JP2007107050A - HOT DIP Al BASED PLATED STEEL SHEET HAVING EXCELLENT WORKABILITY AND METHOD FOR PRODUCING THE SAME - Google Patents

HOT DIP Al BASED PLATED STEEL SHEET HAVING EXCELLENT WORKABILITY AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2007107050A
JP2007107050A JP2005299075A JP2005299075A JP2007107050A JP 2007107050 A JP2007107050 A JP 2007107050A JP 2005299075 A JP2005299075 A JP 2005299075A JP 2005299075 A JP2005299075 A JP 2005299075A JP 2007107050 A JP2007107050 A JP 2007107050A
Authority
JP
Japan
Prior art keywords
plating
steel sheet
bath
plated steel
dip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005299075A
Other languages
Japanese (ja)
Other versions
JP4751168B2 (en
Inventor
Jun Maki
純 真木
Masao Kurosaki
将夫 黒崎
Hiroyuki Tanaka
博之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005299075A priority Critical patent/JP4751168B2/en
Publication of JP2007107050A publication Critical patent/JP2007107050A/en
Application granted granted Critical
Publication of JP4751168B2 publication Critical patent/JP4751168B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the workability and corrosion resistance after working in an Al plated steel sheet by reducing the thickness of an alloy layer upon the production of the Al plated steel sheet. <P>SOLUTION: In the method for producing a hot dip Al plated steel sheet having excellent workability, when a steel sheet is subjected to continuous hot dip Al plating, the content (mass%) of Si in an Al plating bath and bath temperature (°C) are allowed to satisfy the inside of a quadrilateral ABCD shown by the following, and the bath temperature is defined as T°C, the content of Fe in the Al plating bath is controlled to 0.03T-17.6 mass% or above: A (4.2%, 635°C), B (7%, 635°C), C (10%, 680°C), D (6.5%, 680°C). According to this invention, the reduction of unplating is simultaneously made possible. Further, the production of the hot dip Al plated steel sheet having extremely excellent characteristics overall is made possible. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、屋根壁等の金属建材、家庭用、産業用電気器具、自動車の排気系部材、燃料タンク材等に使用される、耐食性、耐熱性に優れた溶融Al系めっき鋼板及びその製造方法に関する。   The present invention relates to a molten Al-based plated steel sheet having excellent corrosion resistance and heat resistance used for metal building materials such as roof walls, household and industrial electrical appliances, automobile exhaust system members, fuel tank materials, and the like, and a method for producing the same. About.

一般に、溶融Alめっき鋼板は、高い耐蝕性と耐熱性、美しい外観等から、自動車部品、建材、家電部品等に広範に使用されている。鋼帯を連続的にめっきする、連続溶融めっきプロセスとして古くは酸化炉方式が用いられていた。これは酸化炉で鋼板表面を弱く酸化させ、続く還元炉内で還元して表面のAlめっき浴との反応性を上げるものである。しかし、この方法では還元炉内での反応時間が必要なためにラインスピードを上げることができなかった。このため無酸化炉方式と呼ばれる、燃焼雰囲気中で極く弱く酸化させる方式が採用された。これによってラインスピード(生産性)を向上させることが可能になり、一般的な製造方法となった。   In general, a hot-dip Al-plated steel sheet is widely used in automobile parts, building materials, home appliance parts, and the like because of its high corrosion resistance, heat resistance, beautiful appearance, and the like. In the old days, an oxidation furnace method was used as a continuous hot dipping process for continuously plating steel strips. In this method, the surface of the steel sheet is weakly oxidized in an oxidation furnace and then reduced in a subsequent reduction furnace to increase the reactivity with the Al plating bath on the surface. However, in this method, the reaction time in the reduction furnace is required, so the line speed cannot be increased. For this reason, a method called a non-oxidizing furnace method that oxidizes extremely weakly in a combustion atmosphere was adopted. This makes it possible to improve the line speed (productivity) and has become a general manufacturing method.

この無酸化炉方式においては、無酸化炉内で弱く酸化した際のスケールが炉内のロール等にピックアップして鋼板に疵をつける懸念があり、厳しい外観品位が求められる合金化Znめっき鋼板等の自動車外板の製造方法としては替わってRTF(Radiant Tube Furnace)法が用いられるようになった。これはラインの前面に脱脂設備を備え、脱脂された鋼板を還元炉内で加熱するもので、この方法により、スケール起因の疵を撲滅することが可能となった。この方法は設備が大型になる傾向があり初期設備費用が大きくなるために、外観品位を要求される用途に適用される。溶融Alめっき鋼板の最大用途は自動車の排気系部材であり、この用途で外観に求められる品位はそう高くないため、無酸化炉方式で製造されることも多い。   In this non-oxidizing furnace method, there is a concern that the scale when weakly oxidized in the non-oxidizing furnace is picked up by a roll or the like in the furnace and scratches the steel sheet, and alloyed Zn-plated steel sheet that requires a strict appearance quality, etc. Instead of this, the RTF (Radiant Tube Furnace) method has come to be used instead. This is equipped with a degreasing equipment in front of the line and heats the degreased steel sheet in a reduction furnace, and this method makes it possible to eliminate scale-induced wrinkles. Since this method tends to increase the size of the equipment and increases the initial equipment cost, it is applied to applications that require appearance quality. The maximum use of the hot-dip Al-plated steel sheet is an automobile exhaust system member, and since the quality required for appearance in this application is not so high, it is often manufactured by a non-oxidation furnace method.

ところで、一般的に溶融Alめっきは溶融Znめっきと比べて不めっきと呼ばれる微小な未被覆部が生じる欠陥が起こりやすい傾向にある。これは溶融Al自体の有する表面エネルギーが比較的高いことと、Alが極めて酸素、窒素、水素等のガス成分との親和性が高く溶融Al表面にこれらガス成分との化合物を形成して鋼板が溶融Al中に浸漬される際に巻き込みやすいことが原因として挙げられる。このため不めっきをなくすために様々な改善が図られてきた。例えば特開昭61−190056号公報(特許文献1)にはスナウトと呼ばれる鋼板のめっき浴への侵入部の雰囲気を制御する技術が開示されている。   By the way, generally, hot-dip Al plating tends to cause a defect in which a minute uncoated portion called non-plating is likely to occur as compared with hot-dip Zn plating. This is because the surface energy of the molten Al itself is relatively high, and Al has a very high affinity with gas components such as oxygen, nitrogen, hydrogen, etc., and a compound with these gas components is formed on the surface of the molten Al to form a steel sheet. The reason is that it is easy to be caught when immersed in molten Al. For this reason, various improvements have been made to eliminate non-plating. For example, Japanese Patent Laid-Open No. 61-190056 (Patent Document 1) discloses a technique for controlling the atmosphere of a penetration portion of a steel plate called snout into a plating bath.

また、近年においてはCr含有鋼、ステンレス鋼へAlめっきするニーズも高まり、より不めっき等の表面欠陥の起こりやすいこれらの原板を使用した際にも不めっきを抑制する技術として、Fe、Ni等のプレめっきを施す技術として、特開平1−28341号公報(特許文献2)、焼鈍炉内の水素濃度を上昇する技術として、特開平7−286252号公報(特許文献3)、CGLの操業条件を適正化する技術として、特開平5−311380号公報(特許文献4)等がこれまで開発されてきた。   In recent years, the need for Al plating on Cr-containing steels and stainless steels has increased, and as a technology for suppressing non-plating even when these original plates that are more prone to surface defects such as non-plating are used, Fe, Ni, etc. JP-A-1-28341 (Patent Document 2) as a technology for pre-plating, and JP-A-7-286252 (Patent Document 3) as a technology for increasing the hydrogen concentration in the annealing furnace, operating conditions of CGL JP-A-5-31380 (Patent Document 4) has been developed as a technique for optimizing the above.

加えて溶融Alめっき鋼板の大きな課題として、Alめっき層と鋼板の界面に生成する金属間化合物層(以下、合金層と称する)がZnめっき鋼板等と比べて厚く、厳しい加工に耐えられないという点が挙げられる。この合金層は一般に極めて硬質でかつ脆性であるために加工した場合に破壊の起点となり、かつこの起点よりAlめっき層の割れが惹き起こされるという問題がある。更に、この合金層の破壊が甚だしい場合には界面の密着力を失いAlめっき層の剥離に至る。自動車燃料タンク材のような複雑な成形が必要な場合には、特開2001−19902号公報(特許文献5)に開示されているように、表面に潤滑皮膜を施すことで成形しているが、Alめっき層内部に発生するクラックまでも完全に抑制できるわけではなく、Alめっき側からの改善が求められている。   In addition, as a major problem with hot-dip Al-plated steel sheets, the intermetallic compound layer (hereinafter referred to as alloy layer) generated at the interface between the Al-plated layer and the steel sheet is thicker than Zn-plated steel sheets, and cannot withstand severe processing. A point is mentioned. Since this alloy layer is generally extremely hard and brittle, there is a problem that when it is processed, it becomes a starting point of fracture, and cracks of the Al plating layer are caused from this starting point. Further, when the alloy layer is severely broken, the adhesion at the interface is lost and the Al plating layer is peeled off. When complicated molding is required, such as automobile fuel tank material, it is molded by applying a lubricating film to the surface as disclosed in Japanese Patent Laid-Open No. 2001-19902 (Patent Document 5). Further, even cracks generated in the Al plating layer cannot be completely suppressed, and improvement from the Al plating side is demanded.

特開昭61−190056号公報Japanese Patent Laid-Open No. 61-190056 特開平1−28341号公報Japanese Patent Laid-Open No. 1-28341 特開平7−286252号公報JP 7-286252 A 特開平5−311380号公報JP-A-5-31380 特開2001−19902号公報Japanese Patent Laid-Open No. 2001-19902 特開2000−239819号公報JP 2000-239819 A

本発明は、上記に鑑み、Alめっき鋼板を製造する際の合金層の厚みも減じる技術を開示するものである。また、このとき副次的な作用として不めっきの発生も抑制することが可能で、総合的に極めて優れた特性を有する溶融Alめっき鋼板を製造することを可能とする。   In view of the above, the present invention discloses a technique for reducing the thickness of an alloy layer when manufacturing an Al-plated steel sheet. Moreover, it is possible to suppress the occurrence of non-plating as a secondary action at this time, and it is possible to manufacture a hot-dip Al-plated steel sheet having extremely excellent characteristics overall.

本発明者らは多くの実験事実に熱力学的な検討を加えることで以下の知見を得た。
すなわち、溶融Alめっき工程において極めて合金層が成長しやすいために、通常浴中にSiが添加されている。これにより生成する合金層がAl−Fe系からAl−Fe−Si系に変化してその成長速度が小さくなるとされている。添加されるSi量は通常10%程度が多い。しかし、本発明者らはAl−Fe−Si系の状態図の解析より最適なSi量を明確にしたものである。なお、特開2000−239819号公報(特許文献6)においても同様に、Al−Fe−Si系状態図より適正条件を提示しているが、θ相と平衡する条件が最適であるという開示であり、その内容が本発明とは全く異なることを付記する。
The present inventors obtained the following knowledge by adding thermodynamic examination to many experimental facts.
That is, since an alloy layer is very easy to grow in the hot Al plating process, Si is usually added to the bath. It is said that the alloy layer produced thereby changes from the Al—Fe system to the Al—Fe—Si system and its growth rate decreases. The amount of Si added is usually about 10%. However, the present inventors have clarified the optimum amount of Si from the analysis of the phase diagram of the Al—Fe—Si system. Similarly, Japanese Patent Application Laid-Open No. 2000-239819 (Patent Document 6) also presents appropriate conditions from the Al—Fe—Si phase diagram, but it is disclosed that the conditions for equilibration with the θ phase are optimal. It is noted that the contents are completely different from the present invention.

図1に650℃におけるAl−Fe−Si三元状態図(Thermo−calcによる計算図)を示す。Siを含有しないAl−Fe二元反応ではθ(FeAl3 )、Fe2 Al5 、FeAl2 の3種類のFe−Al金属間化合物が生成しうる。Al浴にSiを添加すると生成する金属間化合物はα,βの2種類がありうることを示している。α相はτ5あるいは〔AlFeSi〕H等と標記されることがある相で、その結晶構造は六方晶である。 FIG. 1 shows an Al—Fe—Si ternary phase diagram (calculated by Thermo-calc) at 650 ° C. In the Al—Fe binary reaction not containing Si, three types of Fe—Al intermetallic compounds of θ (FeAl 3 ), Fe 2 Al 5 , and FeAl 2 can be generated. It shows that there can be two types of intermetallic compounds, α and β, when Si is added to the Al bath. The α phase is a phase sometimes denoted as τ5 or [AlFeSi] H, and its crystal structure is hexagonal.

また、その組成は図1から分かるように約60%Fe、約9%Si、残部Alから成る。β相はτ6あるいは〔AlFeSi〕M相とも記述され,単斜晶の構造を有する。その組成は約60%Fe、約15%Si、残部Alである。これら化合物の明確な化学式は明らかとなっていない。θ相はFeAl3 という化学式を有する相で、Siを含有しない相である。 As can be seen from FIG. 1, the composition is composed of about 60% Fe, about 9% Si, and the balance Al. The β phase is also described as τ6 or [AlFeSi] M phase and has a monoclinic structure. Its composition is about 60% Fe, about 15% Si, and the balance Al. The clear chemical formula of these compounds is not clear. The θ phase is a phase having a chemical formula of FeAl 3 and does not contain Si.

Al−10%Siと鋼板(Fe)が反応する時には、図1のAl−10%SiとFeを結ぶ線によりその反応は表される。しかし、Al−10%SiとFeを結ぶ線はα+L、β+Lの境界付近を通り、この状態ではα,βのどちらがAlめっきの合金層として生成するかは明らかではない。Si濃度が高いとβ相が、Si濃度が低いとα相が生成しやすくなることがこの図より見てとれるため、浴中Si量を変えて実験したところ、合金層をα相にしたときにめっき濡れ性は向上し、合金層の成長は抑制されるという結果を得た。α相、β相の化学式、物性等は明確となっていないため、この理由は不明確であるが、この系においては金属間化合物中の空孔濃度が高いことが知られており、α相とβ相の間では空孔濃度に差があるために拡散挙動が異なるものと推定される。更にα相の方が生成自由エネルギー上安定なために濡れ性も向上させているものと考えている。   When Al-10% Si reacts with a steel plate (Fe), the reaction is represented by a line connecting Al-10% Si and Fe in FIG. However, the line connecting Al-10% Si and Fe passes near the boundaries of α + L and β + L, and it is not clear which of α and β is produced as an Al plating alloy layer in this state. It can be seen from this figure that the β phase is likely to be generated when the Si concentration is high, and the α phase is likely to be generated when the Si concentration is low. As a result, the plating wettability was improved and the growth of the alloy layer was suppressed. The reason for this is unclear because the chemical formula and physical properties of the α phase and β phase are not clear, but it is known that the void concentration in the intermetallic compound is high in this system. It is presumed that the diffusion behavior differs due to the difference in the pore concentration between the β and β phases. Further, the α phase is considered to have improved wettability because it is more stable in terms of free energy of formation.

更に、このような状態図を温度を変えて計算することにより、α相とβ相の安定性は浴中Si量のみならず温度にも依存していることが確認された。温度、Si量を変えたときに生成する合金層がどのように変わるかを計算した状態図より読み取ったものが図2である。この図よりα相が合金層となる領域が分かる。しかし、実際にはこのα相が合金層となる領域全てで操業することは困難である。すなわち、浴温が低すぎると浴の粘度が高くなってめっき付着量の制御が困難になる。一方、浴温が高すぎると浴中機器の溶損が激しく、頻繁な交換を必要とする。このような条件を考慮して本発明は完成されたものである。   Furthermore, by calculating such a phase diagram while changing the temperature, it was confirmed that the stability of the α phase and the β phase depends not only on the amount of Si in the bath but also on the temperature. FIG. 2 shows a state diagram obtained by calculating how the alloy layer generated when the temperature and the amount of Si are changed is calculated. This figure shows the region where the α phase becomes the alloy layer. However, in practice, it is difficult to operate in the entire region where the α phase becomes an alloy layer. That is, if the bath temperature is too low, the viscosity of the bath becomes high and it becomes difficult to control the amount of plating. On the other hand, if the bath temperature is too high, the equipment in the bath is severely melted, requiring frequent replacement. The present invention has been completed in consideration of such conditions.

かかる知見を基に完成された本発明は、次の通りである。
(1)鋼板に連続溶融Alめっきするに際し、Alめっき浴中のSi量(質量%)、浴温(℃)を以下に示す四辺形ABCD内の内部とし、浴温をT℃としたときに、Alめっき浴中のFe量を0.03T−17.6質量%以上とすることを特徴とする、加工性に優れた溶融Alめっき鋼板の製造方法。
A(4.2%、635℃),B(7%、635℃),C(10%、680℃),D(6.5%、680℃)
The present invention completed based on such knowledge is as follows.
(1) When continuous hot-dip Al plating is performed on a steel sheet, the amount of Si in the Al plating bath (% by mass) and the bath temperature (° C) are set inside the quadrilateral ABCD shown below, and the bath temperature is set to T ° C. A method for producing a hot-dip Al-plated steel sheet excellent in workability, characterized in that the amount of Fe in the Al plating bath is 0.03T-17.6% by mass or more.
A (4.2%, 635 ° C), B (7%, 635 ° C), C (10%, 680 ° C), D (6.5%, 680 ° C)

(2)鋼板に連続溶融Alめっきする際に、Alめっき浴中のSi量(質量%)、浴温(℃)を以下に示す五辺形ABCDE内の内部とし,浴温をT℃としたときに、Alめっき浴中のFe量を0.03T−17.6質量%以上とすることを特徴とする、加工性に優れた溶融Alめっき鋼板の製造方法。
A(4.2%、635℃),B(7%、635℃),C(9%、664℃),D(9%、680℃),E(6.5%、680℃)
(2) When continuous hot-dip Al plating is performed on a steel sheet, the amount of Si in the Al plating bath (mass%) and the bath temperature (° C) are set inside the pentagonal ABCDE shown below, and the bath temperature is set to T ° C. Sometimes, the amount of Fe in the Al plating bath is 0.03T-17.6% by mass or more, and the method for producing a hot-dip Al plated steel sheet excellent in workability.
A (4.2%, 635 ° C), B (7%, 635 ° C), C (9%, 664 ° C), D (9%, 680 ° C), E (6.5%, 680 ° C)

(3)鋼板に連続溶融Alめっきする際の鋼板の浴への侵入板温をT−25℃以上、T+25℃以下とすることを特徴とする、前記(1)または(2)に記載の加工性に優れた溶融Alめっき鋼板の製造方法。
(4)連続溶融Alめっき前の焼鈍炉に入る際の鉄粉付着量が片面当たり0.5g/m2 以下とすることを特徴とする、前記(1)〜(3)のいずれか1項に記載の加工性に優れた溶融Alめっき鋼板の製造方法。
(5)鋼板とAlめっき層の界面に存在する金属間化合物層中のSi量が質量%で5〜12%で、かつその平均的な厚みが2.5μm以下であることを特徴とする加工性に優れた溶融Alめっき鋼板にある。
(3) The processing according to (1) or (2) above, wherein the temperature of the penetration of the steel sheet into the bath during continuous molten Al plating on the steel sheet is T-25 ° C or higher and T + 25 ° C or lower. A method for producing a hot-dip Al-plated steel sheet having excellent properties.
(4) Any one of (1) to (3) above, wherein the amount of iron powder adhering to the annealing furnace before continuous molten Al plating is 0.5 g / m 2 or less per side. The manufacturing method of the hot-dip Al-plated steel plate excellent in the workability as described in 2.
(5) Processing characterized in that the Si amount in the intermetallic compound layer present at the interface between the steel plate and the Al plating layer is 5 to 12% by mass and the average thickness is 2.5 μm or less. It is in hot-dip Al-plated steel sheet with excellent properties.

本発明は、めっき欠陥の少なく、かつ合金層の厚みも低減した溶融Al系めっき鋼板及びその製造方法を提供するものである。   The present invention provides a hot-dip Al-based plated steel sheet with few plating defects and a reduced thickness of the alloy layer and a method for producing the same.

次に本発明の限定理由を詳細に説明する。
まず、Al系めっき浴の組成としては前述したようにAlをベースとしてSiを添加するものであるが、浴中Si量を浴温との関係でA(4.2%、635℃),B(7%、635℃),C(9.5%、670℃),D(6.2%、670℃)の四辺形内とする。これらの条件は図2に示されたα相領域の少し内部側で、浴温の上下限を定めたものに対応している。
Next, the reasons for limiting the present invention will be described in detail.
First, as the composition of the Al-based plating bath, Si is added based on Al as described above, but the amount of Si in the bath is A (4.2%, 635 ° C.), B in relation to the bath temperature. (7%, 635 ° C.), C (9.5%, 670 ° C.), and D (6.2%, 670 ° C.). These conditions correspond to the conditions in which the upper and lower limits of the bath temperature are set slightly inside the α phase region shown in FIG.

なお、図2は状態図から求めたα相の安定領域を示すが、実際に実験してみるとα相の安定領域は特にSiの高い方でやや狭まる傾向を示した。これは状態図が平衡状態を扱うものであるのに対して溶融めっきは高速で反応する系を扱うものであり、このずれが生じたものと考えられる。このような理由からA(4.2%、635℃),B(7%、635℃),C(9%、664℃),D(9%、680℃),E(6.5%、680℃)の五辺形内とした方がより安定してα相合金層を得ることができる。浴温の上下限を定めたのは,先述したように浴粘度の増大、浴中機器の溶損といった操業上の課題を回避するためである。   FIG. 2 shows the stable region of the α phase obtained from the phase diagram. However, when actually experimented, the stable region of the α phase tended to be slightly narrowed particularly at higher Si. This is because the phase diagram deals with an equilibrium state, whereas hot dipping deals with a system that reacts at a high speed, and this shift is considered to have occurred. For these reasons, A (4.2%, 635 ° C), B (7%, 635 ° C), C (9%, 664 ° C), D (9%, 680 ° C), E (6.5%, The α-phase alloy layer can be obtained more stably in the pentagon at 680 ° C. The reason why the upper and lower limits of the bath temperature are determined is to avoid operational problems such as an increase in bath viscosity and erosion of equipment in the bath as described above.

また、本発明において侵入板温を浴温−25℃以上、浴温+25℃以下にすることが望ましい。図2はSi量と温度の関係を示すもので、温度は溶融めっきにおいては主として浴温に対応するが、浴へ鋼板が浸漬されるときの温度もまた重要な因子である。このときの侵入板温が高すぎると図2の温度が高い状態に対応し、θ相が生成しやすくなる。一方、侵入板温が低すぎると浴温と板温の差異によりドロスと呼ばれる表面欠陥が発生しやすくなる。ドロスとは溶融金属中から晶出した金属間化合物が浴中を浮遊し、これが鋼板表面に付着したもので、合金層と成分は同じものである。浴温よりも侵入板温が著しく低いと鋼板近傍で溶融金属が冷却されてこのドロスを生成する。   In the present invention, it is desirable that the intrusion plate temperature is a bath temperature of −25 ° C. or higher and a bath temperature of + 25 ° C. or lower. FIG. 2 shows the relationship between the amount of Si and the temperature. The temperature mainly corresponds to the bath temperature in hot dipping, but the temperature when the steel sheet is immersed in the bath is also an important factor. If the intrusion plate temperature at this time is too high, it corresponds to the state in which the temperature in FIG. 2 is high, and the θ phase is easily generated. On the other hand, if the intruding plate temperature is too low, a surface defect called dross tends to occur due to the difference between the bath temperature and the plate temperature. Dross is an intermetallic compound crystallized from molten metal floating in the bath and adhering to the surface of the steel sheet, and the alloy layer and the components are the same. If the intruding plate temperature is significantly lower than the bath temperature, the molten metal is cooled in the vicinity of the steel plate and this dross is generated.

次に、浴中のFe量について説明する。通常Alめっき浴には鋼板あるいは浴中機器から溶損したFeが溶解している。熱力学的には浴温が決まれば、ある一定値のFeの飽和濃度が定まるが、実際のFe濃度は熱力学的な飽和濃度にはならず、飽和濃度よりも若干低い値をとる。この理由は未だ不明確ではあるが、めっき浴内の温度分布の影響を受けて温度の低い箇所の飽和濃度の影響を受けているものと考えている。このとき浴中Fe濃度が低いと合金層が成長しやすいという知見が得られた。従って、浴中Fe濃度は高目にすることが望ましく、これは浴内の温度分布を小さくすることで達成される。具体的には浴温をT℃としたときに浴中Feの質量%が0.03T−17.6%以上にする必要がある。これは浴温660℃で2.2%に相当する。   Next, the amount of Fe in the bath will be described. Usually, in the Al plating bath, Fe melted from the steel plate or the equipment in the bath is dissolved. If the bath temperature is determined thermodynamically, a certain value of the saturation concentration of Fe is determined, but the actual Fe concentration is not a thermodynamic saturation concentration, and is slightly lower than the saturation concentration. The reason for this is still unclear, but it is considered that it is affected by the saturation concentration at a low temperature due to the influence of the temperature distribution in the plating bath. At this time, it was found that the alloy layer easily grows when the Fe concentration in the bath is low. Therefore, it is desirable to increase the Fe concentration in the bath, and this can be achieved by reducing the temperature distribution in the bath. Specifically, when the bath temperature is T ° C., the mass% of Fe in the bath needs to be 0.03T-17.6% or more. This corresponds to 2.2% at a bath temperature of 660 ° C.

溶融めっき工程においては通常冷延鋼板を再結晶焼鈍後、溶融金属中に浸漬してめっきを行う。通常の冷延工程においては鋼板表面に若干の鉄粉が残存してしまうが、このような鉄粉は浴内で溶融金属と反応して合金層と同じ成分となる。鉄粉は表面積が大きいため速やかに反応し、実質的な合金層を増大させ、加工性を低下させる。このような意味から焼鈍炉に入る時点で鋼板表面から鉄粉を除去することは重要である。本発明において焼鈍炉に入る際の表面の鉄粉付着量を片面0.5g/m2 以下とすることが望ましい。洗浄方法は特に限定するものではないが、油も同時に除去するためにアルカリ溶液中での電清や、更にブラシの併用等が通常用いられる。 In the hot dipping process, the cold-rolled steel sheet is usually plated by dipping in a molten metal after recrystallization annealing. In a normal cold rolling process, some iron powder remains on the surface of the steel sheet, but such iron powder reacts with the molten metal in the bath and becomes the same component as the alloy layer. Since iron powder has a large surface area, it reacts quickly, increases the substantial alloy layer, and decreases the workability. From this point of view, it is important to remove iron powder from the surface of the steel sheet when entering the annealing furnace. In the present invention, it is desirable that the amount of iron powder adhesion on the surface when entering the annealing furnace be 0.5 g / m 2 or less on one side. Although the washing method is not particularly limited, in order to remove the oil at the same time, electrocleaning in an alkaline solution, combined use of a brush, or the like is usually used.

Al−Si系めっき浴にはその他の元素としてMg,Ca,Sr,Ni,Cu,Ti,Ce,La,Mn,Cr,Co,Mo,Zn,Snの1種以上を0.001%以上1%以下添加することも可能である。Mg,Ca,Mn,Cr,Ni,Cu,Co,Mo,Zn,Sn等の元素はAlめっき鋼板の耐食性向上に寄与し、Sr,Ti,Ce,LaはAl−Si中のSiの分散状態を変えて耐食性に寄与する。その効果は0.001%以上で効力を発揮し、1%以上の添加はドロスと呼ばれる浴中に浮遊する金属間化合物量の増大、融点の上昇等を伴うため好ましくない。これらの元素を浴中に添加したときにはAl−Si系めっき層中あるいは合金層中に分配される。なお、浴中への浸漬時間は、特に限定しないが通常1〜5秒程度であることが多い。   In the Al-Si plating bath, 0.001% or more of one or more of Mg, Ca, Sr, Ni, Cu, Ti, Ce, La, Mn, Cr, Co, Mo, Zn, and Sn are included as other elements. % Or less can be added. Elements such as Mg, Ca, Mn, Cr, Ni, Cu, Co, Mo, Zn, and Sn contribute to improving the corrosion resistance of the Al-plated steel sheet, and Sr, Ti, Ce, and La are the dispersion states of Si in Al-Si. Contributes to corrosion resistance. The effect is effective at 0.001% or more, and the addition of 1% or more is not preferable because it involves an increase in the amount of intermetallic compounds floating in a bath called dross, an increase in the melting point, and the like. When these elements are added to the bath, they are distributed in the Al—Si plating layer or alloy layer. In addition, the immersion time in the bath is not particularly limited, but is usually about 1 to 5 seconds in many cases.

Al−Si二元系においては共晶点が約12%Siであるため、Siを添加することで浴温が低下する効果も得られるものと従来考えられていた。しかし、本発明において浴中にFeが1.5%以上含有されるAl−Si−Fe三元系においては、Si:5〜17%という広い範囲で初晶の晶出温度は殆ど変わらないとの知見も得られた。従って、浴中Si量を減じてもドロスの発生が激しくなる等の懸念もない。   In the Al—Si binary system, since the eutectic point is about 12% Si, it has been conventionally considered that the effect of lowering the bath temperature can be obtained by adding Si. However, in the present invention, in the Al-Si-Fe ternary system in which Fe is contained in the bath in an amount of 1.5% or more, the crystallization temperature of the primary crystal hardly changes in a wide range of Si: 5 to 17%. The knowledge of was also obtained. Therefore, there is no concern that dross generation becomes severe even if the Si amount in the bath is reduced.

このような方法で製造された溶融Al系めっき鋼板の合金層はα相から成るためにSi量を分析すると5〜12%となる。このSi濃度はα相のSi濃度に対応している。また、その合金層厚みは2.5μm以下となる。α相の生成条件内で浴温をできるだけ低下させることで1.5μm程度という極めて薄い合金層を得ることも可能である。合金層の組成は断面よりEPMA、FE−SEM−EDS等の機器分析を用いることで分析が可能である。但し、合金層の厚みが2〜2.5μmに対してこれら機器分析の分析範囲は1μm程度あるため、分析部位によっては地鉄あるいはAlめっき層の情報も含有することに注意すべきである。   Since the alloy layer of the hot-dip Al-plated steel sheet produced by such a method is composed of an α phase, the amount of Si is 5 to 12% when analyzed. This Si concentration corresponds to the Si concentration of the α phase. The alloy layer thickness is 2.5 μm or less. It is possible to obtain an extremely thin alloy layer of about 1.5 μm by reducing the bath temperature as much as possible within the α-phase generation conditions. The composition of the alloy layer can be analyzed by using instrumental analysis such as EPMA, FE-SEM-EDS from the cross section. However, since the analysis range of these instrumental analyzes is about 1 μm with respect to the thickness of the alloy layer of 2 to 2.5 μm, it should be noted that depending on the analysis site, information on the base iron or Al plating layer is also included.

一例として図3、図4に本発明による方法によって製造した溶融Alめっき鋼板の断面組織と組成の分析結果を示す。図3は、6.5%Si−2%Fe、浴温650℃、侵入板温650℃での光学顕微鏡写真等によるAlめっき鋼板の断面組織と分析部位を示す図であり、図3(a)は光学顕微鏡写真であり、図3(b)はFE−SEM−EDS機器分析を用いて断面より合金層の断面組織を示す図である。図4は、FE−SEM−EDSによる組織分析結果を示す図であり、図中の数字は図3(b)に示した部位に相当する。   As an example, FIGS. 3 and 4 show the analysis results of the cross-sectional structure and composition of the hot-dip Al-plated steel sheet produced by the method according to the present invention. FIG. 3 is a diagram showing a cross-sectional structure and an analysis site of an Al-plated steel sheet by an optical micrograph at 6.5% Si-2% Fe, a bath temperature of 650 ° C., and an intrusion plate temperature of 650 ° C. ) Is an optical micrograph, and FIG. 3B is a diagram showing a cross-sectional structure of the alloy layer from a cross section using FE-SEM-EDS instrumental analysis. FIG. 4 is a diagram showing the results of tissue analysis by FE-SEM-EDS, and the numbers in the figure correspond to the sites shown in FIG.

部位2〜5が合金層に対応するが、このうちの3〜5は三元状態図上のαあるいはα+Lに該当し、Si濃度は8〜9%である。部位4及び5についてはα相に加えてAlめっき層の情報を含むためにα相とL(液相)の間に位置していると考えられる。合金層がβ相であれば分析値はβあるいはβ+Lに位置する筈で、このような手法により簡便に合金層の同定をすることができる。なお、部位2は部位1と3を結ぶ線上に位置し、α相と鋼板(bcc)の両方の情報を含んでいるものと判断できる。   The parts 2 to 5 correspond to the alloy layers, and 3 to 5 of these correspond to α or α + L on the ternary phase diagram, and the Si concentration is 8 to 9%. The parts 4 and 5 are considered to be located between the α phase and L (liquid phase) because they include information on the Al plating layer in addition to the α phase. If the alloy layer is β phase, the analytical value should be located at β or β + L, and the alloy layer can be easily identified by such a method. In addition, it can be judged that the part 2 is located on the line which connects the parts 1 and 3, and contains the information of both (alpha) phase and a steel plate (bcc).

Alめっき後の冷却過程について特に限定するものではないが、冷却過程においても合金層の成長は続いているため、冷却は早い方が好ましい。この意味からめっき後580℃までの冷却時間が20秒以下であることが好ましい。
Alめっき後の表面にクロメート、樹脂被覆、リン酸塩系無機皮膜等の後処理皮膜を設けることも本発明の趣旨を損なうものではない。これら皮膜は、初期防錆、加工性、溶接性等を向上させる効果を有する。本発明のめっき付着量は両面60〜250g/m2 程度が可能であり、通常のAl系めっきと同様である。
Although there is no particular limitation on the cooling process after the Al plating, since the alloy layer continues to grow in the cooling process, it is preferable that the cooling be fast. In this sense, the cooling time to 580 ° C. after plating is preferably 20 seconds or less.
Providing a post-treatment film such as chromate, resin coating, phosphate-based inorganic film on the surface after Al plating does not impair the gist of the present invention. These films have the effect of improving initial rust prevention, workability, weldability, and the like. The plating adhesion amount of the present invention can be about 60 to 250 g / m 2 on both sides, and is the same as that of normal Al plating.

Al−Si系めっき後の外観は特別な処理をしないとスパングル外観となる。アルミナ等の粉体吹付け、スキンパスによる圧下でスパングルを小さくするあるいは目立たなくなるような処理を施すことも可能である。
本発明のめっき原板としては、従来使用していたものが使用可能で、Al−k鋼、Ti−IF鋼、Ti−Nb−IF鋼、中炭素鋼(0.1〜0.3%C鋼)、Cr含有鋼、Nb含有鋼、低Al−固溶N含有鋼等が挙げられる。また、前述したようにAlめっきプロセスとしてRTF方式、無酸化炉方式があるが、どちらの方式においても本発明は効果を発揮する。
The appearance after the Al-Si plating is spangled unless special treatment is performed. It is also possible to reduce the spangle or to make it inconspicuous by spraying powder of alumina or the like or under pressure by a skin pass.
As the plating base plate of the present invention, those conventionally used can be used, Al-k steel, Ti-IF steel, Ti-Nb-IF steel, medium carbon steel (0.1 to 0.3% C steel). ), Cr-containing steel, Nb-containing steel, low Al-solid solution N-containing steel, and the like. Further, as described above, there are an RTF method and a non-oxidizing furnace method as the Al plating process, and the present invention exhibits the effect in either method.

次に、実施例により本発明をさらに詳細に説明する。
(実施例1)
表1に示す成分の鋼を通常の転炉−真空脱ガス処理により溶製し、鋼片とした後、通常の条件で熱間圧延、酸洗、冷間圧延を行い、板厚1.2mmの冷延鋼板を得た。これらの鋼板に無酸化炉−還元炉タイプの溶融めっきラインでAl−Siめっきを施した。焼鈍炉の前面でアルカリ浴とブラシを使用した洗浄を付与し、このときの鉄粉の付着量は片面0.06g/m2 であった。めっき付着量は両面80g/m2 とした。無酸化炉はコークスガスと空気を混合して燃焼させ、空気比(完全燃焼に必要な空気量に対する供給空気量の比率)は0.95とした。また、還元炉の雰囲気は窒素−15vol%水素で露点は−30℃とした。最高到達板温は805℃、浸漬時間は2.6秒である。このときめっき浴組成、浴温、侵入板温を変化させて試料を製造した。侵入板温の測定は浴より1mの位置、めっき浴温については浴面より500mm位置とした。また、めっき後の冷却はミスト冷却とし、580℃までの冷却時間は5〜15秒であった。この試料の断面観察することで合金層厚みを測定し、また、上述したような手法で視野3箇所において合金層の同定を行った。また、めっき外観、めっき加工性を以下に示す方法で評価した。これらの関係を表2に示す。
Next, the present invention will be described in more detail with reference to examples.
Example 1
Steel of the components shown in Table 1 is melted by a normal converter-vacuum degassing treatment to form a steel slab, followed by hot rolling, pickling and cold rolling under normal conditions, and a plate thickness of 1.2 mm A cold-rolled steel sheet was obtained. These steel plates were subjected to Al-Si plating by a non-oxidation furnace-reduction furnace type hot-dip plating line. Cleaning using an alkaline bath and a brush was applied on the front surface of the annealing furnace, and the amount of iron powder adhered at this time was 0.06 g / m 2 on one side. The amount of plating adhered was 80 g / m 2 on both sides. In the non-oxidizing furnace, coke gas and air were mixed and burned, and the air ratio (ratio of the amount of supplied air to the amount of air necessary for complete combustion) was set to 0.95. The atmosphere of the reduction furnace was nitrogen-15 vol% hydrogen and the dew point was -30 ° C. The maximum plate temperature is 805 ° C., and the immersion time is 2.6 seconds. At this time, the sample was manufactured by changing the plating bath composition, bath temperature, and penetration plate temperature. The intrusion plate temperature was measured at a position 1 m from the bath, and the plating bath temperature was at a position 500 mm from the bath surface. The cooling after plating was mist cooling, and the cooling time to 580 ° C. was 5 to 15 seconds. The thickness of the alloy layer was measured by observing a cross section of this sample, and the alloy layer was identified at three locations in the visual field by the method described above. Moreover, the plating appearance and plating workability were evaluated by the methods shown below. These relationships are shown in Table 2.

Figure 2007107050
Figure 2007107050

Figure 2007107050
Figure 2007107050

(1)めっき外観
100×100mmの試料を剪断し、その両面を観察してめっきの欠陥(通常不めっきと呼ばれる)の個数を計測した。観察に当たって、20%NaOH中でAl−Siめっき層を剥離し、合金層を露出した後に測定し、両面の平均値を算出した。合金層を露出させることで黒っぽい合金層と光沢を持つ素地の判別が容易になり、かつ、合金層は生成していないがAl−Siめっきのみ被覆しているような箇所も計測可能である。
[評価基準]
○:不めっき2個以下
△:不めっき3〜5個
×:不めっき6個以上
(1) Plating appearance A sample of 100 × 100 mm was sheared, and both sides thereof were observed to count the number of plating defects (usually called non-plating). In the observation, the Al—Si plating layer was peeled off in 20% NaOH and the measurement was performed after exposing the alloy layer, and the average value of both surfaces was calculated. By exposing the alloy layer, it is easy to distinguish between a dark alloy layer and a glossy substrate, and it is also possible to measure a portion where only the Al—Si plating is coated, although the alloy layer is not formed.
[Evaluation criteria]
○: 2 or less non-plating △: 3-5 non-plating ×: 6 or more non-plating

(2)めっき加工性
30×300mmの試料を図5に示すようなSKD11製のビード引抜き金型で圧着し、引張試験機を用いて上方向に引抜いた。押付け力を500kgfとしたとき、板厚減としては10〜13%であった。この条件で引抜いたときのめっき層、合金層の亀裂状況を断面より顕微鏡観察した。観察長は0.5mmで、この間のAl−Si系めっき層を貫通した亀裂の数を評価した。
[評価基準]
○:1個以下
△:2〜5個
×:6個以上
(2) Plating workability A 30 × 300 mm sample was pressure-bonded with a bead drawing die made of SKD11 as shown in FIG. 5 and pulled upward using a tensile tester. When the pressing force was 500 kgf, the thickness reduction was 10 to 13%. The cracked state of the plated layer and the alloy layer when drawn under these conditions was observed with a microscope from a cross section. The observation length was 0.5 mm, and the number of cracks penetrating the Al—Si plating layer during this period was evaluated.
[Evaluation criteria]
○: 1 or less △: 2 to 5 ×: 6 or more

ここで使用した鋼はSi、Mn量が比較的高く、不めっきが若干でやすい成分である。No.1〜6、7〜10において浴温を一定にしてSi量を変化させた。するとSi量が低い場合にはθ相が、また、Si量が多い場合にはβ相が生成し、合金層も厚く成長した。No.13、14は浴内の温度バラツキが大きく浴中Fe量が低い場合であるが、このときも合金層が成長しやすい傾向を示した。このとき合金層はα相、β相の両者が存在し、下層にα相、上層にβ相が観察された。   The steel used here has relatively high amounts of Si and Mn, and is a component that tends to be slightly unplated. No. In 1-6 and 7-10, the bath temperature was kept constant and the amount of Si was changed. Then, when the Si amount was low, the θ phase was generated, and when the Si amount was large, the β phase was generated, and the alloy layer also grew thick. No. Nos. 13 and 14 are cases where the temperature variation in the bath is large and the Fe content in the bath is low, but the alloy layer also tends to grow easily at this time. At this time, both α phase and β phase existed in the alloy layer, and α phase was observed in the lower layer and β phase was observed in the upper layer.

No.15、16は侵入板温の影響を示す。侵入板温が低すぎると表面にドロスが付着しやすく、侵入板温が高いと合金層が成長しやすくなる。これらの条件が適正な場合には合金層は2.5μm以下、α相が主体となり、良好な外観、加工性を示した。
なお、表2において合金層の種類は断面からの組成分析及び状態図上へのプロットにより求めたものである。α相としてSi:5〜12%、β相としてSi:12〜18%、θ相としてSi:0〜3%の値が得られた。
No. 15 and 16 show the influence of the penetration plate temperature. If the penetration plate temperature is too low, dross tends to adhere to the surface, and if the penetration plate temperature is high, the alloy layer tends to grow. When these conditions were appropriate, the alloy layer was 2.5 μm or less, mainly composed of α phase, and showed good appearance and workability.
In Table 2, the type of the alloy layer is determined by composition analysis from a cross section and plotting on a phase diagram. Si: 5 to 12% as the α phase, Si: 12 to 18% as the β phase, and Si: 0 to 3% as the θ phase.

(実施例2)
表3に示す成分の鋼を通常の転炉−真空脱ガス処理により溶製し、鋼片とした後、通常の条件で熱間圧延、酸洗、冷間圧延を行い、板厚0.8mmの冷延鋼板を得た。この鋼板に実施例1と同じ条件でAlめっきを施した。めっき浴の組成はAl−7%Si−2%Fe、浴温は650℃、侵入板温は655℃、浴への浸漬時間は1.7秒とした。但し鋼Cを通板する際のみ空気比を1.2に調整した。評価方法並びに基準も実施例1と同一である。表2に示すように、この条件で製造した際にはめっき外観、密着性ともに良好であった。但し鋼種CのみはCrが約11%含有されているため、他の鋼種に比べると若干欠陥が多い傾向が認められた。
(Example 2)
Steel of the components shown in Table 3 is melted by a normal converter-vacuum degassing treatment to obtain a steel slab, followed by hot rolling, pickling and cold rolling under normal conditions, and a plate thickness of 0.8 mm A cold-rolled steel sheet was obtained. This steel plate was subjected to Al plating under the same conditions as in Example 1. The composition of the plating bath was Al-7% Si-2% Fe, the bath temperature was 650 ° C., the penetration plate temperature was 655 ° C., and the immersion time in the bath was 1.7 seconds. However, the air ratio was adjusted to 1.2 only when passing steel C. The evaluation method and criteria are the same as those in Example 1. As shown in Table 2, when manufactured under these conditions, both the plating appearance and adhesion were good. However, since only steel type C contains about 11% Cr, a tendency of slightly more defects than other steel types was recognized.

Figure 2007107050
Figure 2007107050

(実施例3)
表3のBに示す成分の鋼を通常の転炉−真空脱ガス処理により溶製し、鋼片とした後、通常の条件で熱間圧延、酸洗、冷間圧延を行い、板厚0.8mmの冷延鋼板を得た。この鋼板に実施例1と同じ条件でAlめっきを施した。但し、焼鈍前の洗浄条件を変えて鉄粉の量を数水準に調整した。めっき浴の組成はAl−7%Si−2%Fe、浴温は650℃、侵入板温は655℃、浴への浸漬時間は1.7秒とした。評価方法並びに基準も実施例1と同一である。表4は供試材の特性を示すものである。また、表5に示すように鉄粉の付着量が多くなると、鉄粉とAlめっき浴の反応物が表面に残存する傾向を示した。このときにはこの反応物を起点としてめっきの亀裂が発生した。
(Example 3)
Steel of the component shown in B of Table 3 is melted by a normal converter-vacuum degassing treatment to obtain a steel piece, and then hot rolling, pickling and cold rolling are performed under normal conditions, and the sheet thickness is 0. An 8 mm cold-rolled steel sheet was obtained. This steel plate was subjected to Al plating under the same conditions as in Example 1. However, the amount of iron powder was adjusted to several levels by changing the cleaning conditions before annealing. The composition of the plating bath was Al-7% Si-2% Fe, the bath temperature was 650 ° C., the penetration plate temperature was 655 ° C., and the immersion time in the bath was 1.7 seconds. The evaluation method and criteria are the same as those in Example 1. Table 4 shows the characteristics of the test materials. Moreover, as shown in Table 5, when the adhesion amount of iron powder increased, the reaction product of iron powder and Al plating bath tended to remain on the surface. At this time, cracking of the plating occurred starting from this reaction product.

Figure 2007107050
Figure 2007107050

Figure 2007107050
Figure 2007107050

650℃におけるAl−Fe−Si系三元状態図である。It is an Al-Fe-Si type | system | group ternary phase diagram in 650 degreeC. 浴中Si量、浴温度と生成する合金層の関係を示す図である。It is a figure which shows the relationship between the amount of Si in a bath, bath temperature, and the alloy layer to produce | generate. 光学顕微鏡写真等によるAlめっき鋼板の断面組織と分析部位を示す図である。It is a figure which shows the cross-sectional structure and analysis site | part of Al plating steel plate by an optical microscope photograph. FE−SEM−EDSによる組織分析結果を示す図である。It is a figure which shows the structure | tissue analysis result by FE-SEM-EDS. ビード引抜き金型を示す図である。It is a figure which shows a bead extraction metal mold | die.

Claims (5)

鋼板に連続溶融Alめっきするに際し、Alめっき浴中のSi量(質量%)、浴温(℃)を以下に示す四辺形ABCD内の内部とし、浴温をT℃としたときに、Alめっき浴中のFe量を0.03T−17.6質量%以上とすることを特徴とする、加工性に優れた溶融Alめっき鋼板の製造方法。
A(4.2%、635℃),B(7%、635℃),C(10%、680℃),D(6.5%、680℃)
When continuous hot-dip Al plating is applied to a steel sheet, the amount of Si in the Al plating bath (mass%) and the bath temperature (° C) are within the quadrilateral ABCD shown below, and the bath temperature is T ° C. A method for producing a hot-dip Al-plated steel sheet excellent in workability, characterized in that the amount of Fe in the bath is 0.03T-17.6% by mass or more.
A (4.2%, 635 ° C), B (7%, 635 ° C), C (10%, 680 ° C), D (6.5%, 680 ° C)
鋼板に連続溶融Alめっきするに際し、Alめっき浴中のSi量(質量%)、浴温(℃)を以下に示す五辺形ABCDE内の内部とし、浴温をT℃としたときに、Alめっき浴中のFe量を0.03T−17.6質量%以上とすることを特徴とする、加工性に優れた溶融Alめっき鋼板の製造方法。
A(4.2%、635℃),B(7%、635℃),C(9%、664℃),D(9%、680℃),E(6.5%、680℃)
When continuous hot-dip Al plating is performed on a steel sheet, the amount of Si in the Al plating bath (% by mass) and the bath temperature (° C.) are within the pentagonal ABCDE shown below, and the bath temperature is T ° C. A method for producing a hot-dip Al-plated steel sheet having excellent workability, wherein the amount of Fe in the plating bath is 0.03T-17.6% by mass or more.
A (4.2%, 635 ° C), B (7%, 635 ° C), C (9%, 664 ° C), D (9%, 680 ° C), E (6.5%, 680 ° C)
鋼板に連続溶融Alめっきする際の鋼板の浴への侵入板温をT−25℃以上、T+25℃以下とすることを特徴とする、請求項1または2に記載の加工性に優れた溶融Alめっき鋼板の製造方法。 The molten Al excellent in workability according to claim 1 or 2, characterized in that the temperature of the penetration of the steel sheet into the bath during continuous hot-dip Al plating on the steel sheet is T-25 ° C or higher and T + 25 ° C or lower. Manufacturing method of plated steel sheet. 連続溶融Alめっき前の焼鈍炉に入る際の鉄粉付着量が片面当たり0.5g/m2 以下とすることを特徴とする、請求項1〜3のいずれか1項に記載の加工性に優れた溶融Alめっき鋼板の製造方法。 The workability according to any one of claims 1 to 3, wherein the amount of iron powder adhering to the annealing furnace before continuous molten Al plating is 0.5 g / m 2 or less per side. A method for producing an excellent hot-dip Al-plated steel sheet. 鋼板とAlめっき層の界面に存在する金属間化合物層中のSi量が質量%で5〜12%で、かつその平均的な厚みが2.5μm以下であることを特徴とする加工性に優れた溶融Alめっき鋼板。 Excellent in workability, characterized in that the Si amount in the intermetallic compound layer present at the interface between the steel plate and the Al plating layer is 5 to 12% by mass and the average thickness is 2.5 μm or less. Hot-dip Al-plated steel sheet.
JP2005299075A 2005-10-13 2005-10-13 Fused Al-based plated steel sheet with excellent workability and method for producing the same Active JP4751168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299075A JP4751168B2 (en) 2005-10-13 2005-10-13 Fused Al-based plated steel sheet with excellent workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299075A JP4751168B2 (en) 2005-10-13 2005-10-13 Fused Al-based plated steel sheet with excellent workability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007107050A true JP2007107050A (en) 2007-04-26
JP4751168B2 JP4751168B2 (en) 2011-08-17

Family

ID=38033144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299075A Active JP4751168B2 (en) 2005-10-13 2005-10-13 Fused Al-based plated steel sheet with excellent workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4751168B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255391A (en) * 2007-04-03 2008-10-23 Nippon Steel Corp HOT-DIP Al-BASE-PLATED SHEET STEEL SUPERIOR IN CORROSION RESISTANCE AFTER HAVING BEEN WORKED, AND MANUFACTURING METHOD THEREFOR
WO2011161833A1 (en) * 2010-06-21 2011-12-29 新日本製鐵株式会社 Hot-dip al-coated steel sheet with excellent thermal blackening resistance and process for production of same
JP2013241645A (en) * 2012-05-21 2013-12-05 Nippon Steel & Sumitomo Metal Corp Aluminum-plated steel sheet for fuel tank excellent in corrosion resistance, and method of manufacturing the same
JP2019504204A (en) * 2015-12-24 2019-02-14 ポスコPosco High manganese molten aluminum-based plated steel sheet with excellent plating adhesion
JP7330104B2 (en) 2017-02-28 2023-08-21 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ Method for producing steel strip with aluminum alloy coating layer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190056A (en) * 1985-02-18 1986-08-23 Nippon Steel Corp Production of aluminum hot dipped ti-containing steel sheet having excellent heat resistance and high-temperature strength
JPH05311380A (en) * 1992-05-11 1993-11-22 Nippon Steel Corp Manufacture of hot dip aluminum plated cr-containing steel sheet excellent in workability and plating adhesion
JPH07286252A (en) * 1994-04-19 1995-10-31 Armco Inc Chrome-containing aluminized steel alloy and its preparation
JPH09302452A (en) * 1996-05-14 1997-11-25 Nippon Steel Corp Non-galvanizing generation preventive method in galvanizing process
JPH09324252A (en) * 1996-06-07 1997-12-16 Kobe Steel Ltd Production of zero spangled hot dip galvanized steel sheet
JPH10168545A (en) * 1996-12-11 1998-06-23 Nippon Steel Corp Rust preventive steel sheet for fuel tank excellent in press formability and corrosion-resistance after forming
JPH10245666A (en) * 1997-03-07 1998-09-14 Toyota Motor Corp Plated steel sheet for fuel tank excellent in press formability, corrosion resistance, and weldability, and the fuel tank
JP2000239819A (en) * 1999-02-18 2000-09-05 Sollac Aluminum coating method for steel for forming thin interfacial alloy layer
JP2000256816A (en) * 1999-03-08 2000-09-19 Nisshin Steel Co Ltd Production of hot-dip aluminized steel sheet excellent in workability and corrosion resistance
JP2001303230A (en) * 2000-04-19 2001-10-31 Nisshin Steel Co Ltd Aluminum plated steel sheet for fuel tank and producing method thereof
JP2004043882A (en) * 2002-07-11 2004-02-12 Union Steel Manufacturing Co Ltd Plating method of aluminum alloy plated steel sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190056A (en) * 1985-02-18 1986-08-23 Nippon Steel Corp Production of aluminum hot dipped ti-containing steel sheet having excellent heat resistance and high-temperature strength
JPH05311380A (en) * 1992-05-11 1993-11-22 Nippon Steel Corp Manufacture of hot dip aluminum plated cr-containing steel sheet excellent in workability and plating adhesion
JPH07286252A (en) * 1994-04-19 1995-10-31 Armco Inc Chrome-containing aluminized steel alloy and its preparation
JPH09302452A (en) * 1996-05-14 1997-11-25 Nippon Steel Corp Non-galvanizing generation preventive method in galvanizing process
JPH09324252A (en) * 1996-06-07 1997-12-16 Kobe Steel Ltd Production of zero spangled hot dip galvanized steel sheet
JPH10168545A (en) * 1996-12-11 1998-06-23 Nippon Steel Corp Rust preventive steel sheet for fuel tank excellent in press formability and corrosion-resistance after forming
JPH10245666A (en) * 1997-03-07 1998-09-14 Toyota Motor Corp Plated steel sheet for fuel tank excellent in press formability, corrosion resistance, and weldability, and the fuel tank
JP2000239819A (en) * 1999-02-18 2000-09-05 Sollac Aluminum coating method for steel for forming thin interfacial alloy layer
JP2000256816A (en) * 1999-03-08 2000-09-19 Nisshin Steel Co Ltd Production of hot-dip aluminized steel sheet excellent in workability and corrosion resistance
JP2001303230A (en) * 2000-04-19 2001-10-31 Nisshin Steel Co Ltd Aluminum plated steel sheet for fuel tank and producing method thereof
JP2004043882A (en) * 2002-07-11 2004-02-12 Union Steel Manufacturing Co Ltd Plating method of aluminum alloy plated steel sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255391A (en) * 2007-04-03 2008-10-23 Nippon Steel Corp HOT-DIP Al-BASE-PLATED SHEET STEEL SUPERIOR IN CORROSION RESISTANCE AFTER HAVING BEEN WORKED, AND MANUFACTURING METHOD THEREFOR
WO2011161833A1 (en) * 2010-06-21 2011-12-29 新日本製鐵株式会社 Hot-dip al-coated steel sheet with excellent thermal blackening resistance and process for production of same
CN102971444A (en) * 2010-06-21 2013-03-13 新日铁住金株式会社 Hot-dip Al-coated steel sheet with excellent thermal blackening resistance and process for production of same
JP5218703B2 (en) * 2010-06-21 2013-06-26 新日鐵住金株式会社 Hot-dip Al-plated steel sheet excellent in heat blackening resistance and method for producing the same
KR101473550B1 (en) 2010-06-21 2014-12-16 신닛테츠스미킨 카부시키카이샤 Hot-dip al-coated steel sheet with excellent thermal blackening resistance and process for production of same
US9464345B2 (en) 2010-06-21 2016-10-11 Nippon Steel & Sumitomo Metal Corporation Hot dip Al coated steel sheet excellent in heat black discoloration resistance and method of production of same
JP2013241645A (en) * 2012-05-21 2013-12-05 Nippon Steel & Sumitomo Metal Corp Aluminum-plated steel sheet for fuel tank excellent in corrosion resistance, and method of manufacturing the same
JP2019504204A (en) * 2015-12-24 2019-02-14 ポスコPosco High manganese molten aluminum-based plated steel sheet with excellent plating adhesion
US10968506B2 (en) 2015-12-24 2021-04-06 Posco High-manganese hot-dip aluminum-coated steel sheet having excellent coating adhesion
JP7330104B2 (en) 2017-02-28 2023-08-21 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ Method for producing steel strip with aluminum alloy coating layer

Also Published As

Publication number Publication date
JP4751168B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4584179B2 (en) Method for producing hot-dip Zn-Al alloy-plated steel sheet with excellent corrosion resistance and workability
KR101636443B1 (en) HOT-DIP Al-Zn COATED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME
JP5708884B2 (en) Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP2009035755A (en) Al-PLATED STEEL SHEET FOR EXHAUST GAS PASSAGEWAY MEMBER OF MOTORCYCLE AND MEMBER
JP4964650B2 (en) Hot-dip Al-based plated steel sheet with excellent corrosion resistance after processing and method for producing the same
JP2000328216A (en) High corrosion resistance plated steel sheet
JP4264373B2 (en) Method for producing molten Al-based plated steel sheet with few plating defects
JP4751168B2 (en) Fused Al-based plated steel sheet with excellent workability and method for producing the same
JP5601771B2 (en) Multi-layer plated steel sheet and manufacturing method thereof
JP2001073108A (en) Hot-dip aluminum coated steel sheet excellent in corrosion resistance and appearance
TW201303077A (en) Hot-dip zinc-aluminum alloy coated steel sheet having high corrosion resistance and formability and method for producing the same
JP2005015907A (en) Molten al-based galvanized steel sheet having excellent high-temperature strength and oxidation resistance
JP2001131725A (en) Hot dip aluminized steel sheet excellent in heat resistance and corrosion resistance and its producing method
JP2007270341A (en) Method for producing hot dip galvanized steel sheet
JP2004244655A (en) HOT DIP Al BASED PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE, AND PRODUCTION METHOD THEREFOR
JP2001081539A (en) Hot dip aluminum plated steel sheet excellent in high temperature corrosion resistance and its manufacture
JPH1088309A (en) Galvannealed steel sheet excellent in slidability and cratering resistance in electrodeposition coating and its production
JP3383125B2 (en) Hot-dip aluminized steel sheet with excellent corrosion resistance and heat resistance, and its manufacturing method
JP2005336545A (en) Steel sheet to be galvannealed
JPH0688192A (en) Galvannealed steel sheet having excellent workability and its production
JP2938449B1 (en) Hot-dip Sn-Zn plated steel sheet
JP4600951B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and its manufacturing method
KR100478725B1 (en) Manufacturing Method of High Strength Alloying Hot-Dip Galvanized Steel Sheet with Excellent Plating Adhesion and Alloying Process
JP2009132955A (en) Manufacturing method of galvanized steel sheet
JP3383122B2 (en) Hot-dip aluminized steel sheet with excellent heat resistance, high temperature strength, and corrosion resistance, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R151 Written notification of patent or utility model registration

Ref document number: 4751168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350