JP2756003B2 - High strength steel cord excellent in corrosion fatigue resistance and method of manufacturing the same - Google Patents

High strength steel cord excellent in corrosion fatigue resistance and method of manufacturing the same

Info

Publication number
JP2756003B2
JP2756003B2 JP1245250A JP24525089A JP2756003B2 JP 2756003 B2 JP2756003 B2 JP 2756003B2 JP 1245250 A JP1245250 A JP 1245250A JP 24525089 A JP24525089 A JP 24525089A JP 2756003 B2 JP2756003 B2 JP 2756003B2
Authority
JP
Japan
Prior art keywords
steel
steel wire
heat treatment
wire
corrosion fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1245250A
Other languages
Japanese (ja)
Other versions
JPH03113084A (en
Inventor
明 原口
晴雄 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BURIJISUTON METARUFUA KK
Original Assignee
BURIJISUTON METARUFUA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BURIJISUTON METARUFUA KK filed Critical BURIJISUTON METARUFUA KK
Priority to JP1245250A priority Critical patent/JP2756003B2/en
Publication of JPH03113084A publication Critical patent/JPH03113084A/en
Application granted granted Critical
Publication of JP2756003B2 publication Critical patent/JP2756003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/066Reinforcing cords for rubber or plastic articles the wires being made from special alloy or special steel composition

Landscapes

  • Ropes Or Cables (AREA)
  • Tires In General (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ゴムなどの補強に用いられる鋼線、詳しく
は鋼線で補強されたゴム製品が多湿下または水中にさら
される環境下で繰り返し変動入力を受けた時の腐食疲労
性を改善した高強力スチールコード及びその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a steel wire used for reinforcing rubber or the like, and more particularly, a rubber product reinforced with a steel wire is repeatedly used in a humid environment or an environment where it is exposed to water. The present invention relates to a high-strength steel cord having improved corrosion fatigue resistance when receiving a fluctuating input, and a method for manufacturing the same.

(従来の技術) ゴム補強に用いられる鋼線は、製品の軽量化及び製造
コスト低減の為、特に高強力化の要求が強いが、鋼線を
高強力化すると鋼線の耐久性、特に耐腐食疲労性が低下
する現象がある。すなわち鋼線を高強力化すると鋼線で
補強されたゴム製品が腐食環境下にて変動応力を受けた
場合、製品の寿命が低下するという問題点があり従来か
ら改善がなされてきた。例えば特開昭57−149578号公報
では、金属ワイヤの表面の残留応力を圧縮にすることで
機械的疲労特性に優れた金属ケーブルが得られることを
開示している。また特開昭60−183202号公報にはスチー
ルコードの素線におけるセメンタイトラメラー間隔の平
均値300〜500Åであるパーライト組織とパーライト結晶
粒の微細化によって耐腐食疲労性が改善されることが開
示されている。特開昭62−203615号公報には鋼線にブラ
スめっきを施す代わりに鋼線に鉄または鉄−ニッケルめ
っきをした上にブラスめっきを施すことにより腐食疲労
特性を改善する方法が開示されている。
(Conventional technology) Steel wires used for rubber reinforcement are particularly required to have high strength in order to reduce the weight of products and reduce manufacturing costs. There is a phenomenon that the corrosion fatigue property is reduced. That is, when the strength of the steel wire is increased, when the rubber product reinforced with the steel wire receives a fluctuating stress in a corrosive environment, there is a problem that the life of the product is shortened, and the improvement has been conventionally made. For example, JP-A-57-149578 discloses that a metal cable having excellent mechanical fatigue characteristics can be obtained by compressing the residual stress on the surface of a metal wire. Japanese Patent Application Laid-Open No. 60-183202 discloses that the corrosion fatigue resistance is improved by the pearlite structure having an average cementite lamellar spacing of 300 to 500 ° in the strand of the steel cord and the refinement of the pearlite crystal grains. ing. Japanese Patent Application Laid-Open No. 62-203615 discloses a method of improving corrosion fatigue properties by applying a brass plating after applying an iron or iron-nickel plating to a steel wire instead of applying a brass plating to a steel wire. .

(発明が解決しようとする課題) 前記特開昭57−149578号公報において開示されている
金属ケーブルでは機械的疲労特性が改善されることが記
載されているが、腐食疲労特性についてはふれておらず
本発明とは目的を異にしており、また実施例におけるよ
うにワイヤの抗張力が330kgf/mm2未満であり、330kgf/m
m2以上の抗張力のワイヤにおいて表面の残留応力を圧縮
にすることのみでは所望の腐食疲労特性が得られないと
いう欠点があった。次に特開昭60−183202号公報では、
実施例におけるように、素線の引っ張り強度は300kgf/m
m2に満たないものであり、タイヤの安全率を確保するた
めにはスチールコードを多量に必要としタイヤの軽量化
の目的にはそぐわない欠点と、330kgf/mm2以上の抗張力
のワイヤにおいてパーライト組織とパーライト結晶粒の
改善のみでは所望の腐食疲労特性が得られないという欠
点を有していた。更に、特開昭57−149578号公報には鋼
線に鉄または鉄−ニッケルめっきをした上にブラスめっ
きをして腐食に対する防護層を設けることにより腐食疲
労性が改善されることが開示されているが、良好な被覆
性を有する防護層を得るには10μm以上の厚みの鉄また
は鉄−ニッケルめっきを必要とし製品の抗張力の低下お
よび生産性の低下という欠点と、またタイヤでは鋼線を
撚り合わせたスチールコードとして使用することが多い
ために、タイヤ使用中にスチールコードの素線同士のフ
レッチングによりブラスめっき、防護めっきが摩滅し腐
食環境からの防護作用が失われてしまう欠点があった。
(Problems to be Solved by the Invention) Although it is described that the mechanical fatigue characteristics are improved in the metal cable disclosed in Japanese Patent Application Laid-Open No. 57-149578, the corrosion fatigue characteristics are not discussed. without the present invention it has been different in purposes and tensile strength of the wire as in example is less than 330kgf / mm 2, 330kgf / m
There is a disadvantage that desired corrosion fatigue characteristics cannot be obtained only by compressing the residual stress on the surface of a wire having a tensile strength of m 2 or more. Next, in JP-A-60-183202,
As in the example, the tensile strength of the strand is 300 kgf / m
are those less than m 2, pearlite in odds and disadvantages of 330kgf / mm 2 or more tensile strength wires for the purpose of weight reduction of the tire and a large amount requires a steel cord in order to ensure the safety factor of the tire However, a desired corrosion fatigue property cannot be obtained only by improving the pearlite crystal grains. Furthermore, Japanese Patent Application Laid-Open No. 57-149578 discloses that corrosion fatigue resistance is improved by providing a steel wire with iron or iron-nickel plating and then brass plating and providing a protective layer against corrosion. However, in order to obtain a protective layer having good covering properties, iron or iron-nickel plating with a thickness of 10 μm or more is required, resulting in a decrease in product tensile strength and a decrease in productivity. Since the steel cord is often used as a combined steel cord, the brass plating and the protective plating are worn away due to fretting between the wires of the steel cord during use of the tire, and there is a disadvantage that the protective action from a corrosive environment is lost.

上述のように高強力でかつ腐食疲労性に優れた鋼線に
対する要求は強いものの安価で容易に製造することは困
難であった。
As described above, there is a strong demand for steel wires having high strength and excellent corrosion fatigue resistance, but it has been difficult to manufacture them easily at low cost.

(課題を解決するための手段) 本発明者らは鋼材としてはJIS G 3506に規定されたSW
RH82Aまたはそれに準ずるものを用い、鋭意検討の結
果、鋼材を特殊な組成とすることなしに高強度でかつ腐
食疲労性に優れたスチールコードを得るに到った。即
ち、本発明の第1発明は、鋼線の抗張力が330〜390kgf/
mm2であって、鋼線の表面から鋼線直径の10分の1の厚
みを有する表面層の炭素含有量と鋼線内部の炭素含有量
との差が0.05重量%以下であり、かつ最終熱処理後の鋼
材の金属組織のセメンタイトラメラー間隔を1000〜1400
Åの範囲にして、この鋼材を最終伸線した後の鋼線の金
属組織のセメンタイトラメラー間隔を120〜190Åとし、
かつ鋼線表面から深さ方向に鋼線直径の4分の1までの
領域の残留応力が−70mm以上−20mm以下の圧縮応力であ
ることを特徴とする耐腐食疲労性を改善した鋼線を2本
以上撚り合った高強力スチールコードである。
(Means for Solving the Problems) The present inventors used SW as specified in JIS G 3506 as steel.
As a result of intensive studies using RH82A or a material equivalent thereto, a steel cord having high strength and excellent corrosion fatigue resistance was obtained without using a special steel material. That is, the first invention of the present invention provides a steel wire having a tensile strength of 330 to 390 kgf /
A mm 2, or less difference is 0.05% by weight of the carbon content and the carbon content of the internal steel wire surface layer from the surface of the steel wire having a thickness of 10 minutes of the steel wire diameter and the final Cementite lamellar spacing of the metal structure of the steel material after heat treatment is 1000-1400
In the range of Å, the cementite lamellar spacing of the metallographic structure of the steel wire after the final drawing of this steel material is 120-190 、,
A steel wire with improved corrosion fatigue resistance, characterized in that the residual stress in the region from the steel wire surface to a quarter of the steel wire diameter in the depth direction is a compressive stress of -70 mm or more and -20 mm or less. It is a high-strength steel cord with two or more strands.

また本発明の第2発明は、上述の耐腐食疲労性を改善
したスチールコードの製造方法に関するものであり、該
製造方法は以下の通りである。次の工程での伸線加工性
を改善するための熱処理において鋼線の表面から鋼線直
径の10分の1の厚みを有する表面層の炭素含有量と鋼線
内部の炭素含有量との差を0.05重量%以下にする為、熱
処理において好ましくは鋼材の最高温度が880〜970℃に
なるように加熱炉内の温度と鋼材の炉内での滞在時間を
設定しかつ炉雰囲気を2%以下のCOガス還元雰囲気に
し、かつ最終熱処理を施す前に予め鋼材表面を洗浄し、
脱炭による表面層の炭素含有量の減少を抑制し、つづい
て毎秒140℃以上の速度で630℃以上で660℃未満の温度
まで急冷した後、前述の温度に約12秒以上保持してパー
ライト変態させる最終熱処理を行うことにより、鋼材の
金属組織のセメンタイトラメラー間隔を1000〜1400Åの
範囲にし、次いで通常の方法で酸洗い、めっき処理をし
た後、次の工程で330〜390kgf/mm2の抗張力を得るため
に前記鋼材を97%以上の減面率で最終伸線加工して鋼線
にした後、この鋼線に、70kgf/mm2以上、好ましくは70
〜170kgf/mm2に相当する引張り力を付加した状態で、千
鳥足状に配置したロールを通過させて前記鋼線表面での
曲げ歪が1%以上となる曲げ加工を繰り返して施す。
A second invention of the present invention relates to a method for producing a steel cord having the above-described improved corrosion fatigue resistance, and the production method is as follows. The difference between the carbon content of the surface layer having a thickness of one-tenth of the steel wire diameter from the surface of the steel wire and the carbon content inside the steel wire in the heat treatment for improving the wire drawing workability in the next step In the heat treatment, the temperature in the heating furnace and the residence time of the steel in the furnace are set so that the maximum temperature of the steel is preferably 880 to 970 ° C, and the furnace atmosphere is 2% or less. The atmosphere of CO gas reduction, and before the final heat treatment, clean the steel surface in advance,
Suppress the decrease in carbon content of the surface layer due to decarburization, then quench at a rate of 140 ° C or more per second to a temperature of 630 ° C or more and less than 660 ° C, and maintain the above-mentioned temperature for at least 12 seconds and By performing the final heat treatment for transformation, the cementite lamellar interval of the metal structure of the steel material is set in the range of 1000 to 1400 °, then pickled by a usual method, and subjected to plating treatment, and then 330 to 390 kgf / mm 2 in the next step. In order to obtain tensile strength, the steel material is subjected to final drawing at a surface reduction rate of 97% or more to form a steel wire, and the steel wire is provided with 70 kgf / mm 2 or more, preferably 70 kgf / mm 2 or more.
While applying a tensile force equivalent to ~ 170 kgf / mm 2 , the steel wire is repeatedly passed through rolls arranged in a staggered manner so that the bending strain on the surface of the steel wire becomes 1% or more.

また、最終熱処理前に1回又は2回以上の伸線加工を
行う場合には、中間の熱処理回数を極力少なくするこ
と、具体的には、該伸線加工のうちの少なくとも1回の
伸線加工を、熱処理工程を経ることなく行うことが好ま
しい。
When performing one or two or more wire drawing operations before the final heat treatment, reduce the number of intermediate heat treatments as much as possible, specifically, at least one of the wire drawing operations. Processing is preferably performed without going through a heat treatment step.

(作 用) スチールコードの鋼材は高強度とするために、JIS G
3506硬鋼線材の種類記号でSWRH82Aと示される炭素含有
量0.79〜0.86重量%、シリコン含有量0.15〜0.35重量
%、マンガン含有量0.30〜0.60重量%、燐含有量0.030
重量%、硫黄含有量0.030重量%以下のものを使用す
る。また伸線、撚線加工での断線を改善するために非金
属介在物、特に非延性介在物の量は少ないほどよい。ス
チールコードを高強度とするには炭素含有量は多い方が
望ましいが加工性に優れたパーライト組織が得られずス
チールコードを製造する工程で断線が増加して生産性の
低下をきたすし、鋼材組成を変更すると鋼材の価格上昇
をまねくため上記の鋼材を使用する。
(Operation) The steel material of the steel cord is JIS G
3506 Hard steel wire type code: SWRH82A, carbon content 0.79 to 0.86% by weight, silicon content 0.15 to 0.35% by weight, manganese content 0.30 to 0.60% by weight, phosphorus content 0.030
% And a sulfur content of 0.030% by weight or less. Further, in order to improve the disconnection in the wire drawing and the stranded wire processing, the smaller the amount of the nonmetallic inclusions, especially the nonductile inclusions, the better. To increase the strength of the steel cord, it is desirable to have a high carbon content, but a pearlite structure with excellent workability cannot be obtained. When the composition is changed, the above-mentioned steel material is used because the price of the steel material increases.

最終段階での熱処理(パテンティング処理)におい
て、パテンティング温度を630℃以上660℃未満の範囲に
限定した理由は、パテンティング温度が上記範囲内にあ
れば、パテンティング処理後の鋼材の金属組織のセメン
タイトラメラー間隔が1000Åから1400Åの範囲内にな
り、これに伴って、この鋼材を伸線した鋼線は、そのセ
メンタイトラメラー間隔が通常の600℃でパテンティン
グした従来品の前記ラメラー間隔(100Å程度)と比較
して大きくなる(120〜190Å)結果、腐食疲労特性にお
ける表面から深さ方向に鋼線直径の4分の1までの領域
での亀裂伝播速度が低減し、これによって破断寿命を改
善することができる。
The reason for limiting the patenting temperature to the range of 630 ° C or more and less than 660 ° C in the heat treatment (patenting treatment) in the final stage is that if the patenting temperature is within the above range, the metallographic structure of the steel after the patenting treatment The cementite lamellar spacing of the steel wire is in the range of 1000 ° to 1400 °, and accordingly, the steel wire drawn from this steel material has the cementite lamellar spacing of the conventional lamellar spacing patented at 600 ° C. (100 °). As a result, the crack propagation speed in the corrosion fatigue properties in the region from the surface to the depth of one-quarter of the steel wire diameter in the depth direction is reduced, thereby increasing the fracture life. Can be improved.

亀裂伝播過程での伝播速度が低減するのは鋼線のラメ
ラー間隔を増加させることで亀裂先端の応力を緩和でき
るからと推定される。また上記の熱処理をすることでセ
メンタイトの形状を滑らかにできかつラメラー間隔を広
くすることで従来法の熱処理に比べ鋼材の機械加工性が
向上し、次の伸線工程での伸線加工性を改善でき、また
最終熱処理での鋼材の直径を大きくすることができるた
め、最終熱処理工程以前の伸線工程にて伸線加工減面率
を低減することができ、生産性が向上し工業上有利であ
る。
The reason why the propagation speed in the crack propagation process decreases is presumed to be that the stress at the crack tip can be relaxed by increasing the lamella spacing of the steel wire. In addition, by performing the above heat treatment, the cementite shape can be smoothed and the lamellar spacing is widened, so that the machinability of the steel material is improved as compared with the conventional heat treatment, and the drawability in the next drawing process is improved. It is possible to increase the diameter of the steel material in the final heat treatment, so that the wire drawing reduction rate can be reduced in the wire drawing process prior to the final heat treatment process, and the productivity is improved, which is industrially advantageous. It is.

最終熱処理での前記ラメラー間隔は、1000Å未満だ
と、伸線後の製品の所望の耐腐食疲労性が得られない
他、機械加工性が低下するので好ましくなく、また、14
00Åを超えると引っ張り強度が所望値に達せず、加えて
長いパテンティング時間を必要とし生産性が低下する。
If the lamellar spacing in the final heat treatment is less than 1000 °, the desired corrosion resistance of the product after wire drawing cannot be obtained, and the machinability deteriorates.
If it exceeds 00 °, the tensile strength will not reach the desired value, and in addition, a long patenting time will be required, and the productivity will decrease.

鋼材を最高加熱温度:880〜970℃の範囲に加熱して溶
体化処理した後、毎秒140℃の速度以上で冷却した理由
は、パーライト変態開始前に所望の温度にすることで均
一なラメラー組織を得るためと冷却速度を低くした時に
起こる機械的特性の劣る鋼材表面層のフェライトの析出
を抑制するためである。
After heating the steel material to the maximum heating temperature: 880 to 970 ° C and solution-treating it, it was cooled at a rate of 140 ° C / sec or more because the desired temperature before the start of pearlite transformation was used to achieve a uniform lamellar structure. This is to suppress the precipitation of ferrite on the surface layer of the steel material, which has poor mechanical properties when the cooling rate is lowered, in order to obtain a high cooling rate.

パテンティング保持時間を12秒以上とした理由は、均
一なラメラー組織を得るため所望の温度でパーライト変
態を終了させるためである。
The reason why the patenting holding time is set to 12 seconds or more is to terminate the pearlite transformation at a desired temperature in order to obtain a uniform lamellar structure.

伸線加工性を改善するための熱処理において鋼線の表
面から鋼線直径の10分の1の厚みを有する表面層の炭素
含有量と鋼線内部の炭素含有量との差が0.05重量%以下
にする理由は、表面層の脱炭層が厚くなると製品素線の
表面層の機械的強度の低下、及び機械的疲労性と耐腐食
疲労特性の劣化が起こるからであり、脱炭層が厚くなる
のを抑制する方法として、脱炭が起こる機会を減らすこ
と即ち中間の熱処理回数は極力少なくすることが望まし
い。
In the heat treatment for improving the drawability, the difference between the carbon content of the surface layer having a thickness of one tenth of the steel wire diameter from the surface of the steel wire and the carbon content inside the steel wire is 0.05% by weight or less. The reason is that if the decarburized layer of the surface layer becomes thicker, the mechanical strength of the surface layer of the product strand will decrease, and the mechanical fatigue and corrosion fatigue resistance will deteriorate. It is desirable to reduce the chance of decarburization, that is, reduce the number of intermediate heat treatments as much as possible.

また、鋼の熱処理においては温度、時間、雰囲気を適
正にすることで脱炭を抑制する方法は一般に知られてい
るが(例:鋼の熱処理改訂5版 日本鉄鋼協会編 昭和
44年発行 28頁〜39頁「1.4炉内雰囲気」に記載)、本
発明の最終段階での熱処理において、鋼材の最高温度が
880〜970℃になるように加熱炉の温度と鋼材の炉内滞在
時間を設定した理由は、880℃未満では充分な溶体化が
行われず970℃を越すと脱炭反応が促進されるからであ
り、また炉雰囲気を還元雰囲気にした理由は、酸化反応
を抑制するためであり、上述の範囲に温度、雰囲気、時
間を適正にすることで脱炭反応の抑制と脱炭反応を抑制
させるためのスケール質およびスケール量を生成させる
ことができ、脱炭が起きない条件にて溶体化処理するこ
とができるからである。
In the heat treatment of steel, it is generally known to control decarburization by adjusting the temperature, time, and atmosphere to appropriate values (eg, steel heat treatment revised 5th edition, The Iron and Steel Institute of Japan, Showa)
Published in 1944, pages 28-39, "1.4 Furnace Atmosphere"), in the final heat treatment of the present invention, the maximum temperature of steel
The reason for setting the heating furnace temperature and steel stay time in the furnace so that the temperature is 880-970 ° C is that if the temperature is lower than 880 ° C, sufficient solution treatment is not performed, and if the temperature exceeds 970 ° C, the decarburization reaction is promoted. Yes, and the reason why the furnace atmosphere was set to the reducing atmosphere is to suppress the oxidation reaction, and to suppress the decarburization reaction and the decarburization reaction by adjusting the temperature, atmosphere, and time to the appropriate ranges described above. This is because the scale quality and the amount of the scale can be generated, and the solution treatment can be performed under the condition that decarburization does not occur.

また、最終熱処理を行う前に湯洗浄処理をすること
で、鋼材表面に付着している脱炭を促進する最終熱処理
工程以前の伸線工程にて用いられている潤滑材等の化合
物を除去することができ、所望の脱炭が抑制された表面
層を得ることができる。
In addition, by performing a hot water washing process before performing the final heat treatment, a compound such as a lubricant used in a wire drawing process prior to the final heat treatment process that promotes decarburization attached to the steel material surface is removed. Thus, a desired surface layer in which decarburization is suppressed can be obtained.

最終熱処理を行った鋼材の伸線加工にて加工減面率を
97%以上とした理由は、所望値以上の抗張力を得るため
である。
Reduced area reduction rate by wire drawing of steel material after final heat treatment
The reason for setting it to 97% or more is to obtain a tensile strength higher than a desired value.

所定の直径に伸線した鋼材に70kgf/mm2以上、好まし
くは70〜170kgf/mm2に相当する引張り力を付加した状態
で、第2図に示すような千鳥足状に配置したロール1を
通過させて鋼線表面の曲げ歪みが1%以上になるように
曲げ加工を付加する理由は、第3図に示すように引張り
応力を付加することにより表面層の残留応力をより圧縮
にでき、かつ表面から深さ方向に鋼線直径の4分の1以
上までの領域の残留応力を圧縮にすることができるから
である。鋼材の表面から内部まで一定の圧縮残留応力を
付与にすることで、第1図に示すように、鋼線表面から
深さ方向に鋼線直径の4分の1までの領域での亀裂伝播
を低減することができ、破断寿命を約25%改善すること
ができる。
Drawing the steel material 70 kgf / mm 2 or more in a predetermined diameter, preferably while adding tensile force corresponding to 70~170kgf / mm 2, passes through the rolls 1 arranged in a staggered shape as shown in FIG. 2 The reason why the bending process is applied so that the bending strain of the steel wire surface becomes 1% or more is that the residual stress of the surface layer can be made more compressive by adding a tensile stress as shown in FIG. 3, and This is because the residual stress in the region from the surface to the depth of not less than の of the steel wire diameter in the depth direction can be compressed. By applying a constant compressive residual stress from the surface to the inside of the steel material, as shown in Fig. 1, crack propagation in the region from the steel wire surface to one quarter of the steel wire diameter in the depth direction is achieved. Can be reduced and the rupture life can be improved by about 25%.

尚、前記引張り応力は、170kgf/mm2を超えると、曲げ
歪付加時の断線が増加し、また線材表面の傷が増加し
て、機械的疲労特性が低下する傾向にあるので望ましく
ない。従って、前記引張り応力は好適には70〜170kgf/m
m2とした。
If the tensile stress exceeds 170 kgf / mm 2 , disconnection when bending strain is applied increases, and scratches on the wire surface increase, and mechanical fatigue characteristics tend to decrease, which is not desirable. Therefore, the tensile stress is preferably 70 to 170 kgf / m
It was m 2.

残留応力を−70mm以上−20mm以下にした理由は、−70
mm未満にするには曲げ及び引張り力を大きくしなければ
ならず鋼線表面の損傷が増加し機械的及び腐食疲労特性
が低下するので望ましくないからである。
The reason for setting the residual stress between −70 mm and −20 mm is as follows:
If it is less than mm, the bending and tensile force must be increased, which is not desirable because damage to the surface of the steel wire increases and mechanical and corrosion fatigue properties deteriorate.

(実施例) 以下、実施例をあげて本発明を具体的に説明する。(Examples) Hereinafter, the present invention will be described specifically with reference to examples.

実施例1〜2,比較例1〜4,従来例1〜2 実施例1及び2は、第1表に示す化学組成を有するス
テルモア処理を施した5.5mm直径のSWRH82Aを通常の乾式
伸線にて用いられるボラックス処理を施した後、常法の
1次伸線により、第2表に示す最終熱処理時の鋼材直径
としたのち、最終熱処理工程において、予め90℃の温水
に2秒浸漬して洗浄処理した後、0.5%のCOガス還元雰
囲気中で、鋼材の最高温度が約910℃になるように、第
2表に示す平均炉温に設定した加熱炉内にて鋼材を加熱
・保持し(保持時間:30秒)、続いて毎秒140℃の速度で
パテンティング温度650℃に冷却・保持する(保持時間:
12秒)最終熱処理を施し、パーライト変態を終了させ
た。
Examples 1 and 2, Comparative Examples 1 to 4 and Conventional Examples 1 and 2 In Examples 1 and 2, SWRH82A having a diameter of 5.5 mm and having a stermore treatment having the chemical composition shown in Table 1 was subjected to normal dry drawing. After the borax treatment used, the steel material diameter at the time of the final heat treatment shown in Table 2 was obtained by primary drawing in a conventional manner, and in the final heat treatment step, it was previously immersed in warm water of 90 ° C. for 2 seconds. After the cleaning treatment, the steel material is heated and held in a heating furnace set at the average furnace temperature shown in Table 2 so that the maximum temperature of the steel material is about 910 ° C. in a 0.5% CO gas reducing atmosphere. (Holding time: 30 seconds), then cool and hold at a rate of 140 ° C per second to a patenting temperature of 650 ° C (holding time:
12 seconds) A final heat treatment was performed to complete the pearlite transformation.

尚、通常の工程では、最終熱処理前に1回以上の伸線
加工を行うのが一般的であるが、実施例1及び2は、い
ずれも最終熱処理前に行った1次伸線加工を、通常のパ
テンティング処理(以下「中間熱処理」という。)を経
ることなく行った。
In addition, in a normal process, it is common to perform one or more wire drawing processes before the final heat treatment, but in Examples 1 and 2, both the primary wire drawing processes performed before the final heat treatment are performed. This was performed without going through a normal patenting process (hereinafter referred to as "intermediate heat treatment").

また、従来例1及び2は、それぞれ第1表に示す化学
組成を有する5.5mm直径のSWRH82A及びSWRH72Aを3.0mm直
径に1次伸線し、中間熱処理を施した後、SWRH82Aを1.3
2mm直径に、SWRH72Aを1.00mm直径に2次伸線したのち、
最終熱処理工程において、0.5%のCOガス還元雰囲気中
で、第2表に示す平均炉温に設定した加熱炉内にて鋼材
を加熱・保持し(保持時間:34秒)、続いて毎秒140℃の
速度でパテンティング温度600℃に冷却・保持する(保
持時間:12秒)最終熱処理を施し、パーライト変態を終
了させた。
Further, in Conventional Examples 1 and 2, 5.5 mm diameter SWRH82A and SWRH72A each having the chemical composition shown in Table 1 were first drawn to a 3.0 mm diameter, subjected to an intermediate heat treatment, and then SWRH82A was subjected to 1.3 mm.
After 2nd wire drawing of SWRH72A to 2mm diameter and 1.00mm diameter,
In the final heat treatment step, the steel material is heated and held in a heating furnace set to the average furnace temperature shown in Table 2 in a 0.5% CO gas reducing atmosphere (holding time: 34 seconds), and subsequently, at 140 ° C./sec. A final heat treatment of cooling and holding at a patenting temperature of 600 ° C. at a speed (holding time: 12 seconds) was performed to terminate the pearlite transformation.

さらに、比較例1〜3は、従来例1及び2と同様な中
間熱処理を経てから第2表に示す条件で最終熱処理を施
した場合の例であり、また比較例4は、曲げ加工時の引
っ張り応力が70kgf/mm2未満であること以外は実施例1
とほぼ同様の条件下で最終熱処理を施した場合の例であ
る。
Further, Comparative Examples 1 to 3 are examples in which the same intermediate heat treatment as in Conventional Examples 1 and 2 was performed and then the final heat treatment was performed under the conditions shown in Table 2, and Comparative Example 4 was a case in which bending was performed. Example 1 except that the tensile stress was less than 70 kgf / mm 2
This is an example of the case where the final heat treatment is performed under substantially the same conditions as in FIG.

最終熱処理を施された上述の各鋼材は通常の方法で酸
洗い、めっき処理を施した後、0.19mm直径まで常法にて
最終伸線した。該伸線された鋼線を1.5〜3.7kgfの引張
り力を付加しながら所定の曲げ歪を付加するために第2
図に示したような直径11mmのローラ1をd1=13mm、d2=
5mmで千鳥足状に配置されたローラと続いて鋼線の曲げ
方向が互いに90゜異なるように前述と同様に配置された
ローラを連続して通過させた。なお鋼線の抗張力は、14
0℃にて40分間加熱時効処理を施した後測定した。最終
熱処理を施された鋼材のラメラー間隔とセメンタイト形
状の観察は1%ナイタール溶液を用いて鋼材をエッチン
グしたのち走査型電子顕微鏡にて行った。伸線された鋼
線の残留応力の測定は100mm長さの鋼線を該鋼線の外周
円の半分が鋼線長さ方向に連続して被覆されるように耐
食性樹脂を塗布した後、50%濃度の硝酸溶液に浸漬して
鋼線の円周方向半分の面を表面からの深さ方向に所定の
厚みを溶解させた時の鋼線の曲がり変位を測定すること
で行なった。ここで鋼線の耐腐食疲労性の評価は鋼線を
少量の塩素イオン、硝酸イオン、硫酸イオンを含む中性
の溶液に浸漬し、毎分1000回転の速度で30kgf/mm2の繰
り返し曲げ応力を与え破断に到るまでの回転数を測定し
て求めた耐腐食疲労指数と、腐食疲労における鋼線の水
素脆化特性を評価するため、鋼線を1%濃度で硫酸溶液
に浸漬し、0.01mA/dm2の電流密度にて陰極電解しながら
毎分1000回転の速度で40kgf/mm2の繰り返し曲げ応力を
与え、破断に到るまでの回転数を測定して求めた耐水素
脆化指数とをもって評価した。
Each of the above-mentioned steel materials subjected to the final heat treatment was pickled by a usual method, plated, and then finally drawn to a diameter of 0.19 mm by a conventional method. To apply a predetermined bending strain while applying a tensile force of 1.5 to 3.7 kgf to the drawn steel wire, a second
Roller 1 having a diameter of 11 mm as shown in the figure is d1 = 13 mm, d2 =
Rollers arranged in a zigzag pattern at 5 mm and subsequently rollers arranged in the same manner as described above so that the bending directions of the steel wires differ from each other by 90 ° were continuously passed. The tensile strength of steel wire is 14
The measurement was performed after a heat aging treatment at 0 ° C. for 40 minutes. Observation of the lamellar spacing and the cementite shape of the steel material subjected to the final heat treatment was performed by a scanning electron microscope after etching the steel material using a 1% nital solution. After measuring the residual stress of the drawn steel wire, a 100 mm long steel wire was coated with a corrosion-resistant resin so that half of the outer circumference of the steel wire was continuously coated in the length direction of the steel wire. The bending displacement of the steel wire was measured by immersing the steel wire in a half-circumferential direction at a predetermined concentration in the depth direction from the surface by immersing the steel wire in a nitric acid solution having a concentration of 0.1%. Here Evaluation of corrosion fatigue resistance of the steel wire a small amount of chlorine ions steel wire, nitrate ions, was immersed in neutral solution containing sulfate ions, repetition of 30 kgf / mm 2 at a rate of 1000 revolutions per minute bending stress The steel wire was immersed in a sulfuric acid solution at a concentration of 1% in order to evaluate the corrosion fatigue index obtained by measuring the number of rotations up to fracture and the hydrogen embrittlement characteristics of the steel wire in corrosion fatigue. Hydrogen embrittlement resistance obtained by applying 40 kgf / mm 2 bending stress repeatedly at a rate of 1000 revolutions per minute while cathodic electrolysis at a current density of 0.01 mA / dm 2 and measuring the number of revolutions before breaking. It was evaluated using an index.

第2表に従来例、比較例及び実施例の区分ごとに熱処
理方法、金属組織、曲げ歪付加処理方法、残留応力値及
び腐食疲労性等の試験結果を示す。
Table 2 shows test results such as a heat treatment method, a metal structure, a bending strain applying method, a residual stress value, and a corrosion fatigue property for each of the conventional example, the comparative example, and the example.

第2表の従来例1と従来例2を比較すると、通常の方
法によって従来例1に比べて25%程度高強力化した従来
例2は、耐腐食疲労性が20〜30%低下しているのがわか
る。
Comparison between Conventional Example 1 and Conventional Example 2 in Table 2 shows that Conventional Example 2, which is about 25% stronger than Conventional Example 1 by the usual method, has a 20 to 30% reduction in corrosion fatigue resistance. I understand.

従来例2は、最終熱処理後の鋼材のラメラー間隔が本
発明の適正範囲よりも小さいが、前記鋼材のラメラー間
隔を本発明の適正範囲にまで大きくした比較例1は、従
来例2に比べて耐腐食疲労性を10〜20%改善されている
ものの、従来例1に比べると、まだ耐腐食疲労性が劣っ
ているのがわかる。
In Conventional Example 2, the lamellar interval of the steel material after the final heat treatment was smaller than the appropriate range of the present invention, but Comparative Example 1 in which the lamellar interval of the steel material was increased to the appropriate range of the present invention, compared with Conventional Example 2. Although the corrosion fatigue resistance is improved by 10 to 20%, the corrosion fatigue resistance is still inferior to that of the conventional example 1.

比較例2は、最終熱処理後の鋼材のラメラー間隔が本
発明の適正範囲よりも大きいため、伸線加工後の鋼線の
抗張力が比較例1に比べて小さく、また内部残留応力も
本発明の適正範囲外であるので十分な耐腐食疲労性が得
られていない。
In Comparative Example 2, since the lamellar spacing of the steel material after the final heat treatment was larger than the proper range of the present invention, the tensile strength of the steel wire after wire drawing was smaller than that of Comparative Example 1, and the internal residual stress of the present invention was also small. Since it is outside the appropriate range, sufficient corrosion fatigue resistance has not been obtained.

比較例3は、鋼線の表層部と内部の炭素含有量の差が
大きく、かつ内部残留応力も本発明の適正範囲外である
ため、耐腐食疲労性が悪いことを示した例である。
Comparative Example 3 is an example showing that the corrosion resistance is poor because the difference between the carbon content of the surface layer portion and the carbon content inside the steel wire is large and the internal residual stress is outside the proper range of the present invention.

従来例1〜2及び比較例1〜3は、いずれも中間熱処
理を行っているため、鋼線の表層部と内部の炭素含有量
の差が相対的に高くなっているが(0.05〜0.17重量
%)、比較例4は、中間熱処理を行っていないため、前
記炭素含有量の差については低くなっているものの(0.
02重量%)、曲げ加工時の引っ張り応力が本発明の適正
範囲よりも小さかったのに伴って、内部残留応力が引張
り応力となっているため、耐腐食疲労性が低下している
のがわかる。
In each of Conventional Examples 1 and 2 and Comparative Examples 1 to 3, since the intermediate heat treatment was performed, the difference in carbon content between the surface layer portion and the inside of the steel wire was relatively high (0.05 to 0.17 weight). %), Comparative Example 4 was not subjected to the intermediate heat treatment, so that the difference in the carbon content was low (0.
Since the internal residual stress is a tensile stress as the tensile stress during bending is smaller than the proper range of the present invention, the corrosion fatigue resistance is reduced. .

これに対して、実施例1は、鋼線の表層部と内部の炭
素含有量の差を0.02%と小さく、パテンティング処理後
の鋼材のラメラー間隔が1190Åであり、残留応力が−60
mmであるため、鋼線の耐腐食疲労性が改善されていると
ともに、鋼線の抗張力についても、従来例1に比べて25
%程度増加しているのがわかる。
On the other hand, in Example 1, the difference in carbon content between the surface layer portion and the inside of the steel wire was as small as 0.02%, the lamellar spacing of the steel material after the patenting treatment was 1190 °, and the residual stress was −60.
mm, the corrosion fatigue resistance of the steel wire is improved, and the tensile strength of the steel wire is 25
It can be seen that it has increased by about%.

また、実施例2は、耐腐食疲労性を特に重視した場合
の例であり、従来例1に比べて、鋼線の抗張力は11%程
度と増加割合は実施例1よりも小さいが、耐腐食疲労性
が実施例1よりもさらに改善されているのがわかる。
Example 2 is an example in which the corrosion fatigue resistance is particularly emphasized. Compared with the conventional example 1, the tensile strength of the steel wire is about 11%, and the increase rate is smaller than that of the example 1. It can be seen that the fatigue properties are further improved than in Example 1.

(発明の効果) 以上述べたように本発明は、スチールコードの素鋼線
において、鋼線表面の脱炭層の厚みを極力減少させ、か
つパーライト組織のラメラー間隔を増加させ、かつ表面
から深さ方向に鋼線直径の4分の1までの領域で所定の
圧縮残留応力にすることで、安価かつ容易にスチールコ
ードの耐腐食疲労性を低下させることなく、鋼線の抗張
力を従来品に比べて25%程度まで増加させることがで
き、鋼線で補強されたゴム製品をその耐久性を損なうこ
となく軽量化及び製造コスト低減ができ工業上有用であ
る。
(Effect of the Invention) As described above, the present invention reduces the thickness of the decarburized layer on the surface of the steel wire as much as possible, increases the lamella spacing of the pearlite structure, and increases the depth from the surface in the steel wire of the steel cord. The strength of the steel wire is reduced compared to the conventional product by reducing the corrosion fatigue resistance of the steel cord inexpensively and easily by making the predetermined compressive residual stress in the area up to one-fourth of the steel wire diameter in the direction. Thus, the rubber product reinforced with steel wire can be reduced in weight and production cost without impairing its durability, and is industrially useful.

【図面の簡単な説明】 第1図は第1表での実施例1(イ)、比較例1(ロ)、
及び従来例2(ハ)の鋼線に関し、腐食疲労処理の繰り
返し曲げ回数と腐食疲労処理によって生成した亀裂深さ
の関係を各鋼線について示したグラフ、 第2図は実施例において用いた鋼線に所定の曲げ歪を与
える装置のローラの配置図、 第3図は鋼線に引張り応力が大きい場合(イ)と引張り
応力が小さい場合(ロ)での曲げ歪加工処理を行なった
後の鋼線の内部の応力の状態を計算によって求めた線図
である。 1……ローラ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows Example 1 (a), Comparative Example 1 (B) in Table 1;
And a graph showing the relationship between the number of repeated bending times of the corrosion fatigue treatment and the crack depth generated by the corrosion fatigue treatment for the steel wire of the conventional example 2 (c) for each steel wire. FIG. 2 shows the steel used in the examples. FIG. 3 is a layout view of rollers of a device for applying a predetermined bending strain to a wire, and FIG. 3 is a diagram showing a steel wire having a large tensile stress (a) and a small tensile stress (b) after being subjected to bending strain processing. It is the diagram which calculated | required the state of the stress inside a steel wire by calculation. 1 ... Laura

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−109104(JP,A) 特開 昭60−183202(JP,A) 特開 昭62−203615(JP,A) 特開 昭58−16033(JP,A) 特開 昭62−77442(JP,A) 特開 昭57−149578(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-109104 (JP, A) JP-A-60-183202 (JP, A) JP-A-62-203615 (JP, A) JP-A-58-1983 16033 (JP, A) JP-A-62-77442 (JP, A) JP-A-57-149578 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鋼線の抗張力が330〜390kgf/mm2であっ
て、鋼線の表面から鋼線直径の10分の1の厚みを有する
表面層の炭素含有量と鋼線内部の炭素含有量との差が0.
05重量%以下であり、かつ最終熱処理後の鋼材の金属組
織のセメンタイトラメラー間隔を1000〜1400Åの範囲に
して、この鋼材を最終伸線した後の鋼線の金属組織のセ
メンタイトラメラー間隔を120〜190Åとし、かつ鋼線表
面から深さ方向に鋼線直径の4分の1までの領域の残留
応力が−70mm以上−20mm以下の圧縮応力であることを特
徴とする耐腐食疲労性に優れた高強力スチールコード。
1. The carbon content of a surface layer having a tensile strength of 330 to 390 kgf / mm 2 and a thickness of one tenth of the diameter of a steel wire from the surface of the steel wire, and the carbon content of the steel wire inside the steel wire. The difference with the amount is 0.
The cementite lamellar interval of the metal structure of the steel wire after the final drawing of the steel wire is set to the range of 1000 to 1400 mm. Excellent corrosion fatigue resistance, characterized by 190 mm and residual stress in the region from the steel wire surface up to a quarter of the steel wire diameter in the depth direction is a compressive stress of -70 mm or more and -20 mm or less. High strength steel cord.
【請求項2】最終熱処理を行う前に鋼材表面を洗浄し、
その後、2%以下のCOガス還元雰囲気にした加熱炉内の
温度と鋼材の前記炉内での滞在時間とを設定して、鋼材
を最高加熱温度:880〜970℃の範囲に加熱した後、140℃
/sec.以上の冷却速度で630℃以上660℃未満の温度に急
冷しかつ12秒以上保持してパーライト変態させる最終熱
処理を行うことにより、鋼材の金属組織のセメンタイト
ラメラー間隔を1000〜1400Åの範囲にし、次いで、330
〜390kgf/mm2の抗張力を得るために前記鋼材を97%以上
の減面率で最終伸線加工して鋼線にした後、この鋼線
に、70kgf/mm2以上に相当する引張り力を付加した状態
で前記鋼線表面での曲げ歪が1%以上となる曲げ加工を
施すことを特徴とする耐腐食疲労性に優れた高強力スチ
ールコードの製造方法。
2. The steel surface is cleaned before the final heat treatment.
After that, by setting the temperature in the heating furnace in a CO gas reducing atmosphere of 2% or less and the stay time of the steel material in the furnace, and heating the steel material to a maximum heating temperature: 880 to 970 ° C., 140 ℃
By performing a final heat treatment of quenching to a temperature of 630 ° C or more and less than 660 ° C at a cooling rate of at least 630 ° C and holding for 12 seconds or more, the cementite lamellar interval of the metal structure of the steel is in the range of 1000 to 1400 °. And then 330
In order to obtain a tensile strength of ~ 390 kgf / mm 2 , the steel material was subjected to final drawing at a reduction rate of 97% or more to form a steel wire, and then a tensile force equivalent to 70 kgf / mm 2 or more was applied to the steel wire. A method for producing a high-strength steel cord excellent in corrosion fatigue resistance, wherein a bending process is performed such that a bending strain on the surface of the steel wire is 1% or more in a state where the steel cord is added.
【請求項3】最終熱処理前に1回以上の伸線加工を行
い、該伸線加工のうちの少なくとも1回の伸線加工を、
熱処理工程を経ることなく行う請求項2記載の耐腐食疲
労性に優れた高強力スチールコードの製造方法。
3. A wire drawing is performed one or more times before a final heat treatment, and at least one of the wire drawing is performed.
The method for producing a high-strength steel cord excellent in corrosion fatigue resistance according to claim 2, which is performed without a heat treatment step.
【請求項4】最終熱処理前に1回の伸線加工を行い、該
伸線加工を、熱処理工程を経ることなく行う請求項3記
載の耐腐食疲労性に優れた高強力スチールコードの製造
方法。
4. The method for producing a high-strength steel cord excellent in corrosion fatigue resistance according to claim 3, wherein one wire drawing is performed before the final heat treatment, and the wire drawing is performed without going through a heat treatment step. .
JP1245250A 1989-09-22 1989-09-22 High strength steel cord excellent in corrosion fatigue resistance and method of manufacturing the same Expired - Fee Related JP2756003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245250A JP2756003B2 (en) 1989-09-22 1989-09-22 High strength steel cord excellent in corrosion fatigue resistance and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245250A JP2756003B2 (en) 1989-09-22 1989-09-22 High strength steel cord excellent in corrosion fatigue resistance and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03113084A JPH03113084A (en) 1991-05-14
JP2756003B2 true JP2756003B2 (en) 1998-05-25

Family

ID=17130886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245250A Expired - Fee Related JP2756003B2 (en) 1989-09-22 1989-09-22 High strength steel cord excellent in corrosion fatigue resistance and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2756003B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2772627B2 (en) * 1995-05-16 1998-07-02 東京製綱株式会社 Ultra-high strength steel wire and steel cord for rubber reinforcement
JP4788861B2 (en) * 2003-11-28 2011-10-05 ヤマハ株式会社 Steel wire for musical instrument string and method for manufacturing the same
JP5133670B2 (en) * 2007-12-10 2013-01-30 株式会社ブリヂストン Steel cord for reinforcing rubber articles, tire, and method of manufacturing spiral-shaped brass-plated steel wire
JP5474514B2 (en) * 2009-12-08 2014-04-16 株式会社ブリヂストン Spiral steel wire, method for manufacturing spiral steel wire, and helical shaping rotation device
JP6199569B2 (en) * 2013-01-30 2017-09-20 株式会社ブリヂストン Manufacturing method of high strength steel wire
CN106311781A (en) * 2016-09-28 2017-01-11 邢台钢铁有限责任公司 Ultra-low carbon steel fine wire drawing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2092629B (en) * 1981-02-06 1984-09-19 Bekaert Sa Nv Improvements in fatigue resistant cables
JPS5816033A (en) * 1981-07-20 1983-01-29 Shinko Kosen Kogyo Kk Heat treatment for wire rod
JPH0717126B2 (en) * 1984-03-01 1995-03-01 株式会社ブリヂストン High durability radial tire

Also Published As

Publication number Publication date
JPH03113084A (en) 1991-05-14

Similar Documents

Publication Publication Date Title
JP2921978B2 (en) Manufacturing method of high strength and high ductility ultrafine steel wire
JP4377715B2 (en) High strength PC steel wire with excellent twisting characteristics
JP2756003B2 (en) High strength steel cord excellent in corrosion fatigue resistance and method of manufacturing the same
JP3542489B2 (en) High-strength extra-fine steel wire with excellent fatigue properties
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
JP3777166B2 (en) Manufacturing method of high strength extra fine steel wire
JP4464511B2 (en) Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties
JP3439329B2 (en) Steel cord for rubber reinforcement
JPH11241280A (en) Steel wire and its production
JP3814070B2 (en) High-strength ultrafine steel wire and method for producing the same
JPH11140589A (en) High fatigue strength steel wire and spring, and their production
JP3267833B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JP3061918B2 (en) Method of manufacturing steel cord with excellent fatigue properties
JP2593207B2 (en) High-strength steel wire and steel cord for reinforcing rubber products
JPH07305285A (en) Production of element wire for steel cord for reinforcing rubber article
JP3037844B2 (en) Steel cord for reinforcing rubber articles and method for producing the same
JPH05156369A (en) Manufacture of steel cord
JP3641056B2 (en) High strength extra fine steel wire
JPH089734B2 (en) Method for producing ultra high strength steel wire with excellent ductility
JP3182984B2 (en) Manufacturing method of high strength extra fine steel wire
JPH10287932A (en) Steel wire for reinforcement for rubber product, its production, steel cord, and pneumatic radial tire
JP3340232B2 (en) Manufacturing method of high strength steel wire
JPS634016A (en) Production of extra high tension steel wire having excellent ductility
JP2641082B2 (en) Manufacturing method of high strength steel cord
JPS63145713A (en) Production of high-strength steel wire having excellent hydrogen induced cracking resistance characteristic

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees