JP4464511B2 - Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties - Google Patents

Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties Download PDF

Info

Publication number
JP4464511B2
JP4464511B2 JP2000030144A JP2000030144A JP4464511B2 JP 4464511 B2 JP4464511 B2 JP 4464511B2 JP 2000030144 A JP2000030144 A JP 2000030144A JP 2000030144 A JP2000030144 A JP 2000030144A JP 4464511 B2 JP4464511 B2 JP 4464511B2
Authority
JP
Japan
Prior art keywords
wire drawing
steel wire
strength
wire
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000030144A
Other languages
Japanese (ja)
Other versions
JP2001220649A (en
Inventor
敏三 樽井
直紀 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000030144A priority Critical patent/JP4464511B2/en
Publication of JP2001220649A publication Critical patent/JP2001220649A/en
Application granted granted Critical
Publication of JP4464511B2 publication Critical patent/JP4464511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、スチールタイヤコード、スチールベルトコード等の素線として使用され、延性及び疲労特性に優れた引張強さが4200MPa以上の高強度極細鋼線に関するものである。
【0002】
【従来の技術】
軽量化などのために極細鋼線に対する高強度化の要求は一段と高まっている。従来、自動車用タイヤ、産業用各種ベルト類などの補強用に使用されている極細鋼線は、高炭素鋼の熱間圧延線材から中間伸線、パテンティング処理を繰り返し所定の線径にした後、最終パテンティング処理を行い、伸線加工性及びゴムとの接着性を向上させるめっき処理を施し所定の線径まで湿式伸線加工することにより製造される。例えばスチールタイヤコードは、上記のように製造される素線を最終的にダブルツイスタなどの撚り線機を用いて撚り線加工することによって製造される。
【0003】
上記のような製造工程において、極細鋼線の高強度化を図るためには、最終パテンティング処理後の強度を上げるか、最終の伸線加工歪みを増加させる必要がある。ところが、最終パテンティング処理後の強度ないしは伸線加工歪を増加させて極細鋼線の高強度化を図っても、強度が4200MPaを超えると延性の低下が著しく(デラミネーションの発生)、実用化することが極めて困難となる。更に、極細鋼線を高強度化しても疲労特性は向上せず、むしろ劣化するという問題点があり、極細鋼線の高強度化を阻害する要因の一つであった。
【0004】
これに対して、延性低下の少ない高強度化手段の従来の知見としては、例えば特開昭60−204865号、特開昭63−24046号、特公平3−23674号の各公報にはそれぞれC、Si、Mn、Cr等の化学成分を規制した高強度で高延性の極細鋼線用高炭素線材が提案されている。しかし、これらの公報で開示されている実施例からもわかるように鋼線の引張強さは最大でも3500〜3600MPaであり、極細鋼線の高強度化には限界があった。また、特開平6−145895号公報では化学成分と非金属介在物組成及び初析セメンタイトの面積分率を制御した高強度高靭性鋼線材が提案されている。更に、特開平7−113119号公報では鋼の化学成分と最終ダイスでの減面率を制御する高強度高靭延性極細鋼線の製造方法が開示されている。しかし、いずれの技術でも引張強さが4200MPaを超えると高延性を有する極細鋼線を実現することは困難であった。一方、極細鋼線の疲労特性を向上させる手段として、例えば特開平2−179333号公報には極細鋼線にショットピーニング処理を適用する技術が開示されており、極細線表面層の引張残留応力を圧縮残留応力に改善して耐疲労性の高い極細鋼線を製造する方法が提案されている。本発明者らの詳細な試験によれば、ショットピーニング処理によって極細鋼線表面の引張残留応力を圧縮残留応力に改善することは可能であるが、圧縮残留応力に変えるためには非常に強いショットピーニング処理が必要である。このようなショットピーニング処理を行うと、伸線加工によって非常に薄くなった極細鋼線表層のブラスめっき層が剥離してしまい、ゴムとの密着性が劣化するという問題点が生じ、極細鋼線の疲労特性を改善するためには限界があった。
【0005】
【発明が解決しようとする課題】
本発明は上記の如き実状に鑑みなされたものであって、線径が0.05〜0.4mmの極細鋼線を高強度化する際に問題となる延性低下と疲労特性の劣化を防止し、強度が4200MPa以上で且つ延性と疲労特性に優れた高強度極細鋼線の製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは高炭素極細鋼線の高強度化の阻害要因である延性の支配要因について種々解析した結果、伸線加工中に生じる不均一なセメンタイト分解が延性に対して著しく影響することを見出した。即ち、伸線加工歪みの増加とともにセメンタイトが分解しフェライト中のC濃度は増加していくが、このセメンタイト分解が場所によって不均一に生じるためにC濃度が不均一となり、この結果、高強度鋼線の延性が低下すると言う全く新たな事実を見出した。更に、高強度極細鋼線の疲労特性に対してもセメンタイト分解挙動が大きく影響し、フェライト中のC濃度が不均一であると疲労強度が低下することを初めて明らかにした。
【0007】
以上の新知見に基づき、強加工したパーライト組織におけるフェライト中の最大と最小のC濃度差を低減すれば、高強度極細鋼線の延性低下を防止することができるとともに疲労強度も大幅に向上するとの結論に達し本発明をなしたものである。
【0008】
本発明の要旨とするところは、質量%で、C:0.85〜1.1%、Si:0.05〜2.0%、Mn:0.2〜2.0%を含有するし、あるいは更に、Cr:0.05〜1.0%、Ni:0.1〜1.0%、V:0.01〜0.5%、Nb:0.001〜0.1%の1種または2種以上を含むとともに残部はFe及び不可避的不純物からな、伸線加工されたパーライト組織を有し、かつフェライト中のC濃度の最大値と最小値の差が1.3原子%以下である極細鋼線の製造方法であって、上記化学成分を有する鋼線に、パテンティング材強度が1450MPa以上になるように最終パテンティング処理を行い、真歪3.5以上、5.5以下の伸線加工を行い、かつ、該伸線加工中に矯直加工を行う工程、及び、該伸線加工後、矯直加工を施し、更に150〜500℃の温度に加熱する工程、の一方又は双方を行うことを特徴とする延性及び疲労特性の優れた高強度極細鋼線の製造方法、更に、最終パテンティング処理以降の製造工程で、下記のB〜G、Iのうち、2種以上を組み合わせることを特徴とする請求項1又は2に記載の延性及び疲労特性の優れた高強度極細鋼線の製造方法にある。
ここで、
B:アプローチ角度が8〜12°、ベアリング長さが0.2〜0.5D(D:ダイス径)であるダイスを用いて伸線加工を行う、
C:ダイヤモンドダイスを使用する、
D:伸線材の温度を50℃以下に制御して伸線加工を行う、
E:ダイスと伸線材の摩擦係数が0.1以下の潤滑剤を使用する、
F:伸線加工において、真歪みが1までの伸線加工の初期は、1ダイス当たりの減面率を20〜40%にするが、合計で真歪みが3.5以上の伸線加工とする、
G:最終ダイスの減面率を10%以下にする、
I:伸線加工後、200〜500℃の温度に加熱する、
である。
【0009】
ここで、伸線加工されたパーライト組織とは、パテンティング処理でパーライト組織にした後に真歪みで3.5以上の伸線加工をした組織を意味する。
【0010】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0011】
はじめに、本発明の成分限定理由について述べる。
【0012】
C:Cはパテンティング処理後の引張強さの増加及び伸線加工硬化率を高める効果があり、より少ない伸線加工歪で極細鋼線の引張強さを高めることができる。Cが0.85%未満では本発明で目的とする4200MPa以上の高強度の極細鋼線を製造することが困難となり、一方、1.1%を超えるとパテンティング処理時に初析セメンタイトがオーステナイト粒界に析出して伸線加工性が劣化し伸線加工工程あるいは撚り線加工工程で断線が頻発するため、Cを0.85〜1.1%の範囲に限定した。
【0013】
Si:Siはパーライト中のフェライトを強化させるためと鋼の脱酸のために有効な元素である。0.05%未満では上記の効果が期待できず、一方2.0%を超えると伸線加工性に対して有害な硬質のSiO2系介在物が発生しやすくなるため、0.05〜2.0%の範囲に制限した。
【0014】
Mn:Mnは脱酸、脱硫のために必要であるばかりでなく、鋼の焼入性を向上させパテンティング処理後の引張強さを高めるために有効な元素であるが、0.2%未満では上記の効果が得られず、一方2.0%を超えると上記の効果が飽和しさらにパテンティング処理時のパーライト変態を完了させるための処理時間が長くなりすぎて生産性が低下するため、0.2〜2.0%の範囲に限定した。
【0015】
本発明による高強度極細鋼線においては、上記の元素に加えて、更にCr:0.05〜2.0%、Ni:0.1〜1.0%、V:0.01〜0.5%、Nb:0.001〜0.1%の範囲で1種または2種以上を含有することができる。
【0016】
Cr:Crはパーライトのセメンタイト間隔を微細化しパテンティング処理後の引張強さを高めるとともに特に伸線加工硬化率を向上させる有効な元素であるが、0.05%未満では前記作用の効果が少なく、一方2.0%を越えるとパテンティング処理時のパーライト変態終了時間が長くなり生産性が低下するため、0.05〜2.0%の範囲に限定した。
【0017】
Ni:Niはパテンティング処理時に変態生成するパーライトを伸線加工性の良好なものにする作用を有するが、0.1%未満では上記の効果が得られず、1.0%を超えても添加量に見合うだけの効果が少ないためこれを上限とした。
【0018】
V:Vはパーライトのセメンタイト間隔を微細化しパテンティング処理後の引張強さを高める効果があるが、この効果は0.01%未満では不十分であり、一方0.5%を超えると効果が飽和するため0.01〜0.5%の範囲に制限した。
【0019】
Nb:NbはVと同様にパーライトのセメンタイト間隔を微細化しパテンティング処理後の引張強さを高める効果があるが、0.001%未満では不十分であり、一方0.1%を超えて添加しても効果が飽和するため0.001〜0.1%の範囲に制限した。
【0020】
他の元素は特に限定しないが、P:0.015%以下、S:0.015%以下、N:0.0070%以下が望ましい範囲である。これらの元素は、不可避的不純物元素として鋼中に含有される。また、Alは0.005%を超えると鋼中の介在物の中で最も硬質なAl23系介在物が生成しやすくなり、伸線加工あるいは撚り線加工の際の断線原因となるため、0.005%以下が好ましい範囲である。
【0021】
次に、本発明で目的とする高強度極細鋼線の延性低下の防止と疲労強度を向上させる上で極めて重要となるパーライト組織におけるフェライト中のC濃度差の限定理由について述べる。
【0022】
本発明では鋼線の延性をねじり試験を用いて、デラミネーション発生の有無で評価している。ここで、デラミネーションが発生する鋼線は延性が低いことを意味している。
【0023】
図1は種々の条件で伸線加工を行った線径が0.20mmの極細鋼線におけるフェライト中の最大と最小のC濃度差とデラミネーション発生の有無の関係について解析した一例である。極細鋼線の引張強さは、鋼の化学成分、伸線加工歪み及び伸線加工方法を変化させることによって、4700〜4800MPaに調整したものである。同図から明らかなように、強加工を受けたパーライト組織におけるフェライト中のC濃度差が1.3原子%を超えるとデラミネーションが発生することがわかる。また、極細鋼線の線径、強度を種々に変化させた場合についても全く同様の結果が得られた。
【0024】
更に、図2に高強度極細鋼線の疲労強度とフェライト中のC濃度差の関係について解析した一例を示す。疲労強度は、温度が20〜25℃、湿度が50〜60%の環境での107サイクルの回転曲げ疲労試験で評価した結果であり、試料は図1で示したものと同一である。最大と最小のC濃度差が増加するほど疲労強度が低下することがわかる。特に、C濃度差が1.3原子%を超えると疲労強度が低下する傾向が強くなる。以上のようなデラミネーション発生と疲労強度に及ぼすC濃度差の影響の解析結果から、フェライト中の最大と最小のC濃度差を1.3原子%以下に制限した。ねじり試験におけるねじり回数を高める点で、好ましいC濃度差は1.0原子%以下である。
【0025】
上記のようにセメンタイト分解の不均一性に起因して生じるフェライト中のC濃度の不均一性は、延性指標であるデラミネーション発生特性及び疲労強度に対して大きく影響する。この原因は以下のように考えられる。セメンタイトが分解することにより生じた固溶Cは、伸線加工によって生じたフェライト中の高密度の転位に偏析し、転位を固着していると考えられる。フェライト中のC濃度が場所によって異なることは、Cによる転位固着強化量が場所によって異なり、ミクロ的な強度の不均一性が起きていることを意味している。C濃度差が大きな鋼線をねじり試験すると、強度の低い領域、即ちC濃度の低い領域にねじり変形が集中するために亀裂が発生し、デラミネーションが起きるものと考えている。これに対して、C濃度差が小さければ、強度が均一であるために、ねじり変形は一様になりデラミネーションは発生しなくなる。また、疲労破壊に対しても同様であり、フェライト中のC濃度の不均一性が増加、即ち強度の不均一性が増加すると、疲労による変形が一様でなくなるために、高炭素鋼線の高強度下に対応した疲労強度の増加が得られなくなると考えている。
【0026】
フェライト中のC濃度は、アトムプローブ電界イオン顕微鏡を用いれば、簡単に且つ正確に測定することができる。本発明において、フェライト中のC濃度Xは、アトムプローブ電界イオン顕微鏡による分析から、全検出イオン数をY(total)、Cの検出イオン数をY(carbon)とした時に、下式により求めた。
X=[Y(carbon)/Y(total)]×100 (原子%)
