EP1778886A1 - Object comprising a steel part of a metal construction consisting of an area welded by a high power density beam and exhibiting an excellent toughness in a molten area, method for producing said object - Google Patents

Object comprising a steel part of a metal construction consisting of an area welded by a high power density beam and exhibiting an excellent toughness in a molten area, method for producing said object

Info

Publication number
EP1778886A1
EP1778886A1 EP05778661A EP05778661A EP1778886A1 EP 1778886 A1 EP1778886 A1 EP 1778886A1 EP 05778661 A EP05778661 A EP 05778661A EP 05778661 A EP05778661 A EP 05778661A EP 1778886 A1 EP1778886 A1 EP 1778886A1
Authority
EP
European Patent Office
Prior art keywords
exp
welding
δtb
steel
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05778661A
Other languages
German (de)
French (fr)
Inventor
Dominique Kaplan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal France SA
Original Assignee
Arcelor France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arcelor France SA filed Critical Arcelor France SA
Publication of EP1778886A1 publication Critical patent/EP1778886A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to steel metallic constructions concerned by a high energy density beam, and more particularly
  • the assembly by high energy density beam, such as LASER or the electron beam, of hot-rolled steel sheets and plates has particularly developed in the last twenty years due
  • the present invention aims to provide such welded assemblies and a method for obtaining such assemblies from structural steel.
  • a first object of the invention consists of an object comprising at least one steel part, the composition of which comprises, the contents being expressed by weight, carbon with a content of between 0.005 and 0.27%, manganese. between 0.5 and 1.6%, silicon between 0.1 and 0.4%, chromium in content less than 2.5%, Mo in content less than 1%, possibly one or more elements chosen from nickel, copper, aluminum, niobium, vanadium, titanium, boron, zirconium, nitrogen, the rest being iron and impurities resulting from the production.
  • the steel part comprises at least one zone melted by high energy density beam with a microstructure consisting of 60 to 75% of self-returning martensite and, in addition, 40 to 25% of lower bainite, and preferably 60 to 70 % of self-returning martensite and, in addition, 40 to 30% of lower bainite.
  • the object is a steel tube comprising at least one section having a zone welded in the longitudinal or transverse direction.
  • the object consists of at least two hot-rolled or forged sheets of steel of identical or different composition, of identical or different thickness, welded together.
  • the high energy density beam is a beam
  • the high energy density beam is an electron beam.
  • the subject of the invention is also a method of manufacturing one of the preceding objects, comprising the steps consisting in:
  • an object comprising at least one steel part, the composition of which comprises the contents being expressed by weight, carbon in content of between 0.005 and 0.27%, manganese between 0.5 and 1.6%, silicon between 0.1 and 0.4%, chromium in content less than 2.5%, Mo in content less than 1%, optionally one or more elements chosen from nickel, copper, aluminum, niobium, vanadium, titanium, boron, zirconium, nitrogen, the rest being iron and impurities resulting from the production,
  • the welding power, the welding speed, the means of a possible pre or post-heating or cooling being chosen so that a molten zone is obtained with a microstructure consisting of 60 to 75% of martensite self-returned and, in addition, 40 to 25% of lower bainite, preferably 60 to 70% of self-returned martensite and, in addition, 40 to 30% of lower bainite.
  • the nitrogen content of the molten zone is less than or equal to 0.020%
  • the welding power, the welding speed, the means of a possible pre or post-heating or cooling are chosen so that the molten zone cools according to a parameter ⁇ / 5 8 0 ° 0 ° such that:
  • CE C + Mn / 6 + Si / 24 + Mo / 4 + Ni / 12 + Cu / 15 + (Cr (1-0,16-v / Cr) / 8) + f (B)
  • CE , C + Mn / 3,6 + Cu / 20 + Ni / 9 + Cr / 5 + Mo / 4,
  • C, Mn, Si, Mo, Ni, Cu, Cr, B and N respectively designating the carbon, manganese, silicon, molybdenum, nickel, copper, chromium, boron and nitrogen contents, expressed as a percentage by weight, of said molten zone.
  • the welding is carried out by a LASER beam in a homogeneous and autogenous manner, the nitrogen content of the steel is less than or equal to 0.020%, and the welding power, the welding speed, the means of a possible pre or post-heating or cooling, are chosen so that the molten zone cools according to a parameter At ⁇ such that:
  • CE C + Mn / 6 + Si / 24 + Mo / 4 + Ni / 12 + Cu / 15 + (Cr (1-0,16VCr) / 8) + f (B)
  • CE 1 C + Mn / 3.6 + Cu / 20 + Ni / 9 + Cr / 5 + Mo / 4,
  • f (B) (0.09-4.5N) if B> 0.0004%, C, Mn, Si, Mo, Ni, Cu, Cr, B, N respectively denoting the contents of carbon, manganese, silicon, molybdenum, nickel, copper, chromium, boron and nitrogen, expressed as a percentage by weight, of the welded steel .
  • the welding is carried out by electron beam in an autogenous and homogeneous manner, the nitrogen content of the steel is less than or equal to 0.022%, the welding power, the welding speed, the means of a possible pre or post-heating or cooling, are chosen so that the zone melted by the electron beam cools according to a parameter At ⁇ such that:
  • CE C + Mn / 6.67 + Si / 24 + Mo / 4 + Ni / 12 + Cu / 15 + (Cr (I-0, 16-VCr) / 8) + f (B)
  • CE ,, C + Mn / 4 + Cu / 20 + Ni / 9 + Cr / 5 + Mo / 4,
  • C, Mn, Si, Mo, Ni, Cu, Cr, B, N respectively designating the contents of carbon, manganese, silicon, molybdenum, nickel, copper, chromium, boron, and nitrogen, expressed as a percentage by weight, of the welded steel .
  • the steel part is welded with a steel part of identical or different composition, of identical or different thickness, whether or not part of said object, using a filler product metallic
  • FIG. 1 illustrates the comparison of the hardness of the Heat Affected Zone with that of the molten zone in LASER welding and in electron beam welding of steel structural steel.
  • - Figure 2 presents the comparison of the Charpy V transition temperature at the 28 Joule level (TK 2 Sj) of the Heat Affected Zone with that of the molten zone in LASER and electron beam welding of structural steels metallic.
  • - Figure 3 illustrates a typical change in the ductile-brittle transition temperature and the hardness in the Heat Affected Zone of a metallic structural steel, as a function of the cooling rate.
  • FIG. 6 shows the modification of the nitrogen content in the molten zone compared to that of the base metal during electron beam welding.
  • the welded part consists of two distinct zones:
  • the molten zone which corresponds to a zone which has passed through the liquid state during welding, ie that where the temperature has been higher than that of the liquidus of the welded material.
  • Zone Affected by Heat (or “ZAC”), which can include in the broad sense all the zones having undergone an allotropic transformation during welding. Subsequently, this term ZAC will be reserved here for the parts of the assembly remaining in the solid state brought to the highest temperatures during welding which are the seat of a greater magnification of the austenitic grain. These zones, very often the most critical from the point of view of toughness, correspond to maximum temperatures greater than 1200-1300 ° C.
  • Figure 3 presents a typical example of the evolution of the hardness and the ductile-brittle transition temperature of the ZAC of a metallic structural steel at 0.04% C, 1, 3% Mn in function of the cooling rate after welding.
  • This speed is here characterized by A / °° o , parameter which designates the time which elapses between the passage at the temperature of 800 0 C and the temperature of 500 0 C during cooling in welding.
  • There is a cooling speed range (located for this steel composition around ⁇ 500 ”1-2s), for which the toughness is optimal.
  • fresh martensite non-returned martensite
  • the microstructures corresponding to the optimum toughness consist partly of self-tempered martensite, the tempering being due to the welding cycle itself, and partly of lower bainite.
  • the self-returning structure is characterized by the presence of fine carbides precipitated in the martensite slats.
  • f500 Time elapsing between 800 and 500 0 C during the cooling of the welded area after welding
  • ⁇ t M Critical cooling time leading to 100% martensite
  • ⁇ t B Critical cooling time leading to 100% bainite
  • the critical cooling times are related to the chemical composition by the following expressions:
  • ⁇ t M exp (10 - 6 CE l - 4 - 8) .
  • CE C + Mn / 6 + Si / 24 + Mo / 4 + Ni / 12 + Cu / 15 + (Cr (1-0,16VCr) / 8) + f (B)
  • CE ,, C + Mn / 3,6 + Cu / 20 + NÎ / 9 + Cr / 5 + Mo / 4,
  • C, Mn, Si, Mo, Ni, Cu, Cr, B and N respectively denote the carbon, manganese, silicon, molybdenum, nickel, copper, chromium, boron and nitrogen contents, expressed in weight percent, of the steel.
  • the similarity of the ZAC and the molten zone in homogeneous and autogenous welding at high energy density indicates that the previous formulations valid for the ZAC are also applicable to the molten zone.
  • a martensite content of between 60 and 75%, preferably between 60 and 70%, combined with a supplement in lower bainite results in excellent toughness. This is obtained if the cooling parameter obeys the following expression:
  • the composition of the molten zone is practically identical to that of the base metal.
  • N and Mn in the molten zone are respectively equal to 0.9C and 0.9Mn.
  • CEi C + Mn / 6.67 + Si / 24 + Mo / 4 + N ⁇ / 12 + Cu / 15 + (Cr (IO 1 IeVO 7 ) / 8) + f (B)
  • CEn C + Mn / 4 + Cu / 20 + Ni / 9 + Cr / 5 + Mo / 4,
  • C, Mn, Si, Mo, Ni, Cu, Cr, B and N respectively denote the contents of carbon, manganese, silicon, molybdenum, nickel, copper, chromium, boron and nitrogen, expressed as a percentage by weight, of the welded steel .
  • the invention can also be transposed in the case where a steel part is welded with another steel part of different composition, and this taking into account the relative participation of each element to form the molten zone, c 'ie the coefficient of dilution.
  • c 'ie the coefficient of dilution the coefficient of dilution.
  • the same remark also applies in the case of welding with metallic filler, the composition and dilution coefficient of which must be taken into account, in order to assess the composition of the molten area.
  • the transition temperature determined from impact tensile tests on notched cylindrical specimens of 4mm in diameter, is of -120 ° C., which translates an excellent toughness and a high resistance to brittle fracture of the tubes manufactured under these conditions by LASER welding. Thanks to the invention, the production of welded structures with high energy density is therefore carried out economically, without the need for expensive addition elements.
  • the invention makes it possible to choose the assembly conditions so as to meet the security requirements with respect to the risk of sudden rupture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Heat Treatment Of Articles (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

The invention relates to an object comprising at least one steel part whose composition consists of the following contents expressed by weight: 0.005-0.27 % carbon, 0.5-1.6 % manganese, 0.1-0.4 % silicon, less than 2.5 % chromium content, less than 1 % molybdenum content, optionally one or several elements selected form nickel, copper, aluminium, niobium, vanadium, titanium, boron, zirconium and nitrogen, the rest being iron and impurities of production, wherein said steel part comprises at least one area welded by a high power density beam and is characterised in that the microstructure of the welded area is constituted of 60-75 % self-tempered martensite, preferentially 60-70 % self-tempered martensite, and, in addition, of 40-30 % lower bainite.

Description

OBJET COMPRENANT UNE PARTIE EN ACIER DE CONSTRUCTION METALLIQUE , CETTE PARTIE COMPORTANT UNE ZONE SOUDEE A L ' AIDE D ' UN FAISCEAU A HAUTE DENSITE D ' ENERGIE ET PRESENTANT UNE EXELLENTE TENACITE DANS LA ZONE FONDUE ,- METHODE DE FABRICATION DE CET OBJET  OBJECT COMPRISING A PART OF METALLIC CONSTRUCTION STEEL, THIS PART INCLUDING A WELDED AREA USING A HIGH-DENSITY BEAM AND HAVING EXCELLENT TENACITY IN THE MOLTEN AREA, - METHOD OF MANUFACTURING THIS OBJECT
La présente invention concerne les constructions métalliques en acier souciées par faisceau à haute densité d'énergie, et plus particulièrementThe present invention relates to steel metallic constructions concerned by a high energy density beam, and more particularly
10 celles où un niveau de ténacité minimal est requis dans la zone fondue afin de se prémunir du risque de rupture brutale. 10 those where a minimum level of toughness is required in the molten zone in order to protect against the risk of sudden rupture.
L'assemblage par faisceau à haute densité d'énergie, tel que Ie LASER ou le faisceau d'électrons, de tôles d'acier laminées à chaud et de plaques s'est particulièrement développé au cours de ces vingt dernières années en raison The assembly by high energy density beam, such as LASER or the electron beam, of hot-rolled steel sheets and plates has particularly developed in the last twenty years due
15 de certaines caractéristiques spécifiques : on mentionnera par exemple les très faibles déformations des assemblages, la grande précision de positionnement du faisceau et la possibilité de ne fondre que la quantité de matière strictement nécessaire, l'aspect des cordons ne nécessitant pas de parachèvement, et la possibilité de s'affranchir de traitements de détente. 15 of certain specific characteristics: mention will be made, for example, of very small deformations of the assemblies, the high accuracy of positioning of the beam and the possibility of melting only the quantity of material strictly necessary, the appearance of the beads not requiring completion, and the possibility of dispensing with relaxation treatments.
20 Parmi les domaines d'applications de ces procédés, on citera notamment la construction navale, les matériels de travaux publics, l'automobile, les tubes pour le transport de gaz naturel, de pétrole brut. Pour certaines applications, en particulier celles dont les épaisseurs, les limites d'élasticité mises en jeu ou les contraintes de service sont les plus importantes, on exige des 20 Among the fields of application of these processes, mention will be made in particular of shipbuilding, public works equipment, the automobile industry, tubes for transporting natural gas and crude oil. For certain applications, in particular those in which the thicknesses, the elastic limits involved or the service constraints are the most important, we require
25 garanties de ténacité de façon à se prémunir du risque de rupture brutale. 25 toughness guarantees in order to protect against the risk of sudden break.
Cette éventualité est d'autant plus à prendre en compte que l'assemblage par faisceau à haute densité d'énergie peut générer des défauts tels que microporosités ou retassures susceptibles d'amorcer une rupture fragile. Il convient donc que les zones soudées présentent la ténacité la plus élevée possible This eventuality is all the more to take into account that the assembly by beam with high energy density can generate defects such as microporosities or shrinkage likely to initiate a fragile rupture. The welded zones should therefore have the highest possible toughness
30 pour se prémunir de tout risque. 30 to guard against any risk.
Différentes méthodes ont été proposées afin d'obtenir une ténacité élevée dans la zone fondue : Se fondant sur la constatation que des structures tenaces de ferrite aciculaire sont obtenues par germination sur des inclusions non-métalliques, on a cherché à introduire ce type de particules Different methods have been proposed in order to obtain a high tenacity in the molten zone: Based on the observation that tenacious structures of needle-shaped ferrite are obtained by germination on non-metallic inclusions, we have sought to introduce this type of particles.
35 dans la zone fondue, par exemple au moyen d'un dépôt préalable, comme l'indique le document JP n°2000288754. Cette méthode présente cependant différents inconvénients : la dispersion des oxydes au sein de la zone fondue peut ne pas être uniforme, ce qui conduit à une dispersion des propriétés mécaniques au sein de cette zone. De plus, l'augmentation de la fraction inclusionnaire se traduit par une baisse du niveau ductile. 35 in the molten zone, for example by means of a prior deposit, as indicated in JP document No. 2000288754. However, this method has various drawbacks: the dispersion of the oxides within the molten zone may not be uniform, which leads to a dispersion of mechanical properties within this area. In addition, the increase in the inclusion fraction results in a drop in the ductile level.
Dans le même but, on a également cherché à contrôler le rapport entre les teneurs en aluminium et en oxygène de façon à favoriser la formation d'inclusions de nature favorable à la germination de ferrite aciculaire. Partant d'acier calmé aluminium, cette méthode nécessite cependant une augmentation de la teneur en oxygène dans la zone fondue, ce qui conduit aux inconvénients ci-dessus. De plus, en soudage LASER, les conditions cinétiques de la formation de ces structures de ferrite aciculaire souhaitées ne sont pas nécessairement compatibles avec les impératifs de productivité et donc de vitesse de refroidissement après soudage. For the same purpose, attempts have also been made to control the ratio between the aluminum and oxygen contents so as to promote the formation of inclusions favorable to the germination of acicular ferrite. Starting from aluminum calmed steel, this method however requires an increase in the oxygen content in the molten zone, which leads to the above drawbacks. In addition, in LASER welding, the kinetic conditions for the formation of these desired acicular ferrite structures are not necessarily compatible with the requirements of productivity and therefore of cooling speed after welding.
On a également proposé d'accroître la ténacité des zones fondues par une addition de nickel (élément gammagène abaissant la température de transformation γ-α), ou d'alliage de nickel, de façon à ce que la teneur pondérale de la zone fondue en cet élément soit comprise entre 0,5 et quelques pour cents. Le document US n°4527040 décrit par exemple l'apport d'un alliage de nickel sous forme d'insert de 0,1 mm d'épaisseur avant assemblage par LASER. Cette méthode accroît cependant les difficultés de positionnement du faisceau par rapport au plan de joint et les risques d'apparition de défauts, éventuellement de corrosion. It has also been proposed to increase the toughness of the molten zones by adding nickel (gamma element lowering the transformation temperature γ-α), or of nickel alloy, so that the weight content of the molten zone in this element is between 0.5 and a few percent. The document US Pat. No. 4527040 describes for example the addition of a nickel alloy in the form of an insert 0.1 mm thick before assembly by LASER. However, this method increases the difficulties of positioning the beam relative to the joint plane and the risks of the appearance of defects, possibly corrosion.
Il existe donc un besoin de disposer d'assemblages d'aciers soudés avec des procédés à haute densité d'énergie, qui présentent toute garantie de ténacité en zone fondue, sans dispersion excessive des caractéristiques mécaniques, et de disposer d'une méthode de fabrication économique de ces assemblages ne comportant pas les inconvénients évoqués ci-dessus. There is therefore a need to have assemblies of steel welded with high energy density processes, which have every guarantee of toughness in the molten zone, without excessive dispersion of the mechanical characteristics, and to have a manufacturing method. economical of these assemblies without the drawbacks mentioned above.
La présente invention a pour but de mettre à disposition de tels assemblages soudés et une méthode pour obtenir de tels assemblages à partir d'aciers de construction métallique.  The present invention aims to provide such welded assemblies and a method for obtaining such assemblies from structural steel.
A cet effet, un premier objet de l'invention est constitué par un objet comprenant au moins une partie en acier dont la composition comprend, les teneurs étant exprimées en poids, du carbone en teneur comprise entre 0,005 et 0,27%, du manganèse entre 0,5 et 1 ,6%, du silicium entre 0,1 et 0,4%, du chrome en teneur inférieure à 2,5%, du Mo en teneur inférieure à 1%, éventuellement un ou plusieurs éléments choisis parmi le nickel, le cuivre, l'aluminium, le niobium, le vanadium, le titane, le bore, le zirconium, l'azote, le reste étant du fer et des impuretés résultant de l'élaboration. La partie en acier comporte au moins une zone fondue par faisceau à haute densité d'énergie avec une microstructure constituée de 60 à 75% de martensite auto-revenue et, en complément, de 40 à 25% de bainite inférieure, et préférentiellement 60 à 70% de martensite auto-revenue et, en complément, de 40 à 30% de bainite inférieure. To this end, a first object of the invention consists of an object comprising at least one steel part, the composition of which comprises, the contents being expressed by weight, carbon with a content of between 0.005 and 0.27%, manganese. between 0.5 and 1.6%, silicon between 0.1 and 0.4%, chromium in content less than 2.5%, Mo in content less than 1%, possibly one or more elements chosen from nickel, copper, aluminum, niobium, vanadium, titanium, boron, zirconium, nitrogen, the rest being iron and impurities resulting from the production. The steel part comprises at least one zone melted by high energy density beam with a microstructure consisting of 60 to 75% of self-returning martensite and, in addition, 40 to 25% of lower bainite, and preferably 60 to 70 % of self-returning martensite and, in addition, 40 to 30% of lower bainite.
Avantageusement, l'objet est un tube en acier comprenant au moins un tronçon présentant une zone soudée dans le sens longitudinal ou transverse. Avantageusement encore, l'objet est constitué d'au moins deux tôles laminées ou forgées à chaud d'acier de composition identique ou différente, d'épaisseur identique ou différente, soudées entre elles.  Advantageously, the object is a steel tube comprising at least one section having a zone welded in the longitudinal or transverse direction. Advantageously also, the object consists of at least two hot-rolled or forged sheets of steel of identical or different composition, of identical or different thickness, welded together.
Préférentiellement, le faisceau à haute densité d'énergie est un faisceau Preferably, the high energy density beam is a beam
LASER. LASER.
Préférentiellement encore, le faisceau à haute densité d'énergie est un faisceau d'électrons.  Also preferably, the high energy density beam is an electron beam.
L'invention a également pour objet un procédé de fabrication d'un des objets précédents, comprenant les étapes consistant à : The subject of the invention is also a method of manufacturing one of the preceding objects, comprising the steps consisting in:
- approvisionner un objet comprenant au moins une partie en acier dont la composition comprend les teneurs étant exprimées en poids, du carbone en teneur comprise entre 0,005 et 0,27%, du manganèse entre 0,5 et 1 ,6%, du silicium entre 0,1 et 0,4%, du chrome en teneur inférieure à 2,5%, du Mo en teneur inférieure à 1%, éventuellement un ou plusieurs éléments choisis parmi le nickel, le cuivre, l'aluminium, le niobium, le vanadium, le titane, le bore, le zirconium, l'azote, le reste étant du fer et des impuretés résultant de l'élaboration,  - supply an object comprising at least one steel part, the composition of which comprises the contents being expressed by weight, carbon in content of between 0.005 and 0.27%, manganese between 0.5 and 1.6%, silicon between 0.1 and 0.4%, chromium in content less than 2.5%, Mo in content less than 1%, optionally one or more elements chosen from nickel, copper, aluminum, niobium, vanadium, titanium, boron, zirconium, nitrogen, the rest being iron and impurities resulting from the production,
- souder par un procédé à haute densité d'énergie la partie en acier avec une pièce d'acier de composition identique ou différente, faisant déjà partie ou non de l'objet, - welding by a high energy density process the steel part with a steel part of identical or different composition, already or not part of the object,
- la puissance de soudage, la vitesse de soudage, les moyens d'un éventuel pré ou post-chauffage ou de refroidissement, étant choisis de telle sorte que l'on obtienne une zone fondue avec une microstructure constituée de 60 à 75% de martensite auto-revenue et , en complément, de 40 à 25% de bainite inférieure, préférentiellement 60 à 70% de martensite auto-revenue et , en complément, de 40 à 30% de bainite inférieure.  - the welding power, the welding speed, the means of a possible pre or post-heating or cooling, being chosen so that a molten zone is obtained with a microstructure consisting of 60 to 75% of martensite self-returned and, in addition, 40 to 25% of lower bainite, preferably 60 to 70% of self-returned martensite and, in addition, 40 to 30% of lower bainite.
- Selon une caractéristique du procédé, la teneur en azote de la zone fondue est inférieure ou égale à 0,020%, la puissance de soudage, la vitesse de soudage, les moyens d'un éventuel pré ou post-chauffage ou de refroidissement, sont choisis de telle sorte que la zone fondue refroidisse selon un paramètre Δ/5 8 0°0° tel que : - According to a characteristic of the process, the nitrogen content of the molten zone is less than or equal to 0.020%, the welding power, the welding speed, the means of a possible pre or post-heating or cooling, are chosen so that the molten zone cools according to a parameter Δ / 5 8 0 ° 0 ° such that:
ΔtB exp °'75 Ln < ΔtB/ Δt M) <( fa™ )≤ ΔtB exp" °'6 Ln < ΔtB/ Δt M> Δt B exp ° '75 Ln < ΔtB / Δt M) <(fa ™) ≤ Δt B exp " °' 6 Ln < ΔtB / Δt M >
et préférentiellement : ΔtB exp- °-7 Ln ( ΔtB/ Δt M) <( fa™ )< ΔtB exp °-6 Ln ( ΔtB/ Δt M) Δt5 8oo exprimé en secondes désignant le temps s'écoulant entre la température de 8000C et la température de 5000C lors du refroidissement après soudage de ladite zone soudée, and preferably: Δt B exp- ° - 7 Ln (ΔtB / Δt M) <(fa ™) <Δt B exp ° - 6 Ln (ΔtB / Δt M) Δt 5 8 oo expressed in seconds designating the time elapsing between the temperature of 800 ° C. and the temperature of 500 ° C. during the cooling after welding of said welded zone,
avec : ΔtB= exp (6-2 CE II + 0'74), with: Δt B = exp (6 - 2 CE II + 0 '74) ,
ΔtM= exp (10-6 CE | -4-8> Δt M = exp (10 - 6 CE | - 4 - 8 >
CE, = C+Mn/6+ Si/24 +Mo/4+ Ni/12+ Cu/15+ (Cr(1-0,16-v/Cr )/8)+f(B) CE, = C + Mn / 6 + Si / 24 + Mo / 4 + Ni / 12 + Cu / 15 + (Cr (1-0,16-v / Cr) / 8) + f (B)
CE,, = C+Mn/3,6+ Cu/20 +Ni/9+ Cr/5+ Mo/4, CE ,, = C + Mn / 3,6 + Cu / 20 + Ni / 9 + Cr / 5 + Mo / 4,
Avec : f(B)=O, si B<0,0001 % With: f (B) = O, if B <0.0001%
f(B)= (0,03-1 ,5N) si 0,0001 %<B<0,00025% f (B) = (0.03-1, 5N) if 0.0001% <B <0.00025%
f(B)=(0,06-3N) si 0,00025%<B<0,0004% f (B) = (0.06-3N) if 0.00025% <B <0.0004%
f(B)=(0,09-4,5N) si B≥0,0004%, f (B) = (0.09-4.5N) if B≥0.0004%,
C, Mn, Si, Mo, Ni, Cu, Cr, B et N désignant respectivement les teneurs en carbone, manganèse, silicium, molybdène, nickel, cuivre, chrome, bore et azote, exprimées en pourcentage pondéral, de ladite zone fondue.  C, Mn, Si, Mo, Ni, Cu, Cr, B and N respectively designating the carbon, manganese, silicon, molybdenum, nickel, copper, chromium, boron and nitrogen contents, expressed as a percentage by weight, of said molten zone.
Selon une autre caractéristique du procédé, le soudage est effectué par faisceau LASER d'une manière homogène et autogène, la teneur en azote de l'acier est inférieure ou égale à 0,020%, et la puissance de soudage, la vitesse de soudage, les moyens d'un éventuel pré ou post- chauffage ou de refroidissement, sont choisis de telle sorte que la zone fondue refroidisse selon un paramètre At^ tel que :  According to another characteristic of the process, the welding is carried out by a LASER beam in a homogeneous and autogenous manner, the nitrogen content of the steel is less than or equal to 0.020%, and the welding power, the welding speed, the means of a possible pre or post-heating or cooling, are chosen so that the molten zone cools according to a parameter At ^ such that:
ΔtB exp- °'75 Ln ( ΔtB/ Δt M) <( fa™ )≤ ΔtB P" °'6 Ln ( AtB/ Δt M) Δt B exp- ° '75 Ln (ΔtB / Δt M) <(fa ™) ≤ Δt B P " °' 6 Ln (AtB / Δt M)
et préférentiellement : ΔtB exp" °-7 Ln ( ΔtB/ Δt M) <( fa™ )< ΔtB exp" °'6 Ln ( ΔtB/ Δt M) At™ , exprimé en secondes, désignant le temps s'écoulant entre 800 etand preferably: Δt B exp " ° - 7 Ln (ΔtB / Δt M) <(fa ™) <Δt B exp " ° ' 6 Ln (ΔtB / Δt M) At ™, expressed in seconds, designating the elapsed time between 800 and
5000C lors du refroidissement après soudage de la zone fondue, avec : ΔtB= exp <6 2 CE » + °-74>, 500 0 C during cooling after welding of the molten zone, with: Δt B = exp < 6 2 CE " + ° - 74 >,
ΔtM= exp (10-6 CE l -4'8> Δt M = exp (10 - 6 CE l - 4 ' 8 >
CE, = C+Mn/6+ Si/24 +Mo/4+ Ni/12+ Cu/15+ (Cr(1-0,16VCr )/8)+f(B) CE, = C + Mn / 6 + Si / 24 + Mo / 4 + Ni / 12 + Cu / 15 + (Cr (1-0,16VCr) / 8) + f (B)
CE1, = C+Mn/3,6+ Cu/20 +Ni/9+ Cr/5+ Mo/4, CE 1 , = C + Mn / 3.6 + Cu / 20 + Ni / 9 + Cr / 5 + Mo / 4,
avec : f(B)=O, si B<0,0001 % with: f (B) = O, if B <0.0001%
f(B)= (0,03-1 ,5N) si 0,0001 %<B<0,00025% f (B) = (0.03-1, 5N) if 0.0001% <B <0.00025%
f(B)=(0,06-3N) si 0,00025%<B<0,0004% f (B) = (0.06-3N) if 0.00025% <B <0.0004%
f(B)=(0,09-4,5N) si B>0,0004%, C, Mn, Si, Mo, Ni, Cu, Cr, B, N désignant respectivement les teneurs en carbone, manganèse, silicium, molybdène, nickel, cuivre, chrome, bore et azote, exprimées en pourcentage pondéral, de l'acier soudé. f (B) = (0.09-4.5N) if B> 0.0004%, C, Mn, Si, Mo, Ni, Cu, Cr, B, N respectively denoting the contents of carbon, manganese, silicon, molybdenum, nickel, copper, chromium, boron and nitrogen, expressed as a percentage by weight, of the welded steel .
Selon une autre caractéristique du procédé, le soudage est effectué par faisceau d'électrons d'une manière autogène et homogène, la teneur en azote de l'acier est inférieure ou égale à 0,022%, la puissance de soudage, la vitesse de soudage, les moyens d'un éventuel pré ou post-chauffage ou de refroidissement, sont choisis de telle sorte que la zone fondue par le faisceau d'électrons refroidisse selon un paramètre At^ tel que :  According to another characteristic of the process, the welding is carried out by electron beam in an autogenous and homogeneous manner, the nitrogen content of the steel is less than or equal to 0.022%, the welding power, the welding speed, the means of a possible pre or post-heating or cooling, are chosen so that the zone melted by the electron beam cools according to a parameter At ^ such that:
ΔtB exp- 0-75 Ln ( ΔfB/ Δt M) <(Δθ ΔtB exp- °-6 Lπ <ΔtB/ Λt M) Δt B exp- 0 - 75 Ln (ΔfB / Δt M) <(Δθ Δt B exp- ° - 6 Lπ < ΔtB / Λt M)
et préférentiellement : ΔtB exp" 0J Ln ( ΔtB/ Δt M> <( fa™ )< ΔtB exp °'6 Ln ( ΔtB/ Δt M> Δt5 8°o , exprimé en secondes, désignant le temps s'écoulant entre 800 etand preferably: Δt B exp "0J Ln (ΔtB / Δt M ><(fa ™) <Δt B exp ° ' 6 Ln (ΔtB / Δt M > Δt 5 8 ° o, expressed in seconds, designating the elapsed time between 800 and
5000C lors du refroidissement après soudage de ladite zone fondue, avec : ΔtB= exp <6-2 CE » + °>74\ 500 0 C during cooling after welding of said molten zone, with: Δt B = exp < 6 - 2 CE " + ° > 74 \
ΔtM= exp (10'6 CE | -4'8) Δt M = exp (10 ' 6 CE | - 4 ' 8)
CE, = C+Mn/6,67+ Si/24 +Mo/4+ Ni/12+ Cu/15+ (Cr(I-0, 16-VCr )/8)+f(B) CE, = C + Mn / 6.67 + Si / 24 + Mo / 4 + Ni / 12 + Cu / 15 + (Cr (I-0, 16-VCr) / 8) + f (B)
CE,, = C+Mn/4+ Cu/20 +Ni/9+ Cr/5+ Mo/4, CE ,, = C + Mn / 4 + Cu / 20 + Ni / 9 + Cr / 5 + Mo / 4,
Avec : f(B)=O, si B<0,0001 %  With: f (B) = O, if B <0.0001%
f(B)= (0,03-1 ,35N) si 0,0001 %<B<0,00025%  f (B) = (0.03-1, 35N) if 0.0001% <B <0.00025%
f(B)=(0,06-2,7N) si 0,00025%<B<0,0004%  f (B) = (0.06-2.7N) if 0.00025% <B <0.0004%
f(B)=(0,09-4,05N) si B≥O.0004%,  f (B) = (0.09-4.05N) if B≥O.0004%,
C, Mn, Si, Mo, Ni, Cu, Cr, B, N désignant respectivement les teneurs en carbone, manganèse, silicium, molybdène, nickel, cuivre chrome, bore, et azote, exprimées en pourcentage pondéral, de l'acier soudé.  C, Mn, Si, Mo, Ni, Cu, Cr, B, N respectively designating the contents of carbon, manganese, silicon, molybdenum, nickel, copper, chromium, boron, and nitrogen, expressed as a percentage by weight, of the welded steel .
Selon un mode particulier de réalisation de l'invention, on soude la partie en acier avec une pièce d'acier de composition identique ou différente, d'épaisseur identique ou différente, faisant partie ou non dudit objet, en utilisant un produit d'apport métallique  According to a particular embodiment of the invention, the steel part is welded with a steel part of identical or different composition, of identical or different thickness, whether or not part of said object, using a filler product metallic
L'invention va maintenant être décrite de façon plus précise, mais non limitative, en se rapportant aux figures annexées dans lesquelles :  The invention will now be described in more detail, but without limitation, with reference to the appended figures in which:
- La figure 1 illustre la comparaison de la dureté de la Zone Affectée par la Chaleur avec celle de la zone fondue en soudage LASER et en soudage par faisceau d'électrons d'aciers de construction métallique.  - Figure 1 illustrates the comparison of the hardness of the Heat Affected Zone with that of the molten zone in LASER welding and in electron beam welding of steel structural steel.
- La figure 2 présente la comparaison de la température de transition Charpy V au niveau 28 Joules (TK2Sj) de la Zone Affectée par la chaleur avec celle de la zone fondue en soudage LASER et par faisceau d'électrons d'aciers de construction métallique. - La figure 3 illustre une évolution typique de la température de transition ductile-fragile et de la dureté en Zone Affectée par la Chaleur d'un acier de construction métallique, en fonction de la vitesse de refroidissement.- Figure 2 presents the comparison of the Charpy V transition temperature at the 28 Joule level (TK 2 Sj) of the Heat Affected Zone with that of the molten zone in LASER and electron beam welding of structural steels metallic. - Figure 3 illustrates a typical change in the ductile-brittle transition temperature and the hardness in the Heat Affected Zone of a metallic structural steel, as a function of the cooling rate.
- Les figures 4 et 5 illustrent l'influence de la quantité de martensite autorevenue sur la ténacité en zone fondue en soudage LASER et en soudage par faisceau d'électrons respectivement. - Figures 4 and 5 illustrate the influence of the amount of self-returning martensite on the toughness in the molten zone in LASER welding and in electron beam welding respectively.
La figure 6 indique la modification de la teneur en azote dans la zone fondue par rapport à celle du métal de base lors du soudage par faisceau d'électrons.  FIG. 6 shows the modification of the nitrogen content in the molten zone compared to that of the base metal during electron beam welding.
Dans les assemblages obtenus par soudage LASER ou par faisceau d'électrons, la partie soudée est constituée de deux zones distinctes : In the assemblies obtained by LASER welding or by electron beam, the welded part consists of two distinct zones:
- La zone fondue, qui correspond à une zone passée par l'état liquide lors du soudage, c'est à dire celle où la température a été supérieure à celle du liquidus du matériau soudé.  - The molten zone, which corresponds to a zone which has passed through the liquid state during welding, ie that where the temperature has been higher than that of the liquidus of the welded material.
- La Zone Affectée par la Chaleur (ou « ZAC »), qui peut englober au sens large toutes les zones ayant subi une transformation allotropique lors du soudage. Par la suite, on réservera ici ce terme de ZAC aux parties de l'assemblage demeurant à l'état solide portées aux plus hautes températures lors du soudage qui sont le siège d'un grossissement plus important du grain austénitique. Ces zones, très souvent les plus critiques du point de vue de la ténacité, correspondent à des températures maximales supérieures à 1200- 13000C. - The Zone Affected by Heat (or “ZAC”), which can include in the broad sense all the zones having undergone an allotropic transformation during welding. Subsequently, this term ZAC will be reserved here for the parts of the assembly remaining in the solid state brought to the highest temperatures during welding which are the seat of a greater magnification of the austenitic grain. These zones, very often the most critical from the point of view of toughness, correspond to maximum temperatures greater than 1200-1300 ° C.
En se plaçant dans le cas d'un soudage autogène (c'est à dire sans matériau d'apport) et homogène (soudure effectuée entre deux parties ayant une composition chimique identique), on a mis en évidence pour une large gamme de compositions d'aciers de construction métallique, de teneur en carbone allant de 0,005% C à 0,27%C en poids, en manganèse allant de 0,5 à 1 ,6%, en Si allant de 0,1 à 0,4%, en Cr jusqu'à 2,5%, en Mo jusqu'à 1% que les propriétés mécaniques de la zone fondue et de la ZAC sont très voisines : Ainsi, la figure 1 indique que la dureté en soudage LASER et en soudage par faisceau d'électrons, sont très similaires dans ces deux zones. Cette similarité s'applique également aux propriétés de ténacité, comme le montre la figure 2, qui compare la température de transition Charpy V au niveau 28 Joules de la Zone Affectée par la chaleur avec celle de la zone fondue pour les deux types de soudage utilisant des faisceaux à haute densité d'énergie. Les microstructures de ces deux zones sont elles aussi très semblables. En d'autres termes, sous réserve que leur composition soit similaire, la zone fondue à haute densité d'énergie peut être assimilable à une ZAC de grande largeur du point de vue des propriétés mécaniques. Ceci indique que les moyens d'amélioration de la ténacité en zone fondue LASER peuvent se baser sur l'expérience acquise antérieurement dans le domaine des ZAC. A ce titre, la figure 3 présente un exemple typique de l'évolution de la dureté et de la température de transition ductile-fragile de la ZAC d'un acier de construction métallique à 0,04%C, 1 ,3%Mn en fonction de la vitesse de refroidissement après soudage. Cette vitesse est ici caractérisée par A/°°o , paramètre qui désigne le temps qui s'écoule entre le passage à la température de 8000C et à la température de 5000C lors du refroidissement en soudage. Il existe une plage de vitesse de refroidissement (située pour cette composition d'acier vers ^500 »1-2s), pour laquelle la ténacité est optimale. Pour des vitesses de refroidissement beaucoup plus rapides, on assiste à la formation de martensite non revenue (« fresh martensite »), dont les propriétés sont inférieures. A l'opposé, une diminution de la vitesse de refroidissement aboutit à la formation de bainite supérieure ou de structures ferritiques grossières, également moins tenaces. Les microstructures correspondant à l'optimum de ténacité sont constituées pour partie de martensite auto-revenue, le revenu étant dû au cycle de soudage lui-même, et pour partie de bainite inférieure. La structure auto-revenue est caractérisée par la présence de fins carbures précipités dans les lattes de martensite. Ces structures optimales du point de vue de la ténacité se situent vers la fin du domaine d'apparition martensitique, c'est à dire correspondent au début de la diminution de la dureté à partir d'un « plateau » sensiblement horizontal correspondant à la dureté de la martensite, lorsque ^500 augmente. By placing it in the case of an autogenous (that is to say without filler material) and homogeneous welding (welding carried out between two parts having an identical chemical composition), it has been demonstrated for a wide range of compositions of structural steel, carbon content ranging from 0.005% C to 0.27% C by weight, manganese ranging from 0.5 to 1.6%, Si ranging from 0.1 to 0.4%, in Cr up to 2.5%, in Mo up to 1% that the mechanical properties of the molten zone and the ZAC are very similar: Thus, Figure 1 indicates that the hardness in LASER welding and in beam welding of electrons, are very similar in these two areas. This similarity also applies to the toughness properties, as shown in Figure 2, which compares the Charpy V transition temperature at the 28 Joule level of the Heat Affected Zone with that of the molten zone for the two types of welding using high energy density beams. The microstructures of these two zones are also very similar. In other words, provided that their composition is similar, the molten zone with high energy density can be assimilated to a ZAC of great width from the point of view of mechanical properties. This indicates that the means of improving the toughness in the LASER melted area can be based on the experience previously acquired in the area of ZACs. As such, Figure 3 presents a typical example of the evolution of the hardness and the ductile-brittle transition temperature of the ZAC of a metallic structural steel at 0.04% C, 1, 3% Mn in function of the cooling rate after welding. This speed is here characterized by A / °° o , parameter which designates the time which elapses between the passage at the temperature of 800 0 C and the temperature of 500 0 C during cooling in welding. There is a cooling speed range (located for this steel composition around ^ 500 ”1-2s), for which the toughness is optimal. For much faster cooling rates, there is the formation of non-returned martensite ("fresh martensite"), whose properties are inferior. Conversely, a decrease in the cooling rate results in the formation of superior bainite or coarse ferritic structures, also less stubborn. The microstructures corresponding to the optimum toughness consist partly of self-tempered martensite, the tempering being due to the welding cycle itself, and partly of lower bainite. The self-returning structure is characterized by the presence of fine carbides precipitated in the martensite slats. These optimal structures from the point of view of toughness are located towards the end of the martensitic onset range, that is to say correspond to the beginning of the reduction in hardness from a substantially horizontal "plateau" corresponding to the hardness martensite, when ^ 500 increases.
Selon l'invention, on a mis en évidence, comme le montre la figure 4, qu'une proportion de martensite autorevenue comprise entre 60 et 75 %, associée en complément à une proportion de bainite inférieure comprise entre 40 et 25%, conduit à obtenir une excellente ténacité en zone fondue LASER. Lorsque la proportion de martensite est plus spécialement comprise entre 60 et 70% associée en complément à une proportion de bainite inférieure comprise entre 40 et 30%, la température de transition est inférieure à - 1000C, ce qui traduit un niveau de ténacité particulièrement élevé. According to the invention, it has been demonstrated, as shown in FIG. 4, that a proportion of self-healing martensite of between 60 and 75%, associated in addition to a proportion of lower bainite of between 40 and 25%, results in obtain excellent toughness in the LASER melt zone. When the proportion of martensite is more especially between 60 and 70% associated in addition to a proportion of lower bainite of between 40 and 30%, the transition temperature is less than - 100 ° C., which translates a level of tenacity particularly Student.
Une conclusion similaire peut être tirée de la figure 5, relative à des essais de soudage par faisceau d'électrons sur des aciers de construction métallique dont la teneur en carbone est comprise entre 0,1 et 0,17%. Une proportion de 60 à 75% de martensite auto-revenue et, en complément, de 40 à 25% de bainite inférieure, est donc particulièrement favorable pour l'obtention de zones fondues d'excellente ténacité en soudage à haute densité d'énergie. A composition d'acier donnée, parmi les différentes variables d'assemblage en soudage à haute densité d'énergie (puissance et vitesse de soudage, éventuel pré ou post-chauffage ou moyens de refroidissement), on choisira celles qui conduisent à une proportion de 60 à 75% de martensite en zone fondue, et préférentiellement de 60 à 70% , associée à un complément adéquat de bainite inférieure. Les relations entre la vitesse de refroidissement en soudage et la fraction de martensite vont être explicitées maintenant, en tenant compte de la similitude entre la ZAC et la zone fondue dans l'assemblage à haute densité d'énergie : A similar conclusion can be drawn from Figure 5, relating to electron beam welding tests on structural steel. whose carbon content is between 0.1 and 0.17%. A proportion of 60 to 75% of self-returning martensite and, in addition, 40 to 25% of lower bainite, is therefore particularly favorable for obtaining molten zones of excellent toughness in high energy density welding. With a given steel composition, among the various assembly variables in high energy density welding (welding power and speed, possible pre or post-heating or cooling means), we will choose those which lead to a proportion of 60 to 75% martensite in the molten zone, and preferably 60 to 70%, associated with an adequate supplement of lower bainite. The relationships between the cooling rate in welding and the martensite fraction will now be explained, taking into account the similarity between the ZAC and the molten zone in the high energy density assembly:
Dans le domaine des zones affectées par la chaleur, il est connu d'après la publication de « Métal Construction », avril 1987, pp. 217-223, que la proportion de martensite peut être évaluée par les expressions suivantes : In the area of heat affected areas, it is known from the publication of "Metal Construction", April 1987, pp. 217-223, that the proportion of martensite can be evaluated by the following expressions:
log— f  log— f
Fraction martensitique fM= ^ Martensitic fraction f M = ^
ter you r
log- ou, de manière équivalente : log- or, equivalently:
M) M)
avec : with:
At f5 88Q0O0 At f5 8 8 Q 0 O 0
f500 = Temps s'écoulant entre 800 et 5000C lors du refroidissement de la zone soudée après soudage, f500 = Time elapsing between 800 and 500 0 C during the cooling of the welded area after welding,
ΔtM= Temps de refroidissement critique conduisant à 100% de martensite, ΔtB= Temps de refroidissement critique conduisant à 100% de bainite. Δt M = Critical cooling time leading to 100% martensite, Δt B = Critical cooling time leading to 100% bainite.
log et Ln désignant respectivement les logarithmes décimaux et Népériens Cette expression s'applique lorsque : Δtwi≤Δt8™ < ΔtB log and Ln respectively designating the decimal and Neperian logarithms This expression applies when: Δtwi≤Δt 8 ™ <Δt B
Les temps critiques de refroidissement sont reliés à la composition chimique par les expressions suivantes :  The critical cooling times are related to the chemical composition by the following expressions:
ΔtB= exp <6-2 CE Il + 0'74), Δt B = exp < 6 - 2 CE Il + 0 '74) ,
ΔtM= exp (10-6 CE l -4-8) . Δt M = exp (10 - 6 CE l - 4 - 8) .
avec :  with:
CE, = C+Mn/6+ Si/24 +Mo/4+ Ni/12+ Cu/15+ (Cr(1-0,16VCr )/8)+f(B) CE, = C + Mn / 6 + Si / 24 + Mo / 4 + Ni / 12 + Cu / 15 + (Cr (1-0,16VCr) / 8) + f (B)
CE,, = C+Mn/3,6+ Cu/20 +NÎ/9+ Cr/5+ Mo/4, CE ,, = C + Mn / 3,6 + Cu / 20 + NÎ / 9 + Cr / 5 + Mo / 4,
Avec : f(B)=O, si B<0,0001 % f(B)= (0,03-1 ,5N) si 0,0001 %<B<0,00025% With: f (B) = O, if B <0.0001% f (B) = (0.03-1, 5N) if 0.0001% <B <0.00025%
f(B)=(0,06-3N) si 0,00025%<B<0,0004%  f (B) = (0.06-3N) if 0.00025% <B <0.0004%
f(B)=(0,09-4,5N) si B>0,0004%,  f (B) = (0.09-4.5N) if B> 0.0004%,
ces expressions supposant que f(B)>0, c'est à dire que N≤0,020%. these expressions assuming that f (B)> 0, that is to say that N≤0.020%.
C, Mn, Si, Mo, Ni, Cu, Cr, B et N désignent respectivement les teneurs en carbone, manganèse, silicium, molybdène, nickel, cuivre, chrome, bore et azote, exprimées en pourcentage pondéral, de l'acier. C, Mn, Si, Mo, Ni, Cu, Cr, B and N respectively denote the carbon, manganese, silicon, molybdenum, nickel, copper, chromium, boron and nitrogen contents, expressed in weight percent, of the steel.
Or, comme on l'a montré précédemment, la similarité de la ZAC et de la zone fondue en soudage homogène et autogène à haute densité d'énergie indique que les formulations précédentes valables pour la ZAC sont également applicables à la zone fondue. However, as shown above, the similarity of the ZAC and the molten zone in homogeneous and autogenous welding at high energy density indicates that the previous formulations valid for the ZAC are also applicable to the molten zone.
Selon l'invention, dans la zone fondue, une teneur en martensite comprise entre 60 et 75%, préférentiellement entre 60 et 70%, associée à un complément en bainite inférieure conduit à obtenir une excellente ténacité. Ceci est obtenu si le paramètre de refroidissement obéit à l'expression suivante :  According to the invention, in the molten zone, a martensite content of between 60 and 75%, preferably between 60 and 70%, combined with a supplement in lower bainite results in excellent toughness. This is obtained if the cooling parameter obeys the following expression:
ΔtB exp" °-75 Ln ( ΔtB/ Δt M) <( ΔCo )≤ ΔtB P" °'6 Ln ( ΔtB/ M M) Δt B exp " ° - 75 Ln (ΔtB / Δt M) <(ΔC o ) ≤ Δt B P " ° ' 6 Ln (ΔtB / MM)
et de préférence : and preferably:
Δte exp- α7 Ln ( ΔtB/ Δt M) <( )≤ ΔtB P" °'6 Ln ( ΔtB/ At M) Δte exp- α7 Ln (ΔtB / Δt M) <( ) ≤ Δt B P " ° '6 Ln (ΔtB / At M)
Selon le procédé à haute densité d'énergie utilisé, deux cas sont à distinguer : Depending on the high energy density process used, two cases should be distinguished:
- Dans le cas de soudage LASER homogène et autogène, la composition de la zone fondue est pratiquement identique à celle du métal de base. Les expressions mentionnées ci-dessus, relatives à la composition élémentaire de la zone fondue, s'appliquent également à la composition du métal de base, c'est à dire à la composition de l'acier à partir duquel on réalise l'assemblage.  - In the case of homogeneous and autogenous LASER welding, the composition of the molten zone is practically identical to that of the base metal. The expressions mentioned above, relating to the elementary composition of the molten zone, also apply to the composition of the base metal, that is to say to the composition of the steel from which the assembly is carried out.
- Dans le cas de soudage par faisceau d'électrons homogène et autogène, on a observé une modification de la composition de la zone fondue par rapport au métal de base : La teneur en azote est abaissée en moyenne d'environ 10%, comme l'indique la figure 6, par la suite de la faible pression partielle au-dessus du métal liquide. D'autre part, on observe également une réduction moyenne de 10% de la teneur initiale du manganèse, élément possédant une tension de vapeur élevée. A partir des teneurs initiales en N et en Mn dans le métal de base, les teneurs en - In the case of homogeneous and autogenous electron beam welding, we have observed a change in the composition of the molten zone compared to the base metal: The nitrogen content is reduced on average by about 10%, as l 'indicates Figure 6, as a result of the low partial pressure above the liquid metal. On the other hand, there is also an average reduction of 10% in the initial content of manganese, an element with a high vapor pressure. From the initial contents of N and Mn in the base metal, the contents of
N et en Mn dans la zone fondue sont respectivement égales à 0,9C et 0,9Mn. Dans ces conditions, les expressions précédentes deviennent - ΔtB= exp (6-2 CE II + 0Λ N and Mn in the molten zone are respectively equal to 0.9C and 0.9Mn. Under these conditions, the preceding expressions become - Δt B = exp (6 - 2 CE II + 0 Λ
ΔtM= exp (10-6 CE l-4'8) Δt M = exp (10 - 6 CE l - 4 ' 8)
CEi = C+Mn/6,67+ Si/24 +Mo/4+ NÏ/12+ Cu/15+ (Cr(I-O1IeVO7 )/8)+f(B)CEi = C + Mn / 6.67 + Si / 24 + Mo / 4 + NÏ / 12 + Cu / 15 + (Cr (IO 1 IeVO 7 ) / 8) + f (B)
CEn = C+Mn/4+ Cu/20 +Ni/9+ Cr/5+ Mo/4, CEn = C + Mn / 4 + Cu / 20 + Ni / 9 + Cr / 5 + Mo / 4,
Avec : f(B)=0, si B≤O.0001 %  With: f (B) = 0, if B≤O.0001%
f(B)= (0,03-1 ,35N) si 0,0001 %<B<0,00025%  f (B) = (0.03-1, 35N) if 0.0001% <B <0.00025%
f(B)=(0,06-2,7N) si 0,00025%<B<0,0004%  f (B) = (0.06-2.7N) if 0.00025% <B <0.0004%
f(B)=(0,09-4,05N) si B>0,0004%,  f (B) = (0.09-4.05N) if B> 0.0004%,
ces expressions supposant que f(B)>0, c'est-à-dire que N<0,022%. these expressions assuming that f (B)> 0, that is to say that N <0.022%.
C, Mn, Si, Mo, Ni, Cu, Cr, B et N désignent respectivement les teneurs en carbone, manganèse, silicium, molybdène, nickel, cuivre, chrome, bore et azote, exprimées en pourcentage pondéral, de l'acier soudé. C, Mn, Si, Mo, Ni, Cu, Cr, B and N respectively denote the contents of carbon, manganese, silicon, molybdenum, nickel, copper, chromium, boron and nitrogen, expressed as a percentage by weight, of the welded steel .
Naturellement, l'invention peut être également transposée au cas où l'on soude une partie en acier avec une autre pièce d'acier de composition différente, et ceci en tenant compte de la participation relative de chaque élément pour former la zone fondue, c'est à dire du coefficient de dilution. La même remarque s'applique également au cas du soudage avec produit d'apport métallique, dont il convient de tenir compte de la composition et du coefficient de dilution, ceci afin d'évaluer la composition de la zone fondue. Naturally, the invention can also be transposed in the case where a steel part is welded with another steel part of different composition, and this taking into account the relative participation of each element to form the molten zone, c 'ie the coefficient of dilution. The same remark also applies in the case of welding with metallic filler, the composition and dilution coefficient of which must be taken into account, in order to assess the composition of the molten area.
La présente invention va être maintenant illustrée à partir de l'exemple suivant, relatif au soudage par faisceau LASER :  The present invention will now be illustrated from the following example, relating to LASER beam welding:
Un acier de 12 mm d'épaisseur utilisé pour la fabrication de tubes de limite d'élasticité supérieure à 400 MPa ayant la composition suivante :C=0,1%, Mn=1 ,45%, Si=0,35%, AI=0,030%, Nb=0,040%, N=0,004%, a été soudé en mode autogène par faisceau LASER sans métal d'apport avec des paramètres choisis de telle sorte que la vitesse de refroidissement Δ^°° soit égale à 1 ,7 s. Dans ces conditions, la fraction de martensite auto-revenue de la zone fondue calculée à partir de l'expression ci-dessus (cas du soudage homogène et autogène) est égale à 68%, très voisine de celle déterminée par observation métallographique, complétée par 32% de bainite inférieure. Ces conditions correspondent à celles de l'invention, qui sont associées à une ténacité optimale de la zone fondue : de fait, la température de transition, déterminée à partir d'essais de traction par choc sur éprouvettes cylindriques entaillées de 4mm de diamètre, est de -1200C, ce qui traduit une excellente ténacité et une grande résistance à la rupture fragile des tubes fabriqués dans ces conditions par soudage LASER. Grâce à l'invention, on réalise donc la fabrication de structures soudées à haute densité d'énergie de manière économique, sans faire appel à des éléments d'addition coûteux. L'invention permet de choisir les conditions d'assemblage de façon à satisfaire aux exigences de sécurité vis-à-vis du risque de rupture brutale. A 12 mm thick steel used for the manufacture of tubes with elastic limit greater than 400 MPa having the following composition: C = 0.1%, Mn = 1.45%, Si = 0.35%, AI = 0.030%, Nb = 0.040%, N = 0.004%, was welded in autogenous mode by LASER beam without filler metal with parameters chosen so that the cooling rate Δ ^ °° is equal to 1.7 s. Under these conditions, the fraction of self-returning martensite from the molten zone calculated from the above expression (case of homogeneous and autogenous welding) is equal to 68%, very close to that determined by metallographic observation, supplemented by 32% lower bainite. These conditions correspond to those of the invention, which are associated with optimum toughness of the molten zone: in fact, the transition temperature, determined from impact tensile tests on notched cylindrical specimens of 4mm in diameter, is of -120 ° C., which translates an excellent toughness and a high resistance to brittle fracture of the tubes manufactured under these conditions by LASER welding. Thanks to the invention, the production of welded structures with high energy density is therefore carried out economically, without the need for expensive addition elements. The invention makes it possible to choose the assembly conditions so as to meet the security requirements with respect to the risk of sudden rupture.

Claims

REVENDICATIONS
1. Objet comprenant au moins une partie en acier dont la composition comprend, les teneurs étant exprimées en poids, du carbone en teneur comprise entre 0,005 et 0,27%, du manganèse entre 0,5 et 1 ,6%, du silicium entre 0,1 et 0,4%, du chrome en teneur inférieure à 2,5%, du Mo en teneur inférieure à 1 %, éventuellement un ou plusieurs éléments choisis parmi le nickel, le cuivre, l'aluminium, le niobium, le vanadium, le titane, le bore, le zirconium, l'azote, le reste étant du fer et des impuretés résultant de l'élaboration, ladite partie en acier comportant au moins une zone fondue par faisceau à haute densité d'énergie, caractérisé en ce que ladite zone fondue présente une microstructure constituée de 60 à 75% de martensite auto-revenue et, en complément, de 40 à 25% de bainite inférieure, et préférentiellement 60 à 70% de martensite auto-revenue et , en complément, de 40 à 30% de bainite inférieure. 1. Object comprising at least one steel part, the composition of which comprises, the contents being expressed by weight, carbon in content of between 0.005 and 0.27%, manganese between 0.5 and 1.6%, silicon between 0.1 and 0.4%, chromium in content less than 2.5%, Mo in content less than 1%, optionally one or more elements chosen from nickel, copper, aluminum, niobium, vanadium, titanium, boron, zirconium, nitrogen, the rest being iron and impurities resulting from production, said steel part comprising at least one zone melted by beam with high energy density, characterized in that said molten zone has a microstructure consisting of 60 to 75% of self-returned martensite and, in addition, 40 to 25% of lower bainite, and preferably 60 to 70% of self-returned martensite and, in addition, of 40 to 30% lower bainite.
2. Objet selon la revendication 1 , caractérisé en ce qu'il s'agit d'un tube en acier, comprenant au moins un tronçon présentant une zone soudée dans le sens longitudinal ou transverse.  2. Object according to claim 1, characterized in that it is a steel tube, comprising at least one section having a welded zone in the longitudinal or transverse direction.
3. Objet selon la revendication 1 ou 2, caractérisé en ce qu'il est constitué d'au moins deux tôles laminées ou forgées à chaud d'acier de composition identique ou différente, d'épaisseur identique ou différente, soudées entre elles. 3. Object according to claim 1 or 2, characterized in that it consists of at least two hot rolled or forged sheets of steel of identical or different composition, of identical or different thickness, welded together.
4. Objet selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit faisceau à haute densité d'énergie est un faisceau LASER  4. Object according to any one of claims 1 to 3, characterized in that said beam with high energy density is a LASER beam
5. Objet selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit faisceau à haute densité d'énergie est un faisceau d'électrons 5. Object according to any one of claims 1 to 3, characterized in that said beam with high energy density is an electron beam
6. Procédé de fabrication d'un objet selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend les étapes consistant à : 6. A method of manufacturing an object according to any one of claims 1 to 3, characterized in that it comprises the steps consisting in:
- approvisionner un objet comprenant au moins une partie en acier dont la composition comprend les teneurs étant exprimées en poids, du carbone en teneur comprise entre 0,005 et 0,27%, du manganèse entre 0,5 et 1 ,6%, du silicium entre 0,1 et 0,4%, du chrome en teneur inférieure à 2,5%, du Mo en teneur inférieure à 1 %, éventuellement un ou plusieurs éléments choisis parmi le nickel, le cuivre, l'aluminium, le niobium, le vanadium, le titane, le bore, le zirconium, l'azote, le reste étant du fer et des impuretés résultant de l'élaboration, - supply an object comprising at least one steel part, the composition of which comprises the contents being expressed by weight, carbon in content of between 0.005 and 0.27%, manganese between 0.5 and 1.6%, silicon between 0.1 and 0.4%, chromium in content less than 2.5%, Mo in content less than 1%, optionally one or more elements chosen from nickel, copper, aluminum, niobium, vanadium, titanium, boron, zirconium, nitrogen, the rest being iron and impurities resulting from the production,
- souder par un procédé à haute densité d'énergie ladite partie en acier avec une pièce d'acier de composition identique ou différente, faisant déjà partie ou non dudit objet,  - welding by a high energy density process said steel part with a steel part of identical or different composition, already or not part of said object,
- la puissance de soudage, la vitesse de soudage, les moyens d'un éventuel pré ou post-chauffage ou de refroidissement, étant choisis de telle sorte que l'on obtienne une zone fondue avec une microstructure constituée de 60 à 75% de martensite auto-revenue et, en complément, de 40 à 25% de bainite inférieure, préférentiellement 60 à - the welding power, the welding speed, the means of a possible pre or post-heating or cooling, being chosen so that a molten zone is obtained with a microstructure consisting of 60 to 75% of martensite self-returning and, in addition, from 40 to 25% of lower bainite, preferably 60 to
70% de martensite auto-revenue et, en complément, de 40 à 30% de bainite inférieure. 70% self-returning martensite and, in addition, 40 to 30% lower bainite.
7. Procédé selon la revendication 6, caractérisé en outre en ce que la teneur en azote de ladite zone fondue est inférieure ou égale à 0,020%, que la puissance de soudage, la vitesse de soudage, les moyens d'un éventuel pré ou post-chauffage ou de refroidissement, sont choisis de telle sorte que ladite zone fondue refroidisse selon un paramètre At^ tel que :  7. The method of claim 6, further characterized in that the nitrogen content of said molten zone is less than or equal to 0.020%, that the welding power, the welding speed, the means of a possible pre or post -heating or cooling, are chosen so that said molten zone cools according to a parameter At ^ such that:
ΔtB exp °-75 Ln < ΔtB/ Δt M> <( ΔCo )≤ ΔtB P" °'6 Ln ( ΔtB/ Δt M) Δt B exp ° - 75 Ln < ΔtB / Δt M ><(ΔCo) ≤ Δt B P " ° '6 Ln (ΔtB / Δt M)
et préférentiellement : ΔtB exp °-7 Ln ( ΔtB/ Δt M) <( fa™ )< ΔtB exp" °'6 Ln < ΔtB/ Δt M) and preferably: Δt B exp ° - 7 Ln (ΔtB / Δt M) <(fa ™) <Δt B exp " ° ' 6 Ln < ΔtB / Δt M)
Δt|oo exprimé en secondes désignant le temps s'écoulant entre la température de 8000C et la température de 5000C lors du refroidissement après soudage de ladite zone soudée, Δt | oo expressed in seconds designating the time elapsing between the temperature of 800 ° C. and the temperature of 500 ° C. during the cooling after welding of said welded zone,
avec : ΔtB= exp (6-2 CE II + 0'74), with: Δt B = exp (6 - 2 CE II + 0 '74) ,
ΔtM= exp <10'6 CE | -4'8) Δt M = exp < 10 ' 6 CE | - 4 ' 8)
CE, = C+Mn/6+ Si/24 +Mo/4+ Ni/12+ Cu/15+ (Cr(1-0,16VCr )/8)+f(B) CE, = C + Mn / 6 + Si / 24 + Mo / 4 + Ni / 12 + Cu / 15 + (Cr (1-0,16VCr) / 8) + f (B)
CE,, = C+Mn/3,6+ Cu/20 +Ni/9+ Cr/5+ Mo/4, CE ,, = C + Mn / 3,6 + Cu / 20 + Ni / 9 + Cr / 5 + Mo / 4,
Avec : f(B)=O, si B<0,0001 %  With: f (B) = O, if B <0.0001%
f(B)= (0,03-1 ,5N) si 0,0001 %<B<0,00025%  f (B) = (0.03-1, 5N) if 0.0001% <B <0.00025%
f(B)=(0,06-3N) si 0,00025%<B<0,0004%  f (B) = (0.06-3N) if 0.00025% <B <0.0004%
f(B)=(0,09-4,5N) si B≥0,0004%,  f (B) = (0.09-4.5N) if B≥0.0004%,
C, Mn, Si, Mo, Ni, Cu, Cr, B et N désignant respectivement les teneurs en carbone, manganèse, silicium, molybdène, nickel, cuivre, chrome, bore et azote, exprimées en pourcentage pondéral, de ladite zone fondue.  C, Mn, Si, Mo, Ni, Cu, Cr, B and N respectively designating the carbon, manganese, silicon, molybdenum, nickel, copper, chromium, boron and nitrogen contents, expressed as a percentage by weight, of said molten zone.
8 Procédé selon la revendication 6, caractérisé en ce que ledit soudage est effectué par faisceau LASER d'une manière homogène et autogène, que la teneur en azote dudit acier est inférieure ou égale à 0,020%, et que la puissance de soudage, la vitesse de soudage, les moyens d'un éventuel pré ou post-chauffage ou de refroidissement, sont choisis de telle sorte que ladite zone fondue refroidisse selon un paramètre At5 8 O0 0 tel que : 8 Method according to claim 6, characterized in that said welding is carried out by LASER beam in a homogeneous and autogenous manner, that the nitrogen content of said steel is less than or equal to 0.020%, and that the welding power, the welding speed, the means of a possible pre or post-heating or cooling, are chosen so that said molten zone cools according to a parameter At 5 8 O0 0 such that:
ΔtB exp °-75 Ln ( ΔtB/ Δt M) <( fa™ )≤ ΔtB e~ °'6 Ln ( ΔtB/ Δt M) Δt B exp ° - 75 Ln (ΔtB / Δt M) <(fa ™) ≤ Δt B e > Φ ~ ° ' 6 Ln (ΔtB / Δt M)
et préférentiellement : ΔtB exp- 0J Ln ( ΔtB/ Δt M)≤( fa™ )≤ ΔtB P" °'6 Ln ( ΔtB/ At M) Δt5 8oo » exprimé en secondes, désignant le temps s'écoulant entre 800 etand preferably: Δt B exp- 0J Ln (ΔtB / Δt M) ≤ (fa ™) ≤ Δt B P " ° ' 6 Ln (ΔtB / At M) Δt 5 8 oo " expressed in seconds, designating the time s' flowing between 800 and
5000C lors du refroidissement après soudage de ladite zone fondue, avec : ΔtB≈ exp <6 2 CE " + °Λ 500 0 C during cooling after welding of said molten zone, with: Δt B ≈ exp < 6 2 CE " + ° Λ
ΔtM= exp (10'6 CE | -4-8) Δt M = exp (10 ' 6 CE | - 4 - 8)
CE, = C+Mn/6+ Si/24 +Mo/4+ Ni/12+ Cu/15+ (Cr(1-0,16VCr )/8)+f(B) CE, = C + Mn / 6 + Si / 24 + Mo / 4 + Ni / 12 + Cu / 15 + (Cr (1-0,16VCr) / 8) + f (B)
CEn = C+Mn/3,6+ Cu/20 +Ni/9+ Cr/5+ Mo/4, CE n = C + Mn / 3.6 + Cu / 20 + Ni / 9 + Cr / 5 + Mo / 4,
Avec : f(B)=O, si B<0,0001 %  With: f (B) = O, if B <0.0001%
f(B)= (0,03-1 ,5N) si 0,0001 %<B<0,00025%  f (B) = (0.03-1, 5N) if 0.0001% <B <0.00025%
f(B)=(0,06-3N) si 0,00025%<B<0,0004%  f (B) = (0.06-3N) if 0.00025% <B <0.0004%
f(B)=(0,09-4,5N) si B>0,0004%,  f (B) = (0.09-4.5N) if B> 0.0004%,
C, Mn, Si, Mo, Ni, Cu, Cr, B, N désignant respectivement les teneurs en carbone, manganèse, silicium, molybdène, nickel, cuivre, chrome, bore et azote, exprimées en pourcentage pondéral, de l'acier soudé.  C, Mn, Si, Mo, Ni, Cu, Cr, B, N respectively denoting the contents of carbon, manganese, silicon, molybdenum, nickel, copper, chromium, boron and nitrogen, expressed as a percentage by weight, of the welded steel .
9. Procédé selon la revendication 6, caractérisé en ce que ledit soudage est effectué par faisceau d'électrons, d'une manière autogène et homogène, que la teneur en azote dudit acier est inférieure ou égale à 0,022%, que la puissance de soudage, la vitesse de soudage, les moyens d'un éventuel pré ou post-chauffage ou de refroidissement, sont choisis de telle sorte que ladite zone fondue par le faisceau d'électrons refroidisse selon un paramètre Δt5 8o° tel que : 9. Method according to claim 6, characterized in that said welding is carried out by electron beam, in an autogenous and homogeneous manner, that the nitrogen content of said steel is less than or equal to 0.022%, that the welding power , the welding speed, the means of a possible pre or post-heating or cooling, are chosen such that said zone melted by the electron beam cools according to a parameter Δt 5 8 o ° such that:
ΔtB exp- °-75 Ln ( ΔtB/ Δt M> <( fa™ )≤ ΔtB P" °'6 Ln ( ΔtB/ Δt M) Δt B exp- ° - 75 Ln (ΔtB / Δt M ><(fa ™) ≤ Δt B P " ° ' 6 Ln (ΔtB / Δt M)
et préférentiellement : ΔtB exp °-7 Ln ( ΔtB/ Δt M) <( fa™ )≤ ΔtB exp" °-6 Ln ( ΔtB/ Δt M) and preferably: Δt B exp ° - 7 Ln (ΔtB / Δt M) <(fa ™) ≤ Δt B exp " ° - 6 Ln (ΔtB / Δt M)
Δt8oo , exprimé en secondes, désignant le temps s'écoulant entre 800 et 5000C lors du refroidissement après soudage de ladite zone fondue, avec : ΔtB= exp <" CE " + °>74\ Δt 8 oo, expressed in seconds, designating the time elapsing between 800 and 500 0 C during the cooling after welding of said molten zone, with: Δt B = exp <" CE " + ° > 74 \
ΔtM= exp (10'6 CE | -4'8) Δt M = exp (10 ' 6 CE | - 4 ' 8)
CE, = C+Mn/6,67+ Si/24 +Mo/4+ Ni/12+ Cu/15+ (Cr(1-0,16Λ/Cτ )/8)+f(B) CE, = C + Mn / 6.67 + Si / 24 + Mo / 4 + Ni / 12 + Cu / 15 + (Cr (1-0,16Λ / Cτ) / 8) + f (B)
CE,, = C+Mn/4+ Cu/20 +Ni/9+ Cr/5+ Mo/4, CE ,, = C + Mn / 4 + Cu / 20 + Ni / 9 + Cr / 5 + Mo / 4,
Avec : f(B)=O, si B<0,0001 %  With: f (B) = O, if B <0.0001%
f(B)= (0,03-1 ,35N) si 0,0001 %<B<0,00025% f(B)=(0,06-2,7N) si 0,00025%<B<0,0004% f (B) = (0.03-1, 35N) if 0.0001% <B <0.00025% f (B) = (0.06-2.7N) if 0.00025% <B <0.0004%
f(B)=(0,09-4,05N) si B≥O.0004%,  f (B) = (0.09-4.05N) if B≥O.0004%,
C, Mn, Si, Mo, Ni, Cu, Cr, B, N désignant respectivement les teneurs en carbone, manganèse, silicium, molybdène, nickel, cuivre chrome, bore et azote, exprimées en pourcentage pondéral, de l'acier soudé.  C, Mn, Si, Mo, Ni, Cu, Cr, B, N respectively designating the contents of carbon, manganese, silicon, molybdenum, nickel, copper chromium, boron and nitrogen, expressed as a percentage by weight, of the welded steel.
10. Procédé de fabrication selon la revendication 6 ou 7, caractérisé en ce que l'on soude ladite partie en acier avec une pièce d'acier de composition identique ou différente, d'épaisseur identique ou différente, faisant partie ou non dudit objet, en utilisant un produit d'apport métallique  10. The manufacturing method according to claim 6 or 7, characterized in that said steel part is welded with a steel part of identical or different composition, of identical or different thickness, whether or not part of said object, using a metallic filler
EP05778661A 2004-07-05 2005-06-21 Object comprising a steel part of a metal construction consisting of an area welded by a high power density beam and exhibiting an excellent toughness in a molten area, method for producing said object Withdrawn EP1778886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0407512A FR2872442B1 (en) 2004-07-05 2004-07-05 HIGH DENSITY WELDED ENERGY ASSEMBLIES OF METALLIC CONSTRUCTION STEELS HAVING EXCELLENT TENACITY IN THE MELT ZONE, AND METHOD FOR MANUFACTURING SUCH WELDED ASSEMBLIES
PCT/FR2005/001543 WO2006013242A1 (en) 2004-07-05 2005-06-21 Object comprising a steel part of a metal construction consisting of an area welded by a high power density beam and exhibiting an excellent toughness in a molten area, method for producing said object

Publications (1)

Publication Number Publication Date
EP1778886A1 true EP1778886A1 (en) 2007-05-02

Family

ID=34947914

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05778661A Withdrawn EP1778886A1 (en) 2004-07-05 2005-06-21 Object comprising a steel part of a metal construction consisting of an area welded by a high power density beam and exhibiting an excellent toughness in a molten area, method for producing said object

Country Status (7)

Country Link
US (1) US20080302450A1 (en)
EP (1) EP1778886A1 (en)
CN (1) CN1989268A (en)
BR (1) BRPI0512996A (en)
CA (1) CA2572869A1 (en)
FR (1) FR2872442B1 (en)
WO (1) WO2006013242A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365216B2 (en) * 2008-01-31 2013-12-11 Jfeスチール株式会社 High-strength steel sheet and its manufacturing method
JP5906147B2 (en) * 2012-06-29 2016-04-20 株式会社神戸製鋼所 High-tensile steel plate with excellent base metal toughness and HAZ toughness
US9708685B2 (en) 2013-11-25 2017-07-18 Magna International Inc. Structural component including a tempered transition zone
ES2627220T3 (en) 2014-05-09 2017-07-27 Gestamp Hardtech Ab Methods for the union of two formats and the formats and products obtained
CN104759625B (en) * 2015-03-27 2017-01-04 桂林电子科技大学 A kind of material and the method that use laser 3D printing technique to prepare aluminum alloy junction component
CN105296852B (en) * 2015-11-24 2017-03-29 西安三维应力工程技术有限公司 Welded still pipe used for vehicle transmission shaft and its manufacture method
US10252378B2 (en) * 2015-12-10 2019-04-09 Caterpillar Inc. Hybrid laser cladding composition and component therefrom
CN106319385A (en) * 2016-09-30 2017-01-11 无锡市明盛强力风机有限公司 Metal material and preparation method thereof
WO2019171624A1 (en) * 2018-03-09 2019-09-12 日新製鋼株式会社 Steel pipe and production method for steel pipe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4527040A (en) * 1983-06-16 1985-07-02 The United States Of America As Represented By The Secretary Of The Navy Method of laser welding
WO1993024269A1 (en) * 1992-05-27 1993-12-09 Alloy Rods Global, Inc. Welding electrodes for producing low carbon bainitic ferrite weld deposits
JPH1094890A (en) * 1996-09-24 1998-04-14 Nippon Steel Corp Laser beam welding method of steel plate excellent in toughness of weld joint
TW396253B (en) * 1997-06-20 2000-07-01 Exxon Production Research Co Improved system for processing, storing, and transporting liquefied natural gas
JP3519966B2 (en) * 1999-01-07 2004-04-19 新日本製鐵株式会社 Ultra-high-strength linepipe excellent in low-temperature toughness and its manufacturing method
FI114484B (en) * 2002-06-19 2004-10-29 Rautaruukki Oyj Hot rolled strip steel and its manufacturing process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006013242A1 *

Also Published As

Publication number Publication date
FR2872442B1 (en) 2006-09-15
BRPI0512996A (en) 2008-04-22
CN1989268A (en) 2007-06-27
CA2572869A1 (en) 2006-02-09
US20080302450A1 (en) 2008-12-11
WO2006013242A1 (en) 2006-02-09
WO2006013242A9 (en) 2007-06-14
FR2872442A1 (en) 2006-01-06

Similar Documents

Publication Publication Date Title
EP1778886A1 (en) Object comprising a steel part of a metal construction consisting of an area welded by a high power density beam and exhibiting an excellent toughness in a molten area, method for producing said object
EP2736672B2 (en) Hot-formed welded part having high resistance and process to produce such a part
CA2506347C (en) Method for making an abrasion resistant steel plate and steel plate obtained
CA2680623C (en) Steel for tool-less hot forming or quenching with improved ductility
CA2595609C (en) Method of producing austenitic iron/carbon/manganese steel sheets and sheets thus produced
CA2239478C (en) Austenoferritic very low nickel stainless steel with high tensile elongation
EP0813613B1 (en) Method for making steel wires and shaped wires, and use thereof in flexible ducts
EP1490526A1 (en) Bulk steel for the production of injection moulds for plastic material or for the production of pieces for working metals
WO1998056532A1 (en) Core welding wire with low nitrogen content
WO2007101921A1 (en) Process for manufacturing steel sheet having very high strength, ductility and toughness characteristics, and sheet thus produced
WO2018025063A1 (en) Method for manufacturing a steel part, including the addition of a molten metal to a supporting part, and part thus obtained
WO2013182582A1 (en) Method for welding two edges of one or more steel parts to each other including a heat treatment step after the welding step: penstock obtained with such a method
WO2003083154A1 (en) Bulk steel for the production of injection moulds for plastic material or for the production of tools for working metals
EP2951328B1 (en) Welding wire for fe-36ni alloy
WO2008142275A2 (en) Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties
FR2886314A1 (en) STEEL FOR SUBMARINE HULL WITH REINFORCED WELDABILITY
FR2827874A1 (en) Fabrication of steel components used for production of sub-frame components involves cutting a piece from a steel strip with a given composition, reheating the piece above its austenitizing temperature and anvil tempering
EP4061565A1 (en) Solid metallic component and method for producing same
EP0748877B1 (en) Process for manufacturing a hot rolled steel sheet with very high elastic limit and steel sheet produced accordingly
FR2777023A1 (en) TOOL STEEL COMPOSITION
FR2694574A1 (en) Chromium@ molybdenum@ vanadium@ steel - used for long life piercing mandrels in tube rolling mills
WO2020152498A1 (en) Iron-manganese alloy having improved weldability
EP0509854A1 (en) Method for manufacturing abrasion resistant tri-layered steel clad plate and the product thereby obtained
WO1991012351A1 (en) Agent for improving the resistance to hydrogen cracking of low or medium alloy steels, a method for using said agent, and parts thereby obtained
BE499251A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20071025