg + Al content of 0.6% by weight up to 90%.
- Excellent salt characteristics mean excellent fatigue resistance.
- the quality of the salt is reduced to 8 or less at 92% of the fresh working amount.
- the Mg + Al content exceeds 4.5% by weight, the salt quality was remarkably degraded.
- Table 4 of FIG. 11 when the salt spray test time (corrosion resistance) increased to 92%, a significant decrease was observed in all samples (Samples No 2 to 7) having an Mg + Al content of 0.6% by weight or more.
- This phenomenon was generated by cracking in the surface of the zinc alloy plating layer 20 or steel wire 10 at 92% of the fresh working amount, and propagating the crack into the base metal.
- 90% freshness all samples with Mg + Al content ranging from 0.6% to 3.4% by weight were good for more than 1800 hours.
- the fresh plated steel wire was well distributed in alloy phases in the plating. It can be seen that there is no crack. Therefore, the freshness is less than 90%.
- the above-described plated steel wire and a method of manufacturing the zinc alloy plated layer formed of the multilayer structure of the present invention have the following effects.
- the zinc alloy plating layer 20 having a multilayer structure of the present invention includes the first layer 21 and Zn-Fe-Al structure including at least one of Zn-Fe and Zn-Fe-Al structures. And a second layer 22 including at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe structures, and Zn, Zn-Al-Mg, Mg-Zn, and Zn. And the third layer 23 including at least three or more of -Al tissues.
- the first layer 21 may strongly bond the steel wire 10 and the zinc alloy plating layer 20 through a Zn-Fe structure (or Zn-Fe-Al structure) having improved ductility by solid solution of Al.
- a Zn-Fe structure or Zn-Fe-Al structure
- Al in which Al is dissolved, a Zn-Fe layer formed by reacting Zn and steel of the steel wire 10 in the first plating step is formed of Al in the second plating step. It is a softened organization formed by employment.
- the Aln-solidified Zn-Fe structure (or Zn-Fe-Al structure) may improve the bonding strength between the steel wire 10 and the zinc alloy plating layer 20.
- the second layer 22 includes a structure composed of at least three of Fe, Mg, Al, and Zn by reacting the Zn-Fe layer formed in the first plating step with Al and Mg in the second plating step. It is to make a plating layer made of.
- the second layer 22 may include a Zn-Fe-Al structure, and may include at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe structures.
- the second layer 22 has excellent wear resistance and corrosion resistance.
- Al and Mg react with the Zn-Fe alloy layer, which is a hardened structure produced during pure hot dip galvanizing, to form a new ductile structure (structure in which Zn-Al or Zn-Al-Fe phase is dispersed). This is because the hardened tissue is lost while making.
- the third layer 23 includes a tissue composed of at least one of Mg, Al, and Zn, and specifically, at least three or more of Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al. It involves the organization.
- the third layer 23 can exhibit excellent corrosion resistance through Zn, Zn-Al-Mg, Mg-Zn, Zn-Al structure.
- the present invention includes the first layer 21, the second layer 22, and the third layer 23, so that the bonding force with the steel wire 10 is strong, and excellent corrosion resistance and wear resistance are achieved. It can exhibit the characteristics, through which there is an advantage to provide a plated steel wire excellent in corrosion resistance and fatigue resistance.
- the cold drawing processability can be improved, and the cold drawing process can be carried out at 90% or less, so that the corrosion resistance and abrasion resistance can be improved. There is an advantage to improve.
- the composition of the zinc alloy plating bath of the second plating step may include any one of Bi (bismuth) or Sb (antimony), or Bi and Sb. At this time, the content of Bi and the content of Sb are each configured to be less than 1.0% by weight.
- the surface tension and viscosity of the molten zinc alloy are lowered to reduce the surface roughness, and the dross-type MgZn in the plating bath is reduced. 2
- the surface defects (lumpy, etc.) caused by the intermetallic compound suspension are reduced, so that uniform surface roughness can be obtained. If the content of Bi and Sb exceeds 1.0% by weight, wear characteristics are significantly increased (acccelerated material wear), thereby damaging the zinc alloy plating bath and the surface of the plating layer is not preferable.
- the zinc alloy plating layer 20 may include any one of Bi or Sb, or Bi and Sb, and each of Bi and Sb may be included in less than 1.0 wt%.
- the first layer 21 is formed of at least one of Zn-Fe and Zn-Fe-Al structures. It may comprise one or more tissues, the second layer 22 comprises a Zn-Fe-Al tissue, and comprises at least one tissue of Zn, Zn-Al, Zn-Al-Mg-Fe tissue
- the third layer 23 may include a tissue including at least one of Bi and Sb in Mg, Al, and Zn.
- the third layer 23 may include Bi-Mg and Sb-Mg crystal structures, and at least one of Bi and Sb in Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al tissues.
- crystal structures such as Zn-Bi and Zn-Sb may be formed on the third layer 23.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating With Molten Metal (AREA)
Abstract
The present invention relates to a method for manufacturing a plated steel wire on which is formed a zinc alloy plating layer having a multilayer structure, the method comprising: a first plating step for galvanizing a steel wire to form a Zn-Fe alloy layer on the steel wire; and a second plating step for zinc alloy plating the galvanized steel wire obtained from the first plating step in a zinc alloy plating bath to form a zinc alloy plating layer. The present invention also relates to a plated steel wire on which is formed a zinc alloy plating layer having a multilayer structure, the plated steel wire being characterized by comprising: a steel wire; and a zinc alloy plating layer plated on the steel wire and having a multilayer structure, wherein the zinc alloy plating layer comprises a first layer including at least one structure among a Zn-Fe structure and a Zn-Fe-Al structure, a second layer including a Zn-Fe-Al structure and at least one structure among a Zn structure, a Zn-Al structure, and a Zn-Al-Mg-Fe structure, and a third layer including at least three among a Zn structure, a Zn-Al-Mg structure, an Mg-Zn structure, and a Zn-Al structure.
Description
본 발명은 다층 구조로 이루어진 아연 합금층이 형성된 도금 강선 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 무어링용 스틸로프(mooring steel rope), 호이스팅 스틸로프(hoisting steel rope), 산업용 강선 및 교량용 케이블(cable)등에 사용되며, 아연, 알루미늄, 마그네슘, 철 등의 원소로 구성된 합금상들이 분산되어 있는 아연 합금 도금층이 다층 구조로 이루어짐에 따라 내식성 및 내피로 특성이 우수한 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선 및 이의 제조방법에 관한 것이다. The present invention relates to a plated steel wire having a zinc alloy layer formed of a multi-layer structure and a manufacturing method thereof, and more particularly to a mooring steel rope, a hoisting steel rope, an industrial steel wire and a bridge. Zinc alloy, which is used in cables, etc., and has a multi-layered zinc alloy plating layer in which alloy phases composed of elements such as zinc, aluminum, magnesium, and iron are dispersed, and has excellent corrosion resistance and fatigue resistance. It relates to a plated steel wire and a method for producing the plated layer formed.
해상 오일 및 가스 생산 설비의 무어링용 스틸로프(mooring steel rope), 호이스팅 스틸로프(hoisting steel rope), 산업용 강선 및 교량용 케이블(cable) 등에 용융 아연 도금 강선이 등이 사용되어 왔다. 이런 용도로 사용되는 스틸 로프 및 케이블의 수명에 영향을 주는 주요 인자로는 도금 강선의 부식과 피로 특성 등이 있다. Hot dip galvanized steel wires have been used in mooring steel ropes, hoisting steel ropes, industrial steel wires and cable cables for offshore oil and gas production facilities. The main factors affecting the service life of steel ropes and cables used for this purpose are the corrosion and fatigue properties of the plated steel wire.
스틸 로프 및 케이블은 용융 아연도금이나 Zn-Al계 도금 강선이 사용되고 있으나, 최근 경량화 추세에 따라 고강도와 고수명이 동시에 요구되고 있다. 그러나 스틸 로프 및 케이블 등을 고강도화할 경우, 신선 냉간 가공중 도금 합금층에 크랙이 쉽게 발생하여 부식 저항성 및 피로특성이 저하되는 문제점이 발생하고 있다. Hot-dip galvanized or Zn-Al-plated steel wire is used for steel ropes and cables, but high strength and long life are required at the same time due to the recent weight reduction. However, when strength of steel ropes and cables is increased, cracks are easily generated in the plating alloy layer during cold drawing, and thus, corrosion resistance and fatigue characteristics are deteriorated.
스틸 로프 및 케이블을 Zn-Al-Mg계로 도금을 수행할 경우 내식성이 우수한 것으로 알려져 있으나, 대부분이 강판에 적용되고 있고, 냉간 신선 가공성이 나뿐 문제점이 있으며, 내마모성이 용융 아연대비 미흡한 문제점이 있다. Although the steel rope and cable are known to have excellent corrosion resistance when plating with Zn-Al-Mg, most of them are applied to steel sheets, and there are problems in cold drawing process as well, and wear resistance is inferior to that of molten zinc.
또한, 스틸로프용 강선은 용융 합금 도금한 후 신선 공정을 통해 만들어지므로 신선 가공성이 안 좋으면 도금층의 박리되고, 이로 인해 피로 특성이 저하되는 문제점이 있다. 따라서, 스틸로프용 강선은 우수한 도금층의 연성과 내마모성을 동시에 확보하는 것이 중요하다. In addition, the steel wire for steel rope is made through a wire drawing process after hot-dip alloy plating, if the wire workability is not good peeling of the plating layer, there is a problem that the fatigue properties are lowered. Therefore, it is important to secure the ductility and wear resistance of the plated steel wire at the same time.
스틸로프와 케이블은 다수의 와이어로 이루어질 수 있는데 이와 같이 다수의 와이어로 이루어진 스틸로프와 케이블은 사용중 와이어간의 마모에 의해 도금층이 없어져 부식이 빨리 발생하는 경향이 있다. 따라서, 우수한 내식성과 동시에 우수한 내마모 특성을 갖는 도금 특성이 요구되고 있다.Steel ropes and cables may be composed of a plurality of wires. Thus, steel ropes and cables composed of a plurality of wires tend to cause corrosion quickly due to a loss of plating layer due to wear between the wires during use. Accordingly, there is a demand for plating characteristics having excellent corrosion resistance and excellent wear resistance.
본 발명은 상술한 문제점을 해결하기 위해서 창출된 것으로, 더욱 상세하게는 무어링용 스틸로프(mooring steel rope), 호이스팅 스틸로프(hoisting steel rope), 산업용 강선 및 교량용 케이블(cable)등에 사용되며, 아연, 알루미늄, 마그네슘, 철 등의 원소로 구성된 합금상들이 분산되어 있는 아연 합금 도금층이 다층 구조로 이루어짐에 따라 내식성 및 내피로 특성이 우수한 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선 및 이의 제조방법에 관한 것이다. The present invention has been created to solve the above-mentioned problems, and more particularly, it is used in mooring steel rope, hoisting steel rope, industrial steel wire and bridge cable. As a zinc alloy plating layer in which alloy phases composed of elements such as zinc, aluminum, magnesium, and iron are dispersed in a multilayered structure, a plated steel wire having a zinc alloy plated layer formed of a multilayered structure having excellent corrosion resistance and fatigue resistance and its manufacture It is about a method.
상술한 문제점을 해결하기 위한 본 발명의 다층 구조로 이루어진 아연 합금층이 형성된 도금 강선은 강선;과, 상기 강선에 도금되며, 다층 구조로 이루어진 아연 합금 도금층;을 포함하여 이루어지며, 상기 아연 합금 도금층은, Zn-Fe, Zn-Fe-Al 조직 중 적어도 1개 이상의 조직을 포함하여 이루어진 제1층과, Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직을 포함하여 이루어지는 제2층과, Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직 중 적어도 3개 이상의 조직을 포함하여 이루어지는 제3층을 포함하여 이루어지는 것을 특징으로 하는 것이다. 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선.Plating steel wire formed with a zinc alloy layer formed of a multi-layer structure of the present invention for solving the above problems is a steel wire; and the zinc alloy plated layer formed on the steel wire, a multilayer structure; Silver comprises a first layer comprising at least one or more of Zn-Fe, Zn-Fe-Al structure, and Zn-Fe-Al structure, Zn, Zn-Al, Zn-Al-Mg-Fe A second layer comprising at least one of the tissues and a third layer comprising at least three or more of the Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al tissues; It is characterized by. Plating steel wire with a zinc alloy plating layer formed of a multilayer structure.
상술한 문제점을 해결하기 위한 본 발명의 다층 구조로 이루어진 아연 합금층이 형성된 도금 강선의 상기 아연 합금 도금층의 조성은, Al: 0.3 이상 ~ 2.0 이하 중량 %, Mg: 0.3 이상 ~ 1.5 이하 중량 %, 나머지는 Zn 및 불가피한 불순물을 포함하고, Al과 Mg의 합이 0.6 이상 ~ 3.5 이하 중량 % 이고, Al과 Mg의 합에 대한 Al의 비율(Al/(Al+Mg))이 0.3 이상 ~ 0.70인 것이 바람직하다. The composition of the zinc alloy plating layer of the plated steel wire having a zinc alloy layer formed of a multilayer structure of the present invention for solving the above problems is Al: 0.3 or more to 2.0% by weight, Mg: 0.3 or more to 1.5 or less by weight, The remainder contains Zn and unavoidable impurities, the sum of Al and Mg is from 0.6 to 3.5% by weight, and the ratio of Al to Al / Mg (Al / (Al + Mg)) is from 0.3 to 0.70. It is preferable.
상술한 문제점을 해결하기 위한 본 발명의 다층 구조로 이루어진 아연 합금층이 형성된 도금 강선의 상기 아연 합금 도금층의 조성은, Al: 0.3 이상 ~ 3.5 이하 중량 %, Mg: 0.3 이상 ~ 3.0 이하 중량 %, 나머지는 Zn 및 불가피한 불순물을 포함하고, Al과 Mg의 합이 0.6 이상 ~ 6.5 이하 중량 % 이고, Al과 Mg의 합에 대한 Al의 비율(Al/(Al+Mg))이 0.3 이상 ~ 0.70인 것이 바람직하다. The composition of the zinc alloy plating layer of the plated steel wire with a zinc alloy layer formed of a multilayer structure of the present invention for solving the above problems is Al: 0.3 or more to 3.5% by weight, Mg: 0.3 or more to 3.0 or less by weight, The remainder contains Zn and unavoidable impurities, the sum of Al and Mg is 0.6 or more and 6.5 or less by weight, and the ratio of Al to Al and Mg (Al / (Al + Mg)) is 0.3 or more and 0.70. It is preferable.
상술한 문제점을 해결하기 위한 본 발명의 다층 구조로 이루어진 아연 합금층이 형성된 도금 강선의 상기 아연 합금 도금층 두께에 대한, 상기 제1층의 두께와 상기 제2층의 두께 합의 비율은 0.2 이상 ~ 0.6 이하인 것이 바람직하며, 상기 아연 합금 도금층의 조성은, Bi 또는 Sb 중 어느 하나, 또는 Bi와 Sb를 함께 포함하며, Bi와 Sb는 각각 1.0 중량 % 미만으로 포함되는 것이 바람직하다.The ratio of the thickness of the first layer and the thickness of the second layer to the thickness of the zinc alloy plated layer of the plated steel wire having the zinc alloy layer having the multilayer structure of the present invention for solving the above problems is 0.2 or more to 0.6. Preferably, the zinc alloy plating layer may include any one of Bi or Sb, or Bi and Sb, and each of Bi and Sb is preferably less than 1.0 wt%.
상술한 문제점을 해결하기 위한 본 발명의 다층 구조로 이루어진 아연 합금층이 형성된 도금 강선 제조방법은, Zn 이 98 중량 % 이상으로 조성된 아연 도금조에서 강선을 아연 도금하여, 상기 강선에 Zn-Fe 합금층을 형성하는 제1도금단계; 상기 제1도금단계를 거친 아연 도금 강선을, Al: 0.3 이상 ~ 2.0 이하 중량 %, Mg: 0.3 이상 ~ 1.5 이하 중량 %, 나머지는 Zn 및 불가피한 불순물을 포함하고, Al과 Mg의 합이 0.6 이상 ~ 3.5 이하 중량 %, Al과 Mg의 합에 대한 Al의 비율(Al/(Al+Mg))이 0.30 이상 ~ 0.70 이하인 아연 합금 도금조에서 아연 합금 도금하여, 상기 아연 도금 강선에 아연 합금 도금층을 형성하는 제2도금단계;를 포함하여 이루어지며, 상기 제2도금단계를 거쳐 형성된 상기 아연 합금 도금층은, Zn-Fe, Zn-Fe-Al 조직 중 적어도 1개 이상의 조직을 포함하여 이루어진 제1층과, Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직을 포함하여 이루어지는 제2층과, Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직 중 적어도 3개 이상의 조직을 포함하여 이루어지는 제3층을 포함하여 이루어지는 것을 특징으로 하는 것이다. In the method for manufacturing a plated steel wire having a zinc alloy layer formed of a multilayered structure of the present invention for solving the above-mentioned problems, Zn-Fe is coated on the steel wire by galvanizing steel wire in a zinc plating bath having Zn of 98% by weight or more. A first plating step of forming an alloy layer; The galvanized steel wire passed through the first plating step, Al: 0.3 or more to 2.0% by weight, Mg: 0.3 or more to 1.5% by weight, the rest includes Zn and unavoidable impurities, the sum of Al and Mg is 0.6 or more A zinc alloy plating layer is applied to the zinc plated steel wire by performing zinc alloy plating in a zinc alloy plating bath having a weight ratio of less than or equal to 3.5% by weight and an Al ratio (Al / (Al + Mg)) to a sum of Al and Mg of 0.30 or more and 0.70 or less. A second plating step of forming; and the zinc alloy plating layer formed through the second plating step, the first layer including at least one of Zn-Fe and Zn-Fe-Al structures. And a second layer comprising a Zn-Fe-Al structure and comprising at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe structures, and Zn, Zn-Al-Mg, Mg And a third layer comprising at least three or more of the -Zn and Zn-Al tissues. Will.
상술한 문제점을 해결하기 위한 본 발명의 다층 구조로 이루어진 아연 합금층이 형성된 도금 강선 제조방법의 상기 아연 합금 도금조는, Bi 또는 Sb 중 어느 하나, 또는 Bi와 Sb를 함께 포함하며, Bi와 Sb는 각각 1.0 중량 % 미만으로 포함되는 것이 바람직하다. The zinc alloy plating bath of the method for manufacturing a plated steel wire having a zinc alloy layer formed of a multi-layer structure of the present invention for solving the above-described problems, any one of Bi or Sb, or Bi and Sb together, Bi and Sb is It is preferably included in less than 1.0% by weight each.
상술한 문제점을 해결하기 위한 본 발명의 다층 구조로 이루어진 아연 합금층이 형성된 도금 강선 제조방법은, Zn 이 98 중량 % 이상으로 조성된 아연 도금조에서 강선을 아연 도금하여, 상기 강선에 Zn-Fe 합금층을 형성하는 제1도금단계; 상기 제1도금단계를 거친 아연 도금 강선을, Al: 0.3 이상 ~ 3.5 이하 중량 %, Mg: 0.3 이상 ~ 3.0 이하 중량 %, 나머지는 Zn 및 불가피한 불순물을 포함하고, Al과 Mg의 합이 0.6 이상 ~ 6.5 이하 중량 %, Al과 Mg의 합에 대한 Al의 비율(Al/(Al+Mg))이 0.30 이상 ~ 0.70 이하인 아연 합금 도금조에서 아연 합금 도금아여, 상기 아연 도금 강선에 아연 합금 도금층을 형성하는 제2도금단계;를 포함하여 이루어지며, 상기 제2도금단계를 거쳐 형성된 상기 아연 합금 도금층은, Zn-Fe, Zn-Fe-Al 조직 중 적어도 1개 이상의 조직을 포함하여 이루어진 제1층과, Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직을 포함하여 이루어지는 제2층과, Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직 중 적어도 3개 이상의 조직을 포함하여 이루어지는 제3층을 포함하여 이루어지는 것을 특징으로 하는 것이다. In the method for manufacturing a plated steel wire having a zinc alloy layer formed of a multilayered structure of the present invention for solving the above-mentioned problems, Zn-Fe is coated on the steel wire by galvanizing steel wire in a zinc plating bath having Zn of 98% by weight or more. A first plating step of forming an alloy layer; The galvanized steel wire passed through the first plating step, Al: 0.3 or more to 3.5% by weight, Mg: 0.3 or more to 3.0% by weight, the rest includes Zn and unavoidable impurities, the sum of Al and Mg is 0.6 or more Zinc alloy plating in a zinc alloy plating bath having a weight ratio of less than or equal to 6.5% by weight, and an Al ratio (Al / (Al + Mg)) to a sum of Al and Mg of 0.30 or more and 0.70 or less. A second plating step of forming; and the zinc alloy plating layer formed through the second plating step, the first layer including at least one of Zn-Fe and Zn-Fe-Al structures. And a second layer comprising a Zn-Fe-Al structure and comprising at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe structures, and Zn, Zn-Al-Mg, Mg And a third layer comprising at least three or more of the -Zn and Zn-Al tissues. Will.
상술한 문제점을 해결하기 위한 본 발명의 다층 구조로 이루어진 아연 합금층이 형성된 도금 강선 제조방법은 상기 제2도금단계를 거쳐 형성된 아연 합금 도금 강선을, 90% 이하의 신선 가공량으로 냉간 신선 가공하는 신선 가공 단계를 더 포함하는 것이 바람직하며, 상기 아연 합금 도금조는, Bi 또는 Sb 중 어느 하나, 또는 Bi와 Sb를 함께 포함하며, Bi와 Sb는 각각 1.0 중량 % 미만으로 포함되는 것이 바람직하다. The method for manufacturing a plated steel wire having a zinc alloy layer formed of a multilayered structure of the present invention for solving the above-mentioned problems is to cold draw a zinc alloy plated steel wire formed through the second plating step at a processing amount of 90% or less. It is preferable to further include a drawing process, and the zinc alloy plating bath, Bi or Sb, or Bi and Sb together, it is preferable that Bi and Sb are each included less than 1.0% by weight.
본 발명의 다층 구조로 이루어진 아연 합금 도금층은 Zn-Fe, Zn-Fe-Al 조직 중 적어도 1개 이상의 조직을 포함하여 이루어진 제1층과 Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직을 포함하여 이루어지는 제2층과 Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직 중 적어도 3개 이상의 조직을 포함하여 이루어지는 제3층을 포함하여, 우수한 내식성 및 내피로 특성을 갖으며, 우수한 냉간 가공성을 갖는 도금 강선을 제공할 수 있는 장점이 있다. The zinc alloy plating layer having a multilayer structure of the present invention includes a Zn-Fe-Al structure and a first layer including at least one of Zn-Fe and Zn-Fe-Al structures, and Zn, Zn-Al. A second layer comprising at least one of Zn-Al-Mg-Fe tissues and at least three or more of Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al tissues; Including three layers, it has excellent corrosion resistance and fatigue resistance, and has the advantage of providing a plated steel wire having excellent cold workability.
아연 합금 도금층의 제1층은 Zn-Fe 조직을 통해 강선과 결합력을 향상시킬 수 있으며, 아연 합금 도금층의 제2층은 Zn, Zn-Al, Zn-Al-Fe, Zn-Al-Mg-Fe 조직을 통해 우수한 내마모성과 내식성을 발휘할 수 있으며, 아연 합금 도금층의 제3층(23)은 Zn, Zn-Al-Mg, Mg-Zn, Zn-Al조직 통해 우수한 내식성을 발휘할 수 있는 장점이 있다. The first layer of the zinc alloy plating layer can improve the steel wire and bonding force through the Zn-Fe structure, the second layer of the zinc alloy plating layer is Zn, Zn-Al, Zn-Al-Fe, Zn-Al-Mg-Fe It can exhibit excellent wear resistance and corrosion resistance through the structure, the third layer 23 of the zinc alloy plating layer has the advantage that can exhibit excellent corrosion resistance through Zn, Zn-Al-Mg, Mg-Zn, Zn-Al structure.
도 1은 본 발명의 실시예에 따른 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선을 나타내는 도면이다. 1 is a view showing a plated steel wire having a zinc alloy plated layer formed of a multilayer structure according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따라, Zn, Al-0.3 중량 %, Mg-0.3 중량 %의 조성을 갖는 아연 합금 도금조를 통해 형성된 아연 합금 도금층을 나타내는 도면이다. 2 is a view showing a zinc alloy plating layer formed through a zinc alloy plating bath having a composition of Zn, Al-0.3 wt% and Mg-0.3 wt% according to an embodiment of the present invention.
도 3는 본 발명의 실시예에 따라, Zn, Al-0.9 중량 %, Mg-0.8 중량 %의 조성을 갖는 아연 합금 도금조를 통해 형성된 아연 합금 도금층을 나타내는 도면이다. 3 is a view illustrating a zinc alloy plating layer formed through a zinc alloy plating bath having a composition of Zn, Al-0.9 wt% and Mg-0.8 wt% according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따라, Zn, Al-1.9 중량 %, Mg-1.5 중량 %의 조성을 갖는 아연 합금 도금조를 통해 형성된 아연 합금 도금층을 나타내는 도면이다. 4 is a view showing a zinc alloy plating layer formed through a zinc alloy plating bath having a composition of Zn, Al-1.9 weight% and Mg-1.5 weight% according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따라, Zn, Al-2.5 중량 %, Mg-2.0 중량 %의 조성을 갖는 아연 합금 도금조를 통해 형성된 아연 합금 도금층을 나타내는 도면이다. 5 is a view showing a zinc alloy plating layer formed through a zinc alloy plating bath having a composition of Zn, Al-2.5 wt% and Mg-2.0 wt% according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따라, Zn, Al-5.0 중량 %, Mg-5.0 중량 %의 조성을 갖는 아연 합금 도금조를 통해 형성된 아연 합금 도금층을 나타내는 도면이다. 6 is a view illustrating a zinc alloy plating layer formed through a zinc alloy plating bath having a composition of Zn, Al-5.0 wt% and Mg-5.0 wt% according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 강선의 화학성분을 나타내는 표이다.7 is a table showing the chemical composition of the steel wire according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따라, 아연 합금 도금조의 Al 및 Mg 함량을 변화시켜 염수분무시험을 수행한 결과표이다. 8 is a result of performing a salt spray test by changing the Al and Mg content of the zinc alloy plating bath according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따라, 아연 합금 도금조의 Al 및 Mg 함량을 변화시켜 부식 속도를 측정한 그래프를 나타내는 것이다. Figure 9 shows a graph measuring the corrosion rate by changing the Al and Mg content of the zinc alloy plating bath according to an embodiment of the present invention.
도 10은 본 발명의 실시예에 따라, 아연 합금 도금조의 Al 및 Mg 함량을 변화시키고, 신선 가공량을 변화시켜 염회시험을 수행한 결과표이다. 10 is a result table of performing a salt test by changing the Al and Mg content of the zinc alloy plating bath, and the amount of fresh processing according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따라, 아연 합금 도금조의 Al 및 Mg 함량을 변화시키고, 신선 가공량을 변화시켜 염수분무시험을 수행한 결과표이다. 11 is a table showing the results of the salt spray test by changing the Al and Mg content of the zinc alloy plating bath, and the amount of fresh processing according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따라, 제1차 도금단계, 제2차 도금단계(Zn, Al-0.9 중량 %, Mg-0.8 중량 %), 신선 가공 단계(90% 신선 가공량)를 거친 도금 강선을 나타내는 도면이다. 12 is, according to an embodiment of the present invention, the first plating step, the second plating step (Zn, Al-0.9 weight%, Mg-0.8 weight%), the wire processing step (90% wire processing amount) It is a figure which shows a plating steel wire.
본 발명은 무어링용 스틸로프(mooring steel rope), 호이스팅 스틸로프(hoisting steel rope), 산업용 강선 및 교량용 케이블(cable)등에 사용되며, 아연, 알루미늄, 마그네슘, 철 등의 원소로 구성된 합금상들이 분산되어 있는 아연 합금 도금층이 다층 구조로 이루어짐에 따라 내식성 및 내피로 특성이 우수한 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선 및 이의 제조방법에 관한 것이다. The present invention is used in mooring steel ropes, hoisting steel ropes, industrial steel wires and cables for bridges, and alloy phases composed of elements such as zinc, aluminum, magnesium, and iron. As the zinc alloy plated layer is dispersed in a multi-layer structure, and relates to a plated steel wire formed with a zinc alloy plated layer formed of a multi-layer structure excellent in corrosion resistance and fatigue resistance and a method of manufacturing the same.
본 발명의 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선은 동색용 및 정색용으로 사용될 수 있는 것이다. 동색용은 아연 합금 도금 후에 냉간 신선 가공을 해야하는 케이블, 로프, 와이어 등에 사용되는 것이며, 정색용은 아연 합금 도금 후에 냉간 신선 가공을 하지 않아도 되는 케이블, 로프, 와이어 등에 사용될 수 있는 것이다. 동색용과 정색용은 후술할 제2도금단계에서 아연 합금 도금조의 조성 비율을 다르게 하여 제작된다. 정색용은 제2도금단계가 최종적인 공정이 될 수 있으나, 동색용은 냉간 신선 가공 단계를 더 거쳐 사용된다. 동색용에는 무어링용 스틸로프(mooring steel rope), 해상 크레인 로프(offshore crane rope), 육상 크레인 로프 및 광산용 로프(mining rope) 등이 있으며, 정색용에는 스파이럴 스트랜드(spiral strand), 구조용(structure) 및 교량용(bridge) 로프 및 케이블(cable) 등이 있다.Plating steel wire with a zinc alloy plated layer formed of a multilayer structure of the present invention can be used for the same color and color. The same color is used for cables, ropes and wires that need to be cold drawn after zinc alloy plating, and the color can be used for cables, ropes and wires that do not need to be cold drawn after zinc alloy plating. The same color and color for the production is produced by varying the composition ratio of the zinc alloy plating bath in the second plating step to be described later. For coloring, the second plating step may be the final process, but for coloring, the same is used after the cold drawing process. The same color includes mooring steel ropes, offshore crane ropes, land crane ropes and mining ropes. ) And bridge ropes and cables.
이하, 본 발명에 따른 바람직한 실시 예를 첨부된 도면을 참조하여 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1을 참조하면, 본 발명의 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선은 강선(10)과 상기 강선(10)에 도금되며, 다층 구조로 이루어진 아연 합금 도금층(20)을 포함하여 이루어진다. Referring to FIG. 1, a plated steel wire having a zinc alloy plating layer formed of a multilayer structure of the present invention is plated on a steel wire 10 and the steel wire 10, and includes a zinc alloy plating layer 20 having a multilayer structure.
상기 강선(10)은 무어링용 스틸로프(mooring steel rope), 호이스팅 스틸로프(hoisting steel rope), 산업용 강선 및 교량용 케이블(cable) 등에 사용되는 강선으로 이루어져 있다. The steel wire 10 is made of a steel wire used for mooring steel rope, hoisting steel rope, industrial steel wire and bridge cables.
상기 아연 합금 도금층(20)은 다층 구조로 이루어진 것으로, Zn-Fe, Zn-Fe-Al 조직 중 적어도 1개 이상의 조직을 포함하여 이루어진 제1층(21)과, Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직을 포함하여 이루어지는 제2층(22)과, Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직 중 적어도 3개 이상의 조직을 포함하여 이루어지는 제3층(23)을 포함하여 이루어질 수 있다. The zinc alloy plating layer 20 has a multilayer structure, and includes a first layer 21 including Zn-Fe and Zn-Fe-Al structures, and a first layer 21 and Zn-Fe-Al structures. A second layer 22 including at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe structures, and Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al structures. It may comprise a third layer 23 comprising at least three or more of the tissue.
상기 제1층(21)은 Zn-Fe 조직을 포함하여 이루어질 수 있으나, 후술할 제2도금단계에서 Zn-Fe 조직이 제거되어 Zn-Fe-Al 조직만 남아있게 될 수도 있으며, Zn-Fe 및 Zn-Fe-Al 조직이 동시에 남아 있을 수도 있다. The first layer 21 may include a Zn-Fe structure, but in the second plating step to be described later, Zn-Fe structure may be removed so that only Zn-Fe-Al structure may be left, and Zn-Fe and Zn-Fe-Al tissue may remain at the same time.
상기 아연 합금 도금층(20)에서 상기 제1층(21) 및 상기 제2층(22)이 차지하는 비율은 20% 이상 내지 60% 이하인 것이 바람직하다. 즉, 상기 아연 합금 도금층(20)에 대한, 상기 제1층(21)과 상기 제2층(22)의 비율은 0.2 이상 ~ 0.6 이하로 이루어질 수 있는 것이다. 구체적으로, 상기 아연 합금 도금층(20)의 두께에 대한, 상기 제1층(21)의 두께와 상기 제2층(22)의 두께 합의 비율이 0.2 이상 ~ 0.6 이하로 이루어질 수 있는 것이다. ((상기 제1층(21)의 두께 + 상기 제2층(22)의 두께) / 상기 아연 합금 도금층(20)의 두께의 값이 0.2 이상 ~ 0.6으로 이루어질 수 있는 것이다.)In the zinc alloy plating layer 20, the ratio of the first layer 21 and the second layer 22 is preferably 20% or more and 60% or less. That is, the ratio of the first layer 21 and the second layer 22 to the zinc alloy plating layer 20 may be 0.2 or more and 0.6 or less. Specifically, the ratio of the thickness of the first layer 21 to the thickness of the second layer 22 with respect to the thickness of the zinc alloy plating layer 20 may be 0.2 to 0.6 or less. ((Thickness of the first layer 21 + thickness of the second layer 22) / the value of the thickness of the zinc alloy plating layer 20 may be made of 0.2 or more to 0.6.)
상기 아연 합금 도금층(20)에서 상기 제1층(21) 및 상기 제2층(22)이 차지하는 비율이 20% 미만인 경우 도금 밀착성 및 내마모성이 미흡하고, 상기 아연 합금 도금층(20)에서 상기 제1층(21) 및 상기 제2층(22)이 차지하는 비율이 60% 초과인 경우 도금층의 크랙 문제가 발생할 수 있다. 따라서 상기 아연 합금 도금층(20)에서 상기 제1층(21) 및 상기 제2층(22)이 차지하는 비율은 20% 이상 내지 60% 이하인 것이 바람직하다.When the ratio of the first layer 21 and the second layer 22 in the zinc alloy plating layer 20 is less than 20%, plating adhesion and abrasion resistance are insufficient, and in the zinc alloy plating layer 20, the first If the ratio of the layer 21 and the second layer 22 is greater than 60%, cracking of the plating layer may occur. Therefore, the ratio of the first layer 21 and the second layer 22 in the zinc alloy plating layer 20 is preferably 20% or more and 60% or less.
아연 합금 도금 후에 냉간 신선 가공을 해야 하는 동색용으로 도금 강선을 사용할 경우, 상기 아연 합금 도금층(20)의 조성은 Al: 0.3 이상 ~ 2.0 이하 중량 %, Mg: 0.3 이상 ~ 1.5 이하 중량 %, 나머지는 Zn 및 불가피한 불순물을 포함하고, Al과 Mg의 합이 0.6 이상 ~ 3.5 이하 중량 % 이고, Al과 Mg의 합에 대한 Al의 비율(Al/(Al+Mg))이 0.3 이상 ~ 0.70일 수 있다. In the case of using a plated steel wire for the same color to be cold drawn after zinc alloy plating, the composition of the zinc alloy plating layer 20 is Al: 0.3 or more and 2.0 or less weight%, Mg: 0.3 or more and 1.5 or less weight%, and the rest. Is Zn and unavoidable impurities, the sum of Al and Mg is not less than 0.6 and not more than 3.5, and the ratio of Al to Al and Mg (Al / (Al + Mg)) is not less than 0.3 and not more than 0.70. have.
아연 합금 도금 후에 냉간 신선 가공을 하지 않아도 되는 정색용으로 도금 강선을 사용할 경우, 상기 아연 합금 도금층(20)의 조성은 Al: 0.3 이상 ~ 3.5 이하 중량 %, Mg: 0.3 이상 ~ 3.0 이하 중량 %, 나머지는 Zn 및 불가피한 불순물을 포함하고, Al과 Mg의 합이 0.6 이상 ~ 6.5 이하 중량 % 이고, Al과 Mg의 합에 대한 Al의 비율(Al/(Al+Mg))이 0.3 이상 ~ 0.70일 수 있다. In the case of using a plated steel wire for coloring that does not need to be cold drawn after zinc alloy plating, the composition of the zinc alloy plating layer 20 is Al: 0.3 or more and 3.5 or less weight%, Mg: 0.3 or more and 3.0 or less weight%, The remainder contains Zn and unavoidable impurities, and the sum of Al and Mg is 0.6 or more and 6.5 or less, and the ratio of Al to Al and Mg (Al / (Al + Mg)) is 0.3 or more and 0.70 days. Can be.
여기서, Al과 Mg의 합은 알루미늄의 함량과 마그네슘의 함량을 의미하고, Al과 Mg의 합에 대한 Al의 비율은 알루미늄 함량과 마그네슘 함량을 합한 것에 대한 알루미늄 함량의 비율을 의미한다. Here, the sum of Al and Mg means the aluminum content and the magnesium content, and the ratio of Al to the sum of Al and Mg means the ratio of the aluminum content to the sum of the aluminum content and the magnesium content.
아연 합금 도금 후에 냉간 신선 가공을 해야하는 동색용으로 도금 강선을 사용하는 경우, Al이 0.3 중량 % 미만인 경우에 내식성이 미흡하고, 2.0 중량 %를 초과하는 경우에는 냉간 신선 가공성이 저하되기 때문에, Al은 0.3 이상 ~ 2.0 이하 중량 %를 함유하는 것이 바람직하다. 아연 합금 도금 후에 냉간 신선 가공을 하지 않아도 되는 정색용으로 도금 강선을 사용하는 경우, Al이 0.3 중량 % 미만인 경우에 내식성이 미흡하고, 3.5 중량 %를 초과하는 경우에는 내식성의 향상이 미미하고, 드로스(Dross) 문제로 도금 작업성도 저하되기 때문에, Al은 0.3 이상 ~ 3.5 이하 중량 %를 함유하는 것이 바람직하다.In the case of using a plated steel wire for the same color that needs to be cold drawn after zinc alloy plating, the corrosion resistance is insufficient when Al is less than 0.3% by weight, and when it exceeds 2.0% by weight, the cold drawing property is lowered. It is preferable to contain 0.3 weight% or more and 2.0 weight% or less. When the plated steel wire is used for coloring that does not need to be cold drawn after zinc alloy plating, the corrosion resistance is insufficient when Al is less than 0.3% by weight, and when it exceeds 3.5% by weight, the corrosion resistance is insignificant. Since plating workability also falls due to the Ross problem, Al preferably contains 0.3 to 3.5% by weight.
아연 합금 도금 후에 냉간 신선 가공을 해야하는 동색용으로 도금 강선을 사용하는 경우, Mg가 0.3 중량 % 미만인 경우에 내식성이 미흡하고, 1.5 중량 %를 초과하는 경우에는 냉간 가공성이 저하되기 때문에, Mg의 함량은 0.3 이상 ~ 1.5 이하 중량 %를 함유하는 것이 바람직하다. 아연 합금 도금 후에 냉간 신선 가공을 하지 않아도 되는 정색용으로 도금 강선을 사용하는 경우, Mg가 0.3 중량 % 미만인 경우에 내식성이 미흡하고, 3.0 중량 %를 초과하는 경우에는 내식성 향상이 미미하고 도금 작업성이 나빠지기 때문에, Mg의 함량은 0.3 이상 ~ 3.0 이하 중량 %를 함유하는 것이 바람직하다.When the plated steel wire is used for the same color for cold drawing after zinc alloy plating, the corrosion resistance is insufficient when Mg is less than 0.3% by weight, and when the content exceeds 1.5% by weight, the cold workability is deteriorated. It is preferable to contain 0.3 to 1.5 weight% of silver. When the plated steel wire is used for coloring that does not need to be cold drawn after zinc alloy plating, corrosion resistance is insufficient when Mg is less than 0.3% by weight, and when it exceeds 3.0% by weight, the corrosion resistance is insignificant and plating workability Since this worsens, it is preferable that Mg content contains 0.3 to 3.0 weight%.
상기 Al과 Mg는 모두 도금층의 내식성을 향상시키는 원소이므로, 이들 원소의 함량이 증가하면 내식성이 향상된다. 그러나 냉간 신선 가공을 해야 하는 동색용으로 도금 강선을 사용하는 경우, Al과 Mg 함량의 합이 0.6 중량 % 미만에서는 내식성이 미흡하고, 3.5 중량 %를 초과하면 냉간 가공성이 저하되기 때문에 Al과 Mg 함량의 합은 0.6~3.5 중량 %인 것이 바람직하다. 아연 합금 도금 후에 냉간 신선 가공을 하지 않아도 되는 정색용으로 도금 강선을 사용하는 경우, Al과 Mg 함량의 합이 0.6 중량 % 미만에서는 내식성이 미흡하고, 6.5 중량 %를 초과하면 내식성 향상 효과가 크지 않기 때문에 도금욕 중의 Al과 Mg 함량의 합은 0.6~6.5 중량 %인 것이 바람직하다.Since Al and Mg are both elements which improve the corrosion resistance of the plating layer, when the content of these elements is increased, the corrosion resistance is improved. However, when the plated steel wire is used for the same color that needs to be cold drawn, the corrosion resistance is insufficient when the sum of Al and Mg content is less than 0.6 wt%, and the cold workability is deteriorated when it exceeds 3.5 wt%. The sum is preferably 0.6 to 3.5% by weight. In the case of using a plated steel wire for coloring that does not require cold drawing after zinc alloy plating, corrosion resistance is insufficient when the sum of Al and Mg content is less than 0.6% by weight, and the effect of improving corrosion resistance is not large when it exceeds 6.5% by weight. Therefore, the sum of Al and Mg content in the plating bath is preferably 0.6 to 6.5% by weight.
또한, 냉간 신선 가공을 해야 하는 동색용으로 도금 강선을 사용하는 경우 및 냉간 신선 가공을 하지 않아도 되는 정색용으로 도금 강선을 사용하는 경우 모두, Al의 함량과 Mg의 함량의 합에 대한 Al 함량의 비율인 Al/(Al+Mg)이 0.3 미만에서는 Mg 함량 증가에 따라 도금욕의 산화가 심하게 발생하고 도금욕 중에 드로스(Dross) 형태의 MgZn2의 금속간 화합물 입자가 부유하여 도금층의 결함이 발생될 수 있게 된다. Al의 함량과 Mg의 함량의 합에 대한 Al 함량의 비율인 Al/(Al+Mg)이 0.70을 초과하는 경우에는 도금층에 Mg 합금층의 비율이 줄어들어 내식성이 저하될 수 있다. 따라서 Al/(Al+Mg)은 0.3 이상 내지 0.70 이하로 유지하는 것이 바람직하다. In addition, in the case of using the plated steel wire for the same color that needs to be cold drawn and the use of the plated steel wire for the color that does not need to be cold drawn, the Al content is the sum of the Al content and the Mg content. If the ratio Al / (Al + Mg) is less than 0.3, oxidation of the plating bath occurs severely with the increase of Mg content, and defects of the plating layer are caused due to floating of intergranular compound particles of dross type MgZn 2 in the plating bath. Can be generated. When Al / (Al + Mg), which is the ratio of Al content to the sum of Al content and Mg content, exceeds 0.70, the ratio of the Mg alloy layer to the plating layer may decrease, which may lower corrosion resistance. Therefore, it is preferable to keep Al / (Al + Mg) at 0.3 or more and 0.70 or less.
상술한 본 발명의 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선은 강선을 제조하는 방법은 다음과 같다. The plated steel wire formed with a zinc alloy plated layer formed of the multilayer structure of the present invention described above is as follows.
다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선 제조방법은 강선(10)은 아연 도금조에서 도금하는 제1도금단계와, 상기 제1도금단계를 거친 아연 도금 강선을 아연 합금 도금조에서 도금하는 제2도금단계를 포함하여 이루어진다. In the method of manufacturing a plated steel wire having a zinc alloy plating layer formed of a multilayer structure, the steel wire 10 may include a first plating step of plating in a zinc plating bath, and a first plating step of plating a galvanized steel wire in a zinc alloy plating bath. It includes two plating steps.
상기 제1도금단계는 Zn 이 98 중량 % 이상으로 조성된 아연 도금조에서 강선(10)을 아연 도금하여, 상기 강선(10)에 Zn-Fe 합금층을 형성하는 단계이다. Zn-Fe 합금층은 Fe를 함유하고 있는 상기 강선(10)과 Zn이 반응하여 형성된 것이다. 여기서, 상기 아연 도금조의 조성은 Zn이 98 중량 % 이상으로 형성되는 것이 바람직하다. Zn의 조성이 98 중량 % 미만에서는 불순물에 의해 외관 품질이 미흡하고, 불순물이 후술하는 제2도금단계에서 용해되어 아연 합금 도금조를 오염시키기 때문에 Zn의 함량을 98 중량 % 이상으로 유지한다. The first plating step is to form a Zn-Fe alloy layer on the steel wire 10 by galvanizing the steel wire 10 in a zinc plating bath having Zn of 98% by weight or more. The Zn-Fe alloy layer is formed by reacting Zn with the steel wire 10 containing Fe. Here, the composition of the galvanizing bath is preferably Zn is formed in more than 98% by weight. If the composition of Zn is less than 98% by weight, the appearance quality is insufficient due to impurities, and since the impurities are dissolved in the second plating step described later to contaminate the zinc alloy plating bath, the content of Zn is maintained at 98% by weight or more.
상기 제2도금단계는 상기 제1도금단계를 거친 아연 도금 강선을 아연 합금 도금조에서 아연 합금 도금 하여 아연 합금 도금층을 형성하는 단계이다. 상기 제2도금단계에서 상기 아연 합금 도금조의 조성은 냉간 신선 가공을 해야 하는 동색용으로 도금 강선을 사용하는 경우와 냉간 신선 가공을 하지 않아도 되는 정색용으로 도금 강선을 사용하는 경우에 따라 상기 아연 합금 도금조의 조성이 다르게 형성된다. The second plating step is a step of forming a zinc alloy plating layer by zinc alloy plating the zinc plated steel wire passed through the first plating step in a zinc alloy plating bath. In the second plating step, the composition of the zinc alloy plating bath is the zinc alloy according to the case of using the plated steel wire for the same color for cold drawing and the case of using the plated steel wire for the coloring without the cold drawing process. The composition of the plating bath is formed differently.
냉간 신선 가공을 해야 하는 동색용으로 도금 강선을 사용하는 경우에는 상기 아연 합금 도금조의 조성은, Al: 0.3 이상 ~ 2.0 이하 중량 %, Mg: 0.3 이상 ~ 1.5 이하 중량 %, 나머지는 Zn 및 불가피한 불순물을 포함하고, Al과 Mg의 합이 0.6 이상 ~ 3.5 이하 중량 %, Al과 Mg의 합에 대한 Al의 비율(Al/(Al+Mg))이 0.30 이상 ~ 0.70 이하로 형성된다. In the case of using a plated steel wire for the same color to be cold drawn, the composition of the zinc alloy plating bath is Al: 0.3 or more and 2.0 or less by weight, Mg: 0.3 or more and 1.5 or less by weight, and the rest is Zn and unavoidable impurities. It includes, and the sum of Al and Mg is 0.6 or more to 3.5 or less by weight, and the ratio of Al to Al (M / (Al + Mg)) to the sum of Al and Mg is 0.30 or more and 0.70 or less.
냉간 신선 가공을 하지 않아도 되는 정색용으로 도금 강선을 사용하는 경우 상기 아연 합금 도금조의 조성은, Al: 0.3 이상 ~ 3.5 이하 중량 %, Mg: 0.3 이상 ~ 3.0 이하 중량 %, 나머지는 Zn 및 불가피한 불순물을 포함하고, Al과 Mg의 합이 0.6 이상 ~ 6.5 이하 중량 %, Al과 Mg의 합에 대한 Al의 비율(Al/(Al+Mg))이 0.30 이상 ~ 0.70 이하로 형성된다. In the case of using a plated steel wire for coloring that does not require cold drawing, the composition of the zinc alloy plating bath is Al: 0.3 or more and 3.5 or less weight%, Mg: 0.3 or more and 3.0 or less weight%, and the rest is Zn and unavoidable impurities. It includes, and the sum of Al and Mg is 0.6 or more to 6.5 or less by weight, the ratio of Al to Al (M / (Al + Mg)) to the sum of Al and Mg is formed from 0.30 to 0.70 or less.
이와 같이 상기 제1도금단계 및 상기 제2도금단계를 거치면, 상기 강선(10)에는 다층 구조를 이루고 있는 상기 아연 합금 도금층(20)이 형성된다. 구체적으로, 상기 아연 합금 도금층(20)은 Zn-Fe, Zn-Fe-Al 조직 중 적어도 1개 이상의 조직을 포함하여 이루어진 제1층(21)과, Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직을 포함하여 이루어지는 제2층(22)과, Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직 중 적어도 3개 이상의 조직을 포함하여 이루어지는 제3층(23)을 포함하여 이루어질 수 있다. As such, after the first plating step and the second plating step, the zinc alloy plating layer 20 having a multi-layer structure is formed on the steel wire 10. In detail, the zinc alloy plating layer 20 includes a first layer 21 including Zn-Fe and Zn-Fe-Al structures, and a Zn-Fe-Al structure. At least three of Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al tissues, and a second layer 22 including at least one of Zn-Al and Zn-Al-Mg-Fe tissues. It may comprise a third layer 23 comprising more than one tissue.
상기 아연 합금 도금층(20)이 다층 구조를 형성하는 과정을 살펴보면 다음과 같다. 상기 제1도금단계에서 형성된 Zn-Fe 합금층 중 일부가 상기 제2도금단계에서 Al, Mg와 반응하게 되어, Fe, Mg, Al, Zn 중 적어도 3종 이상으로 구성된 조직을 포함하는 상기 제2층(22)을 형성하게 된다. Looking at the process of forming the multi-layer structure of the zinc alloy plating layer 20 is as follows. Part of the Zn-Fe alloy layer formed in the first plating step is reacted with Al and Mg in the second plating step, the second comprising a structure consisting of at least three or more of Fe, Mg, Al, Zn Layer 22 will be formed.
즉, 상기 제1도금단계에서 형성된 Zn-Fe 합금층이 상기 제2도금단계를 거치면서 상기 제1층(21) 및 상기 제2층(22)으로 형성되는 것이다. 여기서, 상기 제1도금단계의 Zn-Fe 합금층의 비율은 상기 제2도금단계에서 상기 제1층(21) 및 상기 제2층(22)을 얻을 수 있도록 적절한 수준으로 형성한다. That is, the Zn-Fe alloy layer formed in the first plating step is formed of the first layer 21 and the second layer 22 through the second plating step. Here, the ratio of the Zn-Fe alloy layer of the first plating step is formed at an appropriate level so as to obtain the first layer 21 and the second layer 22 in the second plating step.
상기 제3층(23)은 상기 제2도금단계의 상기 아연 합금 도금조의 조성에 따라 Zn, Mg, Al이 반응하여 형성되는 것으로, Zn, Mg, Al으로 구성된 조직을 포함하여 형성된다. The third layer 23 is formed by reacting Zn, Mg, and Al according to the composition of the zinc alloy plating bath of the second plating step, and includes a structure composed of Zn, Mg, and Al.
구체적으로, 상기 제1층(21)은 Zn-Fe, Zn-Fe-Al 조직 중 적어도 1개 이상의 조직이 형성되며, 상기 제2층(22)은 Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직이 형성되며, 상기 제3층(23)은 Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직 중 적어도 3개 이상의 조직이 형성된다. Specifically, the first layer 21 is formed of at least one or more of the Zn-Fe, Zn-Fe-Al structure, the second layer 22 includes a Zn-Fe-Al structure, Zn At least one of Zn-Al and Zn-Al-Mg-Fe structures is formed, and the third layer 23 is formed of at least 3 of Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al structures. More than one tissue is formed.
상술한 바와 같이 상기 제1도금단계 및 상기 제2도금단계를 거쳐 상기 아연 합금 도금층(20)은 다층 구조를 이루게 되지만, 상기 제2도금단계의 상기 아연 합금 도금조의 조성에 따라 상기 아연 합금 도금층(20)의 형태는 달라질 수 있다. As described above, the zinc alloy plating layer 20 has a multilayer structure through the first plating step and the second plating step, but the zinc alloy plating layer may be formed according to the composition of the zinc alloy plating bath of the second plating step. 20) may vary in form.
도 2 내지 도 6은 본 발명의 실시 예에 따라 상기 아연 합금 도금조의 Al 및 Mg의 함량을 변화시켜 형성된 상기 아연 합금 도금층(20)을 나타내는 것이다. 2 to 6 show the zinc alloy plating layer 20 formed by changing the content of Al and Mg of the zinc alloy plating bath according to an embodiment of the present invention.
도 2는 상기 아연 합금 도금조를 Zn, Al-0.3 중량 %, Mg-0.3 중량 %로 조성하여 상기 아연 합금 도금층(20)을 형성한 것이며, 도 3은 상기 아연 합금 도금조를 Zn, Al-0.9 중량 %, Mg-0.8 중량 %로 조성하여 상기 아연 합금 도금층(20)을 형성한 것이며, 도 4는 상기 아연 합금 도금조를 Zn, Al-1.9 중량 %, Mg-1.5 중량 %로 조성하여 상기 아연 합금 도금층(20)을 형성한 것이다.FIG. 2 shows the zinc alloy plating bath 20 by forming the zinc alloy plating bath in Zn, Al-0.3 weight% and Mg-0.3 weight%, and FIG. 3 shows the zinc alloy plating bath in Zn, Al-. 0.9 wt%, Mg-0.8 wt% to form the zinc alloy plating layer 20, Figure 4 shows the zinc alloy plating bath is composed of Zn, Al-1.9 wt%, Mg-1.5 wt% The zinc alloy plating layer 20 is formed.
도 2 내지 도 4를 참조하면, 상기 제2도금단계의 상기 아연 합금 도금조의 Al 및 Mg의 함량이 증가함에 따라 상기 제1도금단계에서 형성된 Zn-Fe 합금층이 Al과 반응하여, Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직을 포함하는 상기 제2층(22)이 더 많이 형성되고, Zn-Fe 합금층이 감소하는 것을 할 수 있다. 2 to 4, as the Al and Mg contents of the zinc alloy plating bath of the second plating step are increased, the Zn-Fe alloy layer formed in the first plating step reacts with Al, and Zn-Fe More of the second layer 22, including at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe, is formed, and the Zn-Fe alloy layer is reduced. I can do it.
이와 같이 Zn-Fe 합금층이 감소하고 상기 제2층(22)이 증가하면, 냉간 신선 가공시 상기 강선(10)과 상기 제1층(21) 사이의 소성변형 계수의 차이를 감소시켜 상기 강선(10)과 상기 제1층(21) 사이의 크랙 발생을 억제 시켜 냉간 가공성을 향상시킬 수 있다.As described above, when the Zn-Fe alloy layer decreases and the second layer 22 increases, the difference in the plastic strain coefficient between the steel wire 10 and the first layer 21 during cold drawing is reduced. It is possible to suppress the occurrence of cracks between the 10 and the first layer 21 to improve the cold workability.
또한, 상기 제2층(22)은 Zn-Fe 합금층이 Al과 반응하여 Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상으로 구성된 조직을 포함하여 우수한 내 마모성을 갖게 된다. 따라서, 상기 제2층(22)의 증가에 따라 내식성이 우수하면서도 내마모성을 향상시킬 수 있게 된다. In addition, the second layer 22 includes a Zn-Fe-Al structure in which a Zn-Fe alloy layer reacts with Al, and includes at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe structures. It has excellent abrasion resistance, including the composed tissue. Accordingly, as the second layer 22 increases, wear resistance may be improved while corrosion resistance is excellent.
이와 함께 상기 제3층(23)은 Zn, Mg, Al으로 구성된 조직을 포함하여 형성되는 것으로, Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직 중 적어도 3개 이상의 조직이 형성된다. 상기 제3층(23)은 Zn-Al-Mg, Mg-Zn, Zn-Al 등과 같은 상(phase)이 증가하여 내식성 향상에 크게 기여할 수 있게 된다. In addition, the third layer 23 is formed to include a structure consisting of Zn, Mg, Al, at least three or more of the Zn, Zn-Al-Mg, Mg-Zn, Zn-Al tissue is formed . In the third layer 23, phases such as Zn-Al-Mg, Mg-Zn, Zn-Al, etc. may be increased, thereby greatly improving corrosion resistance.
도 5는 상기 아연 합금 도금조를 Zn, Al-2.5 중량 %, Mg-2.0 중량 %로 조성하여 상기 아연 합금 도금층(20)을 형성한 것이며, 도 6은 상기 아연 합금 도금조를 Zn, Al-5.0 중량 %, Mg-5.0 중량 %로 조성하여 상기 아연 합금 도금층(20)을 형성한 것이다. FIG. 5 shows the zinc alloy plating bath 20 by forming the zinc alloy plating bath in Zn, Al-2.5 wt% and Mg-2.0 wt%, and FIG. 6 shows the zinc alloy plating bath in Zn, Al−. 5.0 wt%, Mg-5.0 wt% is to form the zinc alloy plating layer 20.
상기 제1층(21)의 Zn-Fe 조직은 Al 함량이 0.9 중량 %까지는 상기 제1층(21)에 남아 있으나 Al 함량이 1.9 중량 %로 증가하면 크게 줄어들어 계면에 국부적으로 남아있게 된다. The Zn-Fe structure of the first layer 21 remains in the first layer 21 until the Al content is 0.9% by weight, but when the Al content increases to 1.9% by weight, the Zn-Fe structure remains locally at the interface.
도 5를 참조하면, Al 함량이 2.5 중량 %로 증가하면, 상기 제1층(21)의 Zn-Fe 조직은 상당히 감소하며, 상기 제1층(21)의 Al 조직 농도(Zn-Fe-Al 조직 농도)가 증가한다. 또한, 도 6을 참조하면, Al 함량이 3.5 중량 %까지 더 증가하면 계면에는 고 농도의 Al 조직(Zn-Fe-Al 조직)이 존재하는 면적이 증가하게 된다. 이와 같이 상기 제1층(21)에 Al 조직 농도(Zn-Fe-Al 조직 농도)가 증가하면, 상기 강선(20)과 상기 제1층(21) 사이의 결합력이 저하된다. 또한, Mg의 함량 증가는 도금층의 연성 저하를 가져오게 된다. Referring to FIG. 5, when the Al content is increased to 2.5% by weight, the Zn-Fe structure of the first layer 21 decreases considerably, and the Al structure concentration of the first layer 21 (Zn-Fe-Al). Tissue concentration) increases. In addition, referring to FIG. 6, when the Al content is further increased to 3.5% by weight, an area in which a high concentration of Al structure (Zn-Fe-Al structure) is present at the interface is increased. As such, when the Al structure concentration (Zn-Fe-Al tissue concentration) increases in the first layer 21, the bonding force between the steel wire 20 and the first layer 21 is lowered. In addition, an increase in the content of Mg leads to a decrease in the ductility of the plating layer.
이와 같이 상기 아연 합금 도금조에서 Al 및 Mg의 함량이 증가하면, 상기 강선(20)과 상기 제1층(21) 사이의 결합력이 저하되고, 이에 따라 냉간 가공성, 신선성이 저하된다. 즉, 상기 제1층(21)에 있는 Zn-Fe 조직이 없어지고 Al 조직(Zn-Fe-Al 조직 농도)의 농도가 증가하면 계면의 결합력이 저하되고, 이로 인해 신선 가공 중에 계면에 크랙이 발생하게 되는 것이다. As such, when the content of Al and Mg in the zinc alloy plating bath is increased, the bonding force between the steel wire 20 and the first layer 21 is lowered, thereby reducing cold workability and freshness. That is, when the Zn-Fe structure in the first layer 21 disappears and the concentration of the Al structure (Zn-Fe-Al structure concentration) is increased, the bonding strength of the interface is lowered, which causes cracks at the interface during the drawing process. Will occur.
따라서, 상기 제1도금단계 및 상기 제2도금단계를 거친후 냉간 신선 가공을 해야 하는 동색용 도금 강선은, 상기 제2도금단계의 상기 아연 합금 도금조의 조성을 Al은 2.0 이하 중량 %, Mg는 1.5 이하 중량 % 로 하는 것이 바람직하다. Therefore, the same color plating steel wire which needs to be cold drawn after the first plating step and the second plating step has a composition of the zinc alloy plating bath of the second plating step, wherein Al is 2.0 or less by weight and Mg is 1.5 It is preferable to set it as the weight% below.
구체적으로, 아연 합금 도금 후에 냉간 신선 가공을 해야하는 동색용으로 도금 강선을 사용하는 경우, 상기 아연 합금 도금조의 조성에서 Al이 0.3 중량 % 미만인 경우에 내식성이 미흡하고, 2.0 중량 %를 초과하는 경우에는 냉간 신선 가공성이 저하되기 때문에, Al은 0.3 이상 ~ 2.0 이하 중량 % 인 것이 바람직하다.Specifically, in the case of using a plated steel wire for the same color that needs to be cold drawn after zinc alloy plating, when Al is less than 0.3% by weight in the composition of the zinc alloy plating bath, the corrosion resistance is insufficient, and when it exceeds 2.0% by weight Since cold wire workability falls, it is preferable that Al is 0.3 to 2.0 weight%.
아연 합금 도금 후에 냉간 신선 가공을 하지 않아도 되는 정색용으로 도금 강선을 사용할 경우에는, 상기 아연 합금 도금조의 조성에서 Al이 0.3 중량 % 미만인 경우에 내식성이 미흡하고, 3.5 중량 %를 초과하는 경우에는 내식성의 향상이 미미하고, 드로스(Dross) 문제로 도금 작업성도 저하되기 때문에, Al은 0.3 이상 ~ 3.5 이하 중량 % 인 것이 바람직하다.In the case of using a plated steel wire for coloring that does not require cold drawing after zinc alloy plating, corrosion resistance is insufficient when Al is less than 0.3 wt% in the composition of the zinc alloy plating bath, and when it exceeds 3.5 wt% Since the improvement of the process is insignificant and plating workability also falls due to the dross problem, it is preferable that Al is 0.3 to 3.5 weight%.
아연 합금 도금 후에 냉간 신선 가공을 해야하는 동색용으로 도금 강선을 사용하는 경우, 상기 아연 합금 도금조의 조성에서 Mg가 0.3 중량 % 미만인 경우에 내식성이 미흡하고, 1.5 중량 %를 초과하는 경우에는 냉간 가공성이 저하되기 때문에, Mg의 함량은 0.3 이상 ~ 1.5 이하 중량 % 인 것이 바람직하다. 아연 합금 도금 후에 냉간 신선 가공을 하지 않아도 되는 정색용으로 도금 강선을 사용하는 경우, 상기 아연 합금 도금조의 조성에서 Mg가 0.3 중량 % 미만인 경우에 내식성이 미흡하고, 3.0 중량 %를 초과하는 경우에는 내식성 향상이 미미하고 도금 작업성이 나빠지기 때문에, Mg의 함량은 0.3 이상 ~ 3.0 이하 중량 % 인 것이 바람직하다.In the case of using a plated steel wire for the same color that needs to be cold drawn after zinc alloy plating, corrosion resistance is insufficient when Mg is less than 0.3 wt% in the composition of the zinc alloy plating bath, and cold workability is greater than 1.5 wt%. Since the content is lowered, the Mg content is preferably 0.3 to 1.5% by weight. In the case of using a plated steel wire for coloring that does not need to be cold drawn after zinc alloy plating, corrosion resistance is insufficient when Mg is less than 0.3 wt% in the composition of the zinc alloy plating bath, and when it exceeds 3.0 wt% Since the improvement is insignificant and the plating workability deteriorates, the content of Mg is preferably 0.3 to 3.0% by weight or less.
상기 Al과 Mg는 모두 도금층의 내식성을 향상시키는 원소이므로, 이들 원소의 함량이 증가하면 내식성이 향상된다. 그러나 냉간 신선 가공을 해야 하는 동색용으로 도금 강선을 사용하는 경우, 상기 아연 합금 도금조에서 Al과 Mg 중량 %의 합이 0.6 중량 % 미만에서는 내식성이 미흡하고, 3.5%를 초과하면 냉간 가공성이 저하되기 때문에 Al과 Mg 함량의 합은 0.6~3.5 중량 %인 것이 바람직하다. 아연 합금 도금 후에 냉간 신선 가공을 하지 않아도 되는 정색용으로 도금 강선을 사용하는 경우, 상기 아연 합금 도금조에서 Al과 Mg 중량 %의 합이 0.6 중량 % 미만에서는 내식성이 미흡하고, 6.5%를 초과하면 내식성 향상 효과가 크지 않기 때문에 Al과 Mg 함량의 합은 0.6~6.5 중량 %인 것이 바람직하다.Since Al and Mg are both elements which improve the corrosion resistance of the plating layer, when the content of these elements is increased, the corrosion resistance is improved. However, in the case of using a plated steel wire for the same color to be cold drawn, the corrosion resistance is insufficient when the sum of Al and Mg weight% in the zinc alloy plating bath is less than 0.6 wt%, and when it exceeds 3.5%, the cold workability is deteriorated. Since the sum of Al and Mg content is preferably 0.6 to 3.5% by weight. In the case of using a plated steel wire for coloring that does not require cold drawing after zinc alloy plating, when the sum of Al and Mg weight% in the zinc alloy plating bath is less than 0.6 weight%, the corrosion resistance is insufficient, and when it exceeds 6.5% Since the effect of improving corrosion resistance is not great, the sum of Al and Mg contents is preferably 0.6 to 6.5% by weight.
또한, 냉간 신선 가공을 해야 하는 동색용으로 도금 강선을 사용하는 경우 및 냉간 신선 가공을 하지 않아도 되는 정색용으로 도금 강선을 사용하는 경우 모두, 상기 아연 합금 도금조에서 Al의 함량과 Mg의 함량의 합에 대한 Al 함량의 비율인 Al/(Al+Mg)이 0.3 미만에서는 Mg 함량 증가에 따라 상기 아연 합금 도금조의 산화가 심하게 발생하고, 드로스(Dross) 형태의 MgZn2의 금속간 화합물 입자가 부유하여 도금층의 결함이 발생될 수 있게 된다. 상기 아연 합금 도금조에서 Al의 함량과 Mg의 함량의 합에 대한 Al 함량의 비율인 Al/(Al+Mg)이 0.70을 초과하는 경우에는 도금층에 Mg 합금층의 비율이 줄어들어 내식성이 저하될 수 있다. 따라서 Al/(Al+Mg)은 0.3 이상 내지 0.70 이하로 유지하는 것이 바람직하다. In addition, both the case of using a plated steel wire for the same color that needs to be cold drawn and the case of using a plated steel wire for the coloration that does not need to be cold drawn, the content of Al and Mg in the zinc alloy plating bath If Al / (Al + Mg), which is the ratio of Al content to the sum, is less than 0.3, oxidation of the zinc alloy plating bath occurs severely with increasing Mg content, and intergranular compound particles of Dg form of MgZn 2 Floating causes defects in the plating layer. When Al / (Al + Mg), which is the ratio of Al content to the sum of Al content and Mg content in the zinc alloy plating bath, exceeds 0.70, the ratio of the Mg alloy layer to the plating layer may decrease, which may reduce corrosion resistance. have. Therefore, it is preferable to keep Al / (Al + Mg) at 0.3 or more and 0.70 or less.
본 발명의 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선 제조방법에서 상기 제1도금단계에서의 상기 아연 도금조 및 상기 제2도금단계에서의 상기 아연 합금 도금조의 온도는 430℃ 이상 내지 470℃ 이하로 유지되는 것이 바람직하다. 상기 아연 도금조 및 상기 아연 합금 도금조의 온도가 430℃ 미만에서는 용융 합금의 점성이 높아 도금 외관이 거칠어지고, 470℃ 초과에서는 Mg 및 Al 산화물이 많이 생겨서 도금 외관이 안 좋아지기 때문에 상기 아연 도금조 및 상기 아연 합금 도금조의 온도는 430℃ 이상 내지 470℃ 이하로 유지되는 것이 바람직하다. In the method of manufacturing a plated steel wire having a zinc alloy plating layer formed of a multilayer structure of the present invention, the temperature of the zinc plating bath in the first plating step and the zinc alloy plating bath in the second plating step is 430 ° C. or more and 470 ° C. or less. It is preferred to remain at. When the temperature of the zinc plating bath and the zinc alloy plating bath is less than 430 ° C., the viscosity of the molten alloy is high, so that the plating appearance becomes rough. And the temperature of the zinc alloy plating bath is preferably maintained at 430 ℃ or more to 470 ℃ or less.
아연 합금 도금 후에 냉간 신선 가공을 해야하는 동색용으로 도금 강선을 사용하는 경우에, 본 발명의 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선을 제조하는 방법은 상기 제2도금단계를 거쳐 형성된 아연 합금 도금 강선을 90% 이하의 신선 가공량으로 냉간 신선 가공하는 신선 가공 단계를 더 포함하여 이루어질 수 있다. 여기서 신선 가공량은 (1-(신선된 도금 강선 직경/도금 강선 직경)2)x 100이다.In the case where the plated steel wire is used for the same color to be cold drawn after zinc alloy plating, the method of manufacturing a plated steel wire having a zinc alloy plated layer having a multilayer structure according to the present invention is performed by the zinc plating. It may further comprise a wire drawing step of cold drawing the steel wire to a processing amount of less than 90%. Here, the amount of drawn processing is (1- (fresh plated steel wire diameter / plated steel wire diameter) 2 ) x 100.
냉간 신선가공의 신선 가공량이 90%를 초과하는 경우 피로수명과 관련 있는 염회 품질이 저하뿐만 아니라 도금층에 크랙이 발생하기 때문에 신선가공량은 90% 이하가 바람직하다. (냉간 신선 가공이 되지 않는 경우는 신선된 도금 강선 직경과 도금 강선 직경이 같게 되어, 신선 가공량이 0%가 된다. 즉, 신선가공량은 0% 초과 내지 90 % 이하로 이루어질 수 있는 것이다.) In the case where the cold working amount of cold drawing exceeds 90%, the fresh working amount is preferably 90% or less because not only the salt quality related to the fatigue life is lowered but also cracking occurs in the plating layer. (When cold drawing is not performed, the diameter of the drawn steel wire is equal to the diameter of the plated steel wire, so that the amount of drawn wire becomes 0%. That is, the amount of drawn wire can be made from more than 0% to 90%.)
이하, 본 발명의 구체적 실시예에 대하여 상세히 설명한다. 물론, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로, 본 발명을 한정하는 것은 아니다.Hereinafter, specific embodiments of the present invention will be described in detail. Of course, the following examples are provided to aid the understanding of the present invention, and do not limit the present invention.
[실시예 1]Example 1
실시예 1에 의해 상기 아연 합금 도금조의 Al과 Mg 함량에 따른 내식성을 확인하였다. By Example 1 was confirmed the corrosion resistance according to the Al and Mg content of the zinc alloy plating bath.
직경이 8mm이며, 도 7의 표 1과 같은 성분을 갖는 상기 강선(10)을 상기 제1도금단계에서 아연 도금하고, 도 8의 표 2의 조성을 갖는 상기 아연 합금 도금조에서 상기 제2도금단계를 수행하여 7가지의 샘플을 제조하였다. The steel plate 10 having a diameter of 8 mm and having the components shown in Table 1 of FIG. 7 is zinc plated in the first plating step, and the second plating step in the zinc alloy plating bath having the composition of Table 2 of FIG. 8. Seven samples were prepared by the following procedure.
여기서 상기 제1도금단계를 수행하는 상기 아연 도금조의 온도는 450℃였고, 상기 아연 도금조에서 23초간 침지 하였으며, 상기 아연 도금조의 조성은 Zn 99.6 중량 %로, 나머지는 불순물을 포함하였다. 상기 제2도금단계의 조성은 도 8의 표 2에 있는 것과 같으며 상기 아연 합금 도금조의 온도는 445℃로 하였고, 침지시간은 20초였다. 가스 와이핑은 질소 가스를 이용하였다.Here, the temperature of the galvanizing bath to perform the first plating step was 450 ℃, immersed in the galvanizing bath for 23 seconds, the composition of the galvanizing bath was Zn 99.6% by weight, the rest contained impurities. The composition of the second plating step is as shown in Table 2 of Figure 8, the temperature of the zinc alloy plating bath was 445 ℃, the immersion time was 20 seconds. Gas wiping used nitrogen gas.
내식성 평가는 염수분무시험(KS-C-0223에 준하는 염수분무 규격시험)과 전기화학 평가(Electrochemical test)를 실시하였다. 염수분무시험은 시편 표면에 적청이 발생하는 면적이 5%가 될 때까지 경과된 시간을 측정하는 것이며, 그 결과를 도 8의 표 2(Salt Pray)에 나타냈었다. 전기화학 평가(Electrochemical test)는 퍼텐쇼스탯(Potentiostat)을 사용하여 평가하였으며, 그 결과를 도 9에 나타내었다. 구체적으로 도 9는 Al 및 Mg 함량에 따른 부식 속도를 나타내는 그래프이며 부식속도가 높을수록 내식성은 저하되는 것을 의미한다. Corrosion resistance evaluation was performed by the salt spray test (salt spray standard test according to KS-C-0223) and electrochemical test (Electrochemical test). The salt spray test is to measure the time elapsed until the area where red blue occurs on the surface of the specimen to 5%, the results are shown in Table 2 (Salt Pray) of FIG. Electrochemical test (Electrochemical test) was evaluated using a potentiostat (Potentiostat), the results are shown in FIG. Specifically, Figure 9 is a graph showing the corrosion rate according to the Al and Mg content means that the corrosion rate is lower the higher the corrosion rate.
도 8의 표 2를 살펴보면, Al의 함량과 Mg의 함량의 합(이하, "Al+Mg"이라 함)이 0.2 중량 % 이하에서는 염수분무 시험이 650 시간으로 내식성이 비교적 낮게 나왔고, Al+Mg이 0.6 중량 % 부터 염수분무 시험이 2243 시간으로 내식성이 우수하게 나왔다. 특히 Al+Mg이 3.4 중량 %에서는 염수분무시험이 4625시간으로 내식성이 매우 우수한 것으로 나타났다. Al+Mg이 4.5 중량 % 이상에서는 염수분무시간 증가가 미약하다. 이는 Al-Zn 바이너리(binary)상의 조대화에 기인한 것으로 보인다.Referring to Table 2 of FIG. 8, when the sum of Al content and Mg content (hereinafter referred to as “Al + Mg”) is 0.2 wt% or less, the salt spray test showed relatively low corrosion resistance at 650 hours, and Al + Mg. From this 0.6% by weight, the salt spray test showed 2243 hours of excellent corrosion resistance. In particular, Al + Mg was 3.4 wt%, the salt spray test was 4625 hours, it was shown that the corrosion resistance is very excellent. If Al + Mg is more than 4.5% by weight, the increase in salt spray time is slight. This seems to be due to the coarsening of the Al-Zn binaries.
도 9의 내식성 부식속도를 살펴보면, 염수 분무시험 결과와 유사하게 내식성이 Al+Mg 함량이 3.4 중량 %까지는 향상되다가 6.8 중량 % 부터 향상이 미미한 경향을 보여주고 있다. 이는 우수한 내식성이 Al+ Mg 함량이 0.6~ 6.8 중량 %에 얻어지는 것을 의미한다. Looking at the corrosion resistance corrosion rate of Figure 9, similar to the results of the salt spray test shows that the corrosion resistance Al + Mg content is improved to 3.4% by weight, but shows a slight improvement from 6.8% by weight. This means that excellent corrosion resistance is obtained in an Al + Mg content of 0.6 ~ 6.8% by weight.
[실시예 2] Example 2
실시예 1에 의해, 상기 제2도금단계를 거친 아연 합금 도금 강선 샘플 7가지를 85%, 90%, 92%의 신선 가공량으로 신선하여 21가지 샘플을 제조하고, 염회 시험 및 염수 분무시험을 실시하여 품질 수준을 평가하였다. 여기서 신선 가공량은 (1-(신선된 도금 강선 직경/도금 강선 직경)2)x 100으로 계산한다. 이때, 신선 속도는 5m/sec, 다이당 평균감면율은 19%로 하였다.According to Example 1, seven samples of the zinc alloy plated steel wire that passed the second plating step were drawn at 85%, 90%, and 92% fresh throughput to prepare 21 samples, and a salt test and a salt spray test were performed. To evaluate the level of quality. Here, the amount of drawn processing is calculated as (1- (fresh plated steel wire diameter / plated steel wire diameter) 2 ) x 100. At this time, the drawing speed was 5 m / sec, the average reduction rate per die was 19%.
염회 시험은 시편길이를 8인치로 하고 비틀림 속도를 분당 60회로 시험한다. 염회 시험은 강선이 절손될 때까지 360도 회전하면서 비틀림을 받는 횟수를 측정하는 것으로, 염회 시험의 값이 높으면 내피로 특성이 좋고, 염회 시험 값이 낮으면 내피로 특성이 좋지 않은 것이다. 염수분무 시험은 상술한 바와 같이 내식성을 평가하기 위한 것이다. 실시예 2의 염회 시험 결과는 도 10의 표3으로 나타내었으며, 실시예 2의 염수분무 시험 결과는 도 11의 표4로 나타내었다.For the salt test, the specimen length is 8 inches and the torsional speed is tested 60 times per minute. The salt test measures the number of times of twisting while rotating the wire 360 degrees until the steel wire is broken. If the salt test value is high, the fatigue resistance is good. If the salt test value is low, the fatigue resistance is poor. The salt spray test is for evaluating the corrosion resistance as described above. The salt test results of Example 2 are shown in Table 3 of FIG. 10, and the salt spray test results of Example 2 are shown in Table 4 of FIG.
도 10의 표3에 기재된 바와 같이, 신선가공량이 90%까지는 Mg+Al 함량이 0.6 중량 %에 양호한 염회 품질이 얻어졌다. 염회 특성이 우수하다는 것은 내피로 특성이 우수하다는 것을 의미한다. 그러나 신선 가공량이 92%에서는 염회 품질이 8회 이하로 저하됨을 알 수 있다. 특히 Mg + Al 함량이 각 4.5 중량 % 초과시 염회 품질이 현저히 저하되었다. 또한, 도 11의 표4를 보면, 염수분무시험시간(내식성)이 신선가공량이 92%으로 증가하면 Mg+ Al 함량이 0.6 중량 % 이상인 모든 샘플(샘플 No 2~7)에서 현저한 저하가 관찰되었다. As shown in Table 3 of FIG. 10, saline quality was obtained in the Mg + Al content of 0.6% by weight up to 90%. Excellent salt characteristics mean excellent fatigue resistance. However, it can be seen that the quality of the salt is reduced to 8 or less at 92% of the fresh working amount. In particular, when the Mg + Al content exceeds 4.5% by weight, the salt quality was remarkably degraded. In addition, in Table 4 of FIG. 11, when the salt spray test time (corrosion resistance) increased to 92%, a significant decrease was observed in all samples (Samples No 2 to 7) having an Mg + Al content of 0.6% by weight or more.
이와 같은 현상은 92%의 신선가공량에서 아연합금 도금층(20) 또는 강선(10) 표층에 크랙이 생성되고, 이러한 크랙이 소지 금속의 내부로 전파되어 발생 되었다. 90% 신선가공량에서는 Mg + Al 함량이 0.6 중량 % 에서 3.4 중량 % 범위에 있는 샘플 모두가 1800시간 이상으로 양호하였고, 도 12를 참조하면, 신선된 도금 강선은 도금내 합금상들이 잘 분포해 있고 크랙의 발생도 없는 것을 알 수 있다. 따라서 신선가공량은 90% 이하가 적합하다. This phenomenon was generated by cracking in the surface of the zinc alloy plating layer 20 or steel wire 10 at 92% of the fresh working amount, and propagating the crack into the base metal. At 90% freshness, all samples with Mg + Al content ranging from 0.6% to 3.4% by weight were good for more than 1800 hours. Referring to FIG. 12, the fresh plated steel wire was well distributed in alloy phases in the plating. It can be seen that there is no crack. Therefore, the freshness is less than 90%.
상술한 본 발명의 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선 및 이의 제조방법은 다음과 같은 효과가 있다. The above-described plated steel wire and a method of manufacturing the zinc alloy plated layer formed of the multilayer structure of the present invention have the following effects.
본 발명의 다층 구조로 이루어진 상기 아연 합금 도금층(20)은 Zn-Fe, Zn-Fe-Al 조직 중 적어도 1개 이상의 조직을 포함하여 이루어진 상기 제1층(21)과, Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직을 포함하여 이루어지는 상기 제2층(22)과, Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직 중 적어도 3개 이상의 조직을 포함하여 이루어지는 상기 제3층(23)을 포함하여 이루어져 있다. The zinc alloy plating layer 20 having a multilayer structure of the present invention includes the first layer 21 and Zn-Fe-Al structure including at least one of Zn-Fe and Zn-Fe-Al structures. And a second layer 22 including at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe structures, and Zn, Zn-Al-Mg, Mg-Zn, and Zn. And the third layer 23 including at least three or more of -Al tissues.
상기 제1층(21)은 Al의 고용으로 연성이 향상된 Zn-Fe 조직(또는 Zn-Fe-Al조직)을 통해 상기 강선(10)과 상기 아연 합금 도금층(20)의 결합을 강력하게 할 수 있는 장점이 있다. Al이 고용된 Zn-Fe 조직(또는 Zn-Fe-Al조직)은 상기 제1도금단계에서 Zn과 상기 강선(10)의 스틸이 반응하여 형성된 Zn-Fe 층이 상기 제2도금단계에서 Al의 고용으로 형성된 연화된 조직이다. 이와 같은 Al이 고용된 Zn-Fe 조직(또는 Zn-Fe-Al조직) 통해 상기 강선(10)과 상기 아연 합금 도금층(20)의 결합력을 향상시킬 수 있다. The first layer 21 may strongly bond the steel wire 10 and the zinc alloy plating layer 20 through a Zn-Fe structure (or Zn-Fe-Al structure) having improved ductility by solid solution of Al. There is an advantage. In the Zn-Fe structure (or Zn-Fe-Al structure) in which Al is dissolved, a Zn-Fe layer formed by reacting Zn and steel of the steel wire 10 in the first plating step is formed of Al in the second plating step. It is a softened organization formed by employment. As described above, the Aln-solidified Zn-Fe structure (or Zn-Fe-Al structure) may improve the bonding strength between the steel wire 10 and the zinc alloy plating layer 20.
상기 제2층(22)은 상기 제1도금단계에서 형성된 Zn-Fe층을 상기 제2도금단계에서 Al 및 Mg과 반응시켜, Fe, Mg, Al, Zn 중 적어도 3종 이상으로 구성된 조직을 포함하여 이루어진 도금층을 만드는 것이다. 구체적으로 상기 제2층(22)은 Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직을 포함하여 이루어질 수 있다. 이와 같은 상기 제2층(22)은 우수한 내마모성과 내식성을 갖게 된다. The second layer 22 includes a structure composed of at least three of Fe, Mg, Al, and Zn by reacting the Zn-Fe layer formed in the first plating step with Al and Mg in the second plating step. It is to make a plating layer made of. Specifically, the second layer 22 may include a Zn-Fe-Al structure, and may include at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe structures. The second layer 22 has excellent wear resistance and corrosion resistance.
이는 Al과 Mg이 첨가되면 Al 및 Mg이 순수 용융 아연도금시 생성되는 경화조직인 Zn-Fe 합금층과 반응하여 연성이 우수한 새로운 조직(Zn-Al 또는 Zn-Al-Fe 상이 분산되어 있는 조직)을 만들면서 경화조직이 없어지기 때문이다. When Al and Mg are added, Al and Mg react with the Zn-Fe alloy layer, which is a hardened structure produced during pure hot dip galvanizing, to form a new ductile structure (structure in which Zn-Al or Zn-Al-Fe phase is dispersed). This is because the hardened tissue is lost while making.
상기 제3층(23)은 Mg, Al, Zn 중 적어도 1종 이상으로 구성된 조직을 포함하여 이루어진 것으로, 구체적으로 Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직 중 적어도 3개 이상의 조직을 포함하여 이루어지는 것이다. 상기 제3층(23)은 Zn, Zn-Al-Mg, Mg-Zn, Zn-Al조직을 통해 우수한 내식성을 발휘할 수 있게 된다. The third layer 23 includes a tissue composed of at least one of Mg, Al, and Zn, and specifically, at least three or more of Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al. It involves the organization. The third layer 23 can exhibit excellent corrosion resistance through Zn, Zn-Al-Mg, Mg-Zn, Zn-Al structure.
이와 같이 본 발명은 상기 제1층(21), 상기 제2층(22), 상기 제3층(23)을 포함하여 이루어짐에 따라 상기 강선(10)과의 결합력이 강하면서도, 우수한 내식성 및 내마모성 특성을 발휘할 수 있고, 이를 통해 내식성 및 내피로 특성이 우수한 도금 강선을 제공할 수 있는 장점이 있다. As such, the present invention includes the first layer 21, the second layer 22, and the third layer 23, so that the bonding force with the steel wire 10 is strong, and excellent corrosion resistance and wear resistance are achieved. It can exhibit the characteristics, through which there is an advantage to provide a plated steel wire excellent in corrosion resistance and fatigue resistance.
또한, 아연 합금 도금 후에 냉간 신선 가공을 해야하는 동색용으로 도금 강선을 사용하는 경우에 냉간 신선 가공성을 향상시킬 수 있고, 냉간 신선 가공 단계에서 신선 가공량을 90% 이하로 신선 가공 함에 따라 내식성 및 내마모성을 향상시킬 수 있는 장점이 있다. In addition, in the case of using a plated steel wire for the same color that needs to be cold drawn after zinc alloy plating, the cold drawing processability can be improved, and the cold drawing process can be carried out at 90% or less, so that the corrosion resistance and abrasion resistance can be improved. There is an advantage to improve.
본 발명의 다른 실시 예에 따르면, 상기 제2도금단계의 상기 아연 합금 도금조의 조성에는 Bi(비스무트) 또는 Sb(안티몬) 중 어느 하나, 또는 Bi와 Sb를 함께 포함될 수 있다. 이때, Bi의 함량과 Sb의 함량은 각각 1.0 중량 % 미만이 되도록 조성된다. According to another embodiment of the present invention, the composition of the zinc alloy plating bath of the second plating step may include any one of Bi (bismuth) or Sb (antimony), or Bi and Sb. At this time, the content of Bi and the content of Sb are each configured to be less than 1.0% by weight.
상기 Bi의 함량과 Sb의 함량을 각각 1.0 중량 % 미만으로 첨가하면, 용융 아연 합금의 표면장력(surface tension) 및 점성(viscosity)이 낮아져서 표면조도를 감소시키게 되며, 도금욕 중에 드로스 형태의 MgZn2 금속간 화합물이 부유하여 만드는 표면결함(lumpy 등)이 줄어들어 균일한 표면조도를 얻을 수 있게 된다. 상기 Bi 와 Sb의 함량이 1.0 중량 % 초과하면 마모 특성이 현저히 증가(acccelerated material wear)을 유발시켜 아연 합금 도금조를 손상시키고 도금층 표면이 거칠어지므로 바람직하지 못하다.When the Bi content and the Sb content are added below 1.0 wt%, respectively, the surface tension and viscosity of the molten zinc alloy are lowered to reduce the surface roughness, and the dross-type MgZn in the plating bath is reduced. 2 The surface defects (lumpy, etc.) caused by the intermetallic compound suspension are reduced, so that uniform surface roughness can be obtained. If the content of Bi and Sb exceeds 1.0% by weight, wear characteristics are significantly increased (acccelerated material wear), thereby damaging the zinc alloy plating bath and the surface of the plating layer is not preferable.
상기 아연 합금 도금층(20)의 조성에는 Bi 또는 Sb 중 어느 하나, 또는 Bi와 Sb를 함께 포함하며, Bi와 Sb는 각각 1.0 중량 % 미만으로 포함될 수 있다. 상기 아연 합금 도금조의 조성에서 Bi(비스무트) 또는 Sb(안티몬) 중 어느 하나, 또는 Bi와 Sb를 함께 포함하는 경우, 상기 제1층(21)은 Zn-Fe, Zn-Fe-Al 조직 중 적어도 1개 이상의 조직을 포함하여 이루어질 수 있고, 상기 제2층(22)은 Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직을 포함하여 이루어질 수 있고, 상기 제3층(23)은 Mg, Al, Zn 3종에 Bi, Sb 중 적어도 1종 이상으로 구성된 조직을 포함하여 이루어질 수 있다. (구체적으로 상기 제3층(23)은 Bi-Mg, Sb-Mg 결정조직이 포함될 수 있으며, Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직에 Bi,Sb 중 적어도 1종 이상이 포함될 수 있다.) 또한, 상기 제3층(23) 위에 Zn-Bi, Zn-Sb와 같은 결정조직이 형성될 수 있다. The zinc alloy plating layer 20 may include any one of Bi or Sb, or Bi and Sb, and each of Bi and Sb may be included in less than 1.0 wt%. In the composition of the zinc alloy plating bath, any one of Bi (bismuth) or Sb (antimony), or Bi and Sb together, the first layer 21 is formed of at least one of Zn-Fe and Zn-Fe-Al structures. It may comprise one or more tissues, the second layer 22 comprises a Zn-Fe-Al tissue, and comprises at least one tissue of Zn, Zn-Al, Zn-Al-Mg-Fe tissue The third layer 23 may include a tissue including at least one of Bi and Sb in Mg, Al, and Zn. (Specifically, the third layer 23 may include Bi-Mg and Sb-Mg crystal structures, and at least one of Bi and Sb in Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al tissues. In addition, crystal structures such as Zn-Bi and Zn-Sb may be formed on the third layer 23.
이상, 본 발명을 바람직한 실시 예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시 예에 한정되지 않으며, 본 발명의 범주를 벗어나지 않는 범위 내에서 여러 가지 많은 변형이 제공될 수 있다.In the above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and many other modifications may be provided without departing from the scope of the present invention.
Claims (10)
- 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선에 있어서, In the plated steel wire formed with a zinc alloy plating layer consisting of a multilayer structure,강선;과, Liner;상기 강선에 도금되며, 다층 구조로 이루어진 아연 합금 도금층;을 포함하여 이루어지며, 상기 아연 합금 도금층은,Plated on the steel wire, a zinc alloy plated layer made of a multi-layer structure; comprising, the zinc alloy plated layer,Zn-Fe, Zn-Fe-Al 조직 중 적어도 1개 이상의 조직을 포함하여 이루어진 제1층과,A first layer comprising at least one of Zn-Fe and Zn-Fe-Al tissues,Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직을 포함하여 이루어지는 제2층과, A second layer comprising a Zn-Fe-Al structure and comprising at least one of Zn, Zn-Al, and Zn-Al-Mg-Fe structures,Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직 중 적어도 3개 이상의 조직을 포함하여 이루어지는 제3층을 포함하여 이루어지는 것을 특징으로 하는 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선.A plated steel wire having a zinc alloy plating layer having a multi-layer structure, comprising a third layer including at least three or more of Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al structures.
- 제1항에 있어서, The method of claim 1,상기 아연 합금 도금층의 조성은, The composition of the zinc alloy plating layer,Al: 0.3 이상 ~ 2.0 이하 중량 %, Mg: 0.3 이상 ~ 1.5 이하 중량 %, 나머지는 Zn 및 불가피한 불순물을 포함하고, Al: 0.3 or more and 2.0 or less weight%, Mg: 0.3 or more and 1.5 or less weight%, the rest contains Zn and unavoidable impurities,Al과 Mg의 합이 0.6 이상 ~ 3.5 이하 중량 % 이고, The sum of Al and Mg is from 0.6 to 3.5% by weight,Al과 Mg의 합에 대한 Al의 비율(Al/(Al+Mg))이 0.3 이상 ~ 0.70인 것을 특징으로 하는 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선.Plating steel wire with a zinc alloy plated layer formed of a multi-layer structure, characterized in that the ratio of Al (Al / (Al + Mg)) to the sum of Al and Mg is 0.3 or more to 0.70.
- 제1항에 있어서, The method of claim 1,상기 아연 합금 도금층의 조성은, The composition of the zinc alloy plating layer,Al: 0.3 이상 ~ 3.5 이하 중량 %, Mg: 0.3 이상 ~ 3.0 이하 중량 %, 나머지는 Zn 및 불가피한 불순물을 포함하고, Al: 0.3 or more and 3.5 or less weight%, Mg: 0.3 or more and 3.0 or less weight%, the rest contains Zn and unavoidable impurities,Al과 Mg의 합이 0.6 이상 ~ 6.5 이하 중량 % 이고, The sum of Al and Mg is 0.6 or more and 6.5 or less by weight,Al과 Mg의 합에 대한 Al의 비율(Al/(Al+Mg))이 0.3 이상 ~ 0.70인 것을 특징으로 하는 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선.Plating steel wire with a zinc alloy plated layer formed of a multi-layer structure, characterized in that the ratio of Al (Al / (Al + Mg)) to the sum of Al and Mg is 0.3 or more to 0.70.
- 제1항에 있어서, The method of claim 1,상기 아연 합금 도금층 두께에 대한, 상기 제1층의 두께와 상기 제2층의 두께 합의 비율은 0.2 이상 ~ 0.6 이하인 것을 특징으로 하는 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선. The ratio of the thickness of the first layer and the thickness of the second layer relative to the thickness of the zinc alloy plating layer is 0.2 or more to 0.6 or less plating steel wire formed with a zinc alloy plating layer having a multi-layer structure.
- 제1항에 있어서, The method of claim 1,상기 아연 합금 도금층의 조성은,The composition of the zinc alloy plating layer,Bi 또는 Sb 중 어느 하나, 또는 Bi와 Sb를 함께 포함하며, Any one of Bi or Sb, or Bi and Sb together;Bi와 Sb는 각각 1.0 중량 % 미만으로 포함되는 것을 특징으로 하는 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선. Bi and Sb is a plating steel wire formed with a zinc alloy plating layer consisting of a multi-layer structure, characterized in that each contained less than 1.0% by weight.
- 다층 구조로 이루어진 아연 합금층이 형성된 도금 강선 제조방법에 있어서, In the method of manufacturing a plated steel wire having a zinc alloy layer formed of a multilayer structure,Zn 이 98 중량 % 이상으로 조성된 아연 도금조에서 강선을 아연 도금하여, 상기 강선에 Zn-Fe 합금층을 형성하는 제1도금단계;A first plating step of galvanizing steel wire in a zinc plating bath having Zn of 98 wt% or more, thereby forming a Zn-Fe alloy layer on the steel wire;상기 제1도금단계를 거친 아연 도금 강선을, Al: 0.3 이상 ~ 2.0 이하 중량 %, Mg: 0.3 이상 ~ 1.5 이하 중량 %, 나머지는 Zn 및 불가피한 불순물을 포함하고, Al과 Mg의 합이 0.6 이상 ~ 3.5 이하 중량 %, Al과 Mg의 합에 대한 Al의 비율(Al/(Al+Mg))이 0.30 이상 ~ 0.70 이하인 아연 합금 도금조에서 아연 합금 도금하여, 상기 아연 도금 강선에 아연 합금 도금층을 형성하는 제2도금단계;를 포함하여 이루어지며, The galvanized steel wire passed through the first plating step, Al: 0.3 or more to 2.0% by weight, Mg: 0.3 or more to 1.5% by weight, the rest includes Zn and unavoidable impurities, the sum of Al and Mg is 0.6 or more A zinc alloy plating layer is applied to the zinc plated steel wire by performing zinc alloy plating in a zinc alloy plating bath having a weight ratio of less than or equal to 3.5% by weight and an Al ratio (Al / (Al + Mg)) to a sum of Al and Mg of 0.30 or more and 0.70 or less. Forming a second plating step;상기 제2도금단계를 거쳐 형성된 상기 아연 합금 도금층은, The zinc alloy plating layer formed through the second plating step,Zn-Fe, Zn-Fe-Al 조직 중 적어도 1개 이상의 조직을 포함하여 이루어진 제1층과, Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직을 포함하여 이루어지는 제2층과, Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직 중 적어도 3개 이상의 조직을 포함하여 이루어지는 제3층을 포함하여 이루어지는 것을 특징으로 하는 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선 제조방법.A first layer comprising at least one or more of the Zn-Fe, Zn-Fe-Al tissue, and Zn-Fe-Al tissue, comprising Zn, Zn-Al, Zn-Al-Mg-Fe tissue And a second layer comprising at least one tissue and a third layer comprising at least three or more tissues of Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al tissues. Plated steel wire manufacturing method formed with a zinc alloy plating layer consisting of a multi-layer structure.
- 제6항에 있어서, The method of claim 6,상기 아연 합금 도금조는, The zinc alloy plating bath,Bi 또는 Sb 중 어느 하나, 또는 Bi와 Sb를 함께 포함하며, Any one of Bi or Sb, or Bi and Sb together;Bi와 Sb는 각각 1.0 중량 % 미만으로 포함되는 것을 특징으로 하는 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선. Bi and Sb is a plating steel wire formed with a zinc alloy plating layer consisting of a multi-layer structure, characterized in that each contained less than 1.0% by weight.
- 다층 구조로 이루어진 아연 합금층이 형성된 도금 강선 제조방법에 있어서, In the method of manufacturing a plated steel wire having a zinc alloy layer formed of a multilayer structure,Zn 이 98 중량 % 이상으로 조성된 아연 도금조에서 강선을 아연 도금하여, 상기 강선에 Zn-Fe 합금층을 형성하는 제1도금단계;A first plating step of galvanizing steel wire in a zinc plating bath having Zn of 98 wt% or more, thereby forming a Zn-Fe alloy layer on the steel wire;상기 제1도금단계를 거친 아연 도금 강선을, Al: 0.3 이상 ~ 3.5 이하 중량 %, Mg: 0.3 이상 ~ 3.0 이하 중량 %, 나머지는 Zn 및 불가피한 불순물을 포함하고, Al과 Mg의 합이 0.6 이상 ~ 6.5 이하 중량 %, Al과 Mg의 합에 대한 Al의 비율(Al/(Al+Mg))이 0.30 이상 ~ 0.70 이하인 아연 합금 도금조에서 아연 합금 도금아여, 상기 아연 도금 강선에 아연 합금 도금층을 형성하는 제2도금단계;를 포함하여 이루어지며, The galvanized steel wire passed through the first plating step, Al: 0.3 or more to 3.5% by weight, Mg: 0.3 or more to 3.0% by weight, the rest includes Zn and unavoidable impurities, the sum of Al and Mg is 0.6 or more Zinc alloy plating in a zinc alloy plating bath having a weight ratio of less than or equal to 6.5% by weight, and an Al ratio (Al / (Al + Mg)) to a sum of Al and Mg of 0.30 or more and 0.70 or less. Forming a second plating step;상기 제2도금단계를 거쳐 형성된 상기 아연 합금 도금층은, The zinc alloy plating layer formed through the second plating step,Zn-Fe, Zn-Fe-Al 조직 중 적어도 1개 이상의 조직을 포함하여 이루어진 제1층과, Zn-Fe-Al 조직을 포함하며, Zn, Zn-Al, Zn-Al-Mg-Fe 조직 중 적어도 1개 이상의 조직을 포함하여 이루어지는 제2층과, Zn, Zn-Al-Mg, Mg-Zn, Zn-Al 조직 중 적어도 3개 이상의 조직을 포함하여 이루어지는 제3층을 포함하여 이루어지는 것을 특징으로 하는 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선 제조방법.A first layer comprising at least one or more of the Zn-Fe, Zn-Fe-Al tissue, and Zn-Fe-Al tissue, comprising Zn, Zn-Al, Zn-Al-Mg-Fe tissue And a second layer comprising at least one tissue and a third layer comprising at least three or more tissues of Zn, Zn-Al-Mg, Mg-Zn, and Zn-Al tissues. Plated steel wire manufacturing method formed with a zinc alloy plating layer consisting of a multi-layer structure.
- 제8항에 있어서, The method of claim 8,상기 제2도금단계를 거쳐 형성된 아연 합금 도금 강선을,Zinc alloy plated steel wire formed through the second plating step,90% 이하의 신선 가공량으로 냉간 신선 가공하는 신선 가공 단계를 더 포함하는 것을 특징으로 하는 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선 제조방법.A method of manufacturing a plated steel wire having a zinc alloy plated layer formed of a multilayer structure, further comprising: a wire drawing step of cold drawing at a 90% or less drawing amount.
- 제8항에 있어서, The method of claim 8,상기 아연 합금 도금조는, The zinc alloy plating bath,Bi 또는 Sb 중 어느 하나, 또는 Bi와 Sb를 함께 포함하며, Any one of Bi or Sb, or Bi and Sb together;Bi와 Sb는 각각 1.0 중량 % 미만으로 포함되는 것을 특징으로 하는 다층 구조로 이루어진 아연 합금 도금층이 형성된 도금 강선. Bi and Sb is a plating steel wire formed with a zinc alloy plating layer consisting of a multi-layer structure, characterized in that each contained less than 1.0% by weight.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2017/004515 WO2018199362A1 (en) | 2017-04-27 | 2017-04-27 | Plated steel wire with zinc alloy plating layer having multilayer structure formed thereon, and method for manufacturing same |
KR1020197018574A KR20190082972A (en) | 2017-04-27 | 2017-04-27 | Plated steel wire having a zinc alloy plating layer formed of a multilayer structure and a method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2017/004515 WO2018199362A1 (en) | 2017-04-27 | 2017-04-27 | Plated steel wire with zinc alloy plating layer having multilayer structure formed thereon, and method for manufacturing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018199362A1 true WO2018199362A1 (en) | 2018-11-01 |
Family
ID=63918408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/004515 WO2018199362A1 (en) | 2017-04-27 | 2017-04-27 | Plated steel wire with zinc alloy plating layer having multilayer structure formed thereon, and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20190082972A (en) |
WO (1) | WO2018199362A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114901856A (en) * | 2019-12-20 | 2022-08-12 | Posco公司 | Zinc-based plated steel material having excellent corrosion resistance and spot weldability |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001107213A (en) * | 1999-08-03 | 2001-04-17 | Nippon Steel Corp | HOT-DIP Zn-Mg-Al BASE ALLOY COATED STEEL WIRE AND ITS PRODUCTION METHOD |
JP2009024210A (en) * | 2007-07-18 | 2009-02-05 | Tokyo Seiko Co Ltd | Hot-dip zinc alloy plated steel wire |
US20110017362A1 (en) * | 2007-11-05 | 2011-01-27 | Thyssenkrupp Steel Europe Ag | Steel flat product having a metallic coating which protects against corrosion and method for producing a metallic zn-mg coating, which protects against corrosion, on a steel flat product |
KR20160078918A (en) * | 2014-12-24 | 2016-07-05 | 주식회사 포스코 | Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT WELDABILITY AND PROCESSED PART CORROSION RESISTANCE AND METHOD FOR MANUFACTURING SAME |
KR101665880B1 (en) * | 2015-07-29 | 2016-10-13 | 주식회사 포스코 | Galvanealed steel sheet and method for manufacturing the same having excellent workability |
-
2017
- 2017-04-27 KR KR1020197018574A patent/KR20190082972A/en not_active Application Discontinuation
- 2017-04-27 WO PCT/KR2017/004515 patent/WO2018199362A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001107213A (en) * | 1999-08-03 | 2001-04-17 | Nippon Steel Corp | HOT-DIP Zn-Mg-Al BASE ALLOY COATED STEEL WIRE AND ITS PRODUCTION METHOD |
JP2009024210A (en) * | 2007-07-18 | 2009-02-05 | Tokyo Seiko Co Ltd | Hot-dip zinc alloy plated steel wire |
US20110017362A1 (en) * | 2007-11-05 | 2011-01-27 | Thyssenkrupp Steel Europe Ag | Steel flat product having a metallic coating which protects against corrosion and method for producing a metallic zn-mg coating, which protects against corrosion, on a steel flat product |
KR20160078918A (en) * | 2014-12-24 | 2016-07-05 | 주식회사 포스코 | Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT WELDABILITY AND PROCESSED PART CORROSION RESISTANCE AND METHOD FOR MANUFACTURING SAME |
KR101665880B1 (en) * | 2015-07-29 | 2016-10-13 | 주식회사 포스코 | Galvanealed steel sheet and method for manufacturing the same having excellent workability |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114901856A (en) * | 2019-12-20 | 2022-08-12 | Posco公司 | Zinc-based plated steel material having excellent corrosion resistance and spot weldability |
CN114901856B (en) * | 2019-12-20 | 2023-12-12 | Posco公司 | Galvanized steel material with excellent corrosion resistance and spot welding property |
Also Published As
Publication number | Publication date |
---|---|
KR20190082972A (en) | 2019-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018117714A1 (en) | Hot-dipped galvanized steel material having excellent weldability and press workability and manufacturing method therefor | |
WO2020067678A1 (en) | Highly corrosion-resistant plated steel sheet having excellent plating adhesion and resistance to liquid metal embrittlement | |
US6579615B1 (en) | Plated steel wire with corrosion resistance and excellent workability, and process for its manufacture | |
JPWO2020213686A1 (en) | Plated steel sheet | |
WO2018169085A1 (en) | Plated steel sheet | |
WO2019132336A1 (en) | Zinc alloy plated steel material having excellent corrosion resistance after being processed and method for manufacturing same | |
WO2017078195A1 (en) | Highly corrosion-resistant zinc alloy-plating steel wire and method of manufacturing same | |
KR100446789B1 (en) | Plated steel product having high corrosion resistance and excellent formability and method for production thereof | |
JP3684135B2 (en) | Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and method for producing the same | |
WO2022139367A1 (en) | Plated steel sheet having excellent sealer adhesion and method for manufacturing same | |
WO2021112519A1 (en) | Hot-dipped galvanized steel sheet having excellent bending workability and corrosion resistance and manufacturing method therefor | |
WO2018199362A1 (en) | Plated steel wire with zinc alloy plating layer having multilayer structure formed thereon, and method for manufacturing same | |
WO2021125625A1 (en) | Hot dip alloy coated steel material having excellent anti-corrosion properties and method of manufacturing same | |
WO2018117701A1 (en) | Plated steel sheet having multilayer structure and manufacturing method therefor | |
JPS63262451A (en) | Highly corrosion resistant zinc-aluminum alloy-plated wire and stranded body using same | |
WO2021125630A1 (en) | Hot-dip zn-al-mg-based alloy-plated steel material having excellent corrosion resistance of processed portion, and method for manufacturing same | |
JP3769199B2 (en) | High corrosion resistance plated steel material and method for producing the same | |
JP2002371343A (en) | Hot-dip plated steel cable superior in workability with high corrosion resistance | |
JP2002047521A (en) | Highly corrosion resistant plated steel and its production method | |
WO2019124901A1 (en) | Molten aluminum alloy-plated steel sheet having excellent corrosion resistance and weldability, and method for producing same | |
EP4234736A1 (en) | Plated steel sheet | |
JPH05230782A (en) | Rope for operation | |
JP3009262B2 (en) | Hot-dip zinc aluminum alloy plating coating with excellent fatigue properties | |
WO2018117702A1 (en) | Alloy-plated steel material having excellent crack resistance, and method for manufacturing same | |
JP3769198B2 (en) | High corrosion resistance plated steel material and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17907550 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197018574 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17907550 Country of ref document: EP Kind code of ref document: A1 |