また、フェライト中のC濃度の最大値と最小値は、同一の鋼線から採取した10本以上の試料を用いて、フェライト領域のC分析を行い求めた。
【0027】
次に、引張強さが4200MPa以上の高強度を達成すべく真歪3.5以上の伸線加工で、強加工された極細鋼線のパーライト組織におけるフェライト中のC濃度差を1.3原子%以下に制御するために、最終パテンティング処理以降の製造工程で下記のA〜Jの製造方法を採用することができ、それぞれ単独ではなく、組み合わせることが重要である。なお、伸線加工としては、真歪3.5以上、5.5以下とすることが好ましい。C濃度差が1.3原子%以下の極細鋼線を製造するためには、A〜Jの内、4種類以上、好ましくは5種類以上の方法を組み合わせることが良い。
【0028】
A:鋼の化学成分と最終パテンティング処理条件を最適化することにより、パテンティング材強度を1450MPa以上にする。パテンティング処理は、ベイナイトが生成しない温度で行うことが重要であり、550℃〜600℃で行うことが好ましい条件である。
【0029】
B:アプローチ角度が8〜12°、ベアリング長さが0.2〜0.5D(D:ダイス径)であるダイスを用いて伸線加工を行う。
【0030】
C:超硬ダイスではなく、ダイヤモンドダイスを使用する。
【0031】
D:伸線による加工発熱を抑える。好ましくは、伸線材の温度を50℃以下に制御して伸線加工を行う。
【0032】
E:潤滑能力の高い潤滑剤を使用する。好ましくは、ダイスと伸線材の摩擦係数が0.1以下の潤滑剤を使用する。
【0033】
F:伸線加工において、真歪みが1までの伸線加工の初期は、1ダイス当たりの減面率を20〜40%にするが、合計で真歪みが3.5以上の伸線加工とする。
【0034】
G:最終ダイスの減面率を10%以下にする。
【0035】
H:伸線加工中に矯直加工を行う工程を1回以上入れる。
【0036】
I:伸線加工後、200〜500℃の温度に加熱する。
【0037】
J:伸線加工後、矯直加工を施し、更に150〜500℃の温度に加熱する。
【0038】
【実施例】
以下、実施例により本発明の効果を更に具体的に説明する。
【0039】
表1に供試材の化学組成を示す。これらの供試材を用いて線径が0.12〜0.36mmのブラスめっきを有する極細鋼線を試作した。表2に極細鋼線の製造条件及び引張強さ、フェライト中の最大と最小のC濃度及びC濃度差、ねじり試験におけるデラミネーション発生の有無、疲労強度を示す。同表において、その他の伸線条件の記号であるB〜Jは前述した内容である。ねじり試験は、試験片の両端を線径の100倍のつかみの間隔で固定した条件で行った。また、疲労強度は、温度が20〜25℃、湿度が50〜60%の環境での107サイクルの回転曲げ疲労試験で評価した結果である。
【0040】
【表1】

Figure 0004464511
【0041】
【表2】
Figure 0004464511
【0042】
表2において、試験No.1、3〜17が本発明例であり、No.2は参考例で、その他は比較例である。本発明例、比較例とも全て伸線加工されたパーライト組織を有していた。同表に見られるように、本発明例はいずれも引張強さが4200MPa以上であるとともにフェライト中のC濃度差が1.3原子%以下に制御されている。この結果、高強度であるにもかかわらず、ねじり試験においてデラミネーションの発生が無く高延性の極細鋼線が実現できている。更に、極細鋼線の高強度化に対応した高い疲労強度も達成されている。
【0043】
これに対して比較例であるNo.27、29は、いずれも鋼の化学成分が不適切な例である。即ち、No.27はC量が0.71%と低いために4200MPa以上の高強度化が達成できていない例である。更に、No.29はC含有量が高すぎるためにパテンティング処理時に初析セメンタイトが析出した例である。この結果、伸線加工性が劣化し、伸線加工時に断線が頻発したものである。
【0044】
また、比較例であるNo.18〜26、28、30〜33は、いずれの極細鋼線もフェライト中のC濃度差が1.3原子%を超えているため、デラミネーションが発生し、更に疲労強度も本発明例に比べ大幅に低下した。
【0045】
【発明の効果】
以上の実施例からも明かなように、本発明は引張強さが4200MPa以上の高強度極細鋼線における延性低下(デラミネーション発生)と疲労強度低下の両者に対して、フェライト中の最大C濃度と最小C濃度のC濃度差を低減することが極めて有効であることを見出し、高延性で且つ疲労強度の高い高強度極細鋼線を実現してものであり、産業上の効果は極めて顕著なものがある。
【図面の簡単な説明】
【図1】極細鋼線のフェライト中のC濃度差(最大と最小の差)とデラミネーション発生の有無の関係について解析した一例の図である。
【図2】極細鋼線のフェライト中のC濃度差(最大と最小の差)と疲労強度の関係について解析した一例の図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength ultrafine steel wire that is used as a strand of a steel tire cord, a steel belt cord or the like and has an excellent ductility and fatigue characteristics and has a tensile strength of 4200 MPa or more.
[0002]
[Prior art]
The demand for higher strength for ultra fine steel wires is increasing for weight reduction. Conventionally, ultra-fine steel wires used for reinforcement of automobile tires, various industrial belts, etc., after hot rolling wire rods of high carbon steel are repeatedly subjected to intermediate wire drawing and patenting treatment to a predetermined wire diameter It is manufactured by performing a final patenting process, performing a plating process for improving the wire drawing workability and the adhesion to rubber, and performing wet wire drawing to a predetermined wire diameter. For example, a steel tire cord is manufactured by finally twisting a wire manufactured as described above using a twisting machine such as a double twister.
[0003]
In the manufacturing process as described above, in order to increase the strength of the ultra fine steel wire, it is necessary to increase the strength after the final patenting process or increase the final wire drawing distortion. However, even if the strength after the final patenting process or the wire drawing strain is increased to increase the strength of the ultrafine steel wire, if the strength exceeds 4200 MPa, the ductility significantly decreases (occurrence of delamination). It becomes extremely difficult to do. Further, even if the strength of the ultrafine steel wire is increased, the fatigue characteristics are not improved, but rather deteriorate, which is one of the factors hindering the increase in strength of the ultrafine steel wire.
[0004]
On the other hand, as conventional knowledge of the high-strength means with little reduction in ductility, for example, JP-A-60-204865, JP-A-63-24046 and JP-B-3-23674 disclose C , Si, Mn, Cr, and other high-carbon wires for ultra-fine steel wires with high strength and high ductility have been proposed. However, as can be seen from the examples disclosed in these publications, the maximum tensile strength of the steel wire is 3500-3600 MPa, and there is a limit to increasing the strength of the ultrafine steel wire. Japanese Patent Laid-Open No. 6-145895 proposes a high-strength and high-toughness steel wire material in which the chemical composition, the composition of non-metallic inclusions, and the area fraction of proeutectoid cementite are controlled. Further, Japanese Patent Application Laid-Open No. 7-113119 discloses a method for producing a high strength and high toughness ultrafine steel wire which controls the chemical composition of steel and the area reduction rate in the final die. However, in any technique, it was difficult to realize an ultrafine steel wire having high ductility when the tensile strength exceeded 4200 MPa. On the other hand, as a means for improving the fatigue characteristics of an ultrafine steel wire, for example, Japanese Patent Laid-Open No. 2-179333 discloses a technique for applying shot peening to an ultrafine steel wire, and the tensile residual stress of the ultrafine wire surface layer is reduced. There has been proposed a method of manufacturing an ultrafine steel wire having high fatigue resistance by improving the compressive residual stress. According to the detailed tests of the present inventors, it is possible to improve the tensile residual stress on the surface of the ultrafine steel wire to compressive residual stress by shot peening treatment, but it is very strong shot to change to compressive residual stress. Peening is required. When such a shot peening treatment is performed, the brass plating layer on the surface of the ultrathin steel wire that has become extremely thin due to the wire drawing process peels off, resulting in a problem that the adhesion with the rubber deteriorates. There were limits to improving the fatigue properties of
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the actual situation as described above, and prevents deterioration of ductility and deterioration of fatigue characteristics, which are problems when increasing the strength of ultrafine steel wires having a wire diameter of 0.05 to 0.4 mm. An object of the present invention is to provide a method for producing a high-strength ultrafine steel wire having a strength of 4200 MPa or more and excellent in ductility and fatigue characteristics.
