JPH06346190A - Extra fine steel wire excellent in fatigue characteristic - Google Patents
Extra fine steel wire excellent in fatigue characteristicInfo
- Publication number
- JPH06346190A JPH06346190A JP13477093A JP13477093A JPH06346190A JP H06346190 A JPH06346190 A JP H06346190A JP 13477093 A JP13477093 A JP 13477093A JP 13477093 A JP13477093 A JP 13477093A JP H06346190 A JPH06346190 A JP H06346190A
- Authority
- JP
- Japan
- Prior art keywords
- pearlite
- steel wire
- fatigue
- wire
- cementite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Metal Extraction Processes (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えばタイヤ補強用の
ビードワイヤ、スチールコードに代表される伸線加工さ
れる極細鋼線などに応用でき、更に詳しくは疲労特性が
優れた極細鋼線に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can be applied to, for example, a bead wire for reinforcing a tire, an extra fine steel wire such as a steel cord to be drawn, and more particularly to an extra fine steel wire having excellent fatigue characteristics.
【0002】[0002]
【従来の技術】従来、スチールコードの代表的な製造方
法は0.8%C共析炭素鋼を線径0.8〜1.6mmで最
終パテンティングして、伸線加工歪(以下、真歪と呼
称)3以上の強加工を行うことによって300〜340
kgf/mm2 程度の引張強さを得ている。スチールコードは
高強度化の要求とともに、一方で疲労特性改善の要求も
大きい。これまで疲労特性改善については、ゴム浸透性
の改善(特開昭60−42028号)、フィラメントの
型付け率適正化(特開昭59−124404号)などコ
ード構成面から検討が主に進められている。本発明はス
チールコードなど極細鋼線の素線自体の疲労特性改善に
より、コードの疲労特性をも改善するものである。2. Description of the Related Art Conventionally, a typical steel cord manufacturing method is 0.8% C eutectoid carbon steel with a final patenting with a wire diameter of 0.8 to 1.6 mm to obtain a wire drawing strain (hereinafter, referred to as true strain). It is 300-340 by performing strong processing of 3 or more)
It has a tensile strength of about kgf / mm 2 . Steel cords are required to have high strength and, at the same time, to be required to improve fatigue properties. Up to now, the fatigue characteristics have been mainly studied from the viewpoint of cord construction, such as improvement of rubber permeability (JP-A-60-42028) and optimization of filament type ratio (JP-A-59-124404). There is. The present invention also improves the fatigue characteristics of cords by improving the fatigue characteristics of the strands of ultrafine steel wires such as steel cords.
【0003】合金元素添加によるコード特性の改善例と
して、特公平2−10220号は過共析鋼に特定量のC
oを添加することで、デラミネーション発生限界の改善
を、特公平3−23674号は0.75〜0.90%C
鋼に特定量のNi,Cu,Vを添加することで腐食環境
下の疲労特性改善を図るものがある。しかしながら、前
者は撚り加工性の改善に限られており疲労特性改善の思
想はなく、後者は耐食性改善による腐食環境下での疲労
特性の改善であり、大気疲労特性は評価されていない。
両者とも高価な合金元素を含有するために、コストが高
くなる問題がある。As an example of improving the cord characteristics by adding alloy elements, Japanese Examined Patent Publication No. 2-10220 discloses a specific amount of C in hypereutectoid steel.
Addition of o improves the limit of delamination occurrence, and Japanese Examined Patent Publication No. 3-23674 uses 0.75 to 0.90% C
There is one that aims to improve fatigue characteristics in a corrosive environment by adding specific amounts of Ni, Cu, and V to steel. However, the former is limited to the improvement of the twisting workability and there is no idea of improving the fatigue characteristics, and the latter is the improvement of the fatigue characteristics in a corrosive environment due to the improvement of the corrosion resistance, and the atmospheric fatigue characteristics have not been evaluated.
Since both of them contain expensive alloy elements, there is a problem of high cost.
【0004】パテンティング方法での改善例として、特
開平4−289148号では0.7〜0.9%C鋼のパ
ーライト組織を長手方向へ45°以内の角度に調整して
極細線の強度、延性を改善するとしているが、延性改善
は絞りに限られている。As an example of improvement in the patenting method, in JP-A-4-289148, the pearlite structure of 0.7 to 0.9% C steel is adjusted to an angle within 45 ° in the longitudinal direction, and the strength of the ultrafine wire is adjusted. Although it is said that the ductility is improved, the ductility improvement is limited to the drawing.
【0005】組織と伸線条件での改善例として、特開平
4−131323号ではVなどの合金元素を含む0.2
0〜0.50%C鋼を微細なフェライト−パーライト組
織とし減面率10〜40%の引抜加工を行って耐疲労性
及び耐摩耗性を改善するとしているが、C量が低く熱処
理が連続冷却であるために伸線材の引張強さが90kgf/
mm2 程度と低い問題がある。As an example of improvement in the structure and wire drawing conditions, Japanese Patent Application Laid-Open No. 4-131323 discloses that 0.2 containing an alloying element such as V.
It is said that 0 to 0.50% C steel has a fine ferrite-pearlite structure and is subjected to drawing with a surface reduction rate of 10 to 40% to improve fatigue resistance and wear resistance, but the C content is low and heat treatment is continuous. Since it is cooled, the tensile strength of the wire drawing material is 90kgf /
There is a low problem of about mm 2 .
【0006】[0006]
【発明が解決しようとする課題】真歪3以上の加工を行
うことによって、極細鋼線の引張強さは増加するが、一
方で疲労強度は逆に低下する傾向にある。疲労強度の支
配因子は明確になっていないが、表面引張残留応力の増
加、パーライトの微視組織中の欠陥の増加、表面疵感受
性の増加などによって疲労強度が低下すると考えられて
いる。By processing the true strain of 3 or more, the tensile strength of the ultrafine steel wire increases, while the fatigue strength tends to decrease. Although the controlling factors of fatigue strength have not been clarified, it is believed that the fatigue strength decreases due to an increase in surface tensile residual stress, an increase in defects in microstructure of pearlite, an increase in surface flaw susceptibility, and the like.
【0007】[0007]
【課題を解決するための手段】本発明者らは、特定の真
歪範囲で伸線加工方法を改善すれば、パーライト組織中
の微細欠陥が発生しない領域が存在すること、その真歪
範囲はC量に依存すること、伸線加工後の組織はパーラ
イトコロニーの方向性、パーライトラメラー間隔、セメ
ンタイトの分断率で特徴付けられ、その条件範囲にあれ
ば、疲労特性が極めて優れること、また表面引張残留応
力も併せて小さくなることを見出し本発明に到達した。
すなわち、炭素含有量0.6〜1.0%の中〜高炭素鋼
線材を最終パテンティングして微細なパーライト組織と
し、伸線加工歪を−1.82〔%C〕+3≦真歪≦−
1.82〔%C〕+4.1の範囲で受け、パーライトコ
ロニーの90%以上が伸線方向と平行であり、かつ伸線
後のパーライトラメラー間隔が0.02〜0.06μm
の範囲であり、パーライトコロニーを構成するセメンタ
イトの分断率が20%以下である組織的特徴を有する引
張強さ180〜250kgf/mm2 の疲労特性に優れた極細
鋼線である。The inventors of the present invention have found that if a wire drawing method is improved in a specific true strain range, there is a region in which fine defects do not occur in the pearlite structure. Depends on the C content, the structure after wire drawing is characterized by the directionality of pearlite colonies, the pearlite lamellar spacing, and the cementite fragmentation rate. Within that condition range, the fatigue properties are extremely excellent and the surface tension The present invention has been achieved by finding that the residual stress is also reduced.
That is, a medium-high carbon steel wire rod having a carbon content of 0.6 to 1.0% is finally patented to form a fine pearlite structure, and a wire drawing strain is -1.82 [% C] + 3 ≤ true strain ≤. −
In the range of 1.82 [% C] +4.1, 90% or more of the pearlite colonies are parallel to the drawing direction, and the pearlite lamellar spacing after drawing is 0.02 to 0.06 μm.
The ultrafine steel wire having a tensile strength of 180 to 250 kgf / mm 2 and an excellent fatigue property, which has a structural characteristic that the cementite constituting the pearlite colony has a fragmentation rate of 20% or less.
【0008】ここで、本発明の限定理由は下記の通りで
ある。炭素含有量が0.6%未満になると、所定の真歪
を付与しても180kgf/mm2以上の高強度が得られなく
なること、一方炭素含有量が1.0%を超えるとパーラ
イト組織中に初析セメンタイトが析出して、伸線加工時
にパーライトコロニーの回転性が阻害されることから、
炭素含有量は0.6〜1.0%の範囲に限定した。The reasons for limiting the present invention are as follows. If the carbon content is less than 0.6%, a high strength of 180 kgf / mm 2 or more cannot be obtained even if a predetermined true strain is applied, while if the carbon content exceeds 1.0%, the pearlite structure is Since the pro-eutectoid cementite is deposited on and the rotatability of pearlite colonies is hindered during wire drawing,
The carbon content was limited to the range of 0.6 to 1.0%.
【0009】炭素以外の組成は特に限定を要するもので
はなく、通常この種の線材と同様の組成であれば良い。
例えば、Si:0.3〜0.6%、Mn:0.4〜0.
7%、P:0.005〜0.015%、S:0.005
〜0.015%、残部Fe及び不可避不純物で例示でき
る。必要に応じてCr,Mo,Ni,Vなどの合金元素
を含有しても良い。パテンティング熱処理は、通常の鉛
浴炉、流動層などが利用でき、微細なパーライト組織が
得られれば特に限定するものではない。The composition other than carbon is not particularly limited, and normally, the composition similar to that of the wire of this type may be used.
For example, Si: 0.3-0.6%, Mn: 0.4-0.
7%, P: 0.005 to 0.015%, S: 0.005
˜0.015%, the balance being Fe and unavoidable impurities. If necessary, alloy elements such as Cr, Mo, Ni and V may be contained. The patenting heat treatment can be performed using a conventional lead bath furnace, fluidized bed, or the like, and is not particularly limited as long as a fine pearlite structure can be obtained.
【0010】伸線加工歪(真歪)は炭素含有量に応じて
−1.82〔%C〕+3以上、−1.82〔%C〕+
4.1以下の範囲に規定した。パーライト鋼の伸線時の
結晶粒組織の変化挙動を模式的に図1,図2に示すが、
伸線初期はパーライトコロニーの回転で伸線長手方向に
パーライト組織が整列する過程、伸線中期では整列した
パーライトコロニー自体が引き延ばされる過程、伸線終
期ではセメンタイトの分断を伴いながら加工される過程
が存在する。図3にC量が異なる鋼種のハンター疲労強
度に及ぼす真歪の影響を示す。C量が高いほどパーライ
トコロニーの伸線方向への整列は速く、セメンタイトの
分断も早期に生じたためと考えられるが、C量によって
疲労強度が最大となるピークが異なることを見出し上記
範囲を規定した。The wire drawing strain (true strain) is -1.82 [% C] +3 or more and -1.82 [% C] + depending on the carbon content.
It was defined in the range of 4.1 or less. The change behavior of the grain structure of pearlite steel during wire drawing is schematically shown in Figs.
In the initial stage of wire drawing, the process of aligning the pearlite tissues in the longitudinal direction of the wire drawing by rotation of the pearlite colony, the process of stretching the aligned pearlite colony itself in the middle stage of drawing, and the process of cutting with cementite fragmentation in the final stage of drawing. Exists. FIG. 3 shows the effect of true strain on the hunter fatigue strength of steel types having different C contents. It is considered that the higher the amount of C, the faster the alignment of pearlite colonies in the drawing direction and the early separation of cementite, but it was found that the peak at which the fatigue strength becomes maximum differs depending on the amount of C, and the above range was defined. .
【0011】すなわち、−1.82〔%C〕+3未満の
真歪ではパーライトコロニーが伸線長手方向に整列する
のが不十分となり、一方−1.82〔%C〕+4.1超
の真歪ではパーライト中のセメンタイトの分断率が20
%を超えるために、各々疲労強度は低下すると考えられ
る。ここで、セメンタイトの分断率はパーライトコロニ
ー中で分断箇所のあるセメンタイト本数/コロニー中の
全セメンタイト本数で定義した。That is, when the true strain is less than -1.82 [% C] +3, the pearlite colonies are insufficiently aligned in the longitudinal direction of wire drawing, while the true strain of -1.82 [% C] +4.1 or more is true. With strain, the fragmentation rate of cementite in pearlite is 20.
%, The fatigue strength is considered to be reduced. Here, the fragmentation rate of cementite was defined as the number of cementites having a fragmentation site in the pearlite colony / the total number of cementites in the colony.
【0012】伸線加工後の組織として、パーライトコロ
ニーの90%以上が伸線方向と平行であることを規定し
た。パーライトコロニーはパテンティング直後はランダ
ムな方向に配向している。フェライトとセメンタイトが
層状組織で伸線方向に配列される割合が高いほど、伸線
方向と直角方向へのクラック伝播阻止の効果が大きくな
り、疲労特性は改善されるものと考えられる。ただし、
パーライトコロニーの10%程度が伸線方向と平行(こ
こで伸線方向と平行とは伸線方向±10°以内を指す)
でなくともその効果は確保できるので、90%以上を規
定した。It was defined that 90% or more of the pearlite colonies were parallel to the drawing direction as the structure after drawing. The pearlite colonies are oriented in random directions immediately after patenting. It is considered that the higher the proportion of ferrite and cementite arranged in the wire drawing direction in the layered structure, the greater the effect of preventing crack propagation in the direction perpendicular to the wire drawing direction, and the better the fatigue properties. However,
About 10% of pearlite colonies are parallel to the wire drawing direction (parallel to the wire drawing direction refers to within ± 10 ° of the wire drawing direction)
Even if it is not, the effect can be secured, so 90% or more is specified.
【0013】伸線加工後のラメラー間隔は0.02〜
0.06μmを規定した。0.02μm未満のラメラー
間隔ではフェライトの厚みが薄く、かつフェライト内部
にすべり帯が発生してクラックが伝播し易くなる他、セ
メンタイトの分断も起こり易くなるので、0.02μm
以上を規定した。一方、0.06μm超のラメラー間隔
では180kgf/mm2 以上の所望の高強度が得られなくな
るため0.06μm以下を規定した。The lamellar spacing after wire drawing is 0.02
0.06 μm was specified. If the lamellar spacing is less than 0.02 μm, the thickness of the ferrite is thin, and a slip band is generated inside the ferrite to facilitate crack propagation and fragmentation of cementite is also likely to occur.
The above is specified. On the other hand, if the lamellar spacing is more than 0.06 μm, the desired high strength of 180 kgf / mm 2 or more cannot be obtained, so 0.06 μm or less is specified.
【0014】次に、パーライトコロニーを構成するセメ
ンタイトの分断率は20%以下を規定した。ここで、分
断率はパーライトコロニーを構成する全セメンタイト本
数に対する1箇所でも分断箇所のあるセメンタイト本数
の割合を指す。セメンタイトが分断した箇所は必ずしも
ボイドが形成されるわけではなく、周囲のフェライトで
充満されるが、伸線方向と直角方向へのクラック伝播経
路となり、特にセメンタイト分断率が20%超となると
その傾向が顕著となることから、20%以下を規定し
た。なお、このようなパーライト組織に調整するには、
通常の湿式伸線方法が利用できるが、鋼線断面の表層〜
中間〜中心間の変形度がなるべく一定となるような伸線
用ダイスの配置、潤滑剤の適正化、伸線中の鋼線発熱防
止などの改善によって可能となる。Next, the fragmentation rate of the cementite constituting the pearlite colony was specified to be 20% or less. Here, the fragmentation rate refers to the ratio of the number of cementites that have even one site of fragmentation to the total number of cementites that compose a pearlite colony. Voids are not always formed at the places where cementite is divided, but the surrounding ferrite is filled, but it becomes a crack propagation path in the direction perpendicular to the wire drawing direction, especially when the cementite separation rate exceeds 20%. Therefore, 20% or less is specified. In addition, to adjust to such a pearlite structure,
Normal wet drawing method can be used, but the surface layer of steel wire
This can be achieved by arranging a wire drawing die so that the degree of deformation between the middle and the center is as constant as possible, optimizing the lubricant, and improving the prevention of heat generation of the steel wire during wire drawing.
【0015】以上の条件を組み合わせることにより、例
えば0.82%C−0.20%Si−0.50Mn−
0.008%P−0.009%Sの成分を有する高炭素
鋼成分系で、最終パテンティング1.0mm、仕上げ線径
0.30mm(真歪2.4)とすることで、パーライトコ
ロニーの平行度92%、ラメラー間隔0.041μm、
セメンタイト分断率8%、引張強さ245kgf/mm2 の極
細鋼線でハンター疲労強度120kgf/mm2 の高い疲労特
性を有する極細鋼線が得られた。By combining the above conditions, for example, 0.82% C-0.20% Si-0.50Mn-
It is a high carbon steel composition system containing 0.008% P-0.009% S, and the final patenting is 1.0 mm and the finished wire diameter is 0.30 mm (true strain 2.4). 92% parallelism, lamellar spacing 0.041 μm,
Cementite dividing ratio of 8%, fine steel wire having a high fatigue properties Hunter fatigue strength 120 kgf / mm 2 in fine steel wire of tensile strength 245kgf / mm 2 was obtained.
【0016】[0016]
【実施例】本発明に基づき、表1に示す5種類の成分の
鋼を用いて0.30〜0.60mmの極細鋼線を試作し
た。最終パテンティング処理は鉛浴炉で行い、その後極
細伸線を行った。極細伸線方法としては種々の方法が考
えられるが、例えば伸線初期を減面率14%として、仕
上げ線に向かって9%程度まで徐々に低減させる方法が
考えられ、最終段から2段以内はダイスアプローチ角度
10°として鋼線中心部の引張応力を緩和し、水溶性潤
滑液中に全没として伸線時の鋼線発熱を防止した。EXAMPLE Based on the present invention, an ultrafine steel wire of 0.30 to 0.60 mm was made by trial using the steels of the five kinds of components shown in Table 1. The final patenting treatment was carried out in a lead bath furnace, followed by ultrafine wire drawing. Various methods are conceivable for the ultra-fine wire drawing method, for example, a method of gradually reducing the area reduction rate to 14% at the beginning of wire drawing to about 9% toward the finishing wire, and within 2 steps from the final step Was set at a die approach angle of 10 ° to relax the tensile stress at the center of the steel wire and completely immersed in a water-soluble lubricating liquid to prevent heat generation of the steel wire during wire drawing.
【0017】表2に最終LP材の機械的性質と仕上げ線
の機械的性質、組織的特徴、疲労強度、表面残留応力の
測定結果を併せて示す。ここで、組織的特徴を示すパー
ライトコロニーの平行度、ラメラー間隔、セメンタイト
の分断率は最終伸線材の透過電子顕微鏡観察によって測
定した。また、疲労強度は湿度50%の大気環境中のハ
ンター式回転曲げ疲労試験機で繰り返し数107 回以上
の疲労強度を測定し、仕上げ線の表面残留応力はX線回
折によった。Table 2 also shows the measurement results of the mechanical properties of the final LP material, the mechanical properties of the finished line, the structural characteristics, the fatigue strength, and the surface residual stress. Here, the parallelism of pearlite colonies showing the structural characteristics, the lamellar spacing, and the fragmentation rate of cementite were measured by observing the final drawn wire with a transmission electron microscope. The fatigue strength was measured by a Hunter-type rotary bending fatigue tester in an atmospheric environment with a humidity of 50% at a repetition number of 10 7 or more, and the surface residual stress of the finished line was determined by X-ray diffraction.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【表2】 [Table 2]
【0020】記号A〜Dは本発明例であり、記号E〜L
は比較例である。本発明例では素線のハンター疲労強度
が100kgf/mm2 以上と優れており、表面の引張残留応
力は20kgf/mm2 以下と低かった。比較例Eは真歪が
1.5と小さかったために、仕上げ線の引張強さが15
2.7kgf/mm2 と低くかつパーライトコロニーの平行度
が90%以下であったため、疲労強度が低かった例であ
る。逆に比較例Fは真歪が3.0と大きかったために、
仕上げ線の引張強さが250kgf/mm2 を超え、セメンタ
イト分断率も30%と大きかったために、疲労強度が低
下した例である。この場合表面引張残留応力も60kgf/
mm2 と極めて大きかった。Symbols A to D are examples of the present invention, and symbols E to L are shown.
Is a comparative example. In the examples of the present invention, the hunter fatigue strength of the wire was excellent at 100 kgf / mm 2 or more, and the tensile residual stress on the surface was as low as 20 kgf / mm 2 or less. Since the true strain of Comparative Example E was as small as 1.5, the tensile strength of the finished wire was 15
This is an example in which the fatigue strength was low because the parallelism of the pearlite colony was 90% or less as low as 2.7 kgf / mm 2 . On the contrary, since the true strain of Comparative Example F was as large as 3.0,
This is an example in which the fatigue strength was lowered because the tensile strength of the finished wire exceeded 250 kgf / mm 2 and the cementite fragmentation rate was as high as 30%. In this case, the surface tensile residual stress is also 60 kgf /
mm 2 was extremely large.
【0021】比較例Gは所定の真歪を受けたものの、伸
線加工条件の不良でパーライトコロニーの平行度が90
%以下であったために疲労強度が低下した例である。比
較例Hは所定の真歪を受けたものの、ラメラー間隔が
0.015μmと薄すぎたために、逆に比較例Iはラメ
ラー間隔が0.080μmと厚すぎたためにいずれも疲
労強度が低下した例である。比較例Jは所定の真歪を受
けたものの、伸線加工条件の不良でセメンタイトの分断
率が20%を超え同時に引張強さも250kgf/mm2 を超
えたために疲労強度が低下した例である。比較例Kは鋼
種のC量が0.48%と低かったためにパテンティング
後の初析フェライトが、また比較例Lは鋼種のC量が
1.05%と高かったためにパテンティング後に初析セ
メンタイトが各々析出してパーライトコロニーの回転が
阻害され、規定範囲のパーライトコロニー平行度、セメ
ンタイト分断率などが得られず、疲労強度が低下した例
である。Although Comparative Example G was subjected to a predetermined true strain, the parallelism of pearlite colonies was 90 because of poor drawing conditions.
This is an example in which the fatigue strength was lowered because the content was less than%. Although the comparative example H was subjected to a predetermined true strain, the lamellar spacing was 0.015 μm, which was too thin. On the contrary, the comparative example I was a lamellar spacing, which was 0.080 μm, which was too thick. Is. Comparative Example J is an example in which the fatigue strength was lowered because the fracture rate of cementite exceeded 20% and the tensile strength also exceeded 250 kgf / mm 2 at the same time, although the predetermined true strain was applied, the wire drawing conditions were poor. Comparative Example K had a low C content of 0.48% and thus had proeutectoid ferrite after patenting, and Comparative Example L had a high C content of 1.05% and thus had proeutectoid cementite after patenting. In this example, the rotation of pearlite colonies was inhibited and the pearlite colony parallelism and the cementite fragmentation ratio in the specified range were not obtained, and the fatigue strength decreased.
【0022】[0022]
【発明の効果】本発明は、引張強さ180〜250kgf/
mm2 の極細鋼線の疲労強度が飛躍的に向上できるため、
タイヤ補強用のビードワイヤ、スチールコードなど、特
に疲労強度が要求される用途への応用が可能である。ま
た、真歪が比較的少ないので、表層引張残留応力が低く
内部の微細組織上の欠陥も低いので、伸線加工時や撚り
加工時の断線が極めて低く抑えられる他、ダイス原単位
などの製造コストも改善できる。The present invention has a tensile strength of 180 to 250 kgf /
Since the fatigue strength of the ultrafine steel wire of mm 2 can be dramatically improved,
It can be applied to applications such as bead wires for reinforcing tires and steel cords, where fatigue strength is particularly required. In addition, since the true strain is relatively small, the tensile residual stress in the surface layer is low, and the defects in the internal microstructure are also low, so disconnection during wire drawing and twisting can be suppressed to a very low level, and manufacturing of die basic units etc. The cost can also be improved.
【図1】A,B及びCは本発明にかかる極細鋼線を得る
ための伸線加工に伴う極細鋼線の機械的性質の変化とパ
ーライトコロニーの関係を示す模式図である。1A, 1B and 1C are schematic views showing the relationship between changes in mechanical properties of an ultrafine steel wire and pearlite colonies associated with drawing for obtaining an ultrafine steel wire according to the present invention.
【図2】真歪と引張強さ、絞りの関係を示す図表であ
る。FIG. 2 is a table showing the relationship between true strain, tensile strength, and drawing.
【図3】C量が異なる鋼種別の真歪とハンター疲労強度
の関係を示す図表である。FIG. 3 is a chart showing a relationship between true strain and hunter fatigue strength of steel types having different C amounts.
Claims (1)
中〜高炭素鋼線材を最終パテンティングして微細なパー
ライト組織とし、伸線加工歪を−1.82〔%C〕+3
≦真歪≦−1.82〔%C〕+4.1の範囲で受け、パ
ーライトコロニーの90%以上が伸線方向と平行であ
り、かつ伸線後のパーライトラメラー間隔が0.02〜
0.06μmの範囲であり、パーライトコロニーを構成
するセメンタイトの分断率が20%以下である組織的特
徴を有する引張強さ180〜250kgf/mm2 の疲労特性
に優れた極細鋼線。1. A medium to high carbon steel wire rod having a carbon content of 0.6 to 1.0% by weight is finally patented to form a fine pearlite structure, and a wire drawing strain is -1.82 [% C. ] +3
≤ true strain ≤ -1.82 [% C] + 4.1, 90% or more of the pearlite colonies are parallel to the drawing direction, and the pearlite lamellar spacing after drawing is 0.02
An ultrafine steel wire having a tensile strength of 180 to 250 kgf / mm 2 and excellent fatigue properties, which has a structural characteristic that the cementite constituting a pearlite colony has a fragmentation rate of 20% or less in the range of 0.06 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5134770A JP2974546B2 (en) | 1993-06-04 | 1993-06-04 | Extra fine steel wire with excellent fatigue properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5134770A JP2974546B2 (en) | 1993-06-04 | 1993-06-04 | Extra fine steel wire with excellent fatigue properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06346190A true JPH06346190A (en) | 1994-12-20 |
JP2974546B2 JP2974546B2 (en) | 1999-11-10 |
Family
ID=15136161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5134770A Expired - Fee Related JP2974546B2 (en) | 1993-06-04 | 1993-06-04 | Extra fine steel wire with excellent fatigue properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2974546B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1277846A1 (en) * | 2001-06-28 | 2003-01-22 | Kabushiki Kaisha Kobe Seiko Sho | High-carbon steel wire rod with superior drawability and method for production thereof |
EP1559805A1 (en) * | 2004-01-20 | 2005-08-03 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High carbon steel wire rod superior in wire-drawability and method for producing the same |
WO2024120657A1 (en) * | 2022-12-09 | 2024-06-13 | Baker Hughes Energy Technology UK Limited | An elongated wire element for supporting a tensile load, a flexible pipe body and a method of providing a tensile armour wire |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101889179B1 (en) * | 2016-12-16 | 2018-08-16 | 주식회사 포스코 | High-strength steel wire and method for manufacturing same |
-
1993
- 1993-06-04 JP JP5134770A patent/JP2974546B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1277846A1 (en) * | 2001-06-28 | 2003-01-22 | Kabushiki Kaisha Kobe Seiko Sho | High-carbon steel wire rod with superior drawability and method for production thereof |
US6783609B2 (en) | 2001-06-28 | 2004-08-31 | Kabushiki Kaisha Kobe Seiko Sho | High-carbon steel wire rod with superior drawability and method for production thereof |
EP1559805A1 (en) * | 2004-01-20 | 2005-08-03 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High carbon steel wire rod superior in wire-drawability and method for producing the same |
US7393422B2 (en) | 2004-01-20 | 2008-07-01 | Kobe Steel, Ltd. | Method for producing high carbon steel wire rod superior in wire-drawability |
WO2024120657A1 (en) * | 2022-12-09 | 2024-06-13 | Baker Hughes Energy Technology UK Limited | An elongated wire element for supporting a tensile load, a flexible pipe body and a method of providing a tensile armour wire |
Also Published As
Publication number | Publication date |
---|---|
JP2974546B2 (en) | 1999-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2083094B1 (en) | High-strength steel wire excelling in ductility and process for producing the same | |
JP5114684B2 (en) | Wire material excellent in ductility, high-strength steel wire, and production method thereof | |
JP5939359B2 (en) | High carbon steel wire and method for producing the same | |
EP2090671B1 (en) | High-strength wire rod excelling in wire drawability and process for producing the same | |
JP5092749B2 (en) | High ductility high carbon steel wire | |
JP3954338B2 (en) | High-strength steel wire excellent in strain aging embrittlement resistance and longitudinal crack resistance and method for producing the same | |
WO2016021556A1 (en) | High carbon steel wire having excellent drawability | |
JP2007131945A (en) | High strength steel wire having excellent ductility and its production method | |
JP5304323B2 (en) | Wire material for high-strength steel wire, high-strength steel wire, and production method thereof | |
JP5201000B2 (en) | Wire material for high-strength steel wire, high-strength steel wire, and production method thereof | |
JP3283332B2 (en) | High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same | |
JP2000119805A (en) | Steel wire rod excellent in wire drawability | |
JP4464511B2 (en) | Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties | |
JP3445674B2 (en) | High strength steel wire with excellent twist crack resistance | |
JPH06346190A (en) | Extra fine steel wire excellent in fatigue characteristic | |
JP6558255B2 (en) | High-strength ultrafine steel wire and method for producing the same | |
JP3267833B2 (en) | High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same | |
JP2000256792A (en) | High strength and high ductility extra-fine steel wire and stranded wire and its production | |
JP3061918B2 (en) | Method of manufacturing steel cord with excellent fatigue properties | |
JPH062039A (en) | Production of extra fine wire of medium carbon steel | |
JP2001271138A (en) | High strength and high carbon steel wire excellent in ductility | |
JP3479724B2 (en) | Metal wire for rubber product reinforcement | |
JP3299857B2 (en) | High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same | |
JP3182984B2 (en) | Manufacturing method of high strength extra fine steel wire | |
JPH08232046A (en) | High strength steel wire excellent in twisting crack resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990727 |
|
LAPS | Cancellation because of no payment of annual fees |