JP3542489B2 - High-strength extra-fine steel wire with excellent fatigue properties - Google Patents

High-strength extra-fine steel wire with excellent fatigue properties Download PDF

Info

Publication number
JP3542489B2
JP3542489B2 JP05983598A JP5983598A JP3542489B2 JP 3542489 B2 JP3542489 B2 JP 3542489B2 JP 05983598 A JP05983598 A JP 05983598A JP 5983598 A JP5983598 A JP 5983598A JP 3542489 B2 JP3542489 B2 JP 3542489B2
Authority
JP
Japan
Prior art keywords
steel wire
hydrogen
strength
amount
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05983598A
Other languages
Japanese (ja)
Other versions
JPH11256274A (en
Inventor
敏三 ▲樽▼井
真吾 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP05983598A priority Critical patent/JP3542489B2/en
Publication of JPH11256274A publication Critical patent/JPH11256274A/en
Application granted granted Critical
Publication of JP3542489B2 publication Critical patent/JP3542489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、スチールタイヤコード、スチールベルトコード等の素線として使用され、引張強さが3500MPa 以上である疲労特性の優れた高強度極細鋼線に関するものである。
【0002】
【従来の技術】
軽量化などのために極細鋼線に対する高強度化の要求は一段と高まっている。従来、自動車用タイヤ、産業用各種ベルト類などの補強用に使用されている極細鋼線は、高炭素鋼の熱間圧延線材から中間伸線、パテンティング処理を繰り返し所定の線径にした後、最終パテンティング処理を行い、伸線加工性およびゴムとの接着性を向上させるめっき処理を施し所定の線径まで湿式伸線加工することにより製造される。例えばスチールタイヤコードは、上記のように製造される素線を最終的にダブルツイスタなどの撚り線機を用いて撚り線加工することによって製造される。
【0003】
上記のような製造工程において、極細鋼線の高強度化を図るためには、最終パテンティング処理後の素線強度を上げるか、最終の伸線加工歪を増加させる必要がある。ところが、最終パテンティング処理後の素線強度ないしは伸線加工歪を増加させて極細鋼線の高強度化を図っても、極細鋼線の疲労特性は向上せず、むしろ劣化するという問題点があり、極細鋼線の高強度化を阻害する要因の一つであった。
【0004】
これに対して極細鋼線の疲労特性を向上させる手段として、例えば特開平2−179333号公報には極細鋼線にショットピーニング処理を適用する技術が開示されており、極細線表面層の引張残留応力を圧縮残留応力に改善して耐疲労性の高い極細鋼線を製造する方法が提案されている。本発明者らの詳細な試験によれば、ショットピーニング処理によって、極細鋼線表面の引張残留応力を圧縮残留応力に改善することは可能であるが、圧縮残留応力に変えるためには非常に強いショットピーニング処理が必要である。このようなショットピーニング処理を行うと、伸線加工によって非常に薄くなった極細鋼線表層のブラスめっき層が剥離してしまい、ゴムとの密着性が劣化するという問題点が生じ、極細鋼線の疲労特性を改善するためには限界があった。
【0005】
【発明が解決しようとする課題】
本発明は上記の如き実状に鑑みなされたものであって、すなわち圧縮残留応力に変えるために、強いショットピーニングすると、ブラスめっき層が剥離して、鋼線とゴムとの密着性の劣化が生じ、疲労特性改善に限界があったが、これを解決して、線径が0.05〜0.4mmで引張強さが3500 MPa 以上である疲労特性の優れた高強度極細鋼線を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは高強度極細鋼線の疲労特性に及ぼす影響因子について種々解析した結果、強加工されたパーライト組織中における極微量水素が鋼線の疲労寿命に著しい影響を与えることを見い出した。すなわち、強度が高い極細鋼線中に微量水素が存在すると疲労特性が劣化し、高強度極細鋼線の疲労強度を高めるためには水素量を低減させることが重要であるという全く新たな事実を見い出した。
【0007】
以上の新知見に基づき、強加工したパーライト組織中の水素量を制御すれば、高強度極細鋼線の疲労特性を向上させることが出来るとの結論に達し本発明をなしたものである。
本発明は以上の知見に基づいてなされたものであって、その要旨とするところは、量%で、
C:0.80〜1.10%、 Si:0.05〜2.0%、
Mn:0.2〜2.0%、
を含有する鋼線、あるいは更に、
Cr:0.05〜1.0%、 Ni:0.1〜1.0%、
V:0.01〜0.5%、 Nb:0.001〜0.1%、
の1種または2種以上を含み、ともに残部はFe及び不可避的不純物からなる鋼線において、伸線加工されたパーライト組織を有し、線径が0.05〜0.4 mm で引張強さが3500 MPa 以上で、かつ室温から300℃に加熱する際に放出される水素量が0.5ppm 以下であることを特徴とする疲労特性の優れた高強度極細鋼線にある。
【0008】
【発明の実施の形態】
以下に本発明の限定理由について詳細に説明する。
はじめに、本発明の化学成分限定理由について述べる。
C:
Cはパテンティング処理後の引張強さの増加および伸線加工硬化率を高める効果があり、より少ない伸線加工歪で極細鋼線の引張強さを高めることができる。Cが0.80%未満では本発明で目的とする3500MPa 以上の高強度の極細鋼線を製造することが困難となり、一方、1.10%を越えるとパテンティング処理時に初析セメンタイトがオーステナイト粒界に析出して伸線加工性が劣化し伸線加工工程あるいは撚り線加工工程で断線が頻発するため、本発明ではCを0.80〜1.10%の範囲に限定した。
【0009】
Si:
Siはパーライト中のフェライトを強化させるためと鋼の脱酸のために有効な元素である。Siが0.05%未満では上記の効果が期待できない。一方、2.0%を越えると伸線加工性に対して有害な硬質のSiO2 系介在物が発生し易くなるため、0.05〜2.0%の範囲に制限する。
【0010】
Mn:
Mnは脱酸、脱硫のために必要であるばかりでなく、鋼の焼入性を向上させパテンティング処理後の引張強さを高めるために有効な元素である。Mnが0.2%未満では上記の効果が得られず、一方、2.0%を越えると上記の効果が飽和し、さらにパテンティング処理時のパーライト変態を完了させるための処理時間が長くなり過ぎて生産性が低下するため、本発明では0.2〜2.0%の範囲に限定した。
【0011】
本発明による高強度極細鋼線においては、上記の元素に加えて、更にCr:0.05〜1.0%、Ni:0.1〜1.0%、V:0.01〜0.5%、Nb:0.001〜0.1%の範囲で1種または2種以上を含有することができる。
Cr:
Crはパーライトのセメンタイト間隔を微細化しパテンティング処理後の引張強さを高めるとともに特に伸線加工硬化率を向上させる有効な元素であるが、0.05%未満では前記作用の効果が少なく、一方、1.0%を越えるとパテンティング処理時のパーライト変態終了時間が長くなり生産性が低下するため、本発明では0.05〜1.0%の範囲に限定した。
【0012】
Ni:
Niはパテンティング処理時に変態生成するパーライトを伸線加工性の良好なものにする作用を有する。この作用は0.1%未満では上記の効果が得られず、1.0%を越えても添加量に見合うだけの効果が少ないため、1.0%を上限とした。
【0013】
V:
Vはパーライトのセメンタイト間隔を微細化し、パテンティング処理後の引張強さを高める効果がある。この効果は0.01%未満では不十分であり、一方、0.5%を越えると効果が飽和するため、本発明では0.01〜0.5%の範囲に制限した。
【0014】
Nb:
NbはVと同様にパーライトのセメンタイト間隔を微細化し、パテンティング処理後の引張強さを高める効果がある。0.001%未満では不十分であり、一方、0.1%を越えて添加しても効果が飽和するため、本発明では0.001〜0.1%の範囲に制限した。
【0015】
他の元素は特に限定しないが、P:0.015%以下、S:0.015%以下、N:0.0070%以下が望ましい範囲である。
また、Alは0.005%を越えると鋼中の介在物の中で最も硬質なAl2 3 系介在物が生成し易くなり、伸線加工あるいは撚り線加工の際の断線原因となるため、0.005%以下が好ましい範囲である。
【0016】
次に、本発明で目的とする高強度極細鋼線の疲労特性を向上させる上で極めて重要となる鋼線中の水素量の限定理由について述べる。
まず、極細鋼線中の水素量は、ガスクロマトグラフを用いて昇温分析法によって測定することができる。例えば、図1は100℃/hrの昇温速度で加熱した場合の温度に対する水素放出速度曲線である。図1から水素量を求めることができる。図1において、300℃以下の温度域で鋼線中から放出される水素が疲労特性に悪影響を及ぼす水素であり、300℃を越えて放出される水素は常温での疲労特性に対して影響を及ぼさない。従って、本発明では室温から300℃の温度域で放出される水素量について限定している。また、ブラスめっきのようなめっきを施している極細鋼線では、めっき中に水素が多量に存在している場合が多いため、めっきを除去してから水素量を測定している。
【0017】
図2は、引張強さが3654MPa と4151MPa の極細鋼線に関して、水素量(室温から300℃に加熱される際に放出される水素量)と疲労強度の関係について解析した一例を示す。同図から明らかなように、水素量が0.5ppm を越えると疲労強度が著しく低下することがわかる。従って、水素量の上限値を0.5ppm に制限した。なお、極細鋼線の強度が高くなると同一の水素量でも、疲労寿命が低下しやすいことから、0.3ppm 以下の水素量がより好ましい条件である。また、めっきを施している極細鋼線では、めっき中に水素が存在していると疲労特性が劣化し易いことから、めっき中の水素量、すなわち室温から300℃に加熱される際に放出される水素量も0.5ppm 以下にすることがより好ましい範囲である。
【0018】
ここで、極細鋼線中の水素量を0.5ppm 以下に制御するためには、最終パテンティング処理以降の製造工程に下記のA〜Fの製造方法を採用することで達成できる。A〜Fの製造条件の中で、D,Fが特に重要な技術である。このため、製造条件としてD,Fのいずれかあるいは両方の工程を必ず取り入れることが必須である。
【0019】
A:パテンティング処理時のオーステナイト化加熱温度が高くなるほど、雰囲気から鋼線に侵入する水素量が多くなるため、オーステナイト化加熱温度を出来る限り低くする。好ましい加熱温度は、Accm+20℃〜Accm+100℃の温度範囲である。
B:パテンティング処理時のオーステナイト化加熱雰囲気中の水分あるいは水素ガスが多いと、雰囲気から鋼線に侵入する水素量が多くなる。このため、加熱雰囲気中の水分あるいは水素ガスを体積%で2%以下の雰囲気に制御する。
【0020】
AあるいはBもしくは両者の手段によって、パテンティング処理時に雰囲気から鋼線に侵入する水素量を0.5ppm 以下にすることが好ましい加熱条件である。
C:パテンティング処理後のスケール除去のための酸洗は、酸濃度、酸洗時間あるいは電解酸洗を行う場合は電流密度等を制御することによって、鋼線中に侵入する水素量を低下させる。酸洗の工程で侵入する水素量は、0.5ppm 以下が好ましい条件である。
【0021】
D:酸洗処理後に水素を放出させるためのベーキング処理を行う。ベーキング処理は、100〜500℃の温度範囲で0.1〜300分間の処理が好ましい条件である。
E:電気めっきを施す場合は、電流効率が100%近い条件でめっきを行う。電気めっきの際に鋼線に侵入する水素量を0.5ppm 以下にすることが好ましい条件である。
【0022】
F:めっき処理後は、水素放出のためのベーキング処理を行う。ベーキング処理は、50〜400℃の温度範囲で0.1〜300分間の処理が好ましい条件である。
【0023】
【実施例】
以下、実施例により本発明の効果をさらに具体的に説明する。
表1に供試材の化学組成を示す。これらの供試材を熱間圧延により線径5.5mmにし、一次伸線加工、一次パテンティング処理、二次伸線加工を行った。その後、最終パテンティング処理、引き続きブラスめっき処理を行い、伸線速度600m/分の条件で湿式伸線加工を行った。
【0024】
【表1】

Figure 0003542489
【0025】
表2および表3に極細鋼線の製造条件(前述のA〜F条件)および引張強さ、水素量、疲労強度を示す。極細線中の水素量はブラスめっきを除去した後、ガスクロマトグラフを用いて昇温分析(試料の加熱速度は100℃/hr)によって測定し、室温から300℃の温度範囲で放出される水素量を測定した。また、疲労強度は、温度:20〜25℃、湿度:50〜60%の環境での107 サイクルの回転曲げ疲労試験で評価した結果である。
【0026】
【表2】
Figure 0003542489
【0027】
【表3】
Figure 0003542489
【0028】
表2および表3の試験No. 1〜10が本発明例で、試験No. 11〜18が比較例である。同表に見られるように本発明例の極細鋼線は水素量が0.5ppm 以下に制御されているために、いずれの鋼線も疲労強度が高いことがわかる。
これに対して、比較例であるNo. 11〜17はいずれも従来の極細鋼線である。水素量が高いために、疲労強度が本発明例に比べ低い。また、比較例であるNo. 18はC含有量が高すぎるためにパテンティング処理時に初析セメンタイトが析出した例である。この結果、伸線加工性が劣化し、伸線加工時に断線が頻発したものである。
【0029】
【発明の効果】
以上の実施例からも明かなように、本発明は引張強さが3500MPa 以上の高強度極細鋼線の疲労特性を向上させる手段として、鋼線中の水素量を制御することが極めて有効であることを見出し、疲労特性の優れた高強度極細鋼線を実現したものであり、産業上の効果は極めて顕著なものがある。
【図面の簡単な説明】
【図1】本発明に係る極細鋼線の水素放出プロファイルについて解析した一例を示す図である。
【図2】本発明に係る極細鋼線の水素量と疲労強度の関係について解析した一例を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength ultra-fine steel wire used as a strand of a steel tire cord, a steel belt cord or the like and having excellent fatigue properties and a tensile strength of 3500 MPa or more.
[0002]
[Prior art]
The demand for higher strength of ultra-fine steel wire for weight reduction and the like is further increasing. Conventionally, ultra-fine steel wire used for reinforcement of automobile tires, industrial belts, etc., is obtained by repeating intermediate drawing and patenting from hot-rolled high carbon steel wire to a predetermined wire diameter. It is manufactured by performing a final patenting process, performing a plating process for improving wire drawing workability and adhesion to rubber, and performing wet wire drawing to a predetermined wire diameter. For example, a steel tire cord is manufactured by finally twisting a strand manufactured as described above using a twisting machine such as a double twister.
[0003]
In the manufacturing process as described above, in order to increase the strength of the ultrafine steel wire, it is necessary to increase the wire strength after the final patenting treatment or to increase the final drawing strain. However, even if the strength of the ultrafine steel wire is increased by increasing the wire strength or drawing strain after the final patenting process, the fatigue characteristics of the ultrafine steel wire do not improve, but rather deteriorate. This was one of the factors that hindered the strengthening of ultrafine steel wires.
[0004]
On the other hand, as a means for improving the fatigue characteristics of an ultrafine steel wire, for example, Japanese Patent Application Laid-Open No. 2-179333 discloses a technique in which shot peening is applied to an ultrafine steel wire. There has been proposed a method of manufacturing a fine steel wire having high fatigue resistance by improving stress to compressive residual stress. According to the detailed tests of the present inventors, it is possible to improve the tensile residual stress on the surface of the ultrafine steel wire to the compressive residual stress by the shot peening treatment, but it is very strong to convert it to the compressive residual stress. Shot peening is required. When such a shot peening treatment is performed, the brass plating layer on the surface layer of the ultrafine steel wire, which has become extremely thin due to the wire drawing, is peeled off, causing a problem that the adhesion to rubber is deteriorated. There were limits to improving the fatigue properties of steel.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, that is, in order to change to compressive residual stress, when strong shot peening, the brass plating layer peels off, and the adhesion between the steel wire and the rubber deteriorates. There is a limit in improving the fatigue properties, but by solving this, there is provided a high-strength ultrafine steel wire having excellent fatigue properties, having a wire diameter of 0.05 to 0.4 mm and a tensile strength of 3500 MPa or more. It is intended for that purpose.
[0006]
[Means for Solving the Problems]
The present inventors have conducted various analyzes on the influencing factors on the fatigue properties of a high-strength ultrafine steel wire, and as a result, have found that a trace amount of hydrogen in a strongly-worked pearlite structure has a significant effect on the fatigue life of the steel wire. In other words, the fact that a small amount of hydrogen is present in a high-strength ultrafine steel wire deteriorates the fatigue properties, and a completely new fact that it is important to reduce the amount of hydrogen to increase the fatigue strength of a high-strength ultrafine steel wire. I found it.
[0007]
Based on the above new findings, the present inventors have concluded that controlling the amount of hydrogen in the pearlite structure that has been strongly worked can improve the fatigue characteristics of a high-strength ultrafine steel wire, and made the present invention.
The present invention was made based on the above findings, it is an gist, in mass%,
C: 0.80 to 1.10%, Si: 0.05 to 2.0%,
Mn: 0.2-2.0%,
Or a steel wire containing
Cr: 0.05 to 1.0%, Ni: 0.1 to 1.0%,
V: 0.01-0.5%, Nb: 0.001-0.1%,
A steel wire composed of Fe and unavoidable impurities, the rest of which has a drawn pearlite structure, a wire diameter of 0.05 to 0.4 mm , and a tensile strength of Is not less than 3500 MPa , and the amount of hydrogen released upon heating from room temperature to 300 ° C. is not more than 0.5 ppm.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the reasons for limitation of the present invention will be described in detail.
First, the reasons for limiting the chemical components of the present invention will be described.
C:
C has an effect of increasing the tensile strength after the patenting treatment and increasing the rate of wire drawing work hardening, and can increase the tensile strength of the ultrafine steel wire with less wire drawing strain. If C is less than 0.80%, it is difficult to produce a high-strength ultra-fine steel wire of 3500 MPa or more intended in the present invention, while if it exceeds 1.10%, pro-eutectoid cementite becomes austenitic grains during patenting treatment. In the present invention, C is limited to the range of 0.80 to 1.10%, because it precipitates in the field and deteriorates the wire drawing processability and frequently causes disconnection in the wire drawing process or the stranded wire process.
[0009]
Si:
Si is an element effective for strengthening ferrite in pearlite and for deoxidizing steel. If the Si content is less than 0.05%, the above effects cannot be expected. On the other hand, if it exceeds 2.0%, hard SiO 2 -based inclusions harmful to wire drawing workability are likely to be generated, so the content is limited to the range of 0.05 to 2.0%.
[0010]
Mn:
Mn is an element effective not only for deoxidation and desulfurization but also for improving the hardenability of steel and increasing the tensile strength after the patenting treatment. If Mn is less than 0.2%, the above effects cannot be obtained. On the other hand, if Mn exceeds 2.0%, the above effects are saturated, and the processing time for completing the pearlite transformation during the patenting process becomes longer. Therefore, the productivity is reduced, so that the content is limited to the range of 0.2 to 2.0% in the present invention.
[0011]
In the high-strength ultrafine steel wire according to the present invention, in addition to the above elements, Cr: 0.05 to 1.0%, Ni: 0.1 to 1.0%, V: 0.01 to 0.5 %, Nb: One or more of them may be contained in the range of 0.001 to 0.1%.
Cr:
Cr is an effective element for refining the cementite spacing of pearlite, increasing the tensile strength after the patenting treatment, and particularly improving the wire work hardening rate. If it exceeds 1.0%, the pearlite transformation end time during the patenting process becomes longer and the productivity decreases, so in the present invention, it is limited to the range of 0.05 to 1.0%.
[0012]
Ni:
Ni has an effect of making pearlite generated by transformation during the patenting process excellent in wire drawing workability. If this effect is less than 0.1%, the above effect cannot be obtained, and if it exceeds 1.0%, the effect corresponding to the added amount is small, so the upper limit was made 1.0%.
[0013]
V:
V has the effect of reducing the pearlite cementite spacing and increasing the tensile strength after patenting. If this effect is less than 0.01%, the effect is insufficient, while if it exceeds 0.5%, the effect is saturated. Therefore, in the present invention, the effect is limited to the range of 0.01 to 0.5%.
[0014]
Nb:
Nb, like V, has the effect of reducing the pearlite cementite spacing and increasing the tensile strength after patenting. If it is less than 0.001%, it is not sufficient. On the other hand, if it exceeds 0.1%, the effect is saturated. Therefore, in the present invention, it is limited to the range of 0.001 to 0.1%.
[0015]
Other elements are not particularly limited, but P: 0.015% or less, S: 0.015% or less, and N: 0.0070% or less are desirable ranges.
On the other hand, if the content of Al exceeds 0.005%, the hardest Al 2 O 3 -based inclusion among the inclusions in the steel is likely to be generated, which causes a disconnection in wire drawing or stranded wire processing. , 0.005% or less is a preferable range.
[0016]
Next, the reason for limiting the amount of hydrogen in the steel wire, which is extremely important for improving the fatigue properties of the high-strength ultrafine steel wire intended in the present invention, will be described.
First, the amount of hydrogen in the ultrafine steel wire can be measured by a temperature rising analysis method using a gas chromatograph. For example, FIG. 1 is a hydrogen release rate curve with respect to temperature when heating is performed at a rate of 100 ° C./hr. The amount of hydrogen can be determined from FIG. In FIG. 1, hydrogen released from the steel wire in a temperature range of 300 ° C. or less is hydrogen that has a bad effect on fatigue characteristics, and hydrogen released over 300 ° C. has an influence on fatigue characteristics at room temperature. Has no effect. Therefore, in the present invention, the amount of hydrogen released in a temperature range from room temperature to 300 ° C. is limited. In addition, in the case of ultra-fine steel wire plated by brass plating, a large amount of hydrogen is often present in the plating, so the amount of hydrogen is measured after removing the plating.
[0017]
FIG. 2 shows an example of analyzing the relationship between the amount of hydrogen (the amount of hydrogen released when heated from room temperature to 300 ° C.) and the fatigue strength of ultrafine steel wires having tensile strengths of 3654 MPa and 4151 MPa. As is apparent from the figure, when the amount of hydrogen exceeds 0.5 ppm, the fatigue strength is significantly reduced. Therefore, the upper limit of the amount of hydrogen was limited to 0.5 ppm. In addition, since the fatigue life tends to be reduced even with the same amount of hydrogen when the strength of the ultrafine steel wire is increased, a hydrogen amount of 0.3 ppm or less is a more preferable condition. In addition, in the case of plated ultrafine steel wire, if hydrogen is present in the plating, the fatigue properties are likely to deteriorate, so the amount of hydrogen in the plating, that is, released when heated from room temperature to 300 ° C. It is a more preferable range that the amount of hydrogen is set to 0.5 ppm or less.
[0018]
Here, in order to control the amount of hydrogen in the ultrafine steel wire to 0.5 ppm or less, it can be achieved by employing the following manufacturing methods A to F in the manufacturing process after the final patenting process. Among the manufacturing conditions A to F, D and F are particularly important technologies. For this reason, it is essential that either or both of the steps D and F be incorporated as manufacturing conditions.
[0019]
A: The higher the austenitizing heating temperature during the patenting treatment, the greater the amount of hydrogen that enters the steel wire from the atmosphere, and therefore the lower the austenitizing heating temperature. A preferable heating temperature is a temperature range of Accm + 20 ° C. to Accm + 100 ° C.
B: If the amount of moisture or hydrogen gas in the austenitizing heating atmosphere during the patenting process is large, the amount of hydrogen that enters the steel wire from the atmosphere increases. For this reason, the moisture or hydrogen gas in the heating atmosphere is controlled to an atmosphere of 2% or less by volume%.
[0020]
It is a preferable heating condition that the amount of hydrogen entering the steel wire from the atmosphere during the patenting treatment by the means A or B or both is set to 0.5 ppm or less.
C: Pickling for scale removal after the patenting treatment reduces the amount of hydrogen penetrating into the steel wire by controlling the acid concentration, the pickling time, or the current density when electrolytic pickling is performed. . The amount of hydrogen entering in the pickling step is preferably 0.5 ppm or less.
[0021]
D: Baking treatment for releasing hydrogen is performed after the pickling treatment. The baking treatment is preferably performed at a temperature of 100 to 500 ° C. for 0.1 to 300 minutes.
E: When performing electroplating, plating is performed under conditions where current efficiency is close to 100%. It is a preferable condition that the amount of hydrogen entering the steel wire during electroplating is set to 0.5 ppm or less.
[0022]
F: After the plating process, a baking process for releasing hydrogen is performed. The baking treatment is preferably performed at a temperature of 50 to 400 ° C. for 0.1 to 300 minutes.
[0023]
【Example】
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
Table 1 shows the chemical composition of the test materials. These test materials were hot-rolled to a wire diameter of 5.5 mm and subjected to primary drawing, primary patenting, and secondary drawing. After that, a final patenting process and a subsequent brass plating process were performed, and wet drawing was performed at a drawing speed of 600 m / min.
[0024]
[Table 1]
Figure 0003542489
[0025]
Tables 2 and 3 show the manufacturing conditions (the above-mentioned A to F conditions), tensile strength, hydrogen content, and fatigue strength of the ultrafine steel wire. After removing the brass plating, the amount of hydrogen in the ultrafine line is measured by temperature rise analysis using a gas chromatograph (heating rate of the sample is 100 ° C / hr), and the amount of hydrogen released in the temperature range from room temperature to 300 ° C Was measured. Further, the fatigue strength is a result evaluated by a 10 7 cycle rotational bending fatigue test in an environment of temperature: 20 to 25 ° C. and humidity: 50 to 60%.
[0026]
[Table 2]
Figure 0003542489
[0027]
[Table 3]
Figure 0003542489
[0028]
Test Nos. 1 to 10 in Tables 2 and 3 are examples of the present invention, and Test Nos. 11 to 18 are comparative examples. As can be seen from the table, since the ultrafine steel wire of the present invention is controlled to have a hydrogen content of 0.5 ppm or less, all the steel wires have high fatigue strength.
On the other hand, Nos. 11 to 17 as comparative examples are all conventional ultrafine steel wires. Since the amount of hydrogen is high, the fatigue strength is lower than that of the present invention. No. 18, which is a comparative example, is an example in which proeutectoid cementite was precipitated during the patenting treatment because the C content was too high. As a result, wire drawing workability was deteriorated, and disconnection frequently occurred during wire drawing.
[0029]
【The invention's effect】
As is apparent from the above examples, the present invention is extremely effective as a means for improving the fatigue characteristics of a high-strength ultrafine steel wire having a tensile strength of 3500 MPa or more, by controlling the amount of hydrogen in the steel wire. Thus, the present invention has realized a high-strength ultrafine steel wire having excellent fatigue properties, and has extremely remarkable industrial effects.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of analyzing a hydrogen release profile of an ultrafine steel wire according to the present invention.
FIG. 2 is a diagram showing an example of analyzing the relationship between the hydrogen content and the fatigue strength of the ultrafine steel wire according to the present invention.

Claims (2)

量%で、
C:0.80〜1.10%、
Si:0.05〜2.0%
Mn:0.2〜2.0%、
残部はFeおよび不可避的不純物からなる鋼線において、伸線加工されたパーライト組織を有し、線径が0.05〜0.4mmで引張強さが3500MPa以上で、かつ室温から300℃に加熱する際に放出される水素量が0.5ppm以下であることを特徴とする疲労特性の優れた高強度極細鋼線。
In mass%,
C: 0.80 to 1.10%,
Si: 0.05 to 2.0%
Mn: 0.2-2.0%,
The remainder is a steel wire composed of Fe and unavoidable impurities, has a drawn pearlite structure, a wire diameter of 0.05 to 0.4 mm, a tensile strength of 3500 MPa or more , and is heated from room temperature to 300 ° C. A high-strength ultra-fine steel wire having excellent fatigue properties, characterized in that the amount of hydrogen released during the process is 0.5 ppm or less.
量%で、
Cr:0.05〜2.0%、
Ni:0.1〜1.0%、
V:0.01〜0.5%、
Nb:0.001〜0.1%、
の1種または2種以上を含有することを特徴とする請求項1記載の疲労特性の優れた高強度極細鋼線。
In mass%,
Cr: 0.05 to 2.0%,
Ni: 0.1 to 1.0%,
V: 0.01 to 0.5%,
Nb: 0.001 to 0.1%,
The high-strength ultra-fine steel wire having excellent fatigue properties according to claim 1, comprising one or more of the following.
JP05983598A 1998-03-11 1998-03-11 High-strength extra-fine steel wire with excellent fatigue properties Expired - Lifetime JP3542489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05983598A JP3542489B2 (en) 1998-03-11 1998-03-11 High-strength extra-fine steel wire with excellent fatigue properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05983598A JP3542489B2 (en) 1998-03-11 1998-03-11 High-strength extra-fine steel wire with excellent fatigue properties

Publications (2)

Publication Number Publication Date
JPH11256274A JPH11256274A (en) 1999-09-21
JP3542489B2 true JP3542489B2 (en) 2004-07-14

Family

ID=13124692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05983598A Expired - Lifetime JP3542489B2 (en) 1998-03-11 1998-03-11 High-strength extra-fine steel wire with excellent fatigue properties

Country Status (1)

Country Link
JP (1) JP3542489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102851433A (en) * 2012-08-29 2013-01-02 攀钢集团攀枝花钢铁研究院有限公司 Method for controlling content of nitrogen in semi-steel smelted tire cord steel or hard wire steel

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699335B2 (en) 2000-11-15 2004-03-02 Nsk Ltd. Machine part
WO2002050327A1 (en) * 2000-12-20 2002-06-27 Nippon Steel Corporation High-strength spring steel and spring steel wire
FR2960556B3 (en) 2010-05-31 2012-05-11 Arcelormittal Wire France HIGH-STRENGTH STEEL-SHAPED WIRE FOR MECHANICAL RESISTANT TO HYDROGEN FRAGILIZATION
CN102766727B (en) * 2012-07-03 2013-10-30 南京钢铁股份有限公司 Refining deoxidation process for effectively reducing titanium content of tire cord steel
JP2016014169A (en) 2014-07-01 2016-01-28 株式会社神戸製鋼所 Wire rod for steel wire and steel wire
KR101597756B1 (en) * 2014-10-07 2016-02-25 고려제강 주식회사 Prestressing Strand having high stress corrosion feature
JP6946891B2 (en) * 2017-09-22 2021-10-13 日本製鉄株式会社 High-strength steel wire
JP7296388B2 (en) * 2018-08-07 2023-06-22 住友電気工業株式会社 Copper coated steel wire and stranded wire
CN113088798A (en) * 2021-03-31 2021-07-09 江苏省沙钢钢铁研究院有限公司 High-carbon steel wire rod and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102851433A (en) * 2012-08-29 2013-01-02 攀钢集团攀枝花钢铁研究院有限公司 Method for controlling content of nitrogen in semi-steel smelted tire cord steel or hard wire steel
CN102851433B (en) * 2012-08-29 2014-06-25 攀钢集团攀枝花钢铁研究院有限公司 Method for controlling content of nitrogen in semi-steel smelted tire cord steel or hard wire steel

Also Published As

Publication number Publication date
JPH11256274A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
JP5157230B2 (en) High carbon steel wire rod with excellent wire drawing workability
CN107406950B (en) High-carbon steel wire rod and steel wire having excellent drawability
JP3542489B2 (en) High-strength extra-fine steel wire with excellent fatigue properties
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
JP4464511B2 (en) Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties
JP3814070B2 (en) High-strength ultrafine steel wire and method for producing the same
JP3777166B2 (en) Manufacturing method of high strength extra fine steel wire
JP3001572B1 (en) High-strength, high-ductility ultrafine steel wire, stranded wire, and method for producing the same
JP3267833B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JP3725576B2 (en) Manufacturing method of high strength galvanized steel wire
JP4527913B2 (en) High-strength high-carbon steel wire and method for producing the same
JP2015105418A (en) High carbon steel wire material excellent in coating peeling property as rolling scale and manufacturing method therefor
JP2002180201A (en) Steel for hard-drawn wire having excellent fatigue strength and ductility, and hard-drawn wire
JP2756003B2 (en) High strength steel cord excellent in corrosion fatigue resistance and method of manufacturing the same
JP3061918B2 (en) Method of manufacturing steel cord with excellent fatigue properties
JP2001271138A (en) High strength and high carbon steel wire excellent in ductility
JP3641056B2 (en) High strength extra fine steel wire
JPS60152659A (en) Wire rod for hyperfine wire having superior workability
JP3299857B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JP6724400B2 (en) High-strength ultrafine steel wire with excellent balance between strength and ductility and method for producing the same
JPH01292191A (en) Steel cord for tire and tire
JP2593207B2 (en) High-strength steel wire and steel cord for reinforcing rubber products
JP3398174B2 (en) Extra fine steel wire with excellent fatigue properties and method for producing the same
JP2000063987A (en) High carbon steel wire rod excellent in wire drawability

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

EXPY Cancellation because of completion of term