[0006]
[Means for Solving the Problems]
As a result of various analyzes on the controlling factors of ductility, which is an impediment to increasing the strength of high-carbon ultrafine steel wires, the present inventors have found that non-uniform cementite decomposition that occurs during wire drawing significantly affects ductility. I found it. That is, the cementite decomposes and the C concentration in the ferrite increases as the wire drawing distortion increases, but the C concentration becomes non-uniform because this cementite decomposition occurs unevenly depending on the location, resulting in high strength steel. We found a completely new fact that the ductility of the line was lowered. Furthermore, it has been clarified for the first time that the cementite decomposition behavior greatly affects the fatigue properties of high-strength ultrafine steel wires, and that fatigue strength decreases if the C concentration in ferrite is not uniform.
[0007]
Based on the above new findings, reducing the difference between the maximum and minimum C concentrations in ferrite in a hard-worked pearlite structure can prevent a decrease in ductility of high-strength ultrafine steel wire and greatly improve fatigue strength. Thus, the present invention has been reached.
[0008]
The gist of the present invention is, in mass%, C: 0.85 to 1.1%, Si: 0.05 to 2.0%, Mn: 0.2 to 2.0%, Alternatively, Cr: 0.05-1.0%, Ni: 0.1-1.0%, V: 0.01-0.5%, Nb: 0.001-0.1% balance with including two or more kinds Ri Do Fe and inevitable impurities, has a drawing perlite tissue, and that the difference between the maximum value and the minimum value of the C concentration in the ferrite at 1.3 atomic% or less A method for producing a very fine steel wire, wherein the steel wire having the above chemical component is subjected to final patenting treatment so that the patenting material strength is 1450 MPa or more, and the true strain is 3.5 or more and 5.5 or less. Performing a wire drawing process and a straightening process during the wire drawing process; and, after the wire drawing process, a straightening process is performed. And further heating to a temperature of 150 to 500 ° C., one or superior method for producing a high-strength fine steel wire of ductility and fatigue properties which is characterized in that both, further, the final patenting treatment after manufacturing In a process, it exists in the manufacturing method of the high-strength extra fine steel wire excellent in ductility and fatigue characteristics of Claim 1 or 2 characterized by combining 2 or more types among following BG, I.
here,
B: Wire drawing is performed using a die having an approach angle of 8 to 12 ° and a bearing length of 0.2 to 0.5D (D: die diameter).
C: Use diamond dies,
D: Wire drawing is performed by controlling the temperature of the wire drawing material to 50 ° C. or lower.
E: Use a lubricant having a friction coefficient of 0.1 or less between the die and the wire drawing material.
F: In the wire drawing process, the area reduction per die is 20 to 40% in the initial stage of the wire drawing until the true strain is 1, but the total strain is 3.5 or more. To
G: The area reduction of the final die is 10% or less.
I: After wire drawing, it is heated to a temperature of 200 to 500 ° C.
It is.
[0009]
Here, the drawn pearlite structure means a structure obtained by drawing a pearlite structure by patenting and then drawing a true strain by 3.5 or more.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0011]
First, the reasons for limiting the components of the present invention will be described.
[0012]
C: C has the effect of increasing the tensile strength after the patenting treatment and increasing the wire drawing work hardening rate, and can increase the tensile strength of the ultra fine steel wire with less wire drawing strain. If C is less than 0.85%, it is difficult to produce the ultrafine steel wire having a strength of 4200 MPa or more as intended in the present invention. On the other hand, if it exceeds 1.1%, proeutectoid cementite is austenite grains during patenting. C was limited to the range of 0.85 to 1.1% because wire drawing processability deteriorated due to precipitation at the boundary and wire breakage frequently occurred in the wire drawing process or the stranding process.
[0013]
Si: Si is an effective element for strengthening ferrite in pearlite and for deoxidizing steel. If the content is less than 0.05%, the above effect cannot be expected. On the other hand, if the content exceeds 2.0%, hard SiO 2 inclusions harmful to the wire drawing workability are likely to occur. Limited to 0.0% range.
[0014]
Mn: Mn is not only necessary for deoxidation and desulfurization, but also an element effective for improving the hardenability of steel and increasing the tensile strength after patenting treatment, but less than 0.2% In the above, the above effect cannot be obtained, while if it exceeds 2.0%, the above effect is saturated and the processing time for completing the pearlite transformation at the time of the patenting process becomes too long and the productivity is lowered. It was limited to the range of 0.2 to 2.0%.
[0015]
In the high-strength ultrafine steel wire according to the present invention, in addition to the above elements, Cr: 0.05-2.0%, Ni: 0.1-1.0%, V: 0.01-0.5 %, Nb: 0.001 to 0.1% can be contained alone or in combination of two or more.
[0016]
Cr: Cr is an effective element that refines the cementite spacing of pearlite and increases the tensile strength after patenting treatment, and particularly improves the wire drawing work hardening rate. On the other hand, if it exceeds 2.0%, the end time of pearlite transformation during the patenting process becomes long and the productivity is lowered, so the content is limited to 0.05 to 2.0%.
[0017]
Ni: Ni has the effect of making pearlite produced by transformation during the patenting process to have good wire drawing workability, but if it is less than 0.1%, the above effect cannot be obtained, and even if it exceeds 1.0% This is the upper limit because there is little effect to meet the added amount.
[0018]
V: V has the effect of increasing the pearlite cementite spacing and increasing the tensile strength after patenting, but this effect is insufficient if it is less than 0.01%, while it is effective if it exceeds 0.5%. In order to saturate, it limited to 0.01 to 0.5% of range.
[0019]
Nb: Like V, Nb has the effect of increasing the pearlite cementite spacing and increasing the tensile strength after patenting, but it is insufficient if it is less than 0.001%, while it is added in excess of 0.1%. Even if the effect is saturated, the content is limited to a range of 0.001 to 0.1%.
[0020]
Other elements are not particularly limited, but P: 0.015% or less, S: 0.015% or less, and N: 0.0070% or less are preferable ranges. These elements are contained in steel as inevitable impurity elements. Also, if Al exceeds 0.005%, the hardest Al 2 O 3 inclusions among the inclusions in the steel are likely to be generated, which may cause disconnection during wire drawing or stranded wire processing. 0.005% or less is a preferable range.
[0021]
Next, the reason for limiting the difference in the C concentration in ferrite in the pearlite structure, which is extremely important in preventing ductility reduction and improving fatigue strength of the high-strength ultrafine steel wire intended in the present invention, will be described.
[0022]
In the present invention, the ductility of a steel wire is evaluated by the presence or absence of delamination using a torsion test. Here, the steel wire in which delamination occurs means that the ductility is low.
[0023]
FIG. 1 is an example in which the relationship between the difference between the maximum and minimum C concentration in ferrite and the presence or absence of delamination in an ultrafine steel wire with a wire diameter of 0.20 mm that has been drawn under various conditions is analyzed. The tensile strength of the ultra fine steel wire is adjusted to 4700-4800 MPa by changing the chemical composition of the steel, the drawing strain and the drawing method. As can be seen from the figure, delamination occurs when the difference in C concentration in ferrite in the pearlite structure that has undergone strong processing exceeds 1.3 atomic%. The same results were also obtained when the wire diameter and strength of the ultrafine steel wire were variously changed.
[0024]
Furthermore, FIG. 2 shows an example in which the relationship between the fatigue strength of a high strength extra fine steel wire and the difference in C concentration in ferrite is analyzed. The fatigue strength is a result of evaluation by a 10 7 cycle rotating bending fatigue test in an environment where the temperature is 20 to 25 ° C. and the humidity is 50 to 60%, and the sample is the same as that shown in FIG. It can be seen that the fatigue strength decreases as the difference between the maximum and minimum C concentration increases. In particular, when the C concentration difference exceeds 1.3 atomic%, the tendency for the fatigue strength to decrease increases. From the analysis results of the delamination occurrence and the influence of the C concentration difference on the fatigue strength, the maximum and minimum C concentration difference in the ferrite was limited to 1.3 atomic% or less. In terms of increasing the number of twists in the torsion test, a preferable C concentration difference is 1.0 atomic% or less.
[0025]
As described above, the non-uniformity of the C concentration in the ferrite resulting from the non-uniformity of cementite decomposition greatly affects the delamination generation characteristics and fatigue strength, which are ductility indicators. The cause is considered as follows. It is considered that the solid solution C generated by the decomposition of the cementite segregates to the high-density dislocations in the ferrite generated by the wire drawing work and fixes the dislocations. The fact that the C concentration in the ferrite varies depending on the location means that the amount of dislocation fixation strengthening due to C varies depending on the location, and microscopic strength non-uniformity occurs. When a torsion test is performed on a steel wire having a large difference in C concentration, it is considered that cracking occurs due to concentration of torsional deformation in a low strength region, that is, a region having a low C concentration, and delamination occurs. On the other hand, if the C concentration difference is small, the strength is uniform, and thus the torsional deformation becomes uniform and delamination does not occur. The same applies to fatigue fracture. When the non-uniformity of C concentration in ferrite increases, that is, when the non-uniformity of strength increases, deformation due to fatigue becomes non-uniform. We believe that the increase in fatigue strength corresponding to high strength will not be obtained.
[0026]
The C concentration in ferrite can be easily and accurately measured using an atom probe field ion microscope. In the present invention, the C concentration X in the ferrite was determined by the following equation from the analysis by the atom probe field ion microscope when the total number of detected ions was Y (total) and the number of detected ions of C was Y (carbon). .
X = [Y (carbon) / Y (total)] × 100 (atomic%)
Further, the maximum value and the minimum value of the C concentration in the ferrite were obtained by performing C analysis of the ferrite region using 10 or more samples collected from the same steel wire.
[0027]
Next, the difference in C concentration in the ferrite in the pearlite structure of the ultra-fine steel wire that has been subjected to wire drawing with a true strain of 3.5 or more to achieve a high strength with a tensile strength of 4200 MPa or more is 1.3 atoms. In order to control to below%, it is possible to employ the following production methods A to J in the production steps after the final patenting treatment, and it is important to combine them, not individually. In addition, as a wire drawing process, it is preferable to set it as true distortion 3.5 or more and 5.5 or less. In order to manufacture an ultra fine steel wire having a C concentration difference of 1.3 atomic% or less, it is preferable to combine four or more methods among A to J, preferably five or more methods.
[0028]
A: The patenting material strength is set to 1450 MPa or more by optimizing the chemical composition of steel and the final patenting treatment conditions. It is important that the patenting treatment is performed at a temperature at which bainite is not generated, and it is preferable to perform the patenting treatment at 550 ° C to 600 ° C.
[0029]
B: Wire drawing is performed using a die having an approach angle of 8 to 12 ° and a bearing length of 0.2 to 0.5 D (D: die diameter).
[0030]
C: A diamond die is used instead of a carbide die.
[0031]
D: Processing heat generated by wire drawing is suppressed. Preferably, the wire drawing is performed by controlling the temperature of the wire drawing material to 50 ° C. or lower.
[0032]
E: Use a lubricant having a high lubricating ability. Preferably, a lubricant having a friction coefficient of 0.1 or less between the die and the wire drawing material is used.
[0033]
F: In the wire drawing process, the area reduction per die is 20 to 40% in the initial stage of the wire drawing until the true strain is 1, but the total strain is 3.5 or more. To do.
[0034]
G: The area reduction of the final die is 10% or less.
[0035]
H: The step of straightening during the wire drawing is added one or more times.
[0036]
I: Heated to a temperature of 200 to 500 ° C. after wire drawing.
[0037]
J: After wire drawing, straightening is performed and further heated to a temperature of 150 to 500 ° C.
[0038]
【Example】
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
[0039]
Table 1 shows the chemical composition of the test materials. Using these specimens, an ultrafine steel wire having brass plating with a wire diameter of 0.12 to 0.36 mm was prototyped. Table 2 shows the production conditions and tensile strength of the ultrafine steel wire, the maximum and minimum C concentrations in ferrite, the difference in C concentration, the presence or absence of delamination in the torsion test, and the fatigue strength. In the table, B to J, which are symbols for other wire drawing conditions, are the contents described above. The torsion test was performed under the condition where both ends of the test piece were fixed at a gripping distance 100 times the wire diameter. Further, the fatigue strength is a result of evaluation by a 10 7 cycle rotating bending fatigue test in an environment where the temperature is 20 to 25 ° C. and the humidity is 50 to 60%.
[0040]
[Table 1]
Figure 0004464511
[0041]
[Table 2]
Figure 0004464511
[0042]
In Table 2, test no. 1 , 3-17 are examples of the present invention . 2 is a reference example, and others are comparative examples. Both the inventive examples and the comparative examples had a pearlite structure that was drawn. As can be seen from the table, in all of the inventive examples, the tensile strength is 4200 MPa or more and the C concentration difference in the ferrite is controlled to 1.3 atomic% or less. As a result, despite the high strength, there is no occurrence of delamination in the torsion test, and a highly ductile ultrafine steel wire can be realized. Furthermore, high fatigue strength corresponding to high strength of ultra fine steel wire has been achieved.
[0043]
On the other hand, No. which is a comparative example. 27 and 29 are examples in which the chemical composition of steel is inappropriate. That is, no. No. 27 is an example in which high strength of 4200 MPa or more cannot be achieved because the C content is as low as 0.71%. Furthermore, no. No. 29 is an example in which pro-eutectoid cementite precipitated during the patenting process because the C content was too high. As a result, wire drawing workability deteriorates, and disconnection frequently occurs during wire drawing.
[0044]
Moreover, No. which is a comparative example. 18 to 26, 28, and 30 to 33 have a C concentration difference in ferrite exceeding 1.3 atomic% in any of the ultra fine steel wires, so that delamination occurs and the fatigue strength is also higher than that of the examples of the present invention. Decreased significantly.
[0045]
【The invention's effect】
As is clear from the above examples, the present invention has the maximum C concentration in ferrite with respect to both ductility reduction (delamination occurrence) and fatigue strength reduction in a high strength ultrafine steel wire having a tensile strength of 4200 MPa or more. It is found that it is extremely effective to reduce the difference in C concentration between the minimum C concentration and the minimum C concentration, and realizes a high-strength ultrafine steel wire having high ductility and high fatigue strength, and the industrial effect is extremely remarkable. There is something.
[Brief description of the drawings]
FIG. 1 is an example of an analysis of the relationship between the difference in C concentration (maximum and minimum difference) in ferrite of an ultrafine steel wire and the presence or absence of delamination.
FIG. 2 is an example of an analysis of the relationship between the C concentration difference (maximum and minimum difference) in ferrite of an ultrafine steel wire and the fatigue strength.

Claims (3)

質量%で、
C:0.85〜1.1%、
Si:0.05〜2.0%、
Mn:0.2〜2.0%、
残部はFe及び不可避的不純物からな、伸線加工されたパーライト組織を有し、かつフェライト中のC濃度の最大値と最小値の差が1.3原子%以下である極細鋼線の製造方法であって、上記化学成分を有する鋼線に、パテンティング材強度が1450MPa以上になるように最終パテンティング処理を行い、真歪3.5以上、5.5以下の伸線加工を行い、かつ、該伸線加工中に矯直加工を行う工程、及び、該伸線加工後、矯直加工を施し、更に150〜500℃の温度に加熱する工程、の一方又は双方を行うことを特徴とする延性及び疲労特性の優れた高強度極細鋼線の製造方法
% By mass
C: 0.85-1.1%
Si: 0.05-2.0%,
Mn: 0.2 to 2.0%,
Balance Ri Do Fe and inevitable impurities, it has a drawing perlite tissue, and the production of fine steel wire the difference between the maximum value and the minimum value of the C concentration in the ferrite is not more than 1.3 atomic% A method, wherein the steel wire having the chemical component is subjected to a final patenting treatment so that the patenting material strength is 1450 MPa or more, and a true strain of 3.5 or more and 5.5 or less is drawn. And it is characterized by performing one or both of a step of straightening during the wire drawing, and a step of straightening after the wire drawing and further heating to a temperature of 150 to 500 ° C. A method for producing a high-strength ultrafine steel wire having excellent ductility and fatigue properties.
鋼線が、更に、質量%で、
Cr:0.05〜2.0%、
Ni:0.1〜1.0%、
V:0.01〜0.5%、
Nb:0.001〜0.1%
の1種または2種以上を含有することを特徴とする請求項1記載の延性及び疲労特性の優れた高強度極細鋼線の製造方法
The steel wire is further mass%,
Cr: 0.05-2.0%,
Ni: 0.1 to 1.0%,
V: 0.01-0.5%
Nb: 0.001 to 0.1%
The method for producing a high-strength ultrafine steel wire excellent in ductility and fatigue characteristics according to claim 1, comprising one or more of the following.
更に、最終パテンティング処理以降の製造工程で、下記のB〜G、Iのうち、2種以上を組み合わせることを特徴とする請求項1又は2に記載の延性及び疲労特性の優れた高強度極細鋼線の製造方法。Furthermore, in the manufacturing process after the final patenting treatment, two or more of the following B to G and I are combined, and the high strength ultrafine material with excellent ductility and fatigue characteristics according to claim 1 or 2 Manufacturing method of steel wire.
ここで、here,
B:アプローチ角度が8〜12°、ベアリング長さが0.2〜0.5D(D:ダイス径)であるダイスを用いて伸線加工を行う、B: Wire drawing is performed using a die having an approach angle of 8 to 12 ° and a bearing length of 0.2 to 0.5D (D: die diameter).
C:ダイヤモンドダイスを使用する、C: Use diamond dies,
D:伸線材の温度を50℃以下に制御して伸線加工を行う、D: Wire drawing is performed by controlling the temperature of the wire drawing material to 50 ° C or lower.
E:ダイスと伸線材の摩擦係数が0.1以下の潤滑剤を使用する、E: Use a lubricant having a friction coefficient of 0.1 or less between the die and the wire drawing material.
F:伸線加工において、真歪みが1までの伸線加工の初期は、1ダイス当たりの減面率を20〜40%にするが、合計で真歪みが3.5以上の伸線加工とする、F: In the wire drawing process, the area reduction per die is 20 to 40% in the initial stage of the wire drawing until the true strain is 1, but the total strain is 3.5 or more. To
G:最終ダイスの減面率を10%以下にする、G: The area reduction of the final die is 10% or less.
I:伸線加工後、200〜500℃の温度に加熱する、I: After wire drawing, it is heated to a temperature of 200 to 500 ° C.
である。It is.
JP2000030144A 2000-02-08 2000-02-08 Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties Expired - Fee Related JP4464511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030144A JP4464511B2 (en) 2000-02-08 2000-02-08 Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030144A JP4464511B2 (en) 2000-02-08 2000-02-08 Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties

Publications (2)

Publication Number Publication Date
JP2001220649A JP2001220649A (en) 2001-08-14
JP4464511B2 true JP4464511B2 (en) 2010-05-19

Family

ID=18555197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030144A Expired - Fee Related JP4464511B2 (en) 2000-02-08 2000-02-08 Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties

Country Status (1)

Country Link
JP (1) JP4464511B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593504B2 (en) * 2006-03-28 2010-12-08 新日本製鐵株式会社 High-strength ultrafine steel wire with excellent ductility
KR100979006B1 (en) * 2007-12-27 2010-08-30 주식회사 포스코 Wire Rods Having Superior Strength And Ductility For Drawing And Method For Manufacturing The Same
JP5573223B2 (en) * 2009-04-28 2014-08-20 新日鐵住金株式会社 High-strength ultrafine steel wire excellent in breakage resistance and method for producing the same
TWI412608B (en) * 2009-06-22 2013-10-21 Nippon Steel & Sumitomo Metal Corp High strength extra-fine steel wire and manufacturing method thereof
EP3135786B1 (en) * 2014-04-24 2019-03-20 Nippon Steel & Sumitomo Metal Corporation Wire rod for high strength steel cord
JP6724400B2 (en) * 2016-02-10 2020-07-15 日本製鉄株式会社 High-strength ultrafine steel wire with excellent balance between strength and ductility and method for producing the same
JP6946891B2 (en) * 2017-09-22 2021-10-13 日本製鉄株式会社 High-strength steel wire
CN113913681B (en) * 2021-08-26 2022-03-25 武汉钢铁有限公司 High-strength low-wire-breakage-rate cord steel, rolling method and application thereof

Also Published As

Publication number Publication date
JP2001220649A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
JP5157230B2 (en) High carbon steel wire rod with excellent wire drawing workability
JP3954338B2 (en) High-strength steel wire excellent in strain aging embrittlement resistance and longitudinal crack resistance and method for producing the same
WO2010150450A1 (en) High-strength ultra-fine steel wire and manufacturing method therefor
EP3282027B1 (en) High-carbon steel wire material with excellent wire drawability, and steel wire
JP4464511B2 (en) Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JP3542489B2 (en) High-strength extra-fine steel wire with excellent fatigue properties
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
JP3777166B2 (en) Manufacturing method of high strength extra fine steel wire
JP3814070B2 (en) High-strength ultrafine steel wire and method for producing the same
JP3001572B1 (en) High-strength, high-ductility ultrafine steel wire, stranded wire, and method for producing the same
JP3267833B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JP3840376B2 (en) Steel for hard-drawn wire and hard-drawn wire with excellent fatigue strength and ductility
JP4555711B2 (en) High-strength ultrafine steel wire with excellent ductility
JP3641056B2 (en) High strength extra fine steel wire
JP2001271138A (en) High strength and high carbon steel wire excellent in ductility
JP4527913B2 (en) High-strength high-carbon steel wire and method for producing the same
JP3061918B2 (en) Method of manufacturing steel cord with excellent fatigue properties
JP2021183716A (en) Steel wire and spring
JP6724400B2 (en) High-strength ultrafine steel wire with excellent balance between strength and ductility and method for producing the same
JP3299857B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JP3130445B2 (en) High strength galvanized steel wire and method of manufacturing the same
JP2000063987A (en) High carbon steel wire rod excellent in wire drawability
JPH06346190A (en) Extra fine steel wire excellent in fatigue characteristic
JPS634039A (en) High-strength wire rod for ultra fine steel wire excellent in workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4464511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees