JP2017008390A - Plated steel of high corrosion resistance, and manufacturing method thereof - Google Patents

Plated steel of high corrosion resistance, and manufacturing method thereof Download PDF

Info

Publication number
JP2017008390A
JP2017008390A JP2015126811A JP2015126811A JP2017008390A JP 2017008390 A JP2017008390 A JP 2017008390A JP 2015126811 A JP2015126811 A JP 2015126811A JP 2015126811 A JP2015126811 A JP 2015126811A JP 2017008390 A JP2017008390 A JP 2017008390A
Authority
JP
Japan
Prior art keywords
plating
layer
steel material
mass
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015126811A
Other languages
Japanese (ja)
Other versions
JP6468493B2 (en
Inventor
尚 馬場
Takashi Baba
尚 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2015126811A priority Critical patent/JP6468493B2/en
Publication of JP2017008390A publication Critical patent/JP2017008390A/en
Application granted granted Critical
Publication of JP6468493B2 publication Critical patent/JP6468493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide plated steel of high corrosion resistance having an increased thickness of a plating layer, and a manufacturing method thereof among two-step hot dip plating methods.SOLUTION: A manufacturing method of plated steel of high corrosion resistance includes a first hot dip plating step for dipping steel in a first molten Zn plating bath containing Al of 1-12 mass% followed by drawing-up, a flux treatment step for applying a flux to the steel treated in the first hot dip plating step, and a second hot dip plating step for dipping the steel treated in the flux treatment step in a second molten Zn plating bath containing Al of 4-6 mass% and being set at a bath temperature of 420°C or lower followed by drawing-up.SELECTED DRAWING: None

Description

本発明は、高耐食性めっき鋼材及びその製造方法に関する。   The present invention relates to a highly corrosion-resistant plated steel material and a method for producing the same.

鉄鋼分野における溶融めっき方法には、鋼帯を溶融めっき浴に連続して通過させる連続溶融めっき法と、所定形状に加工した鋼材を溶融めっき浴に浸漬させてから引き上げる浸漬溶融めっき法がある。浸漬溶融めっき法には、更に、1種類の溶融めっき浴に鋼材を浸漬させる一段めっき法と、2種類の溶融めっき浴に鋼材を順次浸漬させる二段めっき法とに分類される。一段めっき法または二段めっき法のいずれを選択するかは、めっきの組成や目標厚みによって選択される。   As the hot dip plating method in the steel field, there are a continuous hot dip plating method in which a steel strip is continuously passed through a hot dip plating bath, and an immersion hot dip plating method in which a steel material processed into a predetermined shape is immersed in the hot dip plating bath and then pulled up. The immersion hot-dipping method is further classified into a one-step plating method in which a steel material is immersed in one type of hot-dipping bath and a two-step plating method in which steel materials are successively immersed in two types of hot-dipping baths. Whether the single-step plating method or the two-step plating method is selected is selected depending on the plating composition and the target thickness.

一段めっき法によるめっき鋼材の製造方法としては、Zn−55mass%Al浴のような、高Al濃度の亜鉛めっきが実用化されている。これは、FeAl合金化反応の制御が難しいことがその理由である。   As a method for producing a plated steel material by the one-step plating method, galvanization with a high Al concentration such as a Zn-55 mass% Al bath has been put into practical use. This is because it is difficult to control the FeAl alloying reaction.

一方、低Al濃度のZn−Alめっきを一浴めっき法で製造すること自体は可能である。しかし、FeAl合金の生成を抑制するためにめっき浴にSiを添加した場合、めっき層の厚みは、被めっき材をめっき浴から引き上げる際に鋼材表面に残る溶融金属量で決まる。また、鋼材表面に残る溶融金属量は、めっき浴の粘度のみで決まる。このため、低Al濃度のZn−Alめっきを行う場合は、厚いめっき層は得られなくなる。めっきの組成が同一である場合は、Zn系めっきの耐食性はめっき付着量にほぼ比例する。そのため、一浴めっき法では、亜鉛とAlを合金化してめっき層の耐食性が向上させたとしても、厚いめっき層が得られにくいので、結果として高い耐食性が得られない。   On the other hand, it is possible to manufacture Zn-Al plating with a low Al concentration by a one-bath plating method. However, when Si is added to the plating bath to suppress the formation of the FeAl alloy, the thickness of the plating layer is determined by the amount of molten metal remaining on the steel material surface when the material to be plated is pulled up from the plating bath. Further, the amount of molten metal remaining on the steel material surface is determined only by the viscosity of the plating bath. For this reason, when performing low Al concentration Zn-Al plating, a thick plating layer cannot be obtained. When the plating composition is the same, the corrosion resistance of the Zn-based plating is substantially proportional to the amount of plating. Therefore, in the one-bath plating method, even if zinc and Al are alloyed to improve the corrosion resistance of the plating layer, a thick plating layer is hardly obtained, and as a result, high corrosion resistance cannot be obtained.

また、一段めっき法であっても、Siを添加しないめっき浴であれば、鋼材をめっき浴中に長時間浸漬させることで、めっき浴温度で固体状態であるFeAl合金を鋼材表面に生成させることができる。FeAl合金は浸漬時間を長くするほど生成量が増加するので、厚めっき化が可能となる。これは、一般の純ZnめっきでFeZn合金を生成させることによりめっき付着量を確保しているのと同じ理屈である。しかし、鋼種によって合金化反応の速度が異なることや、生成する合金の挙動が極端に異なるなどの理由により、FeAl反応を適正に制御することは難しい。このため、めっき表面までFeAl合金が析出し、金属光沢があり平滑な外観を得ることができず、めっき外観品質が低下する問題が起きやすく、実用化の妨げになっていた。   Moreover, even if it is a one-step plating method, if it is a plating bath to which Si is not added, a steel material is immersed in the plating bath for a long time, thereby generating a FeAl alloy that is in a solid state at the plating bath temperature on the surface of the steel material. Can do. Since the generation amount of the FeAl alloy increases as the immersion time is increased, thick plating is possible. This is the same reason that a plating adhesion amount is ensured by generating an FeZn alloy by general pure Zn plating. However, it is difficult to properly control the FeAl reaction because the alloying reaction rate varies depending on the steel type and the behavior of the alloy to be produced varies extremely. For this reason, the FeAl alloy is deposited on the plating surface, and it is difficult to obtain a smooth appearance with a metallic luster, which tends to cause a problem that the quality of the plating appearance is deteriorated, which hinders practical use.

特許文献1では、めっき浸漬前の鋼材の予熱温度を300〜700℃と高く設定することにより、ZnAl合金浸漬めっきの種々の問題を解決できる旨が示されている。しかし、浸漬めっきでは被めっき物として様々な形状の鋼構造物を対象とする場合がある。例えば、長大な被めっき材の予熱温度を高くする場合、被めっき材全体を均一に予熱することは難しく、また、熱効率が悪く、更に、予熱に長時間必要という問題がある。これらの問題はいずれも大きなコストアップにつながる。   Patent Document 1 discloses that various problems of ZnAl alloy immersion plating can be solved by setting the preheating temperature of the steel material before plating immersion as high as 300 to 700 ° C. However, in immersion plating, steel structures having various shapes may be targeted as objects to be plated. For example, when the preheating temperature of a long material to be plated is increased, it is difficult to uniformly preheat the entire material to be plated, there is a problem that the heat efficiency is low, and further, preheating is required for a long time. Both of these problems can lead to significant cost increases.

また、極端に高温・長時間加熱した場合、鋼材表面に酸化物が生成してめっきに影響する可能性もある。この問題の解消のために鋼材をあらかじめ非酸化雰囲気で加熱することが考えられるが、非酸化雰囲気で加熱する設備が必要となり、やはりコスト高につながるものとなる。   In addition, when heated at an extremely high temperature for a long time, oxides may be generated on the surface of the steel material, which may affect the plating. In order to solve this problem, it is conceivable to heat the steel material in a non-oxidizing atmosphere in advance, but a facility for heating in a non-oxidizing atmosphere is required, which also leads to high costs.

以上のことから、一段めっき法によるZnAl合金めっき鋼材の製造は、低Al濃度では商業的・工業的には成立しないため、実施されていない。   From the above, the production of ZnAl alloy-plated steel material by the one-step plating method is not carried out because it is not established commercially and industrially at a low Al concentration.

また、高Al濃度のZn−Al合金めっきが一浴めっき法で実施されているのは、微量のSiをめっき浴に添加することでFeAl合金の生成を抑制し、かつAl濃度を大きくすることにより、μmオーダーの厚さの合金層を成長させて、これによってめっきの絶対量を大きくできるためである。しかし、このZn−高Al合金めっきであっても、めっきの絶対量が充分に満足できるほど大きくないため、高い耐食性が要求される用途において耐食性が満足できるものではない。また、Al濃度が高い分、Znの比率が低いために、めっき層の犠牲防食能が低く、鋼材からの赤錆を発生しやすいという問題がある。このため、一段めっき法で製造される高Al濃度のZn−Al合金めっき鋼材は、特殊な環境下での用途でのみ使用されているのが現状である。   In addition, high Al concentration Zn-Al alloy plating is carried out by the one bath plating method by adding a small amount of Si to the plating bath to suppress the formation of FeAl alloy and increase the Al concentration. This is because an alloy layer having a thickness on the order of μm can be grown by this, thereby increasing the absolute amount of plating. However, even with this Zn-high Al alloy plating, the absolute amount of plating is not large enough to be satisfactorily satisfied, so that the corrosion resistance is not satisfactory in applications requiring high corrosion resistance. Moreover, since the Al concentration is high and the Zn ratio is low, there is a problem that the sacrificial anticorrosive ability of the plating layer is low and red rust is easily generated from the steel material. For this reason, the present condition is that the high Al concentration Zn-Al alloy plating steel materials manufactured by a one-step plating method are used only for the use in a special environment.

次に、二段めっき法は、鋼材を純Znめっき浴に浸漬してめっきを行い、Znめっき冷却後、あるいはZnめっき後直ちに鋼材をZnAl合金浴に浸漬する方法である。一段目の純Znめっき浴を用いる方法は工業的に確立されためっき技術であり、FeとZnの合金化反応はほとんど問題なく制御可能である。一段目のめっきで生成したFeZn合金は、二段目のめっきによってFeZnAl合金に改質される。これにより、合金層の耐食性が向上する。また、一段目のめっきでFeAl合金上に存在した純Znめっき層は、二段目のめっきによって耐食性により優れたZnAl合金に置き換えられる。このように、二段階のめっき工程を経ることにより、最初に形成されためっき層はAlを含む合金めっき層に変換される。二段目のめっき浴に浸漬した際、一段目のめっきで形成しためっき層はその表面が二段目のめっき浴に溶解するため、めっき層が若干薄くなるが、耐食性に優れた合金に置き換わるので、めっき鋼材自体の耐食性は向上する。   Next, the two-stage plating method is a method in which a steel material is immersed in a pure Zn plating bath to perform plating, and the steel material is immersed in a ZnAl alloy bath after Zn plating cooling or immediately after Zn plating. The method using the first stage pure Zn plating bath is an industrially established plating technique, and the alloying reaction of Fe and Zn can be controlled almost without any problem. The FeZn alloy produced by the first stage plating is modified to an FeZnAl alloy by the second stage plating. Thereby, the corrosion resistance of the alloy layer is improved. In addition, the pure Zn plating layer present on the FeAl alloy in the first plating is replaced with a ZnAl alloy that is superior in corrosion resistance by the second plating. Thus, through the two-step plating process, the plating layer formed first is converted into an alloy plating layer containing Al. When immersed in the second-stage plating bath, the surface of the plating layer formed by the first-stage plating dissolves in the second-stage plating bath, so the plating layer is slightly thinner, but it is replaced with an alloy with excellent corrosion resistance. Therefore, the corrosion resistance of the plated steel material itself is improved.

二段めっき法によってめっき層を厚くするためには、一段目の純Znめっき浴によるめっき形成時に、めっき層を厚くする必要がある。しかし、被めっき鋼材の材質や厚さ等にもよるが、浸漬Znめっきにおいて最もめっき厚が大きなものは、JIS規格のHDZ55の約80μm程度であり、これを超える厚みを確保することは、技術的に困難になる。   In order to increase the thickness of the plating layer by the two-step plating method, it is necessary to increase the thickness of the plating layer during the plating formation using the first pure Zn plating bath. However, although depending on the material and thickness of the steel material to be plated, the largest plating thickness in immersion Zn plating is about 80 μm of JIS standard HDZ55. It becomes difficult.

具体的な問題として、めっき層を厚くするために、一段目のめっきにおいて鋼材をめっき浴に長時間浸漬してめっき層を厚くしようとすると、FeZn合金が成長する一方で、成長中のFeZn合金がめっき表面からドロスとなってめっき浴ヘ溶出し、めっき浴槽の底に沈殿し、めっき浴を劣化させる問題がある。   As a specific problem, in order to increase the thickness of the plating layer, when the steel layer is immersed in the plating bath for a long time in the first stage plating to increase the thickness of the plating layer, while the FeZn alloy grows, the growing FeZn alloy Becomes dross from the plating surface, elutes into the plating bath, precipitates at the bottom of the plating bath, and degrades the plating bath.

また、二段目のめっきにおいては、一段目において形成したFeZn合金層が二段目のめっき成分であるAlと反応するため、1段目のめっき層の一部が溶出してめっき層が薄くなる。また、一段目に形成した合金層が厚い場合、二段目のめっき工程においてAlの置換反応を充分に進めるために、めっき浴の浴温を高くするか、または、浸漬時間を長時間にする必要があるが、これらはいずれもFeZn合金の溶出を促進する。また、二段目のめっき浴には、一段目のめっき層中のFeZn合金の一部と表層のηZn層すべてが溶解するため、二段目のめっき浴の浴成分を変化させる等、さまざまな操業、品質上の問題がある。また、2段めっき法が設備の効率が悪い、高コストなめっき方法であることは言うまでもない。   Further, in the second stage plating, since the FeZn alloy layer formed in the first stage reacts with Al as the second stage plating component, a part of the first stage plating layer is eluted and the plating layer becomes thin. Become. If the alloy layer formed in the first stage is thick, the bath temperature of the plating bath is increased or the immersion time is increased in order to sufficiently advance the Al substitution reaction in the second stage plating process. Although necessary, both of these promote the elution of the FeZn alloy. Also, in the second-stage plating bath, a part of the FeZn alloy in the first-stage plating layer and the entire ηZn layer on the surface are dissolved, so various bath components of the second-stage plating bath are changed. There are operational and quality issues. Needless to say, the two-step plating method is a high-cost plating method with low equipment efficiency.

特開2012−241277号公報JP 2012-241277 A

本発明は、上記事情に鑑みてなされたもので、浸漬溶融めっきの二段めっき法において、めっき層の厚みをより大きくすることが可能な高耐食性めっき鋼材及びその製造方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a highly corrosion-resistant plated steel material capable of increasing the thickness of a plating layer and a method for producing the same in a two-stage plating method of immersion hot dipping. And

本発明者らが上記課題を解決するために鋭意検討したところ、一段目のめっきを、純Znめっき浴ではなくZn-Al合金めっきとすることで、一段目のめっきを厚く形成し、さらに、2段目のめっきをZn-Alの共晶点近傍の組成とし、浴温を純Znの融点である420℃以下とし、一段めっきが溶解してめっきが薄くなることを極力抑制することにより、一段目のめっき層に二段目のめっき層を重ねて形成することで、より厚いめっき層を得ることに成功した。これにより、高い耐食性を有するめっきを得ることが可能となった。   When the present inventors diligently studied to solve the above-mentioned problems, the first-stage plating is not a pure Zn plating bath, but a Zn-Al alloy plating, thereby forming the first-stage plating thicker, By setting the second-stage plating to a composition in the vicinity of the eutectic point of Zn—Al, the bath temperature to 420 ° C. or lower, which is the melting point of pure Zn, and suppressing the thinning of the plating as much as possible by dissolving the first-stage plating, We succeeded in obtaining a thicker plating layer by forming the second plating layer on top of the first plating layer. Thereby, it became possible to obtain plating having high corrosion resistance.

本発明は、以下の通りである。
(1) 鋼材表面に、FeAl合金層とZn合金層とを含むめっき層が備えられ、
前記FeAl合金層は、前記鋼材表面に形成され、FeAl合金相とZn相とを含み、平均組成がFe:30〜60質量%、Al:15〜30質量%、残部Zn及び不純物であり、厚さが100μm以上であり、
前記Zn合金層は、前記FeAl合金層上に形成され、Alと残部Zn及び不純物からなり、厚さ5μm以上である高耐食性めっき鋼材。
(2) 前記Zn合金層は、平均組成がAl:4〜6質量%、残部Zn及び不純物であることを特徴とする(1)記載の高耐食性めっき鋼材。
(3) 前記Zn合金層は、
前記FeAl合金層上に形成され、平均組成がAl:12質量%以下、残部Zn及び不純物である中間層と、
前記中間層上に形成され、平均組成がAl:4〜6質量%、残部Zn及び不純物である最表層と、を含む(1)記載の高耐食性めっき鋼材。
(4) 前記Zn合金層に更に、0.1〜3質量%のMgが含まれる(2)に記載の高耐食性めっき鋼材。
(5) 前記最表層に更に、0.1〜5質量%のMgが含まれる(3)に記載の高耐食性めっき鋼材。
(6) 鋼材を、1〜12質量%のAlを含む第1溶融Znめっき浴に浸漬させてから引き上げることで、100μm以上のFeAl合金層を含む層を形成する第1溶融めっき工程と、
前記第1溶融めっき工程後の前記鋼材に、フラックスを塗布するフラックス処理工程と、
前記フラックス処理工程後の前記鋼材を、4〜6質量%のAlを含み、かつ浴温が420℃以下にされた第2溶融Znめっき浴に浸漬させてから引き上げる第2溶融めっき工程と、
を備えた高耐食性めっき鋼材の製造方法。
(7) 前記第2溶融めっき工程において、前記鋼材の前記第2溶融Znめっき浴への浸漬時間を10秒以上120秒以下の範囲とする(6)に記載の高耐食性めっき鋼材の製造方法。
(8) 前記第2溶融Znめっき浴に更に、0.1〜5質量%のMgが含まれる(6)または(7)に記載の高耐食性めっき鋼材の製造方法。
The present invention is as follows.
(1) The steel material surface is provided with a plating layer including a FeAl alloy layer and a Zn alloy layer,
The FeAl alloy layer is formed on the surface of the steel material, includes an FeAl alloy phase and a Zn phase, has an average composition of Fe: 30 to 60% by mass, Al: 15 to 30% by mass, the balance Zn and impurities, Is 100 μm or more,
The Zn alloy layer is a highly corrosion-resistant plated steel material formed on the FeAl alloy layer, made of Al, the balance Zn and impurities, and having a thickness of 5 μm or more.
(2) The high corrosion-resistant plated steel material according to (1), wherein the Zn alloy layer has an average composition of Al: 4 to 6% by mass, the balance Zn and impurities.
(3) The Zn alloy layer
An intermediate layer formed on the FeAl alloy layer and having an average composition of Al: 12% by mass or less, the balance Zn and impurities;
The high corrosion-resistant plated steel material according to (1), which is formed on the intermediate layer and includes an outermost layer having an average composition of Al: 4 to 6% by mass, the balance Zn and impurities.
(4) The high corrosion resistance plated steel material according to (2), wherein the Zn alloy layer further contains 0.1 to 3% by mass of Mg.
(5) The highly corrosion-resistant plated steel material according to (3), wherein the outermost layer further contains 0.1 to 5% by mass of Mg.
(6) a first hot dipping step of forming a layer containing an FeAl alloy layer of 100 μm or more by immersing the steel material in a first hot Zn plating bath containing 1 to 12% by mass of Al,
A flux treatment step of applying a flux to the steel material after the first hot dipping step;
A second hot dipping process in which the steel material after the flux treatment process is dipped in a second hot dipped Zn plating bath containing 4 to 6% by mass of Al and having a bath temperature of 420 ° C. or lower;
A method for producing a highly corrosion-resistant plated steel material comprising:
(7) The method for producing a highly corrosion-resistant plated steel material according to (6), wherein the immersion time of the steel material in the second hot-dip Zn plating bath is in the range of 10 seconds to 120 seconds in the second hot dip plating step.
(8) The method for producing a highly corrosion-resistant plated steel material according to (6) or (7), wherein the second molten Zn plating bath further contains 0.1 to 5% by mass of Mg.

本発明によれば、浸漬溶融めっきの二段めっき法において、めっき層の厚みをより大きくした高耐食性めっき鋼材及びその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, in the two-step plating method of immersion hot dipping, the high corrosion resistance plated steel material which made the thickness of the plating layer larger and its manufacturing method can be provided.

No.15の高耐食性めっき鋼材の一段目のめっき後のめっき層の断面光学顕微鏡写真。No. 15 is a cross-sectional optical micrograph of a plated layer after the first plating of 15 high corrosion resistance plated steel materials. No.15の高耐食性めっき鋼材の二段目のめっき後のめっき層の断面光学顕微鏡写真。No. The cross-sectional optical microscope photograph of the plating layer after the 2nd plating of 15 high corrosion-resistant plating steel materials.

以下、本発明の実施形態である高耐食性めっき鋼材及びその製造方法について説明する。   Hereinafter, the highly corrosion-resistant plated steel material and its manufacturing method which are embodiments of the present invention will be described.

本実施形態の高耐食性めっき鋼材は、鋼材と、鋼材表面に形成されためっき層とからなる。鋼材表面に形成されためっき層は、厚さ100μm以上のFeAl合金層と、厚さ5μm以上のZn合金層とを含む。めっき層全体の厚みの上限は例えば305μm以下である。めっき層の厚みはめっき条件に左右されるため、厚みの下限については特に限定されるものではないが、例えば、FeAl合金層及びZn合金層の各下限値の合計である105μm以上あるとよい。   The highly corrosion-resistant plated steel material of the present embodiment includes a steel material and a plating layer formed on the steel material surface. The plating layer formed on the steel material surface includes an FeAl alloy layer having a thickness of 100 μm or more and a Zn alloy layer having a thickness of 5 μm or more. The upper limit of the thickness of the entire plating layer is, for example, 305 μm or less. Since the thickness of the plating layer depends on the plating conditions, the lower limit of the thickness is not particularly limited. For example, the thickness is preferably 105 μm or more which is the sum of the lower limit values of the FeAl alloy layer and the Zn alloy layer.

厚さ100μm以上のFeAl合金層は、鋼材表面に形成されており、組織としてFeAl合金相とZn相とを含み、平均組成がFe:30〜60質量%、Al:15〜30質量%、残部Zn及び不純物とされている。   The FeAl alloy layer having a thickness of 100 μm or more is formed on the surface of the steel material, and includes an FeAl alloy phase and a Zn phase as a structure. The average composition is Fe: 30 to 60% by mass, Al: 15 to 30% by mass, and the balance Zn and impurities.

また、厚さ5μm以上のZn合金層は、FeAl合金層上に形成されており、Alと残部Zn及び不純物からなる。Zn合金層の平均組成は、Al:4〜6質量%、残部Zn及び不純物である。   Further, the Zn alloy layer having a thickness of 5 μm or more is formed on the FeAl alloy layer, and is composed of Al, the remaining Zn and impurities. The average composition of the Zn alloy layer is Al: 4 to 6% by mass, the balance Zn and impurities.

また、本実施形態の高耐食性めっき鋼材の上記Zn合金層は、FeAl合金層上に形成された中間層と、中間層上に形成された最表層とを含んでいてもよい。中間層は平均組成でAl:12質量%以下、残部Zn及び不純物からなる層であり、最表層は平均組成でAl:4〜6質量%、残部Zn及び不純物からなる層である。   Further, the Zn alloy layer of the high corrosion resistance plated steel material of the present embodiment may include an intermediate layer formed on the FeAl alloy layer and an outermost layer formed on the intermediate layer. The intermediate layer is a layer composed of Al: 12% by mass or less with the balance Zn and impurities, and the outermost layer is a layer composed of Al: 4 to 6% by mass with the balance Zn and impurities.

すなわち、本実施形態の高耐食性めっき鋼材のめっき層は、FeAl合金層及びZn合金層の2層構成であってもよく、FeAl合金層、中間層及び最表層からなる3層構成であってもよい。以下、鋼材及びめっき層について順次説明する。   That is, the plating layer of the highly corrosion-resistant plated steel material of the present embodiment may have a two-layer configuration including an FeAl alloy layer and a Zn alloy layer, or a three-layer configuration including an FeAl alloy layer, an intermediate layer, and an outermost layer. Good. Hereinafter, the steel material and the plating layer will be sequentially described.

なお、本実施形態の高耐食性めっき鋼材は、鋼材を第1溶融Znめっき浴に浸漬させて引き上げる第1溶融めっき工程と、フラックス処理工程と、フラックス処理工程後の鋼材を、第2溶融Znめっき浴に浸漬させて引き上げる第2溶融めっき工程と、を経て製造される。すなわち、所謂二段めっき法によって製造される。   In addition, the high corrosion-resistant plated steel material of the present embodiment includes a first hot-dip plating step in which the steel material is dipped in a first hot-dip Zn plating bath, and a flux treatment step. And a second hot dipping process in which it is dipped in a bath and pulled up. That is, it is manufactured by a so-called two-step plating method.

めっき層の下地となる鋼材は、材質に特に制限はない。詳細は後述するが、一般鋼、Niプレめっき鋼を用いれば特に制限はなく、Alキルド鋼や一部の高合金鋼も適用することは可能で、形状にも制限はない。   There is no particular limitation on the material of the steel material used as the base of the plating layer. Although details will be described later, if general steel or Ni pre-plated steel is used, there is no particular limitation. Al killed steel and some high alloy steels can also be applied, and the shape is not limited.

めっき層を構成するFeAl合金層は、平均組成で、Fe:30〜60質量%、Al:15〜30質量%、残部Zn及び不純物よりなる。また、FeAl合金めっき層は、不定形のFeAl合金相を主体とし、FeAl合金相中にZn相が分散して析出した組織になっている。   The FeAl alloy layer that constitutes the plating layer has an average composition of Fe: 30 to 60% by mass, Al: 15 to 30% by mass, the balance Zn and impurities. The FeAl alloy plating layer is mainly composed of an amorphous FeAl alloy phase, and has a structure in which a Zn phase is dispersed and precipitated in the FeAl alloy phase.

このFeAl合金層は、Al:1〜12質量%、残部Zn及び不純物からなる組成の第1溶融めっき浴に鋼材を浸漬することによって形成される。鋼材を第1溶融めっき浴中に浸漬することにより、めっき浴中のAlが鋼材のFeと反応してFeAl合金を形成する。   This FeAl alloy layer is formed by immersing a steel material in a first hot dipping bath having a composition comprising Al: 1 to 12% by mass, the balance Zn and impurities. By immersing the steel material in the first hot dipping bath, Al in the plating bath reacts with Fe of the steel material to form a FeAl alloy.

FeAl合金層中のFeAl合金は犠牲防食効果がなく、専らバリア性を発揮する。ただし、本実施形態のFeAl合金層中には残部としてZnが含まれており、残部Znがめっき組織中にZn相として分散する。このため、本実施形態に係るFeAl合金層はZnによる犠牲防食効果をも発揮する。FeAl合金層はFeを含んでいるにもかかわらず、腐食してもその腐食生成物は安定で赤錆を発生しにくい。このように、FeAl合金層は、犠牲防食だけでなくバリア効果によっても鋼を防食できる。   The FeAl alloy in the FeAl alloy layer has no sacrificial anticorrosion effect and exhibits exclusively barrier properties. However, the FeAl alloy layer of this embodiment contains Zn as the remainder, and the remainder Zn is dispersed as a Zn phase in the plating structure. For this reason, the FeAl alloy layer according to the present embodiment also exhibits the sacrificial anticorrosive effect of Zn. Even though the FeAl alloy layer contains Fe, even if it corrodes, the corrosion product is stable and hardly generates red rust. Thus, the FeAl alloy layer can protect steel not only by sacrificial corrosion protection but also by the barrier effect.

FeAl合金層中のFe濃度及びAl濃度が上記範囲の下限未満になると、FeAl合金層中のFeAl合金量が減少し、特にFeAl合金層中のZnが消耗した後のバリア性を確保できなくなる。また、Fe濃度及びAl濃度が上記範囲の上限を超えると、相対的にZn量が減少し、犠牲防食効果が低下する。FeAl合金層中のFe濃度は、40〜55質量%の範囲がより好ましい。また、Al濃度は20〜27%の範囲がより好ましい。   When the Fe concentration and the Al concentration in the FeAl alloy layer are less than the lower limit of the above range, the amount of FeAl alloy in the FeAl alloy layer decreases, and in particular, the barrier property after the Zn in the FeAl alloy layer is consumed cannot be secured. On the other hand, when the Fe concentration and the Al concentration exceed the upper limits of the above ranges, the Zn content is relatively reduced, and the sacrificial corrosion protection effect is lowered. The Fe concentration in the FeAl alloy layer is more preferably in the range of 40 to 55% by mass. The Al concentration is more preferably in the range of 20 to 27%.

FeAl合金層の厚みは、少なくとも100μm以上である。上限は特に限定しないが、300μm以下が好ましい。FeAl合金層の厚みが100μm未満では、バリア効果を充分に発揮できなくなる。厚みを300μm超にするためには、長時間に渡って鋼材を第1溶融めっき浴中に浸漬する必要があり、生産性が低下するので、300μmを上限とする。   The thickness of the FeAl alloy layer is at least 100 μm or more. Although an upper limit is not specifically limited, 300 micrometers or less are preferable. When the thickness of the FeAl alloy layer is less than 100 μm, the barrier effect cannot be sufficiently exhibited. In order to make the thickness more than 300 μm, it is necessary to immerse the steel material in the first hot dipping bath for a long time, and the productivity is lowered. Therefore, the upper limit is 300 μm.

次に、Zn合金層は、FeAl合金層の上に積層されている。Zn合金層は、単相構造の場合と、中間層と最表層との2層構造の場合がある。この違いは、第1溶融めっき工程において形成しためっき層の表面の性状及び第2溶融めっき工程のめっき条件による。詳細は製造方法の説明において述べるが、単層構造の場合のZn合金層は、第2溶融めっき工程によって形成される。一方、2層構造の場合の中間層は、第1溶融めっき工程においてFeAl合金層とともに形成され、最表層は第2溶融めっき工程にて形成される。   Next, the Zn alloy layer is laminated on the FeAl alloy layer. The Zn alloy layer may have a single-phase structure or a two-layer structure including an intermediate layer and an outermost layer. This difference depends on the surface properties of the plating layer formed in the first hot dipping process and the plating conditions in the second hot dipping process. Although details will be described in the description of the manufacturing method, the Zn alloy layer in the case of the single layer structure is formed by the second hot dipping process. On the other hand, the intermediate layer in the case of the two-layer structure is formed together with the FeAl alloy layer in the first hot dipping process, and the outermost layer is formed in the second hot dipping process.

Zn合金層が単層の場合の平均組成は、Al:4〜6質量%、残部Zn及び不純物である。この場合、0.1〜3質量%のMgが含まれていてもよい。   When the Zn alloy layer is a single layer, the average composition is Al: 4 to 6% by mass, the balance Zn and impurities. In this case, 0.1 to 3% by mass of Mg may be included.

また、Zn合金層が中間層と最表層との2層構造の場合は、中間層の平均組成はAl:12質量%以下、残部Zn及び不純物となる。また、最表層の平均組成は、Al:4〜6質量%、残部Zn及び不純物となる。この場合は、最表層に0.1〜5質量%のMgが含まれていてもよい。   Further, when the Zn alloy layer has a two-layer structure of an intermediate layer and an outermost layer, the average composition of the intermediate layer is Al: 12% by mass or less, the remaining Zn and impurities. The average composition of the outermost layer is Al: 4 to 6% by mass, the balance Zn and impurities. In this case, 0.1 to 5% by mass of Mg may be included in the outermost layer.

単層構造のZn合金層のAl濃度、及び2層構造の場合の最表層のAl濃度はそれぞれ、4〜6%の範囲とされている。このAl濃度は、ZnとAlの共晶点であるAl濃度5%を中心とする±1%の範囲である。Al量がこの範囲から外れると、耐食性が低下するので好ましくない。   The Al concentration of the single-layer structure Zn alloy layer and the Al concentration of the outermost layer in the case of the two-layer structure are in the range of 4 to 6%, respectively. This Al concentration is in the range of ± 1% centering on 5% Al concentration which is the eutectic point of Zn and Al. If the Al content is out of this range, the corrosion resistance is lowered, which is not preferable.

2層構造の場合の中間層のAl濃度は12質量%以下とされている。中間層は、上述のように第1溶融めっき工程においてFeAl合金層の上に形成されたものである。中間層中のAlは、めっきの凝固前にFeAl合金層の形成に使われるため、中間層のAl濃度はFeAl合金層のAl濃度よりも少なくなる。中間層のAl濃度は、12質量%未満が好ましく、11質量%以下がより好ましく、10質量%以下が更に好ましく、8質量%以下が更に好ましい。中間層のAl濃度の下限は特に制限はないが、0.1質量%以上あればよく、0.5質量%以上あってもよい。中間層のAl濃度が上限を超えると、中間層の耐食性が低下するので好ましくない。   In the case of the two-layer structure, the Al concentration of the intermediate layer is set to 12% by mass or less. As described above, the intermediate layer is formed on the FeAl alloy layer in the first hot dipping process. Since Al in the intermediate layer is used for forming the FeAl alloy layer before the solidification of the plating, the Al concentration in the intermediate layer is lower than the Al concentration in the FeAl alloy layer. The Al concentration of the intermediate layer is preferably less than 12% by mass, more preferably 11% by mass or less, further preferably 10% by mass or less, and further preferably 8% by mass or less. The lower limit of the Al concentration of the intermediate layer is not particularly limited, but may be 0.1% by mass or more, and may be 0.5% by mass or more. If the Al concentration of the intermediate layer exceeds the upper limit, the corrosion resistance of the intermediate layer is lowered, which is not preferable.

また、単層の場合のZn合金層及び2層構造の場合の最表層に、Mgを少量添加することにより、耐食性がより向上する。Mgがそれぞれ上記の上限値を超えると、めっき層が不均一な厚みになり、耐食性が低下する場合があるので好ましくない。   Further, the corrosion resistance is further improved by adding a small amount of Mg to the Zn alloy layer in the case of a single layer and the outermost layer in the case of a two-layer structure. When Mg exceeds the above upper limit value, the plating layer has a non-uniform thickness, which may reduce the corrosion resistance.

Zn合金層の厚みは、1層構造及び2層構造共通で、5μm以上が好ましい。Zn合金層は厚ければ厚いほど耐食性が向上する。厚みの上限は、浸漬溶融めっき法で使用するめっき浴の粘度・被めっき物の構造等によるが、最大で40μm程度である。Zn合金層の厚みが5μm未満では、十分な耐食性が得られない。   The thickness of the Zn alloy layer is preferably 5 μm or more for both the one-layer structure and the two-layer structure. The thicker the Zn alloy layer, the better the corrosion resistance. The upper limit of the thickness depends on the viscosity of the plating bath used in the immersion hot dipping method and the structure of the object to be plated, but is about 40 μm at the maximum. If the thickness of the Zn alloy layer is less than 5 μm, sufficient corrosion resistance cannot be obtained.

また、中間層は、厚みが1μm程度以上あれば存在を確認することができる。最表層は、5μm以上40μm以下であればよい。中間層及び最表層の厚みも大きいほど耐食性がより向上する。   Further, the presence of the intermediate layer can be confirmed if the thickness is about 1 μm or more. The outermost layer may be 5 μm or more and 40 μm or less. The corrosion resistance is further improved as the thickness of the intermediate layer and the outermost layer is increased.

めっき層中に形成されたFeAl合金層、Zn合金層を確認するためには、断面を光学電子顕微鏡で観察して、FeAl合金の組織を観察することで、FeAl合金層とZn合金層とを区別できる。また、Zn合金層が1構造は2層構造かは、めっき層の断面において、Al分布を面分析または線分析で分析することにより区別できる。各層の合金組成は、例えば、グロー放電分光分析法で分析し、組成が安定した領域の値をとることで求めることができる。また、各層の厚みは、顕微鏡観察若しくは構成元素の面分析または線分析、またはグロー放電分析等により求めることができる。めっき層全体の厚みは、電磁膜厚計によって測定できる。また、中間層の存在確認は、めっき層の断面をSEM(走査電子顕微鏡)または光学顕微鏡で観察するか、めっき層断面を元素分析してAl濃度またはZn濃度の分布状態から確認すればよい。   In order to confirm the FeAl alloy layer and Zn alloy layer formed in the plating layer, the cross section is observed with an optical electron microscope, and the structure of the FeAl alloy is observed. Can be distinguished. Further, whether the Zn alloy layer has one structure or two layers can be distinguished by analyzing the Al distribution by surface analysis or line analysis in the cross section of the plating layer. The alloy composition of each layer can be obtained, for example, by analyzing by glow discharge spectroscopy and taking a value in a region where the composition is stable. The thickness of each layer can be determined by microscopic observation, surface analysis or line analysis of constituent elements, glow discharge analysis, or the like. The thickness of the entire plating layer can be measured with an electromagnetic film thickness meter. In addition, the presence of the intermediate layer may be confirmed by observing the cross section of the plating layer with an SEM (scanning electron microscope) or an optical microscope, or by elemental analysis of the cross section of the plating layer and confirming from the distribution state of Al concentration or Zn concentration.

次に、本実施形態の高耐食性めっき鋼材の製造方法について説明する。
本実施形態の製造方法は、上述の通り、鋼材を第1溶融Znめっき浴に浸漬させてから引き上げることで、100μm以上のFeAl合金層を含む層を形成する第1溶融めっき工程と、第1溶融めっき工程後の鋼材にフラックスを塗布するフラックス処理工程と、フラックス処理工程後の鋼材を、第2溶融Znめっき浴に浸漬させてから引き上げる第2溶融めっき工程と、から構成される。
Next, the manufacturing method of the high corrosion resistance plated steel material of this embodiment is demonstrated.
As described above, the manufacturing method of the present embodiment includes a first hot dipping step of forming a layer including a FeAl alloy layer of 100 μm or more by first immersing the steel material in the first hot Zn plating bath and then pulling it up. It comprises a flux treatment step of applying flux to the steel material after the hot dipping step, and a second hot dipping step of lifting the steel material after dipping in the second hot dipping zinc plating bath.

第1溶融めっき工程において使用する第1溶融Znめっき浴は、1〜12質量%のAlを含むZnめっき浴である。また、第2溶融めっき工程において使用する第2溶融めっき浴は、4〜6質量%のAlを含み、かつ浴温が420℃以下にされたZnめっき浴である。
以下、各工程について順次説明する。
The first molten Zn plating bath used in the first molten plating step is a Zn plating bath containing 1 to 12% by mass of Al. The second hot dipping bath used in the second hot dipping step is a Zn plating bath containing 4 to 6% by mass of Al and having a bath temperature of 420 ° C. or lower.
Hereinafter, each process will be described sequentially.

本実施形態では、第1溶融めっき工程において、従来技術の純Znめっき浴に代えて、Zn−Al合金めっき浴を用いることにより、めっき層を形成する。   In the present embodiment, in the first hot dipping process, the plating layer is formed by using a Zn—Al alloy plating bath instead of the pure Zn plating bath of the prior art.

第1溶融めっき浴のAl濃度が大きいと、得られるめっき層そのものの耐食性は向上するが、融点が上昇して浴温が高くなることにより、Fe−Al合金化反応が激しくなり制御が困難になる。また、得られるめっき層中に含まれるZn濃度が小さくなり、犠牲防食効果が薄れる。また、第1溶融めっき浴のAl濃度が小さいと、合金化反応に時間がかかり生産性が低下する。ただし、Zn濃度が上昇するため犠牲防食の効果が向上する。このため、第1溶融めっき浴のAl濃度は1〜12質量%とする。   When the Al concentration of the first hot dipping bath is large, the corrosion resistance of the resulting plating layer itself is improved, but the melting point is increased and the bath temperature is increased, which makes the Fe-Al alloying reaction intense and difficult to control. Become. In addition, the Zn concentration contained in the obtained plating layer is reduced, and the sacrificial anticorrosive effect is reduced. Moreover, when the Al concentration in the first hot dipping bath is small, the alloying reaction takes time and the productivity is lowered. However, since the Zn concentration increases, the effect of sacrificial corrosion protection is improved. For this reason, Al concentration of a 1st hot dipping bath shall be 1-12 mass%.

第1溶融めっき浴の残部はZn及び不純物である。なお、第1溶融めっき浴には、Siが含まれないことが望ましい。Siが100質量ppmを超えると、FeとAlの合金化反応が抑制されて、100μm以上の厚みを有するめっき層が形成できなくなる。   The balance of the first hot dipping bath is Zn and impurities. In addition, it is desirable that the first hot dipping bath does not contain Si. When Si exceeds 100 mass ppm, the alloying reaction of Fe and Al is suppressed, and a plating layer having a thickness of 100 μm or more cannot be formed.

この組成の第1溶融めっき浴で得られためっきの合金層構造は、上述した通り、平均組成がFe:30〜60質量%、Al:15〜30質量%、残部Zn及び不純物よりなり、不定形のFeAl合金相とZn相とを有するAlZn合金層を含むものとなる。   As described above, the alloy layer structure of the plating obtained in the first hot dipping bath having this composition consists of Fe: 30 to 60% by mass, Al: 15 to 30% by mass, the balance Zn and impurities. An AlZn alloy layer having a regular FeAl alloy phase and a Zn phase is included.

第1溶融めっき工程で得られるFeAl合金は、FeZn合金と比較して安定であるため、純Znの浸漬めっきでは困難な100μm以上の厚めっきが容易に得られ、鋼種・浸漬時間・めっき浴温度等の条件によっては200μm以上とすることも可能である。   Since the FeAl alloy obtained in the first hot dipping process is more stable than the FeZn alloy, it is easy to obtain a thick plating of 100 μm or more, which is difficult with pure Zn immersion plating. Depending on the conditions, it may be 200 μm or more.

また、このFeAl合金層の上層には、冷却過程での合金化反応の進行によってめっき浴よりも若干濃度が低下したAlを含むZnめっき構造が得られる。この上層のめっき層が、次の第2溶融めっき工程において残存した場合に、Zn合金めっき層を構成する中間層となる。一方、上層のめっき層のAl濃度が、第2溶融めっき工程において使用するめっき浴の濃度と同程度、すなわちAl濃度が4〜6質量%になった場合は、第2溶融めっき工程時に再溶解することになる。この場合は、最終製品としてのめっき鋼材のめっき層は、FeAl合金層とZn合金層の2層構造になる。   Moreover, a Zn plating structure containing Al having a slightly lower concentration than the plating bath due to the progress of the alloying reaction in the cooling process is obtained on the upper layer of the FeAl alloy layer. When this upper plating layer remains in the next second hot dipping process, it becomes an intermediate layer constituting the Zn alloy plating layer. On the other hand, when the Al concentration of the upper plating layer is about the same as the concentration of the plating bath used in the second hot dipping process, that is, when the Al concentration becomes 4 to 6% by mass, the remelting is performed during the second hot dipping process. Will do. In this case, the plated layer of the plated steel material as the final product has a two-layer structure of an FeAl alloy layer and a Zn alloy layer.

また、第1溶融めっき浴においては、鋼材からFeが溶出してドロスが生成するが、このドロスはめっき浴表面に浮上するため除去が容易であるという点で、従来の一段目を純Znでめっきする2段めっき法に対してメリットがある。   Further, in the first hot dipping bath, Fe is eluted from the steel material and dross is generated. This dross floats on the surface of the plating bath and is easy to remove. There is an advantage over the two-stage plating method of plating.

なお、第1溶融めっき工程前に鋼材表面にフラックス処理を実施することが好ましい。使用するフラックスは、ZnClを主成分とするフラックスであれば特に制限はない。ZnClを主成分とするフラックス以外でよく使用されるNHClは、ZnAl合金浴とは相性が悪いため用いないことが望ましい。 In addition, it is preferable to implement a flux treatment on the steel material surface before the first hot dipping process. Flux used is not particularly limited as long as it is a flux mainly composed of ZnCl 2. NH 4 Cl, which is often used other than the flux mainly composed of ZnCl 2 , is preferably not used because it is incompatible with the ZnAl alloy bath.

第1溶融めっき工程におけるめっき浴温度、浸漬時間は、浸漬にともなう浴温低下も考慮し、被めっき物である鋼材の熱容量や、必要なめっき厚に応じて柔軟に設定する事ができる。ただし、耐食性の観点から、FeAl合金層は犠牲防食よりもバリアー効果の方が大きいため、長時間浸漬により100μm以上の厚い合金層を生成させる必要がある。   The plating bath temperature and immersion time in the first hot dipping process can be set flexibly in accordance with the heat capacity of the steel material to be plated and the required plating thickness in consideration of the bath temperature drop accompanying immersion. However, from the viewpoint of corrosion resistance, the FeAl alloy layer has a larger barrier effect than sacrificial corrosion protection, and thus it is necessary to generate a thick alloy layer of 100 μm or more by long-time immersion.

第1溶融めっき工程で得られためっき層は、めっき条件にもよるが、FeAl合金がめっき表面に露出しやすいために、表面は金属光沢が低い。特にFeAl合金層を成長させて厚めっきとした場合には、FeAl合金の露出面積が大きくなって外観が灰色化し、凹凸が大きくなり表面平滑性も低下することがある。このような、Siを含まないFeAl合金層を厚く生成した浸漬めっきは商業生産されていない。本実施形態では、引き続いて行う第2溶融めっき工程によって、FeAl合金めっき層上に更に別のめっき層を形成することで、上記のFeAl合金層の問題を解消する。   Although the plating layer obtained in the first hot dipping process depends on the plating conditions, the surface is low in metallic luster because the FeAl alloy is easily exposed on the plating surface. In particular, when a thick layer is formed by growing a FeAl alloy layer, the exposed area of the FeAl alloy is increased, the appearance is grayed out, the unevenness is increased, and the surface smoothness may be lowered. Such a dip plating in which a thick FeAl alloy layer containing no Si is produced is not commercially produced. In the present embodiment, the above-described problem of the FeAl alloy layer is solved by forming another plating layer on the FeAl alloy plating layer by the subsequent second hot dipping process.

従来技術の二段めっき法における二段目のめっきは、ZnFe合金層をAlと反応させるためZn融点である420℃より高い温度で行われる。しかしながら、本実施形態では、第1溶融めっき工程で得られためっき層の溶解を防ぐために、第2溶融めっき浴を極力低温にする。第2溶融めっき浴のめっき組成は、ZnAl合金の共晶点である、Zn−5%Al浴が望ましい。現実の操業では、浴中Al濃度を厳密に共晶点に維持することは困難であるため、4〜6質量%程度の範囲に管理することが望ましい。Zn−5%Al浴の融点は約380℃であるため、純Znの融点よりも30℃以上低い。このため、浴温を純Znの融点の420℃以下、望ましくは400℃以下に設定することで、第1溶融めっき工程において形成しためっき層の再溶解を最小限に抑制し、その上にZn−4〜6%Alめっき層を乗せるようにめっきする。   The second-stage plating in the conventional two-stage plating method is performed at a temperature higher than 420 ° C., which is the Zn melting point, in order to react the ZnFe alloy layer with Al. However, in this embodiment, in order to prevent dissolution of the plating layer obtained in the first hot dipping process, the second hot dipping bath is made as low as possible. The plating composition of the second hot dipping bath is preferably a Zn-5% Al bath, which is the eutectic point of the ZnAl alloy. In an actual operation, it is difficult to maintain the Al concentration in the bath strictly at the eutectic point, so it is desirable to manage it in the range of about 4 to 6% by mass. Since the melting point of the Zn-5% Al bath is about 380 ° C., it is lower by 30 ° C. than the melting point of pure Zn. Therefore, by setting the bath temperature to 420 ° C. or lower, preferably 400 ° C. or lower, of the melting point of pure Zn, remelting of the plating layer formed in the first hot dipping process is minimized, and Zn is further formed thereon. Plating is performed so as to place a -4 to 6% Al plating layer.

すなわち、従来技術では前述のように二段めっきによりめっきは薄くなるが、本実施形態では、二段目のめっきによってめっき層が厚くなる。このように、一段目のめっき層が従来の2段めっきの場合より厚く、さらに二段目でこのめっき層がさらに厚くなるため、条件設定にもよるが従来の2段めっき法よりも2倍以上の厚めっきが可能になる。   That is, in the prior art, the plating is thinned by the two-stage plating as described above, but in the present embodiment, the plating layer is thickened by the second-stage plating. In this way, the first plating layer is thicker than in the case of the conventional two-step plating, and the plating layer is further thicker in the second step. The above thick plating becomes possible.

なお、このように、浴温度を融点よりも若干高い程度の温度に限定するため、浴温度が下がるとめっき浴が凝固する可能性がある。このため、現実の操業においては、浴温は400℃以下を基準とするが、鋼材の熱容量とめっき浴の熱容量、鋼材のめっき前の予熱温度の管理が重要になる。   Since the bath temperature is limited to a temperature that is slightly higher than the melting point, the plating bath may solidify when the bath temperature is lowered. For this reason, in actual operation, the bath temperature is based on 400 ° C. or less, but it is important to manage the heat capacity of the steel material, the heat capacity of the plating bath, and the preheating temperature before plating of the steel material.

第2溶融めっき工程の前には、第1溶融めっき工程後の鋼材に対してフラックス処理を行う。第1溶融めっき工程後の鋼材が冷却した後、フラックスを塗布し、乾燥・予熱後に第2溶融めっき工程を行う。この場合、フラックスによく用いられるNHClは、ZnAl合金浴とは相性が悪いため用いないことが望ましい。このため、フラックス処理に使用するフラックスは、ZnClを主成分とするフラックスがよい。フラックス濃度は、第1溶融めっき工程前のフラックス処理よりも薄くしてもよい。 Prior to the second hot dipping process, the steel after the first hot dipping process is subjected to flux treatment. After the steel material after the first hot dipping process is cooled, a flux is applied, and after drying and preheating, a second hot dipping process is performed. In this case, it is desirable not to use NH 4 Cl, which is often used for flux, because it is incompatible with the ZnAl alloy bath. For this reason, the flux used for the flux treatment is preferably a flux containing ZnCl 2 as a main component. The flux concentration may be made thinner than the flux treatment before the first hot dipping process.

第2溶融めっき工程における浸漬時間は10秒以上120秒未満とする。浸漬時間は極力短いほうがよいが、実験によればフラックス反応には最低で5〜10秒は必要であり、鋼材の熱容量によってはさらに時間を要することもある。鋼材の形状によっては秒単位で浸漬時間を制御することは困難になる場合もあるが、鋼材の予熱温度、浴温度を調整することにより極力短時間でめっきを行う。第1溶融めっき工程において得られた表層のAlを含むめっき層は、上述した通り、第2溶融めっき工程のめっき条件によって一部が溶解することもあるため、第2溶融めっき工程の浸漬時間(反応時間)は極力短時間とする。   The immersion time in the second hot dipping process is 10 seconds or more and less than 120 seconds. The immersion time should be as short as possible, but according to experiments, a minimum of 5 to 10 seconds is required for the flux reaction, and more time may be required depending on the heat capacity of the steel material. Depending on the shape of the steel material, it may be difficult to control the immersion time in seconds, but the plating is performed in a short time as much as possible by adjusting the preheating temperature and bath temperature of the steel material. Since the plating layer containing Al of the surface layer obtained in the first hot dipping process may partially dissolve depending on the plating conditions of the second hot dipping process as described above, the immersion time ( The reaction time is as short as possible.

第2溶融めっき工程によって形成されるZn合金層は、通常の浸漬亜鉛めっきによって得られる表層の非合金層(ηZn層)の厚み、あるいは従来技術の二段めっき法における二段目のめっきで形成した表層のめっき層と同様に、その厚みを浸漬条件によって制御することはできず、第2溶融めっき浴の溶融金属の粘度等によって決定される。しかし、本実施形態では、第1溶融めっき工程後のめっき層の表面が平滑でないため、第2溶融めっき浴の溶融金属がめっき表面に保持されやすくなるため、本実施形態のZn合金層は平滑面にめっきする場合よりも、めっき厚は大きくなる。   The Zn alloy layer formed by the second hot dipping process is formed by the thickness of the surface non-alloy layer (ηZn layer) obtained by normal immersion galvanizing or the second plating in the conventional two-step plating method. Like the surface plating layer, the thickness cannot be controlled by the dipping conditions, and is determined by the viscosity of the molten metal in the second hot dipping bath. However, in this embodiment, since the surface of the plating layer after the first hot dipping process is not smooth, the molten metal in the second hot dipping bath is easily held on the plating surface, so the Zn alloy layer of this embodiment is smooth. The plating thickness is larger than when plating on the surface.

第2溶融めっき浴には、亜鉛系めっきの耐食性向上に効果的とされるMgを加える事もできる。第2溶融めっき工程におけるめっきの形成反応は、下地として亜鉛を含むめっき層とZnAl浴である第2溶融めっき浴との反応であるため、最大で5質量%のMgを含む浴でめっきが可能である。このMg添加により、さらに耐食性の向上が可能になる。   Mg, which is effective for improving the corrosion resistance of zinc-based plating, can be added to the second hot dipping bath. The plating formation reaction in the second hot dipping process is a reaction between a plating layer containing zinc as a base and a second hot dipping bath that is a ZnAl bath, so that plating can be performed in a bath containing up to 5% by mass of Mg. It is. This Mg addition can further improve the corrosion resistance.

なお、下地が鋼材であるフラックス方式の浸漬めっき法においてMgを含むめっき浴を使用すると、めっき性が非常に悪いため、不めっき等のめっき欠陥が生じやすくなる。このため、第1溶融めっき浴にMgを添加することは好ましくない。   In addition, when a plating bath containing Mg is used in a flux-type immersion plating method in which the base is a steel material, the plating property is very poor, and thus plating defects such as non-plating are likely to occur. For this reason, it is not preferable to add Mg to the first hot dipping bath.

第2溶融めっき工程後は、得られためっき層の白錆の早期発生を防止するため、Zn系めっきで用いられる一般の化成処理をすることが望ましい。   After the second hot dipping process, it is desirable to carry out a general chemical conversion treatment used in Zn-based plating in order to prevent the occurrence of white rust in the obtained plating layer at an early stage.

以上説明したように、本実施形態の高耐食性めっき鋼材によれば、鋼材表面に、厚さ100μm以上のFeAl合金層と、厚さ5μm以上のZn合金層とからなるめっき層が形成されており、めっき層全体の厚みを大きくでき、かつ、FeAl合金層及びZn合金層の耐食性が優れるので、従来に比べて耐食性が格段に向上しためっき鋼材を実現できる。
また、Zn合金層の平均組成がAl:4〜6質量%、残部Zn及び不純物であり、耐食性に優れた組成を有するので、従来に比べて耐食性が格段に向上しためっき鋼材を実現できる。
また、12質量%以下のAlを有するZn合金からなる中間層と、4〜6質量%のAlを有するZn合金からなる最表層とを備え、中間層、最表層とも耐食性に優れた組成を有するので、従来に比べて耐食性が格段に向上しためっき鋼材を実現できる。
更に、Zn合金層、または、Zn合金層の最表層にMgが含まれるので、Zn合金層、または、Zn合金層の最表層の耐食性をより高めることができる。
As described above, according to the highly corrosion-resistant plated steel material of the present embodiment, a plating layer composed of a FeAl alloy layer having a thickness of 100 μm or more and a Zn alloy layer having a thickness of 5 μm or more is formed on the steel material surface. In addition, since the thickness of the entire plating layer can be increased and the corrosion resistance of the FeAl alloy layer and the Zn alloy layer is excellent, it is possible to realize a plated steel material whose corrosion resistance is significantly improved as compared with the prior art.
Moreover, since the average composition of the Zn alloy layer is Al: 4 to 6% by mass, the remaining Zn and impurities, and has a composition excellent in corrosion resistance, it is possible to realize a plated steel material whose corrosion resistance is significantly improved as compared with the conventional one.
Moreover, it is provided with an intermediate layer made of a Zn alloy having an Al content of 12% by mass or less and an outermost layer made of a Zn alloy having an Al content of 4 to 6% by mass, and both the intermediate layer and the outermost layer have a composition excellent in corrosion resistance. Therefore, it is possible to realize a plated steel material whose corrosion resistance is significantly improved as compared with the conventional case.
Furthermore, since Mg is contained in the outermost layer of the Zn alloy layer or the Zn alloy layer, the corrosion resistance of the outermost layer of the Zn alloy layer or the Zn alloy layer can be further improved.

また、本実施形態の高耐食性めっき鋼材の製造方法によれば、第1溶融めっき工程において鋼材表面にFeAl合金を含む溶融めっき層を形成し、その後、第2溶融めっき工程において浴温を420℃以下に調整したZnめっき浴に鋼材を浸漬させて、Alを含むZn合金からなる溶融めっき層を形成する。この際、第2溶融めっき工程では、浴温が420℃以下とされているので、第1溶融めっき工程において形成した溶融めっき層は、ごく表層が溶融する場合もあれば、ほとんど溶融しない場合もある。従って、第1溶融めっき工程において形成した溶融めっき層の厚みを減少させることなく、第2溶融めっき工程において溶融めっき層を更に形成でき、全体として膜厚のめっき層を形成できる。
上記の方法によって得られたFeAl合金を含む溶融めっき層と、Alを含むZn合金からなる溶融めっき層はそれぞれ、耐食性に優れためっき層となる。
更に、第2溶融めっき工程において鋼材の浸漬時間を10秒以上120秒以下の範囲とするので、最初に形成した溶融めっき層の溶解を防止しつつ、Zn合金からなる溶融めっき層を形成できる。
また、第2溶融めっき浴にMgが含まれるので、Zn合金からなる溶融めっき層の耐食性をより高めることができる。
Moreover, according to the manufacturing method of the highly corrosion-resistant plated steel material of the present embodiment, the hot-dip plated layer containing the FeAl alloy is formed on the steel material surface in the first hot-dip process, and then the bath temperature is 420 ° C. in the second hot-dip process. A steel material is immersed in a Zn plating bath adjusted as follows to form a hot-dip plating layer made of a Zn alloy containing Al. At this time, since the bath temperature is set to 420 ° C. or lower in the second hot dipping process, the hot dipped layer formed in the first hot dipping process may melt the surface layer or may hardly melt. is there. Therefore, without reducing the thickness of the hot dip plating layer formed in the first hot dip plating step, the hot dip plating layer can be further formed in the second hot dip plating step, and a plating layer having a film thickness as a whole can be formed.
The hot dip plating layer containing the FeAl alloy obtained by the above method and the hot dip plating layer made of the Zn alloy containing Al each become a plating layer excellent in corrosion resistance.
Furthermore, since the immersion time of the steel material is set in the range of 10 seconds to 120 seconds in the second hot dipping step, a hot dipped layer made of a Zn alloy can be formed while preventing the hot dipping layer formed first from being dissolved.
Moreover, since Mg is contained in the second hot dipping bath, the corrosion resistance of the hot dipped layer made of a Zn alloy can be further improved.

本発明の内容について、実施例にもとづいて詳細に説明する。
本実施例では、被めっき材は、150mm×70mm×6.0mmの黒皮付熱延鋼板切板(SS400)を用いた。鋼板を市販のアルカリ性脱脂剤により表面洗浄後、40℃の10%HCl水溶液に約5分間浸漬して表面のスケールを除去し、60℃の熱水で洗浄後、60℃のフラックス(ZnCl/NaCl/SnCl=210/25/6(g/L))に約1分間浸漬し、200℃の加熱炉で大気雰囲気下5分間加熱乾燥した。
The contents of the present invention will be described in detail based on examples.
In this example, the material to be plated was a hot-rolled steel sheet with black skin (SS400) of 150 mm × 70 mm × 6.0 mm. The steel sheet was cleaned with a commercially available alkaline degreasing agent, then immersed in a 10% HCl aqueous solution at 40 ° C. for about 5 minutes to remove the scale on the surface, washed with hot water at 60 ° C., and then washed with 60 ° C. flux (ZnCl 2 / It was immersed in NaCl / SnCl 2 = 210/25/6 (g / L) for about 1 minute, and heat-dried in an atmosphere at 200 ° C. for 5 minutes in an air atmosphere.

この鋼板を、Zn−Al(−Mg)めっき浴(第1溶融亜鉛めっき浴(一段目のめっき浴))に所定時間浸漬してめっきした後、引き上げ、自然放冷し、めっきが完全に凝固した後に水冷した。このめっき後の鋼板を、一段目と同じ条件でフラックスに10秒浸漬し、200℃の加熱炉で大気雰囲気下5分間加熱乾燥した後、Zn−Al(−Mg)めっき浴(第2溶融亜鉛めっき浴(二段目のめっき浴))に所定時間浸漬してめっきした後、引き上げ、冷却した。   The steel sheet is immersed in a Zn—Al (—Mg) plating bath (first hot dip galvanizing bath (first stage plating bath)) for a predetermined time, and then pulled up, allowed to cool naturally, and the plating is completely solidified. And then water cooled. The plated steel sheet is immersed in a flux for 10 seconds under the same conditions as the first stage, and is heated and dried in a 200 ° C. heating furnace in an air atmosphere for 5 minutes, and then a Zn—Al (—Mg) plating bath (second molten zinc). After being immersed in a plating bath (second-stage plating bath) for a predetermined time and plated, it was pulled up and cooled.

めっき厚は、一段めっき後は電磁膜厚計により測定し、二段めっき完了後は断面組織の光学顕微鏡により測定した。結果は10μm単位で記録した。(「中間層厚:0μm」は、中間層を顕微鏡観察で確認できなかったことを示す)また、めっき層の組成は、グロー放電分光分析法で分析し、組成が安定した領域の値をとった。   The plating thickness was measured with an electromagnetic film thickness meter after the first stage plating, and was measured with an optical microscope having a cross-sectional structure after the completion of the second stage plating. Results were recorded in units of 10 μm. (“Intermediate layer thickness: 0 μm” indicates that the intermediate layer could not be confirmed by microscopic observation.) The composition of the plating layer was analyzed by glow discharge spectroscopy, and the value of the region where the composition was stable was taken. It was.

得られためっき鋼板は、外観と耐食性を評価した。外観(表面性状)は目視判定で評価し、耐食性はサイクル腐食試験であるJASO M609−91により目視で錆発生を評価した。なお、「点状赤錆」は直径1〜2mm以下の赤錆、「全面赤錆」は試験面の面積にして50%以上が赤錆を生じている状態である。   The obtained plated steel sheet was evaluated for appearance and corrosion resistance. Appearance (surface properties) was evaluated by visual judgment, and corrosion resistance was evaluated visually by JASO M609-91, which is a cyclic corrosion test. “Spotted red rust” is a red rust having a diameter of 1 to 2 mm or less, and “entire red rust” is a state where 50% or more of the test surface has red rust.

表1に、めっき鋼板の詳細なめっき条件と、1段目のめっき層のめっき厚に対する二段めっき後のめっき層全体の厚みの増減の調査結果を示す。また、表2に、めっき層の組成と外観・耐食性の調査結果を表2に示す。   Table 1 shows the detailed plating conditions of the plated steel sheet and the investigation results of the increase / decrease in the thickness of the entire plated layer after the second plating with respect to the plating thickness of the first plating layer. Table 2 shows the results of the investigation of the composition of the plating layer and the appearance and corrosion resistance.

表1から、二段目のめっき条件が420℃以下、かつ浸漬時間が120秒以下の場合に、2段めっきによって一段目のめっきの上層めっきを消失させず、かつめっきを厚くできることがわかる。   From Table 1, it can be seen that when the second stage plating condition is 420 ° C. or lower and the immersion time is 120 seconds or shorter, the upper layer plating of the first stage plating is not lost by the second stage plating and the plating can be thickened.

表2から、めっき厚が100μm以上あることが高い耐食性を得る条件であることがわかる。実施例の中には早期に点状赤錆が発生しているものもあるが、めっきが厚い場合にはこの赤錆の広がり方が非常に緩慢であることが本実施形態のめっき層の特徴であり、連続めっきされた高耐食めっき鋼板とは腐食挙動が異っている。また、実施例には中間層が存在するもの(No.1〜14、20〜23)と存在しないもの(No.15〜19)があるが、いずれの場合であっても良好な耐食性を示している。また、No.32は一段目のめっき層が純Znめっき層であるため、犠牲防食性がある一方でバリア性が低いため、赤錆が全面に発生していた。なお、腐食試験片の断面組織の顕微鏡観察により、「点状赤錆」は合金層に起因するものであり鋼は腐食していないこと、「全面赤錆」では鋼の腐食が始まっていることが確認された。   From Table 2, it can be seen that a plating thickness of 100 μm or more is a condition for obtaining high corrosion resistance. Some of the examples have point-like red rust occurring at an early stage, but when the plating is thick, it is a feature of the plating layer of this embodiment that the red rust spreads very slowly. The corrosion behavior is different from that of the continuously plated high corrosion-resistant plated steel sheet. Moreover, although an Example has what has an intermediate | middle layer (No.1-14, 20-23) and what does not exist (No.15-19), even if it is any case, favorable corrosion resistance is shown. ing. No. In No. 32, since the first plating layer was a pure Zn plating layer, it had sacrificial anticorrosion properties but low barrier properties, and thus red rust was generated on the entire surface. In addition, it was confirmed by microscopic observation of the cross-sectional structure of the corrosion test piece that “dotted red rust” was caused by the alloy layer and that the steel was not corroded, and that “corrosion of the steel was started in“ entire red rust ”. It was done.

図1及び図2には、No.15のめっき鋼材の断面光学顕微鏡写真を示す。図1は、1段目のめっき後のめっき層の断面写真であり、図2は2段目のめっき後の断面写真である。図1に示すように、一段目のめっき工程では、鋼材A上に1段目のFeAl合金層Bが形成され、その表層にはFeAl合金層よりもAl濃度が低い表層めっきCが形成されていることがわかる。FeAl合金層Bには、複数の相が含まれていることがわかる。また、表層めっきCは、FeAl合金層Bとは明らかに異なる金属組織を有していることがわかる。また、図2に示すように、2段目のめっき工程によって、一段目のFeAl合金層Aの上に、二段目のZn合金層Dが形成されていることがわかる。図2によれば、二段目のZn合金層Dに比較的大きな塊状の相が含まれることを確認でき、FeAl合金層Aに対して組織形態が異なっていることが光学顕微鏡写真から判別される。このように、光学顕微鏡写真からZn合金層DとFeAl合金層Aとの判別が可能であることが示されている。
1 and FIG. The cross-sectional optical microscope photograph of 15 plated steel materials is shown. FIG. 1 is a cross-sectional photograph of the plated layer after the first-stage plating, and FIG. 2 is a cross-sectional photograph after the second-stage plating. As shown in FIG. 1, in the first stage plating step, a first stage FeAl alloy layer B is formed on the steel material A, and a surface layer plating C having a lower Al concentration than the FeAl alloy layer is formed on the surface layer. I understand that. It can be seen that the FeAl alloy layer B includes a plurality of phases. Further, it can be seen that the surface plating C has a metal structure clearly different from that of the FeAl alloy layer B. In addition, as shown in FIG. 2, it can be seen that the second-stage Zn alloy layer D is formed on the first-stage FeAl alloy layer A by the second-stage plating step. According to FIG. 2, it can be confirmed that the second stage Zn alloy layer D contains a relatively large block phase, and it is determined from the optical micrograph that the structure form is different from that of the FeAl alloy layer A. The Thus, it is shown from the optical micrograph that the Zn alloy layer D and the FeAl alloy layer A can be distinguished.

Claims (8)

鋼材表面に、FeAl合金層とZn合金層とを含むめっき層が備えられ、
前記FeAl合金層は、前記鋼材表面に形成され、FeAl合金相とZn相とを含み、平均組成がFe:30〜60質量%、Al:15〜30質量%、残部Zn及び不純物であり、厚さが100μm以上であり、
前記Zn合金層は、前記FeAl合金層上に形成され、Alと残部Zn及び不純物からなり、厚さ5μm以上である高耐食性めっき鋼材。
The steel material surface is provided with a plating layer including a FeAl alloy layer and a Zn alloy layer,
The FeAl alloy layer is formed on the surface of the steel material, includes an FeAl alloy phase and a Zn phase, has an average composition of Fe: 30 to 60% by mass, Al: 15 to 30% by mass, the balance Zn and impurities, Is 100 μm or more,
The Zn alloy layer is a highly corrosion-resistant plated steel material formed on the FeAl alloy layer, made of Al, the balance Zn and impurities, and having a thickness of 5 μm or more.
前記Zn合金層は、平均組成がAl:4〜6質量%、残部Zn及び不純物であることを特徴とする請求項1記載の高耐食性めっき鋼材。   The high corrosion-resistant plated steel material according to claim 1, wherein the Zn alloy layer has an average composition of Al: 4 to 6% by mass, the balance Zn and impurities. 前記Zn合金層は、
前記FeAl合金層上に形成され、平均組成がAl:12質量%以下、残部Zn及び不純物である中間層と、
前記中間層上に形成され、平均組成がAl:4〜6質量%、残部Zn及び不純物である最表層と、を含む
請求項1記載の高耐食性めっき鋼材。
The Zn alloy layer is
An intermediate layer formed on the FeAl alloy layer and having an average composition of Al: 12% by mass or less, the balance Zn and impurities;
The high corrosion-resistant plated steel material according to claim 1, comprising: an outermost layer formed on the intermediate layer and having an average composition of Al: 4 to 6% by mass, the balance Zn and impurities.
前記Zn合金層に更に、0.1〜3質量%のMgが含まれる請求項2に記載の高耐食性めっき鋼材。   The high corrosion-resistant plated steel material according to claim 2, wherein the Zn alloy layer further contains 0.1 to 3% by mass of Mg. 前記最表層に更に、0.1〜5質量%のMgが含まれる請求項3に記載の高耐食性めっき鋼材。   The high corrosion-resistant plated steel material according to claim 3, wherein the outermost layer further contains 0.1 to 5 mass% of Mg. 鋼材を、1〜12質量%のAlを含む第1溶融Znめっき浴に浸漬させてから引き上げることで、100μm以上のFeAl合金層を含む層を形成する第1溶融めっき工程と、
前記第1溶融めっき工程後の前記鋼材に、フラックスを塗布するフラックス処理工程と、
前記フラックス処理工程後の前記鋼材を、4〜6質量%のAlを含み、かつ浴温が420℃以下にされた第2溶融Znめっき浴に浸漬させてから引き上げる第2溶融めっき工程と、
を備えた高耐食性めっき鋼材の製造方法。
A first hot dipping step of forming a layer containing an FeAl alloy layer of 100 μm or more by immersing the steel material in a first hot Zn plating bath containing 1 to 12% by mass of Al;
A flux treatment step of applying a flux to the steel material after the first hot dipping step;
A second hot dipping process in which the steel material after the flux treatment process is dipped in a second hot dipped Zn plating bath containing 4 to 6% by mass of Al and having a bath temperature of 420 ° C. or lower;
A method for producing a highly corrosion-resistant plated steel material comprising:
前記第2溶融めっき工程において、前記鋼材の前記第2溶融Znめっき浴への浸漬時間を10秒以上120秒以下の範囲とする請求項6に記載の高耐食性めっき鋼材の製造方法。   The method for producing a highly corrosion-resistant plated steel material according to claim 6, wherein, in the second hot dipping step, the immersion time of the steel material in the second hot dipped Zn plating bath is in the range of 10 seconds to 120 seconds. 前記第2溶融Znめっき浴に更に、0.1〜5質量%のMgが含まれる請求項6または請求項7に記載の高耐食性めっき鋼材の製造方法。   The method for producing a highly corrosion-resistant plated steel material according to claim 6 or 7, wherein 0.1 to 5% by mass of Mg is further contained in the second molten Zn plating bath.
JP2015126811A 2015-06-24 2015-06-24 High corrosion resistance plated steel material and method for producing the same Active JP6468493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015126811A JP6468493B2 (en) 2015-06-24 2015-06-24 High corrosion resistance plated steel material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015126811A JP6468493B2 (en) 2015-06-24 2015-06-24 High corrosion resistance plated steel material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017008390A true JP2017008390A (en) 2017-01-12
JP6468493B2 JP6468493B2 (en) 2019-02-13

Family

ID=57762844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015126811A Active JP6468493B2 (en) 2015-06-24 2015-06-24 High corrosion resistance plated steel material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6468493B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178137A (en) * 2017-04-03 2018-11-15 新日鐵住金株式会社 Plated steel material having excellent anticorrosion property

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693471A (en) * 1992-07-02 1994-04-05 Kiyoshi Suzuki Hot dip zincing lead plating method for steel
JPH07216525A (en) * 1994-01-26 1995-08-15 Tanaka Aen Mekki Kk Alloy structure in hot dip zinc-aluminum alloy coating film in structural steel material
JP2002020850A (en) * 2000-03-31 2002-01-23 Nippon Steel Corp Plated steel material having high corrosion resistance and excellent in workability, and its manufacturing method
JP2009024210A (en) * 2007-07-18 2009-02-05 Tokyo Seiko Co Ltd Hot-dip zinc alloy plated steel wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693471A (en) * 1992-07-02 1994-04-05 Kiyoshi Suzuki Hot dip zincing lead plating method for steel
JPH07216525A (en) * 1994-01-26 1995-08-15 Tanaka Aen Mekki Kk Alloy structure in hot dip zinc-aluminum alloy coating film in structural steel material
JP2002020850A (en) * 2000-03-31 2002-01-23 Nippon Steel Corp Plated steel material having high corrosion resistance and excellent in workability, and its manufacturing method
JP2009024210A (en) * 2007-07-18 2009-02-05 Tokyo Seiko Co Ltd Hot-dip zinc alloy plated steel wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178137A (en) * 2017-04-03 2018-11-15 新日鐵住金株式会社 Plated steel material having excellent anticorrosion property

Also Published As

Publication number Publication date
JP6468493B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP7359894B2 (en) Zinc alloy plated steel material with excellent weldability and corrosion resistance of processed parts and method for manufacturing the same
JP4584179B2 (en) Method for producing hot-dip Zn-Al alloy-plated steel sheet with excellent corrosion resistance and workability
TWI431156B (en) Magnesium-based alloy plating steel
TWI425116B (en) Corrosion resistance of the molten Zn-Al-Mg-Si-Cr alloy plating steel
JP5404126B2 (en) Zn-Al plated steel sheet with excellent corrosion resistance and method for producing the same
CN117987688A (en) Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same
KR101665883B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND BENDABILITY AND METHOD FOR MANUFACTURING SAME
WO2014068889A1 (en) Hot-dip galvanized steel sheet
WO2014091724A1 (en) Hot-dip-galvanized steel sheet
JP2020143370A (en) HOT-DIP Al-Zn-Mg-Si BASED PLATING STEEL SHEET AND MANUFACTURING METHOD THEREOF, AND COATED STEEL SHEET AND MANUFACTURING METHOD THEREOF
JP5601771B2 (en) Multi-layer plated steel sheet and manufacturing method thereof
JP4970231B2 (en) Hot-dip galvanized steel and its manufacturing method
RU2766611C1 (en) Method of producing a steel strip with improved adhesion of hot-dipped metal coatings
JP2022513143A (en) Galvanized steel sheet with excellent plating adhesion and corrosion resistance and its manufacturing method
JP2007107050A (en) HOT DIP Al BASED PLATED STEEL SHEET HAVING EXCELLENT WORKABILITY AND METHOD FOR PRODUCING THE SAME
JP6468493B2 (en) High corrosion resistance plated steel material and method for producing the same
KR20150073314A (en) HOT DIP Zn-BASED ALLOY COATING BATH COMPRISING CALCIUM OXIDE, HOT DIP Zn-BASED ALLOY COATED STEEL SHEET AND METHOD FOR PREPARING THE SAME
CA2869838C (en) Hot-dip galvanized steel pipe and method of manufacturing the same
JP4834922B2 (en) Method for producing hot-dip galvanized steel sheet
JP6468492B2 (en) Flux for pre-plating of steel and method for producing plated steel
KR101629260B1 (en) Composition for hot dipping bath
JP6772724B2 (en) Plated steel with excellent corrosion resistance
JP6131774B2 (en) Hot-dip galvanized steel material with excellent corrosion resistance and method for producing the same
KR101568527B1 (en) HOT DIP Zn-BASED ALLOY COATING BATH AND HOT DIP Zn-BASED ALLOY COATED STEEL SHEET
JP7290757B2 (en) Plated steel wire and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181015

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190103

R151 Written notification of patent or utility model registration

Ref document number: 6468493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350