WO2019171624A1 - Steel pipe and production method for steel pipe - Google Patents

Steel pipe and production method for steel pipe Download PDF

Info

Publication number
WO2019171624A1
WO2019171624A1 PCT/JP2018/031922 JP2018031922W WO2019171624A1 WO 2019171624 A1 WO2019171624 A1 WO 2019171624A1 JP 2018031922 W JP2018031922 W JP 2018031922W WO 2019171624 A1 WO2019171624 A1 WO 2019171624A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
mass
steel
less
welding
Prior art date
Application number
PCT/JP2018/031922
Other languages
French (fr)
Japanese (ja)
Inventor
秋月 誠
翔平 三町
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to PCT/JP2019/008882 priority Critical patent/WO2019172314A1/en
Priority to JP2019514142A priority patent/JP6630870B1/en
Publication of WO2019171624A1 publication Critical patent/WO2019171624A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a steel pipe and a method for manufacturing the steel pipe.
  • Patent Document 1 discloses an electric-welded steel pipe that is a kind of welded steel pipe after high-frequency welding is performed on a high-carbon steel sheet having a carbon content of 0.6% by mass, followed by cold drawing and hot reduction rolling. A method of manufacturing is disclosed.
  • Patent Document 1 By the way, when a high carbon steel plate or a high carbon steel strip as described in Patent Document 1 is welded, a weld crack occurs in a welded portion or the like. Therefore, a high carbon welded steel pipe as described in Patent Document 1 usually requires further manufacturing processes such as cold drawing rolling and hot reduction rolling in order to crush weld cracks. Thus, there is a problem that high-carbon welded steel pipes cannot be produced efficiently.
  • an object of the present invention is to provide a high carbon welded steel pipe that can be efficiently manufactured in order to solve such a problem.
  • a steel pipe according to one embodiment of the present invention includes C: 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass%. %, And the metal structure of the welded portion is a metal structure containing reheated ferrite and carbide.
  • the manufacturing method of the steel pipe which concerns on 1 aspect of this invention contains C: 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less.
  • a steel pipe manufacturing method in which the metal structure of the welded portion is a metal structure containing reheated ferrite and carbide, the steel plate or steel strip being formed into a tubular shape by roll forming, and after the forming step A welding process for manufacturing steel pipes by welding end faces of the steel plates facing each other or end faces of the steel strips facing each other, a quenching process for quenching the steel pipe after the welding process, and the quenching A tempering step of performing a tempering treatment on the steel pipe after the entering step.
  • the steel pipe according to the present embodiment includes C: 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less, and the metal structure of the welded portion is , A metal structure containing reheated ferrite and carbides.
  • the reheating process include a tempering process described later.
  • the metal structure containing ferrite and carbide referred to herein refers to, for example, tempered martensite, bainite, and pearlite.
  • the high-carbon welded steel pipe in which the metal structure of the weld is a metal structure containing ferrite and carbide that has been reheated, for example, after the steel sheet or steel strip is formed into a tubular shape by roll forming, A welded part is formed by welding the end faces or the end faces of the steel strips facing each other, and is manufactured by subjecting the welded part to a quenching process and a tempering process.
  • the steel pipe which concerns on this embodiment is a high carbon welded steel pipe with much C content, a weld crack does not generate
  • the steel pipe which concerns on this embodiment is excellent also in rolling fatigue life by including a specific component only a specific quantity as mentioned above.
  • the “welded part” here refers to a part where a steel plate or a steel strip is welded, for example, a weld bead part.
  • the “rolling fatigue life” refers to a period until surface peeling occurs in the base material and welded portion of the steel pipe due to the rolling motion of the bearing using the steel pipe according to the present embodiment. Further, “excelling in rolling fatigue life” means that the period is as long as a seamless steel pipe that has been frequently used as a high carbon steel pipe. The rolling fatigue life can be obtained, for example, by measuring a period until surface peeling occurs in the base metal and the welded portion by a thrust type rolling fatigue test after cutting a welded steel pipe into a plate shape. .
  • the diameter of the steel pipe is preferably 15 mm or more and 300 mm or less. Moreover, it is preferable that the thickness of a steel pipe is 2 mm or more and 10 mm or less. When the diameter and thickness of the steel pipe are in the above-described preferable ranges, the steel pipe according to the present embodiment can be manufactured without requiring special manufacturing conditions.
  • the steel pipe according to the present embodiment may include non-metallic inclusions such as sulfide and oxygen.
  • non-metallic inclusions such as sulfide and oxygen.
  • sulfides, especially MnS aggregate and precipitate on the surface of the steel pipe, causing cracks and surface flaws originating from the non-metallic inclusions, resulting in reduced rolling fatigue life. There is a fear.
  • the particle size of non-metallic inclusions such as sulfide is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the particle size of the nonmetallic inclusions in the steel pipe is as small as the above-mentioned preferable range, and particularly when the nonmetallic inclusions are sulfides, the rolling fatigue life is reduced and the manufacturing cost is prevented from increasing. be able to.
  • the steel pipe which concerns on this embodiment contains oxygen as a nonmetallic inclusion
  • it is preferable that the oxygen content in a steel pipe is 20 ppm or less, and it is more preferable that it is 15 ppm or less.
  • the oxygen content in the steel pipe is within the above-described preferable range, a steel pipe with higher cleanliness can be obtained. As a result, a steel pipe having a better rolling fatigue life can be obtained.
  • a steel plate and a steel strip are suitably used as a shape material of the steel pipe according to the present embodiment.
  • a steel plate and a steel strip are formed into a tubular shape by roll forming, and a steel pipe according to this embodiment is formed by performing welding, quenching treatment, and tempering treatment.
  • a seamless steel pipe which is a steel pipe having no weld, has a difference in the amount and size of non-metallic inclusions on the outer surface side and the inner surface side of the steel pipe due to the influence of central segregation of the steel bar, which is a base material.
  • the non-metallic inclusions on the outer surface side are fine and minute, but on the inner surface side, a large amount of non-metallic inclusions are present and exposed on the inner surface. Therefore, when a seamless steel pipe is used for the bearing, the outer ring of the rolling bearing uses the inner surface of the seamless steel pipe, but non-metallic inclusions present in large amounts on the inner surface have a significant effect on the rolling fatigue life. . For this reason, in order to lengthen the rolling fatigue life, it is necessary to significantly turn the portion in contact with the rolling element, which increases the processing cost.
  • the steel pipe according to the present embodiment differs from a seamless steel pipe in that many non-metallic inclusions exist inside the steel plate or steel strip.
  • a welded steel pipe using a steel plate or a steel strip as a raw material has a higher cleanliness on the inner surface side than a seamless steel pipe, and can reduce the difference in cleanliness between the inner surface and the outer surface of the steel pipe.
  • the steel pipe according to the present embodiment has a high cleanliness on the inner surface side, so that it has an excellent rolling fatigue life comparable to that of a seamless steel pipe while reducing the amount of cutting when machining into a part shape. be able to.
  • the steel pipe according to the present embodiment is obtained by welding a steel plate or a steel strip, the steel pipe can be mass-produced as compared with a case where a steel pipe is manufactured by welding a bar.
  • the above-mentioned steel strip means a coil-shaped thing with a thickness of 10 mm or less, for example among steel plates.
  • a steel plate and a steel strip can be used as the shape material of this embodiment, it is preferable to manufacture a steel pipe using a steel strip. By being a steel strip thinner than a steel plate, it is more productive. Thereby, the steel pipe concerning this embodiment can be manufactured more efficiently.
  • the steel strip can be obtained, for example, by hot rolling steel.
  • a steel plate or steel strip is formed into a tubular shape by passing the steel plate or steel strip between rollers.
  • the end surfaces of steel plates deformed into a tubular shape or the end surfaces of steel strips are butt welded.
  • the steel pipe concerning this embodiment is obtained.
  • the welding method in the present embodiment include high-density energy welding such as resistance welding, laser beam welding, and electron beam welding. Resistance welding is preferable, and among the resistance welding, high-frequency welding is preferable. By welding a steel plate or steel strip by high frequency welding, the steel plate or steel strip can be welded efficiently and at low cost. Moreover, it is preferable to perform welding at 1300 degreeC or more and 1600 degrees C or less.
  • the steel pipe according to the present embodiment is subjected to a quenching process after welding.
  • a quenching process after welding.
  • weld cracks in the welded portion can be suitably prevented.
  • the temperature of the steel pipe is 50 ° C. or higher and 200 ° C. relative to the Ms point (martensitic transformation start temperature) from a temperature higher by 50 ° C. or higher than the A3 transformation point or Acm transformation point of each obtained steel pipe.
  • Cooling is preferably performed so that the temperature is lower than that below, and cooling is more preferably performed so that the temperature is lower by 100 ° C. or more and 200 ° C. or less than the Ms point.
  • the metal structure in the welded portion of the steel pipe becomes a metal structure centered on martensite.
  • the tensile stress generated along with the martensitic transformation in the welded portion can be suitably reduced.
  • the tempering effect of preventing weld cracking can be maximized.
  • the tempering process is performed with respect to the steel pipe which performed the quenching process.
  • the temperature of the tempering treatment is preferably 500 ° C. or more and 50 ° C. or less higher than the A1 transformation point, more preferably 600 ° C. or more and 750 ° C. or less, and further preferably 700 ° C. or more and 730 ° C. or less.
  • the tempering time is preferably 5 seconds or more and 5 minutes or less, and more preferably 10 seconds or more and 1 minute or less.
  • a tempering process is performed with respect to a steel pipe promptly after quenching.
  • the tempering treatment is preferably performed within 5 minutes, more preferably within 1 minute after quenching.
  • the steel pipe according to the present embodiment is a high carbon welded steel pipe with a high C content in the steel pipe. Therefore, martensitic transformation occurs in the metal structure of the welded portion that is rapidly heated by welding, and the metal structure of the welded portion may become hard martensite. There is a possibility that weld cracking may occur in the weld due to the tensile stress generated along with the martensitic transformation and the processing strain (tensile stress) remaining in the steel by roll forming. On the other hand, as described above, the quenching treatment and the tempering treatment are performed after the welding, so that the tensile stress generated due to the martensitic transformation in the metal structure of the welded portion can be reduced. Thereby, since the toughness can be increased at the welded portion of the steel pipe, it is possible to prevent the occurrence of weld cracks.
  • the steel pipe according to the present embodiment includes C (carbon): 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less, with the balance being Fe. And inevitable impurities. Since the steel pipe which concerns on this embodiment contains a specific component only by a specific quantity and there is little content of an impurity, hardness and cleanliness are high. As described above, the steel pipe according to the present embodiment is excellent in rolling fatigue life because it has no weld cracks and has high hardness and cleanliness.
  • the metal structure of the welded portion is regenerated.
  • a metal structure containing heat-treated ferrite and carbide can solve the problem of efficiently producing a high-carbon welded steel pipe.
  • the steel pipe concerning this embodiment contains 0.2 mass% or more and 1.2 mass% or less C. That is, the steel pipe according to the present embodiment is a high carbon welded steel pipe.
  • C is the most basic element in carbon steel, and the hardness and the amount of carbide vary greatly depending on the content in the steel pipe.
  • the C content is 0.2% by mass or more, undissolved carbides remain during quenching and heating, and excellent wear resistance can be ensured.
  • the C content is 0.6% by mass or more, the wear resistance becomes remarkable.
  • the toughness after hot rolling does not fall because content of C is 1.2 mass% or less, it becomes a steel pipe excellent in manufacturability and handleability.
  • P P (phosphorus) is an element that decreases the ductility and toughness of a steel pipe.
  • the P content in the steel pipe is preferably 0.03% by mass or less, more preferably 0.02% by mass or less, and further preferably 0.01% by mass or less.
  • the toughness of the prior austenite grain boundaries in the steel pipe is increased after quenching, and the rolling fatigue resistance of the steel pipe after heat treatment can be prevented from being lowered.
  • Cu Cu (copper) is an element that improves the surface properties of steel plates and steel strips and steel pipes obtained from steel plates or steel strips by improving the peelability of the oxide scale formed on the steel plates or steel strips during hot rolling. It is.
  • the Cu content in the steel pipe is preferably 0.3% by mass or less. When the Cu content is 0.3% by mass or less, fine cracks are less likely to occur on the steel plate and steel strip, and the surface of the steel pipe obtained from the steel plate or steel strip.
  • the steel pipe which concerns on this embodiment is a range which can solve the subject of manufacturing a high carbon welded steel pipe efficiently,
  • it is Si, Mn, Cr, S, Cr, Al, Ni, and Mo. At least one of them may be further included.
  • the total content of these components is preferably 7.2% by mass or less with respect to the steel pipe, and 6.0% by mass. % Or less, more preferably 4.0% by mass or less.
  • Si Si (silicon) is one of the elements having a great influence on the ductility of a steel pipe.
  • the Si content in the steel pipe is preferably 0.8% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.3% by mass or less.
  • the Si content is not too high, hardening of the ferrite due to the solid solution strengthening effect of Si can be prevented, thereby preventing the steel pipe from cracking during the forming process.
  • it can prevent the generation of scale flaws on the surface of the steel sheet or steel strip in the manufacturing process, and can prevent the rolling fatigue life from decreasing due to the occurrence of grain boundary oxidation during quenching and heating of the steel pipe. it can.
  • Mn manganese Mn (manganese) suppresses the ferrite transformation of steel in the steel pipe in the cooling process after quenching when the steel pipe is quenched and heated, and becomes a martensite-centered structure even at a relatively slow cooling rate. It is an element that enhances hardenability.
  • the Mn content in the steel pipe is preferably 0.2% by mass or more and 2.0% by mass or less, and more preferably 0.5% by mass or more and 1.5% by mass or less. Thus, when the content of Mn is 0.2% by mass or more, deterioration of the hardenability of the steel pipe is prevented, and high-temperature products such as pearlite and upper bainite are added to the steel of the steel pipe during cooling. The formation can be prevented.
  • the steel pipe concerning this embodiment when used as a bearing, the hardness required for a bearing can be obtained. Moreover, it can prevent that a ferrite hardens
  • S sulfur
  • S is an element that affects the rolling fatigue life.
  • the S content in the steel pipe is preferably 0.03% by mass or less, and more preferably 0.02% by mass or less.
  • S generates MnS-based nonmetallic inclusions.
  • the generation of MnS-based non-metallic inclusions may be a starting point for fatigue failure due to stress concentration, which may reduce the rolling fatigue life.
  • the S content is 0.03% by mass or less, generation of MnS-based nonmetallic inclusions can be suppressed, and reduction in rolling fatigue life can be prevented.
  • generation of secondary shear surfaces and tongues in the slit coil end face shape before pipe making can be suppressed, and a suitable welded portion can be formed.
  • Cr Cr Cr (chromium) is an element effective for improving hardenability.
  • the Cr content in the steel pipe is preferably 2.0% by mass or less, more preferably 0.5% by mass or more and 1.6% by mass or less, and 0.8% by mass or more and 1.5% by mass or less. More preferably, it is as follows. When the Cr content is 0.2 mass% or more, the hardenability of the steel pipe can be further improved. When the content of Cr is 2.0% by mass or less, the content of Cr is not too much, so that the workability can be prevented from being lowered.
  • Al Al Al (aluminum) is an element that is used as a deoxidizer for molten steel and also exhibits an action of fixing N (nitrogen).
  • the content of Al in the steel pipe is preferably 0.1% by mass or less, and more preferably 0.005% by mass or more and 0.05% by mass or less.
  • the Al content is 0.005% by mass or more, the effect of fixing N becomes more remarkable.
  • the Al content is 0.1% by mass or less, the cleanliness of the steel can be prevented from being impaired, and as a result, reduction in rolling fatigue life due to fatigue failure can be prevented. Moreover, the fall of the surface quality of a steel plate and a steel strip can be prevented.
  • Ni Ni (nickel) is an element that improves the hardenability of the steel pipe and prevents low temperature embrittlement.
  • Ni has an action to counteract the adverse effects of molten metal embrittlement caused by the inclusion of Cu in the steel pipe, especially when adding 0.2 mass% or more of Cu
  • the content of Ni in the steel pipe is set to Cu. The same amount is extremely effective.
  • the Ni content in the steel pipe is preferably 2.0% by mass or less. Because the Ni content is not too high at 2.0% by mass or less, the steel plate or steel strip is difficult to soften even if annealing is performed to soften the steel plate or steel strip, and roll forming during pipe making It can prevent a decline in sex.
  • Mo mobdenum
  • Mo mobdenum
  • the Mo content in the steel pipe is preferably 0.3% by mass or less.
  • Mo content is not too high at 0.3% by mass or less, it is easy to soften the steel sheet or steel strip when it is subjected to the softening annealing treatment, and it is possible to prevent the roll formability from being lowered during pipe making. it can.
  • the manufacturing method of the steel pipe in this embodiment includes a forming process, a welding process, a quenching process, and a tempering process.
  • the forming process, the welding process, the quenching process, and the tempering process are the same as the above-described roll forming, welding, quenching process, and tempering process, respectively. Through these steps, the steel pipe according to this embodiment is manufactured.
  • the steel pipe for bearing according to the present embodiment includes the steel pipe according to the above-described embodiment.
  • the steel pipe according to the present embodiment includes a specific component in a specific amount and has a low impurity content, so that the hardness and cleanliness are high, and the metal structure of the weld is reheated.
  • the steel pipe according to the present embodiment since it has a metal structure containing ferrite and carbide, there is no weld cracking, so it can be suitably used for a steel pipe for bearings.
  • a steel pipe according to one embodiment of the present invention includes C: 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass%. %, And the metal structure of the welded portion is a metal structure containing reheated ferrite and carbide.
  • the steel pipe which concerns on 1 aspect of this invention WHEREIN: Content of said C in the said steel pipe is 0.00. It is preferable that it is 6 mass% or more and 1.2 mass% or less.
  • the said steel pipe which concerns on 1 aspect of this invention, is Si: 0.8 mass% or less, Mn: 2.0 mass% or less, S: 0.03 mass% or less, Cr: 2.0 mass% It is preferable to further include at least one of the following and Al: 0.1% by mass or less.
  • the steel pipe further includes at least one of Ni: 2.0 mass% or less and Mo: 0.3 mass% or less.
  • the welded portion of the steel pipe is formed by welding end surfaces facing each other in a tubular shape or facing end surfaces of steel strips. It is preferable that a quenching process and a tempering process are performed later.
  • the steel pipe has a temperature of 50 ° C. or more higher than the A3 transformation point or the Acm transformation point of the steel of the steel pipe, and the temperature of the steel pipe is 50 with respect to the Ms point. It is preferable that the quenching process which cools so that it may become temperature lower than 200 degreeC and less than 200 degreeC and the tempering process which temper at the temperature below 50 degreeC higher than 500 degreeC or more and A1 transformation point are performed.
  • the welding is preferably high-frequency welding.
  • the steel pipe preferably contains non-metallic inclusions, and the particle diameter of the non-metallic inclusions is preferably 20 ⁇ m or less.
  • the non-metallic inclusion is preferably a sulfide.
  • the steel pipe for bearing according to one aspect of the present invention includes the above steel pipe.
  • the manufacturing method of the steel pipe which concerns on 1 aspect of this invention contains C: 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less.
  • a steel pipe manufacturing method in which the metal structure of the welded portion is a metal structure containing reheated ferrite and carbide, the steel plate or steel strip being formed into a tubular shape by roll forming, and after the forming step A welding process for manufacturing steel pipes by welding end faces of the steel plates facing each other or end faces of the steel strips facing each other, a quenching process for quenching the steel pipe after the welding process, and the quenching A tempering step of performing a tempering treatment on the steel pipe after the entering step.
  • a slab of various steels in Table 1 was heated to 1250 to 1300 ° C. and hot-rolled to produce a hot-rolled coil (steel strip) having a thickness of 6.0 mm.
  • the obtained hot-rolled coil was pickled and annealed for 25 hours under conditions of 700 ° C. for steel types E, H, M, N, O, P, Q, U, W, X, and Y.
  • B, C, D, F, G, I, J, K, L, R, S, T, V, and Z were annealed at 750 ° C. for 10 hours.
  • the hot rolled coil was slit in the longitudinal direction and roll-formed. After roll forming, the end faces of the hot-rolled coils facing each other were high-frequency welded at a welding temperature of 1350 ° C. or higher to produce a steel pipe having a diameter of 34 mm and a thickness of 6.0 mm.
  • the steel pipe was further subjected to quenching and tempering after welding.
  • the tempering process was performed under conditions of 680 ° C. for 1 minute.
  • the equivalent circle diameter of the sulfide having the largest particle diameter is obtained using image processing, and the equivalent circle diameter is determined by the particle diameter of the non-metallic inclusions. It was. This was measured for 60 visual fields, and the maximum inclusion particle size at 30000 mm 2 was predicted by extreme value statistics.
  • the test piece is flattened by press correction, a disk-shaped test piece having a diameter of 60 mm is cut out from the test piece by electric discharge machining, and heat-treated so as to have a hardness of 680 HV or more and 770 HV or less, followed by surface polishing.
  • a rolling fatigue test piece was obtained.
  • the surface of the rolling fatigue test piece that is, the surface corresponding to the outside and inside of the steel pipe was cut at a depth of 0.1 mm.
  • the high carbon welded steel pipes according to Examples 1 to 17 of tempered martensite which is a metal structure containing tempered ferrite and carbide, had no weld cracks.
  • the steel pipes of Examples 1 to 3, 5 to 7 and 10 to 17 having particularly low impurities have not only weld cracks but also high cleanliness. It had excellent rolling fatigue life even when it was shallow. From these facts, it was confirmed that the steel pipes of Examples 1 to 17, particularly the steel pipes of Examples 1 to 3, 5 to 7, and 10 to 17 can be suitably used for bearings that require excellent rolling fatigue life. It was.
  • Rolling fatigue test A rolling fatigue test was performed using the obtained seamless steel pipe. Measurement of the particle size of sulfide (MnS), which is a non-metallic inclusion in the seamless steel pipe, production of a rolling fatigue test piece, and evaluation of the rolling fatigue life were performed in the same manner as in the above-described Examples and Comparative Examples. However, for Reference Examples 3, 5, 8, and 11, cutting was performed from the inner surface of the seamless steel pipe to 0.6 mm, and the length was defined as the cutting length of the rolling fatigue test surface. The results are shown in Table 4.
  • MnS sulfide
  • the reference examples 3 and 5 having a deep cutting depth of 0.6 mm have excellent rolling fatigue life, but the reference examples 2, 4 and 6 having a shallow cutting depth are obtained on the inner surface side of the seamless steel pipe. Non-metallic inclusions aggregated in the steel, and the rolling fatigue life was extremely low.
  • seamless steel pipes containing more S than high carbon welded steel pipes in order to improve machinability are more non-clear than high carbon welded steel pipes, as is clear from the comparison with the above-described examples.
  • the particle size of sulfide (MnS) which is a metal inclusion is large. Therefore, as in the seamless steel pipe shown in the reference example, in order to ensure an excellent rolling fatigue life, it is necessary to make the cutting depth deeper than that of the high carbon welded steel pipe.
  • high carbon welded steel pipes welded with steel plates or steel strips like the high carbon welded steel pipes of Examples 1 to 3, 5 to 7, and 10 to 17, differ from the seamless steel pipes in that they are sulfided on the inner surface side of the steel pipe.
  • the product is difficult to segregate, and the particle size of the sulfide can be reduced only by reducing the S content. Therefore, the high carbon welded steel pipes of Examples 1 to 3, 5 to 7, and 10 to 17 can ensure an excellent rolling fatigue life while reducing the cost with a small amount of cutting.

Abstract

A steel pipe that includes 0.2–1.2 mass% of C, no more than 0.03 mass% of P, and no more than 0.3 mass% of Cu and has a weld part that has a metal structure that includes carbides and reheated ferrite.

Description

鋼管および鋼管の製造方法Steel pipe and method for manufacturing steel pipe
 本発明は、鋼管および鋼管の製造方法に関する。 The present invention relates to a steel pipe and a method for manufacturing the steel pipe.
 溶接鋼管は、一般的に、鋼板または鋼帯などを溶接することで製造される。例えば、特許文献1には、炭素量が0.6質量%である高炭素鋼板を高周波溶接した後、冷間絞り圧延および熱間縮径圧延を施して、溶接鋼管の一種である電縫鋼管を製造する方法が開示されている。 A welded steel pipe is generally manufactured by welding a steel plate or a steel strip. For example, Patent Document 1 discloses an electric-welded steel pipe that is a kind of welded steel pipe after high-frequency welding is performed on a high-carbon steel sheet having a carbon content of 0.6% by mass, followed by cold drawing and hot reduction rolling. A method of manufacturing is disclosed.
日本国公開特許公報「特開2015-062920号公報」Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2015-062920”
 ところで、特許文献1に記載されているような高炭素鋼板または高炭素鋼帯を溶接すると、溶接部などにおいて溶接割れが発生する。そのため、特許文献1に記載されているような高炭素溶接鋼管は、通常、溶接割れを潰すために、冷間絞り圧延および熱間縮径圧延などの製造工程をさらに必要とする。このように、高炭素の溶接鋼管は、効率的に製造することができないという問題がある。 By the way, when a high carbon steel plate or a high carbon steel strip as described in Patent Document 1 is welded, a weld crack occurs in a welded portion or the like. Therefore, a high carbon welded steel pipe as described in Patent Document 1 usually requires further manufacturing processes such as cold drawing rolling and hot reduction rolling in order to crush weld cracks. Thus, there is a problem that high-carbon welded steel pipes cannot be produced efficiently.
 そこで本発明は、かかる問題を解決するために、効率的に製造することができる高炭素の溶接鋼管を提供することを目的とする。 Therefore, an object of the present invention is to provide a high carbon welded steel pipe that can be efficiently manufactured in order to solve such a problem.
 上記の課題を解決するために、本発明の一態様に係る鋼管は、C:0.2質量%以上1.2質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含み、溶接部の金属組織が、再加熱処理されたフェライトおよび炭化物を含む金属組織であることを特徴とする。 In order to solve the above-described problem, a steel pipe according to one embodiment of the present invention includes C: 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass%. %, And the metal structure of the welded portion is a metal structure containing reheated ferrite and carbide.
 また、本発明の一態様に係る鋼管の製造方法は、C:0.2質量%以上1.2質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含み、溶接部の金属組織が、再加熱処理されたフェライトおよび炭化物を含む金属組織である鋼管の製造方法であって、鋼板または鋼帯をロール成形により管状に成形する成形工程と、上記成形工程後、相対する上記鋼板の端面同士、または相対する上記鋼帯の端面同士を溶接して鋼管を製造する溶接工程と、上記溶接工程後の鋼管に、焼入処理を施す焼入工程と、上記焼入工程後、上記鋼管に焼戻処理を施す焼戻工程と、を含むことを特徴とする。 Moreover, the manufacturing method of the steel pipe which concerns on 1 aspect of this invention contains C: 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less. A steel pipe manufacturing method in which the metal structure of the welded portion is a metal structure containing reheated ferrite and carbide, the steel plate or steel strip being formed into a tubular shape by roll forming, and after the forming step A welding process for manufacturing steel pipes by welding end faces of the steel plates facing each other or end faces of the steel strips facing each other, a quenching process for quenching the steel pipe after the welding process, and the quenching A tempering step of performing a tempering treatment on the steel pipe after the entering step.
 本発明の一態様によれば、多くの製造工程を必要としない溶接鋼管を提供することができる効果を奏する。 According to one aspect of the present invention, it is possible to provide a welded steel pipe that does not require many manufacturing processes.
 以下、本発明の一実施形態について、詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail.
 <鋼管>
 本実施形態に係る鋼管は、C:0.2質量%以上1.2質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含み、溶接部の金属組織が、再加熱処理されたフェライトおよび炭化物を含む金属組織である。ここで、再加熱処理とは、例えば、後述する焼戻処理を挙げることができる。また、ここで言うフェライトおよび炭化物を含む金属組織とは、例えば、焼戻マルテンサイト、ベイナイトおよびパーライトのことを指す。なお、溶接部の金属組織が、再加熱処理されたフェライトおよび炭化物を含む金属組織である高炭素溶接鋼管は、例えば、鋼板または鋼帯がロール成形により管状に成形された後、相対する鋼板の端面同士、または相対する該鋼帯の端面同士が溶接されることにより溶接部が形成され、溶接部の形成後、焼入処理および焼戻処理が施されることによって製造される。このような製造方法によれば、本実施形態に係る鋼管は、Cの含有量が多い高炭素溶接鋼管であるにも関わらず、溶接割れが発生しない。そのため、溶接割れを潰すために、冷間絞り圧延および熱間縮径圧延などの製造工程を必要とせず、効率的に製造可能である。また、本実施形態に係る鋼管は、上述のように、特定の成分を特定の量だけ含むことにより、転動疲労寿命にも優れる。
<Steel pipe>
The steel pipe according to the present embodiment includes C: 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less, and the metal structure of the welded portion is , A metal structure containing reheated ferrite and carbides. Here, examples of the reheating process include a tempering process described later. The metal structure containing ferrite and carbide referred to herein refers to, for example, tempered martensite, bainite, and pearlite. Note that the high-carbon welded steel pipe in which the metal structure of the weld is a metal structure containing ferrite and carbide that has been reheated, for example, after the steel sheet or steel strip is formed into a tubular shape by roll forming, A welded part is formed by welding the end faces or the end faces of the steel strips facing each other, and is manufactured by subjecting the welded part to a quenching process and a tempering process. According to such a manufacturing method, although the steel pipe which concerns on this embodiment is a high carbon welded steel pipe with much C content, a weld crack does not generate | occur | produce. Therefore, in order to crush the weld crack, a manufacturing process such as cold drawing rolling and hot diameter reduction rolling is not required, and the manufacturing can be efficiently performed. Moreover, the steel pipe which concerns on this embodiment is excellent also in rolling fatigue life by including a specific component only a specific quantity as mentioned above.
 なお、ここでいう「溶接部」とは、鋼板または鋼帯が溶接されている部分のことを指し、例えば、溶接ビード部を指す。また、「転動疲労寿命」とは、本実施形態に係る鋼管を用いた軸受が転がり運動することによって鋼管の母材および溶接部において表面剥離が発生するまでの期間のことをいう。また、「転動疲労寿命に優れる」とは、当該期間が、従来から高炭素鋼管として多用されるシームレス鋼管と同等に長いことをいう。転動疲労寿命は、例えば、溶接鋼管を切り開いて板状に加工した後に、スラスト型転動疲労試験により母材および溶接部において表面剥離が発生するまでの期間を測定することによって求めることができる。 In addition, the “welded part” here refers to a part where a steel plate or a steel strip is welded, for example, a weld bead part. The “rolling fatigue life” refers to a period until surface peeling occurs in the base material and welded portion of the steel pipe due to the rolling motion of the bearing using the steel pipe according to the present embodiment. Further, “excelling in rolling fatigue life” means that the period is as long as a seamless steel pipe that has been frequently used as a high carbon steel pipe. The rolling fatigue life can be obtained, for example, by measuring a period until surface peeling occurs in the base metal and the welded portion by a thrust type rolling fatigue test after cutting a welded steel pipe into a plate shape. .
 鋼管の直径は、直径15mm以上300mm以下であることが好ましい。また、鋼管の厚みは、2mm以上10mm以下であることが好ましい。鋼管の直径および厚みが上述の好ましい範囲であることにより、特殊な製造条件を必要とせずに本実施形態に係る鋼管を製造することができる。 The diameter of the steel pipe is preferably 15 mm or more and 300 mm or less. Moreover, it is preferable that the thickness of a steel pipe is 2 mm or more and 10 mm or less. When the diameter and thickness of the steel pipe are in the above-described preferable ranges, the steel pipe according to the present embodiment can be manufactured without requiring special manufacturing conditions.
 また、本実施形態に係る鋼管に硫化物および酸素などの非金属介在物が含まれていてもよい。非金属介在物のうち、硫化物、なかでもMnSが鋼管表面に凝集および析出することで、非金属介在物を起点とする割れおよび表面傷の原因となり、結果的に転動疲労寿命を低減する虞がある。また、転がり軸受の転動体と接触する表面部に、MnSなどの硫化物が存在する場合は、その部分の大幅な旋削加工が必要となり、製造コストが増加する虞がある。そのため、硫化物などの非金属介在物の粒径は、20μm以下であることが好ましく、10μm以下であることがより好ましい。鋼管における非金属介在物の粒径が上述の好ましい範囲のように小さいことで、特に当該非金属介在物が硫化物である場合には、転動疲労寿命の低減および製造コストの増加を防止することができる。また、本実施形態に係る鋼管が非金属介在物として酸素を含む場合、鋼管における酸素の含有量は20ppm以下であることが好ましく、15ppm以下であることがより好ましい。鋼管における酸素の含有量が上述の好ましい範囲であることで、より清浄度の高い鋼管を得ることができる。その結果、転動疲労寿命により優れた鋼管を得ることができる。 Further, the steel pipe according to the present embodiment may include non-metallic inclusions such as sulfide and oxygen. Among non-metallic inclusions, sulfides, especially MnS, aggregate and precipitate on the surface of the steel pipe, causing cracks and surface flaws originating from the non-metallic inclusions, resulting in reduced rolling fatigue life. There is a fear. Further, when a sulfide such as MnS is present on the surface portion of the rolling bearing that comes into contact with the rolling elements, a large turning process is required for that portion, which may increase the manufacturing cost. Therefore, the particle size of non-metallic inclusions such as sulfide is preferably 20 μm or less, and more preferably 10 μm or less. The particle size of the nonmetallic inclusions in the steel pipe is as small as the above-mentioned preferable range, and particularly when the nonmetallic inclusions are sulfides, the rolling fatigue life is reduced and the manufacturing cost is prevented from increasing. be able to. Moreover, when the steel pipe which concerns on this embodiment contains oxygen as a nonmetallic inclusion, it is preferable that the oxygen content in a steel pipe is 20 ppm or less, and it is more preferable that it is 15 ppm or less. When the oxygen content in the steel pipe is within the above-described preferable range, a steel pipe with higher cleanliness can be obtained. As a result, a steel pipe having a better rolling fatigue life can be obtained.
 〔鋼板および鋼帯〕
 鋼板および鋼帯は、本実施形態に係る鋼管の素形材として好適に用いられる。鋼板および鋼帯は、ロール成形を施されることで管状に形成され、溶接、焼入処理および焼戻処理を施されることで、本実施形態に係る鋼管となる。
[Steel and steel strip]
A steel plate and a steel strip are suitably used as a shape material of the steel pipe according to the present embodiment. A steel plate and a steel strip are formed into a tubular shape by roll forming, and a steel pipe according to this embodiment is formed by performing welding, quenching treatment, and tempering treatment.
 ここで、溶接部が存在しない鋼管であるシームレス鋼管は、母材である棒鋼の中心偏析の影響により、鋼管外面側と内面側とで非金属介在物量および大きさに差異が生じる。外面側の非金属介在物は微細かつ微量であるが、内面側では非金属介在物は多量に存在するとともに内表面に露出している。そのため、シームレス鋼管を軸受に用いた場合、転がり軸受の外輪はシームレス鋼管の内表面を使用することとなるが、内表面に多量に存在する非金属介在物は転動疲労寿命に大きな影響を及ぼす。このことから、転動疲労寿命を長くするには、転動体と接触する部分を大幅に旋削加工する必要があり、加工コストが高くなる。 Here, a seamless steel pipe, which is a steel pipe having no weld, has a difference in the amount and size of non-metallic inclusions on the outer surface side and the inner surface side of the steel pipe due to the influence of central segregation of the steel bar, which is a base material. The non-metallic inclusions on the outer surface side are fine and minute, but on the inner surface side, a large amount of non-metallic inclusions are present and exposed on the inner surface. Therefore, when a seamless steel pipe is used for the bearing, the outer ring of the rolling bearing uses the inner surface of the seamless steel pipe, but non-metallic inclusions present in large amounts on the inner surface have a significant effect on the rolling fatigue life. . For this reason, in order to lengthen the rolling fatigue life, it is necessary to significantly turn the portion in contact with the rolling element, which increases the processing cost.
 これに対し、本実施形態に係る鋼管、すなわち、鋼板または鋼帯が溶接された電縫鋼管などの溶接鋼管は、シームレス鋼管と異なり、非金属介在物の多くが鋼板または鋼帯の内部に存在し表裏面にほとんど存在しない。そのため、素形材として鋼板または鋼帯を用いた溶接鋼管は、シームレス鋼管に比べて、内面側における清浄度が高く、鋼管における内面と外面との清浄度の差を小さくすることができる。以上のことから、本実施形態に係る鋼管は、内面側の清浄度が高いため、部品形状に加工する際の切削量を低減しながら、シームレス鋼管と同程度の優れた転動疲労寿命を得ることができる。 On the other hand, the steel pipe according to the present embodiment, that is, a welded steel pipe such as an ERW steel pipe welded to a steel plate or a steel strip, differs from a seamless steel pipe in that many non-metallic inclusions exist inside the steel plate or steel strip. However, it hardly exists on the front and back. Therefore, a welded steel pipe using a steel plate or a steel strip as a raw material has a higher cleanliness on the inner surface side than a seamless steel pipe, and can reduce the difference in cleanliness between the inner surface and the outer surface of the steel pipe. From the above, the steel pipe according to the present embodiment has a high cleanliness on the inner surface side, so that it has an excellent rolling fatigue life comparable to that of a seamless steel pipe while reducing the amount of cutting when machining into a part shape. be able to.
 また、本実施形態に係る鋼管は、鋼板または鋼帯を溶接することで得られるため、棒材を溶接して鋼管を製造する場合に比べて鋼管を大量生産することができる。 Further, since the steel pipe according to the present embodiment is obtained by welding a steel plate or a steel strip, the steel pipe can be mass-produced as compared with a case where a steel pipe is manufactured by welding a bar.
 なお、上述の鋼帯とは、鋼板のなかでも、例えば、厚み10mm以下のコイル状のものをいう。本実施形態では、鋼板および鋼帯のいずれも本実施形態の素形材として使用できるが、鋼帯を用いて鋼管を製造することが好ましい。鋼板よりも薄い鋼帯であることで、より生産性に優れる。これにより、本実施形態に係る鋼管をより効率的に製造することができる。なお、鋼帯は、例えば鋼を熱間圧延することによって得ることができる。 In addition, the above-mentioned steel strip means a coil-shaped thing with a thickness of 10 mm or less, for example among steel plates. In this embodiment, although both a steel plate and a steel strip can be used as the shape material of this embodiment, it is preferable to manufacture a steel pipe using a steel strip. By being a steel strip thinner than a steel plate, it is more productive. Thereby, the steel pipe concerning this embodiment can be manufactured more efficiently. The steel strip can be obtained, for example, by hot rolling steel.
 (ロール成形)
 本実施形態におけるロール成形では、ローラーの間に鋼板または鋼帯を通すことで鋼板または鋼帯を管状に成形加工する。ここで、鋼帯を素形材として用いたほうがロール成形しやすくなるため、ロール成形前に鋼に熱間圧延などを施すことでコイル状の鋼帯にすることが好ましい。また、鋼板または鋼帯をロール成形する前に、酸で洗浄したり、600℃以上800℃以下、1時間以上50時間以下の条件で焼鈍したりしてもよい。これにより、よりロール成形しやすくなる。
(Roll molding)
In roll forming in the present embodiment, a steel plate or steel strip is formed into a tubular shape by passing the steel plate or steel strip between rollers. Here, since it becomes easier to roll-form when the steel strip is used as a shape member, it is preferable to form a coiled steel strip by subjecting the steel to hot rolling before roll forming. Moreover, before roll-forming a steel plate or a steel strip, it may be washed with an acid or annealed under conditions of 600 ° C. or higher and 800 ° C. or lower and 1 hour or longer and 50 hours or shorter. Thereby, it becomes easier to roll-form.
 (溶接)
 本実施形態における溶接では、管状に変形された鋼板の端面同士または鋼帯の端面同士を突合せ溶接する。これにより、本実施形態に係る鋼管が得られる。本実施形態における溶接の方法としては、例えば、抵抗溶接、レーザービーム溶接および電子ビーム溶接などの高密度エネルギー溶接を挙げることができるが、抵抗溶接が好ましく、抵抗溶接のなかでも高周波溶接が好ましい。鋼板または鋼帯を高周波溶接によって溶接することで、効率的かつ低コストで鋼板または鋼帯を溶接することができる。また、溶接は1300℃以上1600℃以下で行うことが好ましい。
(welding)
In the welding in this embodiment, the end surfaces of steel plates deformed into a tubular shape or the end surfaces of steel strips are butt welded. Thereby, the steel pipe concerning this embodiment is obtained. Examples of the welding method in the present embodiment include high-density energy welding such as resistance welding, laser beam welding, and electron beam welding. Resistance welding is preferable, and among the resistance welding, high-frequency welding is preferable. By welding a steel plate or steel strip by high frequency welding, the steel plate or steel strip can be welded efficiently and at low cost. Moreover, it is preferable to perform welding at 1300 degreeC or more and 1600 degrees C or less.
 (焼入れ)
 本実施形態に係る鋼管には、溶接の後、焼入処理が施されている。特に、溶接直後に焼入れすることで、溶接部の溶接割れを好適に防止することができる。焼入処理では、得られたそれぞれの鋼管のA3変態点またはAcm変態点に対して50℃以上高い温度から、鋼管の温度がMs点(マルテンサイト変態開始温度)に対して50℃以上200℃以下低い温度となるように冷却を施すことが好ましく、Ms点に対して100℃以上200℃以下低い温度となるように冷却を施すのがより好ましい。この場合、例えば、鋼管外面から水冷または油冷することで冷却することが好ましい。冷却処理が施された鋼管の温度が上述の好ましい範囲の温度であることにより、当該鋼管の溶接部における金属組織がマルテンサイト中心の金属組織となる。これにより、鋼管に焼戻処理を施した際に、溶接部における、マルテンサイト変態に伴って発生した引張応力を好適に軽減することができる。その結果、溶接割れを防止するという焼戻しの効果を最大限に発揮させることができる。
(Quenching)
The steel pipe according to the present embodiment is subjected to a quenching process after welding. In particular, by performing quenching immediately after welding, weld cracks in the welded portion can be suitably prevented. In the quenching treatment, the temperature of the steel pipe is 50 ° C. or higher and 200 ° C. relative to the Ms point (martensitic transformation start temperature) from a temperature higher by 50 ° C. or higher than the A3 transformation point or Acm transformation point of each obtained steel pipe. Cooling is preferably performed so that the temperature is lower than that below, and cooling is more preferably performed so that the temperature is lower by 100 ° C. or more and 200 ° C. or less than the Ms point. In this case, for example, it is preferable to cool by cooling with water or oil from the outer surface of the steel pipe. When the temperature of the steel pipe subjected to the cooling treatment is within the above-described preferable range, the metal structure in the welded portion of the steel pipe becomes a metal structure centered on martensite. Thereby, when the steel pipe is tempered, the tensile stress generated along with the martensitic transformation in the welded portion can be suitably reduced. As a result, the tempering effect of preventing weld cracking can be maximized.
 (焼戻し)
 また、本実施形態では、焼入処理を行った鋼管に対して、焼戻処理が施されている。焼戻処理の温度としては、500℃以上A1変態点に対して50℃高い温度以下が好ましく、600℃以上750℃以下がより好ましく、700℃以上730℃以下がさらに好ましい。また、焼戻処理の時間としては、5秒以上5分以下が好ましく、10秒以上1分以下がより好ましい。このように、焼戻処理の時間が短時間であることで、溶接割れを防止することができる。また、焼戻処理は、焼入後速やかに鋼管に対して施されることが好ましい。例えば、焼戻処理は、焼入後、5分以内に行うことが好ましく、1分以内に行うことがより好ましい。
(Tempering)
Moreover, in this embodiment, the tempering process is performed with respect to the steel pipe which performed the quenching process. The temperature of the tempering treatment is preferably 500 ° C. or more and 50 ° C. or less higher than the A1 transformation point, more preferably 600 ° C. or more and 750 ° C. or less, and further preferably 700 ° C. or more and 730 ° C. or less. Further, the tempering time is preferably 5 seconds or more and 5 minutes or less, and more preferably 10 seconds or more and 1 minute or less. Thus, welding cracks can be prevented because the tempering time is short. Moreover, it is preferable that a tempering process is performed with respect to a steel pipe promptly after quenching. For example, the tempering treatment is preferably performed within 5 minutes, more preferably within 1 minute after quenching.
 本実施形態に係る鋼管は、鋼管におけるCの含有量が多い高炭素溶接鋼管である。そのため、溶接により急速に加熱された溶接部の金属組織にマルテンサイト変態が生じ、当該溶接部の金属組織は硬質なマルテンサイトとなることがある。このマルテンサイト変態に伴って発生した引張応力と、ロール成形により鋼中に残留している加工ひずみ(引張応力)とにより、溶接部において溶接割れが発生する虞がある。これに対し、上述のように、溶接後に焼入処理および焼戻処理が施されていることで、溶接部の金属組織にマルテンサイト変態に伴って発生した引張応力を軽減することができる。これにより、鋼管の溶接部において靱性を高めることができるため、溶接割れが発生することを防止することができる。 The steel pipe according to the present embodiment is a high carbon welded steel pipe with a high C content in the steel pipe. Therefore, martensitic transformation occurs in the metal structure of the welded portion that is rapidly heated by welding, and the metal structure of the welded portion may become hard martensite. There is a possibility that weld cracking may occur in the weld due to the tensile stress generated along with the martensitic transformation and the processing strain (tensile stress) remaining in the steel by roll forming. On the other hand, as described above, the quenching treatment and the tempering treatment are performed after the welding, so that the tensile stress generated due to the martensitic transformation in the metal structure of the welded portion can be reduced. Thereby, since the toughness can be increased at the welded portion of the steel pipe, it is possible to prevent the occurrence of weld cracks.
 〔鋼管に含まれる成分〕
 本実施形態に係る鋼管は、C(炭素):0.2質量%以上1.2質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含み、残部がFeおよび不可避的不純物からなる。本実施形態に係る鋼管は、特定の成分を特定の量だけ含み、不純物の含有量が少ないため、硬度および清浄度が高い。このように、本実施形態に係る鋼管は、溶接割れがなく、かつ、硬度および清浄度が高いため、転動疲労寿命にも優れる。なお、本実施形態に係る鋼管が、Feおよび不可避的不純物の他、上述の含有量のC、PおよびCuのみを実質的に含んでいる場合であっても、溶接部の金属組織が、再加熱処理されたフェライトおよび炭化物を含む金属組織であれば、高炭素の溶接鋼管を効率的に製造するという課題を解決できる。
[Components contained in steel pipe]
The steel pipe according to the present embodiment includes C (carbon): 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less, with the balance being Fe. And inevitable impurities. Since the steel pipe which concerns on this embodiment contains a specific component only by a specific quantity and there is little content of an impurity, hardness and cleanliness are high. As described above, the steel pipe according to the present embodiment is excellent in rolling fatigue life because it has no weld cracks and has high hardness and cleanliness. Even when the steel pipe according to this embodiment substantially contains only the above-mentioned contents of C, P and Cu in addition to Fe and unavoidable impurities, the metal structure of the welded portion is regenerated. A metal structure containing heat-treated ferrite and carbide can solve the problem of efficiently producing a high-carbon welded steel pipe.
 (C)
 本実施形態に係る鋼管は0.2質量%以上1.2質量%以下のCを含む。すなわち、本実施形態に係る鋼管は、高炭素溶接鋼管である。Cは、炭素鋼において最も基本となる元素であり、鋼管における含有量によって硬さおよび炭化物量が大きく変動する。Cの含有量が0.2質量%以上であることにより、焼入加熱時に未溶解炭化物が残存し、優れた耐摩耗性を確保することができる。特に、Cの含有量が0.6質量%以上であることにより、耐摩耗性が顕著になる。また、Cの含有量が1.2質量%以下であることにより、熱間圧延後の靭性が低下しないため、製造性および取り扱い性に優れる鋼管となる。その結果、本実施形態に係る鋼管を軸受として利用した場合、軸受を構成する転動体が摩耗することを防ぐことができる。また、鋼管の製造性を高めるために、鋼板または鋼帯に軟質化焼鈍処理を施してから鋼管を製造する場合には、当該鋼板または鋼帯に十分な延性を付与することができる。
(C)
The steel pipe concerning this embodiment contains 0.2 mass% or more and 1.2 mass% or less C. That is, the steel pipe according to the present embodiment is a high carbon welded steel pipe. C is the most basic element in carbon steel, and the hardness and the amount of carbide vary greatly depending on the content in the steel pipe. When the C content is 0.2% by mass or more, undissolved carbides remain during quenching and heating, and excellent wear resistance can be ensured. Particularly, when the C content is 0.6% by mass or more, the wear resistance becomes remarkable. Moreover, since the toughness after hot rolling does not fall because content of C is 1.2 mass% or less, it becomes a steel pipe excellent in manufacturability and handleability. As a result, when the steel pipe concerning this embodiment is utilized as a bearing, it can prevent that the rolling element which comprises a bearing wears. Moreover, in order to improve the productivity of a steel pipe, when manufacturing a steel pipe after performing a softening annealing process to a steel plate or a steel strip, sufficient ductility can be provided to the said steel plate or a steel strip.
 (P)
 P(リン)は鋼管の延性および靱性を低下させる元素である。鋼管におけるPの含有量は、0.03質量%以下であることが好ましく、0.02質量%以下であることがより好ましく、0.01質量%以下であることがさらに好ましい。Pの含有量が0.03質量%以下であることにより、焼入後に鋼管における旧オーステナイト粒界の靭性が高まり、熱処理後の鋼管の転動疲労性が低下するのを防ぐことができる。
(P)
P (phosphorus) is an element that decreases the ductility and toughness of a steel pipe. The P content in the steel pipe is preferably 0.03% by mass or less, more preferably 0.02% by mass or less, and further preferably 0.01% by mass or less. When the P content is 0.03% by mass or less, the toughness of the prior austenite grain boundaries in the steel pipe is increased after quenching, and the rolling fatigue resistance of the steel pipe after heat treatment can be prevented from being lowered.
 (Cu)
 Cu(銅)は、熱間圧延中に鋼板または鋼帯に生成する酸化スケールの剥離性を向上させることで、鋼板および鋼帯、ならびに鋼板または鋼帯から得られる鋼管の表面性状を改善する元素である。鋼管におけるCuの含有量は、0.3質量%以下であることが好ましい。Cuの含有量が0.3質量%以下であることで、鋼板および鋼帯、ならびに鋼板または鋼帯から得られる鋼管表面に微細なクラックが生じにくくなる。
(Cu)
Cu (copper) is an element that improves the surface properties of steel plates and steel strips and steel pipes obtained from steel plates or steel strips by improving the peelability of the oxide scale formed on the steel plates or steel strips during hot rolling. It is. The Cu content in the steel pipe is preferably 0.3% by mass or less. When the Cu content is 0.3% by mass or less, fine cracks are less likely to occur on the steel plate and steel strip, and the surface of the steel pipe obtained from the steel plate or steel strip.
 〔鋼管に含まれ得るその他の成分〕
 また、本実施形態に係る鋼管は、高炭素の溶接鋼管を効率的に製造するという課題を解決できる範囲で、上述の成分以外にSi、Mn、Cr、S、Cr、Al、NiおよびMoのうちの少なくとも1つをさらに含んでいてもよい。ここで、P、Mo、Ni、S、およびAlの少なくともいずれかを含む場合、これらの成分の含有量の総量は鋼管に対して7.2質量%以下とすることが好ましく、6.0質量%以下とすることがより好ましく、4.0質量%以下とすることがさらに好ましい。上述の好ましい範囲にあることにより、鋼管に含まれる不純物を少なし、鋼管の清浄度をより高めることができる。その結果、転動疲労寿命により優れた鋼管を得ることができる。
[Other components that can be contained in steel pipes]
Moreover, the steel pipe which concerns on this embodiment is a range which can solve the subject of manufacturing a high carbon welded steel pipe efficiently, In addition to the above-mentioned component, it is Si, Mn, Cr, S, Cr, Al, Ni, and Mo. At least one of them may be further included. Here, when at least one of P, Mo, Ni, S, and Al is included, the total content of these components is preferably 7.2% by mass or less with respect to the steel pipe, and 6.0% by mass. % Or less, more preferably 4.0% by mass or less. By being in the above-mentioned preferable range, the impurities contained in the steel pipe can be reduced, and the cleanliness of the steel pipe can be further increased. As a result, a steel pipe having a better rolling fatigue life can be obtained.
 (Si)
 Si(ケイ素)は、鋼管の延性に対して影響の大きい元素の1つである。鋼管におけるSiの含有量は、0.8質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.3質量%以下であることがさらに好ましい。上述のようにSiの含有量が多すぎないことで、Siの固溶強化作用によるフェライトの硬化を防ぎ、これによって成形加工時に鋼管に割れが発生するのを防ぐことができる。また、製造工程で鋼板または鋼帯の表面にスケール疵が発生するのを防いだり、鋼管の焼入加熱中に粒界酸化が起こることで転動疲労寿命が低下するのを防いだりすることができる。
(Si)
Si (silicon) is one of the elements having a great influence on the ductility of a steel pipe. The Si content in the steel pipe is preferably 0.8% by mass or less, more preferably 0.5% by mass or less, and further preferably 0.3% by mass or less. As described above, since the Si content is not too high, hardening of the ferrite due to the solid solution strengthening effect of Si can be prevented, thereby preventing the steel pipe from cracking during the forming process. In addition, it can prevent the generation of scale flaws on the surface of the steel sheet or steel strip in the manufacturing process, and can prevent the rolling fatigue life from decreasing due to the occurrence of grain boundary oxidation during quenching and heating of the steel pipe. it can.
 (Mn)
 Mn(マンガン)は、鋼管を焼入加熱した場合、当該焼入後の冷却過程で鋼管における鋼のフェライト変態を抑制し、比較的遅い冷却速度でもマルテンサイト中心の組織になることにより、鋼管の焼入性を高める元素である。鋼管におけるMnの含有量は、0.2質量%以上2.0質量%以下であることが好ましく、0.5質量%以上1.5質量%以下であることがより好ましい。このように、Mnの含有量が0.2質量%以上であることで、鋼管の焼入性の低下を防止し、かつ、冷却中に鋼管の鋼にパーライトおよび上部ベイナイトなどの高温生成物が形成されるのを防止することができる。これにより、本実施形態に係る鋼管を軸受として用いた場合に軸受に必要な硬さを得ることができる。また、Mnの含有量が2.0質量%以下であることで、フェライトが硬化し、造管時のロール成形が阻害されるのを防ぐことができる。
(Mn)
Mn (manganese) suppresses the ferrite transformation of steel in the steel pipe in the cooling process after quenching when the steel pipe is quenched and heated, and becomes a martensite-centered structure even at a relatively slow cooling rate. It is an element that enhances hardenability. The Mn content in the steel pipe is preferably 0.2% by mass or more and 2.0% by mass or less, and more preferably 0.5% by mass or more and 1.5% by mass or less. Thus, when the content of Mn is 0.2% by mass or more, deterioration of the hardenability of the steel pipe is prevented, and high-temperature products such as pearlite and upper bainite are added to the steel of the steel pipe during cooling. The formation can be prevented. Thereby, when the steel pipe concerning this embodiment is used as a bearing, the hardness required for a bearing can be obtained. Moreover, it can prevent that a ferrite hardens | cures and roll formation at the time of pipe making is inhibited because content of Mn is 2.0 mass% or less.
 (S)
 S(硫黄)は、転動疲労寿命に影響を及ぼす元素である。鋼管におけるSの含有量は、0.03質量%以下であることが好ましく、0.02質量%以下であることがより好ましい。SはMnS系の非金属介在物を生成する。MnS系の非金属介在物が生成されることにより、応力集中による疲労破壊の起点となり、転動疲労寿命が低減する虞がある。これに対し、Sの含有量が0.03質量%以下であることにより、MnS系の非金属介在物の生成を抑え、転動疲労寿命の低減を防ぐことができる。また、Sの含有量が0.03質量%以下であることにより、造管前のスリットコイル端面形状における二次せん断面およびタングの生成を抑え、好適な溶接部を形成することができる。
(S)
S (sulfur) is an element that affects the rolling fatigue life. The S content in the steel pipe is preferably 0.03% by mass or less, and more preferably 0.02% by mass or less. S generates MnS-based nonmetallic inclusions. The generation of MnS-based non-metallic inclusions may be a starting point for fatigue failure due to stress concentration, which may reduce the rolling fatigue life. On the other hand, when the S content is 0.03% by mass or less, generation of MnS-based nonmetallic inclusions can be suppressed, and reduction in rolling fatigue life can be prevented. Moreover, when the S content is 0.03% by mass or less, generation of secondary shear surfaces and tongues in the slit coil end face shape before pipe making can be suppressed, and a suitable welded portion can be formed.
 (Cr)
 Cr(クロム)は、焼入性の改善に有効な元素である。鋼管におけるCrの含有量は、2.0質量%以下であることが好ましく、0.5質量%以上1.6質量%以下であることがより好ましく、0.8質量%以上1.5質量%以下であることがさらに好ましい。Crの含有量が0.2質量%以上であることにより、鋼管の焼入性をより改善することができる。Crの含有量が2.0質量%以下であることにより、Crの含有量が多すぎないため、加工性が低下するのを防ぐことができる。
(Cr)
Cr (chromium) is an element effective for improving hardenability. The Cr content in the steel pipe is preferably 2.0% by mass or less, more preferably 0.5% by mass or more and 1.6% by mass or less, and 0.8% by mass or more and 1.5% by mass or less. More preferably, it is as follows. When the Cr content is 0.2 mass% or more, the hardenability of the steel pipe can be further improved. When the content of Cr is 2.0% by mass or less, the content of Cr is not too much, so that the workability can be prevented from being lowered.
 (Al)
 Al(アルミニウム)は、溶鋼の脱酸剤として使用され、N(窒素)を固定する作用も呈する元素である。鋼管におけるAlの含有量は、0.1質量%以下であることが好ましく、0.005質量%以上0.05質量%以下であることがより好ましい。Alの含有量が0.005質量%以上であることにより、Nを固定する作用がより顕著になる。Alの含有量が0.1質量%以下であることにより、鋼の清浄度が損なわれるのを防ぎ、その結果、疲労破壊による転動疲労寿命の低減を防ぐことができる。また、鋼板および鋼帯の表面品質の低下を防ぐことができる。
(Al)
Al (aluminum) is an element that is used as a deoxidizer for molten steel and also exhibits an action of fixing N (nitrogen). The content of Al in the steel pipe is preferably 0.1% by mass or less, and more preferably 0.005% by mass or more and 0.05% by mass or less. When the Al content is 0.005% by mass or more, the effect of fixing N becomes more remarkable. When the Al content is 0.1% by mass or less, the cleanliness of the steel can be prevented from being impaired, and as a result, reduction in rolling fatigue life due to fatigue failure can be prevented. Moreover, the fall of the surface quality of a steel plate and a steel strip can be prevented.
 (Ni)
 Ni(ニッケル)は、鋼管の焼入性を改善するとともに、低温脆化を防止する元素である。また、NiはCuが鋼管に含まれることで生じる溶融金属脆化の悪影響を打ち消す作用を示すので、特にCuを0.2質量%以上添加する場合には、鋼管におけるNiの含有量をCuと同量にすることが極めて効果的である。鋼管におけるNiの含有量は、2.0質量%以下であることが好ましい。Niの含有量が2.0質量%以下と多すぎないことにより、鋼板または鋼帯の軟質化を目的とした焼鈍しを施しても鋼板または鋼帯が軟質化しにくく、造管時のロール成形性の低下を防ぐことができる。
(Ni)
Ni (nickel) is an element that improves the hardenability of the steel pipe and prevents low temperature embrittlement. In addition, since Ni has an action to counteract the adverse effects of molten metal embrittlement caused by the inclusion of Cu in the steel pipe, especially when adding 0.2 mass% or more of Cu, the content of Ni in the steel pipe is set to Cu. The same amount is extremely effective. The Ni content in the steel pipe is preferably 2.0% by mass or less. Because the Ni content is not too high at 2.0% by mass or less, the steel plate or steel strip is difficult to soften even if annealing is performed to soften the steel plate or steel strip, and roll forming during pipe making It can prevent a decline in sex.
 (Mo)
 Mo(モリブテン)は少量の添加でCrと同様に鋼管の焼入性および焼戻し軟化抵抗の改善に寄与する元素である。鋼管におけるMoの含有量は、0.3質量%以下であることが好ましい。Moの含有量が0.3質量%以下と多すぎないことにより、鋼板または鋼帯に軟質化焼鈍処理を施す際に軟質化しやすく、造管時のロール成形性が低下するのを防ぐことができる。
(Mo)
Mo (molybdenum) is an element that contributes to the improvement of the hardenability and temper softening resistance of steel pipes in the same way as Cr when added in a small amount. The Mo content in the steel pipe is preferably 0.3% by mass or less. When the Mo content is not too high at 0.3% by mass or less, it is easy to soften the steel sheet or steel strip when it is subjected to the softening annealing treatment, and it is possible to prevent the roll formability from being lowered during pipe making. it can.
 <鋼管の製造方法>
 本実施形態における鋼管の製造方法は、成形工程と溶接工程と焼入工程と焼戻工程とを含む。成形工程、溶接工程、焼入工程および焼戻工程は、それぞれ上述のロール成形、溶接、焼入処理および焼戻処理と同様である。これらの工程によって、本実施形態に係る鋼管が製造される。
<Manufacturing method of steel pipe>
The manufacturing method of the steel pipe in this embodiment includes a forming process, a welding process, a quenching process, and a tempering process. The forming process, the welding process, the quenching process, and the tempering process are the same as the above-described roll forming, welding, quenching process, and tempering process, respectively. Through these steps, the steel pipe according to this embodiment is manufactured.
 <軸受用鋼管>
 本実施形態に係る軸受用鋼管は、上述の本実施形態に係る鋼管を含む。換言すれば、本実施形態に係る鋼管は、特定の成分を特定の量だけ含み、不純物の含有量が少ないため、硬度および清浄度が高く、かつ、溶接部の金属組織が、再加熱処理されたフェライトおよび炭化物を含む金属組織であることで溶接割れがないため、軸受用鋼管に好適に利用することができる。
<Bearing steel pipe>
The steel pipe for bearing according to the present embodiment includes the steel pipe according to the above-described embodiment. In other words, the steel pipe according to the present embodiment includes a specific component in a specific amount and has a low impurity content, so that the hardness and cleanliness are high, and the metal structure of the weld is reheated. In addition, since it has a metal structure containing ferrite and carbide, there is no weld cracking, so it can be suitably used for a steel pipe for bearings.
 〔まとめ〕
 上記の課題を解決するために、本発明の一態様に係る鋼管は、C:0.2質量%以上1.2質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含み、溶接部の金属組織が、再加熱処理されたフェライトおよび炭化物を含む金属組織であることを特徴とする。
[Summary]
In order to solve the above-described problem, a steel pipe according to one embodiment of the present invention includes C: 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass%. %, And the metal structure of the welded portion is a metal structure containing reheated ferrite and carbide.
 また、本発明の一態様に係る鋼管において、上記鋼管における上記Cの含有量は、0.
6質量%以上1.2質量%以下であることが好ましい。
Moreover, the steel pipe which concerns on 1 aspect of this invention WHEREIN: Content of said C in the said steel pipe is 0.00.
It is preferable that it is 6 mass% or more and 1.2 mass% or less.
 また、本発明の一態様に係る鋼管において、上記鋼管は、Si:0.8質量%以下、Mn:2.0質量%以下、S:0.03質量%以下、Cr:2.0質量%以下、およびAl:0.1質量%以下のうちの少なくとも1つをさらに含むことが好ましい。 Moreover, in the steel pipe which concerns on 1 aspect of this invention, the said steel pipe is Si: 0.8 mass% or less, Mn: 2.0 mass% or less, S: 0.03 mass% or less, Cr: 2.0 mass% It is preferable to further include at least one of the following and Al: 0.1% by mass or less.
 また、本発明の一態様に係る鋼管において、上記鋼管は、Ni:2.0質量%以下およびMo:0.3質量%以下のうち少なくとも1つをさらに含むことが好ましい。 Moreover, in the steel pipe according to one aspect of the present invention, it is preferable that the steel pipe further includes at least one of Ni: 2.0 mass% or less and Mo: 0.3 mass% or less.
 また、本発明の一態様に係る鋼管において、上記鋼管の上記溶接部は、管状に成形された鋼板の相対する端面同士、または鋼帯の相対する端面同士が溶接されることにより形成され、形成後に焼入処理および焼戻処理が施されていることが好ましい。 Further, in the steel pipe according to one aspect of the present invention, the welded portion of the steel pipe is formed by welding end surfaces facing each other in a tubular shape or facing end surfaces of steel strips. It is preferable that a quenching process and a tempering process are performed later.
 また、本発明の一態様に係る鋼管において、上記鋼管には、上記鋼管の鋼のA3変態点またはAcm変態点に対して50℃以上高い温度から、上記鋼管の温度がMs点に対して50℃以上200℃以下低い温度となるように冷却を施す焼入処理、および、500℃以上A1変態点に対して50℃高い温度以下において焼戻しする焼戻処理が施されていることが好ましい。 Further, in the steel pipe according to one aspect of the present invention, the steel pipe has a temperature of 50 ° C. or more higher than the A3 transformation point or the Acm transformation point of the steel of the steel pipe, and the temperature of the steel pipe is 50 with respect to the Ms point. It is preferable that the quenching process which cools so that it may become temperature lower than 200 degreeC and less than 200 degreeC and the tempering process which temper at the temperature below 50 degreeC higher than 500 degreeC or more and A1 transformation point are performed.
 また、本発明の一態様に係る鋼管において、上記溶接は、高周波溶接であることが好ましい。 In the steel pipe according to one aspect of the present invention, the welding is preferably high-frequency welding.
 また、本発明の一態様において、上記鋼管は非金属介在物を含み、該非金属介在物の粒径は20μm以下であることが好ましい。 In one embodiment of the present invention, the steel pipe preferably contains non-metallic inclusions, and the particle diameter of the non-metallic inclusions is preferably 20 μm or less.
 また、本発明の一態様において、上記非金属介在物は硫化物であることが好ましい。 In one embodiment of the present invention, the non-metallic inclusion is preferably a sulfide.
 また、本発明の一態様に係る軸受用鋼管は、上記鋼管を含むことを特徴とする。 Further, the steel pipe for bearing according to one aspect of the present invention includes the above steel pipe.
 さらに、本発明の一態様に係る鋼管の製造方法は、C:0.2質量%以上1.2質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含み、溶接部の金属組織が、再加熱処理されたフェライトおよび炭化物を含む金属組織である鋼管の製造方法であって、鋼板または鋼帯をロール成形により管状に成形する成形工程と、上記成形工程後、相対する上記鋼板の端面同士、または相対する上記鋼帯の端面同士を溶接して鋼管を製造する溶接工程と、上記溶接工程後の鋼管に、焼入処理を施す焼入工程と、上記焼入工程後、上記鋼管に焼戻処理を施す焼戻工程と、を含むことを特徴とする。 Furthermore, the manufacturing method of the steel pipe which concerns on 1 aspect of this invention contains C: 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less. A steel pipe manufacturing method in which the metal structure of the welded portion is a metal structure containing reheated ferrite and carbide, the steel plate or steel strip being formed into a tubular shape by roll forming, and after the forming step A welding process for manufacturing steel pipes by welding end faces of the steel plates facing each other or end faces of the steel strips facing each other, a quenching process for quenching the steel pipe after the welding process, and the quenching A tempering step of performing a tempering treatment on the steel pipe after the entering step.
 <実施例および比較例>
 〔鋼の製造〕
 まず、表1に示す成分組成の鋼を製造した。
<Examples and Comparative Examples>
[Manufacture of steel]
First, steels having the composition shown in Table 1 were manufactured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 〔溶接鋼管の製造〕
 表1の各種鋼のスラブを1250~1300℃に加熱し熱間圧延することにより、厚み6.0mmの熱延コイル(鋼帯)を製造した。得られた熱延コイルを酸洗し、鋼種E、H、M、N、O、P、Q、U、W、XおよびYに対しては700℃の条件下で25時間焼鈍し、鋼種A、B、C、D、F、G、I、J、K、L、R、S、T、VおよびZに対しては750℃の条件下で10時間の焼鈍を施した。その後、熱延コイルを長手方向にスリットし、ロール成形した。ロール成形後、相対する熱延コイルの端面同士を溶接温度1350℃以上の条件で高周波溶接して、直径34mm、厚み6.0mmの鋼管を製造した。
[Manufacture of welded steel pipes]
A slab of various steels in Table 1 was heated to 1250 to 1300 ° C. and hot-rolled to produce a hot-rolled coil (steel strip) having a thickness of 6.0 mm. The obtained hot-rolled coil was pickled and annealed for 25 hours under conditions of 700 ° C. for steel types E, H, M, N, O, P, Q, U, W, X, and Y. B, C, D, F, G, I, J, K, L, R, S, T, V, and Z were annealed at 750 ° C. for 10 hours. Thereafter, the hot rolled coil was slit in the longitudinal direction and roll-formed. After roll forming, the end faces of the hot-rolled coils facing each other were high-frequency welded at a welding temperature of 1350 ° C. or higher to produce a steel pipe having a diameter of 34 mm and a thickness of 6.0 mm.
 また、表2に示すように、実施例1~17については、溶接後、さらに鋼管に焼入処理および焼戻処理を施した。焼戻処理は、680℃1分の条件で行った。 Also, as shown in Table 2, in Examples 1 to 17, the steel pipe was further subjected to quenching and tempering after welding. The tempering process was performed under conditions of 680 ° C. for 1 minute.
 〔鋼管の評価〕
 上述の鋼管について、以下のように、ロール成形性、溶接割れの有無および表面肌を確認し、評価した。
[Evaluation of steel pipe]
About the above-mentioned steel pipe, the roll formability, the presence or absence of weld cracks, and the surface skin were confirmed and evaluated as follows.
 (ロール成形性)
 表2に示すように、造管時に、ロール成形ができた場合には「可」と評価し、ロール成形ができなかった場合には「不可」と評価した。ロール成形ができたものについてのみ、以下の評価を行った。
(Roll formability)
As shown in Table 2, when roll forming was possible at the time of pipe making, it was evaluated as “possible”, and when roll forming was not possible, it was evaluated as “impossible”. The following evaluation was performed only about what was roll-formed.
 (溶接割れ)
 各実施例および比較例の鋼管に対し、高周波溶接によって形成された溶接ビード部の溶接割れの有無を調べた。表2に示すように、溶接ビード部の溶接割れがある場合には「あり」と評価し、溶接割れがない場合には「なし」と評価した。なお、表2に示すように、鋼種が特定の成分を特定の量だけ含む鋼種A、B、C、F、H、J、K、N、O、P、R、S、U、V、X、YおよびZの鋼管のうち、造管時にロール成形ができ、かつ、溶接割れがない鋼管を実施例として記載した。また、それ以外の鋼管を比較例として記載した。
(Weld crack)
The steel pipes of the examples and comparative examples were examined for the presence or absence of weld cracks in the weld bead portion formed by high frequency welding. As shown in Table 2, when there was a weld crack in the weld bead portion, it was evaluated as “present”, and when there was no weld crack, it was evaluated as “none”. In addition, as shown in Table 2, the steel types A, B, C, F, H, J, K, N, O, P, R, S, U, V, and X contain a specific amount of specific components. Among steel pipes of Y, Z and Z, steel pipes that can be roll-formed during pipe making and have no weld cracks are described as examples. Moreover, the other steel pipe was described as a comparative example.
 (表面肌)
 各実施例および比較例の鋼管の表面におけるスケール疵および微細クラックの有無を調べ、表面肌を検査した。表2に示すように、鋼管の表面にスケール疵がある場合には「あり」と評価し、スケール疵がない場合には「なし」と評価した。同様に、鋼管の表面に微細クラックがある場合には「あり」と評価し、微細クラックがない場合には「なし」と評価した。
(Surface)
The surface of the steel pipe of each Example and Comparative Example was examined for the presence of scale wrinkles and fine cracks, and the surface skin was inspected. As shown in Table 2, when there was a scale flaw on the surface of the steel pipe, “Yes” was evaluated, and when there was no scale flaw, “No” was evaluated. Similarly, when there was a fine crack on the surface of the steel pipe, it was evaluated as “Yes”, and when there was no fine crack, it was evaluated as “No”.
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-I000003
 〔転動疲労試験〕
 溶接ビード部の溶接割れがない実施例1~17の鋼管について、転動疲労試験を実施した。鋼管を長さ70mmに切り出して、溶接ビード部の反対側を長手方向に切断し、オープン管の試験片を得た。当該試験片のうち、鋼管の内側にあたる面に存在する転動疲労試験片の非金属介在物である硫化物(MnS)の粒径については、以下のように求めた。100倍の倍率の光学顕微鏡を用いて鋼管の内側の面を観察した。1視野の面積1.44mm中における非金属介在物のうち、一番粒径の大きい硫化物の円相当径を、画像処理を用いて求め、当該円相当径を非金属介在物の粒径とした。これを60視野測定し、極値統計によって、30000mmにおける最大介在物粒径の予測を行った。当該試験片をプレス矯正により平板状にし、放電加工により、当該試験片から直径60mmの円板状の試験片を切り出して680HV以上770HV以下の硬さになるように熱処理を施した後、表面研磨することで転動疲労試験片とした。転動疲労試験片の表面、すなわち、鋼管の外側および内側に対応する面を0.1mmの深さで切削した。
(Rolling fatigue test)
A rolling fatigue test was performed on the steel pipes of Examples 1 to 17 having no weld cracks in the weld bead portion. The steel pipe was cut into a length of 70 mm, and the opposite side of the weld bead portion was cut in the longitudinal direction to obtain an open pipe test piece. About the particle size of the sulfide (MnS) which is a nonmetallic inclusion of the rolling fatigue test piece which exists in the surface which hits the inner side of a steel pipe among the said test pieces, it calculated | required as follows. The inner surface of the steel pipe was observed using an optical microscope with a magnification of 100 times. Among the non-metallic inclusions in an area of 1.44 mm 2 in one field of view, the equivalent circle diameter of the sulfide having the largest particle diameter is obtained using image processing, and the equivalent circle diameter is determined by the particle diameter of the non-metallic inclusions. It was. This was measured for 60 visual fields, and the maximum inclusion particle size at 30000 mm 2 was predicted by extreme value statistics. The test piece is flattened by press correction, a disk-shaped test piece having a diameter of 60 mm is cut out from the test piece by electric discharge machining, and heat-treated so as to have a hardness of 680 HV or more and 770 HV or less, followed by surface polishing. Thus, a rolling fatigue test piece was obtained. The surface of the rolling fatigue test piece, that is, the surface corresponding to the outside and inside of the steel pipe was cut at a depth of 0.1 mm.
 次に、スラスト型転動疲労試験機を用いて3個のSUJ2の3/8インチ鋼球を転動疲労試験片上に設け、潤滑油を供給しながら当該剛球を回転数3000rpmの条件で回転させて転動疲労試験片に転動疲労を与えた。転動疲労試験片から表面剥離が起こるまでを1試験とし、当該試験を20回繰り返した。転動疲労試験片に転動疲労を与え、表面剥離が発生するまでの回転数をワイブルプロット紙にプロットして、転動疲労寿命(L10)を求めた。結果を表3に示す。 Next, three SUJ2 3/8 inch steel balls are provided on the rolling fatigue test piece using a thrust type rolling fatigue tester, and the rigid balls are rotated at a rotational speed of 3000 rpm while supplying lubricating oil. Thus, rolling fatigue was applied to the rolling fatigue test piece. One test was performed until surface peeling occurred from the rolling fatigue test piece, and the test was repeated 20 times. Rolling fatigue was given to the rolling fatigue test piece, and the number of rotations until surface peeling occurred was plotted on a Weibull plot paper to determine the rolling fatigue life (L10). The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~3に示すように、C:0.2質量%以上1.2質量%以下およびP:0.03質量%以下、およびCu:0.3質量%以下を含み、溶接部の金属組織が、焼戻処理されたフェライトおよび炭化物を含む金属組織である焼戻マルテンサイトの実施例1~17に係る高炭素溶接鋼管は、溶接割れが発生していなかった。また、実施例1~17のうち、特に不純物の少ない実施例1~3、5~7および10~17の鋼管は、溶接割れがないだけでなく、清浄度も高いため、表面の切削深さが浅くても優れた転動疲労寿命を有していた。これらのことから、実施例1~17の鋼管、特に、実施例1~3、5~7および10~17の鋼管は、優れた転動疲労寿命が求められる軸受に好適に利用できることが確かめられた。 As shown in Tables 1 to 3, including: C: 0.2% by mass or more and 1.2% by mass or less, P: 0.03% by mass or less, and Cu: 0.3% by mass or less; However, the high carbon welded steel pipes according to Examples 1 to 17 of tempered martensite, which is a metal structure containing tempered ferrite and carbide, had no weld cracks. Further, among Examples 1 to 17, the steel pipes of Examples 1 to 3, 5 to 7 and 10 to 17 having particularly low impurities have not only weld cracks but also high cleanliness. It had excellent rolling fatigue life even when it was shallow. From these facts, it was confirmed that the steel pipes of Examples 1 to 17, particularly the steel pipes of Examples 1 to 3, 5 to 7, and 10 to 17 can be suitably used for bearings that require excellent rolling fatigue life. It was.
 <参考例>
 〔シームレス鋼管の製造〕
 表1に示す鋼種のうち、鋼種A、B、MおよびPのスラブを1300℃に加熱して熱間圧延にて直径70mmの丸棒を作製した。丸棒の中心にマンドレルを押し込むことによって、直径60.5mm、厚み6.0mmまたは6.5mmのシームレス鋼管を製造した。
<Reference example>
[Manufacture of seamless steel pipes]
Among the steel types shown in Table 1, slabs of steel types A, B, M and P were heated to 1300 ° C. and a round bar having a diameter of 70 mm was produced by hot rolling. A seamless steel pipe having a diameter of 60.5 mm and a thickness of 6.0 mm or 6.5 mm was manufactured by pushing a mandrel into the center of the round bar.
 〔転動疲労試験〕
 得られたシームレス鋼管を用いて、転動疲労試験を実施した。シームレス鋼管における非金属介在物である硫化物(MnS)の粒径の測定、転動疲労試験片の作製および転動疲労寿命の評価は、上述の実施例および比較例と同様に行った。ただし、参考例3、5、8および11に関しては、シームレス鋼管の内側表面から0.6mmまで切削し、当該長さを転動疲労試験面の切削長さとした。結果を表4に示す。
(Rolling fatigue test)
A rolling fatigue test was performed using the obtained seamless steel pipe. Measurement of the particle size of sulfide (MnS), which is a non-metallic inclusion in the seamless steel pipe, production of a rolling fatigue test piece, and evaluation of the rolling fatigue life were performed in the same manner as in the above-described Examples and Comparative Examples. However, for Reference Examples 3, 5, 8, and 11, cutting was performed from the inner surface of the seamless steel pipe to 0.6 mm, and the length was defined as the cutting length of the rolling fatigue test surface. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4から、切削深さが0.6mmと深い参考例3および5は、転動疲労寿命が優れているが、切削深さが浅い参考例2、4および6は、シームレス鋼管の内面側の鋼中に非金属介在物が凝集しており、転動疲労寿命が著しく低かった。 From Table 4, the reference examples 3 and 5 having a deep cutting depth of 0.6 mm have excellent rolling fatigue life, but the reference examples 2, 4 and 6 having a shallow cutting depth are obtained on the inner surface side of the seamless steel pipe. Non-metallic inclusions aggregated in the steel, and the rolling fatigue life was extremely low.
 一般的に、切削性の向上のために高炭素溶接鋼管に比べてSが多く含有されているシームレス鋼管は、上述の実施例との比較から明らかなように、高炭素溶接鋼管に比べて非金属介在物である硫化物(MnS)の粒径が大きい。そのため、参考例に示すシームレス鋼管のように、優れた転動疲労寿命を確保するには、高炭素溶接鋼管に比べて切削深さを深くする必要がある。これに対し、実施例1~3、5~7および10~17の高炭素溶接鋼管のように、鋼板または鋼帯が溶接された高炭素溶接鋼管はシームレス鋼管と異なり、鋼管の内面側に硫化物が偏析しにくく、Sの含有量を少なくするだけで、硫化物の粒径を小さくすることができる。そのため、実施例1~3、5~7および10~17の高炭素溶接鋼管は、少ない切削量でコストを低減しながら優れた転動疲労寿命を確保することができる。 In general, seamless steel pipes containing more S than high carbon welded steel pipes in order to improve machinability are more non-clear than high carbon welded steel pipes, as is clear from the comparison with the above-described examples. The particle size of sulfide (MnS) which is a metal inclusion is large. Therefore, as in the seamless steel pipe shown in the reference example, in order to ensure an excellent rolling fatigue life, it is necessary to make the cutting depth deeper than that of the high carbon welded steel pipe. In contrast, high carbon welded steel pipes welded with steel plates or steel strips, like the high carbon welded steel pipes of Examples 1 to 3, 5 to 7, and 10 to 17, differ from the seamless steel pipes in that they are sulfided on the inner surface side of the steel pipe. The product is difficult to segregate, and the particle size of the sulfide can be reduced only by reducing the S content. Therefore, the high carbon welded steel pipes of Examples 1 to 3, 5 to 7, and 10 to 17 can ensure an excellent rolling fatigue life while reducing the cost with a small amount of cutting.

Claims (11)

  1.  C:0.2質量%以上1.2質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含み、溶接部の金属組織が、再加熱処理されたフェライトおよび炭化物を含む金属組織であることを特徴とする鋼管。 C: 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less, and the metal structure of the welded portion is a reheat-treated ferrite and A steel pipe characterized by a metal structure containing carbide.
  2.  上記鋼管における上記Cの含有量は、0.6質量%以上1.2質量%以下であることを特徴とする請求項1に記載の鋼管。 The steel pipe according to claim 1, wherein the C content in the steel pipe is 0.6 mass% or more and 1.2 mass% or less.
  3.  Si:0.8質量%以下、Mn:2.0質量%以下、S:0.03質量%以下、Cr:2.0質量%以下、およびAl:0.1質量%以下のうちの少なくとも1つをさらに含むことを特徴とする請求項1または2に記載の鋼管。 Si: 0.8 mass% or less, Mn: 2.0 mass% or less, S: 0.03 mass% or less, Cr: 2.0 mass% or less, and Al: 0.1 mass% or less The steel pipe according to claim 1, further comprising a steel pipe.
  4.  Ni:2.0質量%以下およびMo:0.3質量%以下のうち少なくとも1つをさらに含むことを特徴とする請求項3に記載の鋼管。 The steel pipe according to claim 3, further comprising at least one of Ni: 2.0 mass% or less and Mo: 0.3 mass% or less.
  5.  上記鋼管の上記溶接部は、管状に成形された鋼板の相対する端面同士、または鋼帯の相対する端面同士が溶接されることにより形成され、形成後に焼入処理および焼戻処理が施されていることを特徴とする請求項1~4のいずれか1項に記載の鋼管。 The welded portion of the steel pipe is formed by welding the end faces facing each other of steel plates formed into a tubular shape or the end faces facing each other of the steel strip, and is subjected to a quenching process and a tempering process after formation. The steel pipe according to any one of claims 1 to 4, wherein the steel pipe is provided.
  6.  上記鋼管には、
     上記鋼管の鋼のA3変態点またはAcm変態点に対して50℃以上高い温度から、上記鋼管の温度がMs点に対して50℃以上200℃以下低い温度となるように冷却を施す焼入処理、および、
     500℃以上A1変態点に対して50℃高い温度以下において焼戻しする焼戻処理が施されていることを特徴とする請求項5に記載の鋼管。
    In the steel pipe,
    Quenching treatment for cooling so that the temperature of the steel pipe is 50 ° C. or more and 200 ° C. or less lower than the Ms point from a temperature that is 50 ° C. or more higher than the A3 transformation point or Acm transformation point of the steel of the steel pipe. ,and,
    The steel pipe according to claim 5, wherein a tempering treatment is performed to temper at a temperature not lower than 500 ° C and not higher than 50 ° C with respect to the A1 transformation point.
  7.  上記溶接は、高周波溶接であることを特徴とする請求項5または6に記載の鋼管。 The steel pipe according to claim 5 or 6, wherein the welding is high-frequency welding.
  8.  上記鋼管は非金属介在物を含み、該非金属介在物の粒径は20μm以下であることを特徴とする請求項1~7のいずれか1項に記載の鋼管。 The steel pipe according to any one of claims 1 to 7, wherein the steel pipe contains non-metallic inclusions, and the particle size of the non-metallic inclusions is 20 µm or less.
  9.  上記非金属介在物は硫化物であることを特徴とする請求項8に記載の鋼管。 The steel pipe according to claim 8, wherein the non-metallic inclusion is a sulfide.
  10.  請求項1~9のいずれか1項に記載の鋼管を含むことを特徴とする軸受用鋼管。 A bearing steel pipe comprising the steel pipe according to any one of claims 1 to 9.
  11.  C:0.2質量%以上1.2質量%以下、P:0.03質量%以下、およびCu:0.3質量%以下を含み、溶接部の金属組織が、再加熱処理されたフェライトおよび炭化物を含む金属組織である鋼管の製造方法であって、
     鋼板または鋼帯をロール成形により管状に成形する成形工程と、
     上記成形工程後、相対する上記鋼板の端面同士、または相対する上記鋼帯の端面同士を溶接して鋼管を製造する溶接工程と、
     上記溶接工程後の鋼管に、焼入処理を施す焼入工程と、
     上記焼入工程後、上記鋼管に焼戻処理を施す焼戻工程と、を含むことを特徴とする鋼管の製造方法。

     
    C: 0.2 mass% or more and 1.2 mass% or less, P: 0.03 mass% or less, and Cu: 0.3 mass% or less, and the metal structure of the welded portion is a reheat-treated ferrite and A method of manufacturing a steel pipe, which is a metal structure containing carbide,
    A forming step of forming a steel sheet or steel strip into a tubular shape by roll forming;
    After the forming step, a welding step of manufacturing a steel pipe by welding the end faces of the steel plates facing each other or the end faces of the steel strips facing each other;
    A quenching process for quenching the steel pipe after the welding process;
    And a tempering step of tempering the steel pipe after the quenching step.

PCT/JP2018/031922 2018-03-09 2018-08-29 Steel pipe and production method for steel pipe WO2019171624A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/008882 WO2019172314A1 (en) 2018-03-09 2019-03-06 Steel pipe and production method for steel pipe
JP2019514142A JP6630870B1 (en) 2018-03-09 2019-03-06 Steel pipe and method of manufacturing steel pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-043401 2018-03-09
JP2018043401 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019171624A1 true WO2019171624A1 (en) 2019-09-12

Family

ID=67845703

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/031922 WO2019171624A1 (en) 2018-03-09 2018-08-29 Steel pipe and production method for steel pipe
PCT/JP2019/008882 WO2019172314A1 (en) 2018-03-09 2019-03-06 Steel pipe and production method for steel pipe

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008882 WO2019172314A1 (en) 2018-03-09 2019-03-06 Steel pipe and production method for steel pipe

Country Status (3)

Country Link
JP (1) JP6630870B1 (en)
TW (1) TW201938813A (en)
WO (2) WO2019171624A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116645A (en) * 1992-10-05 1994-04-26 Sumitomo Metal Ind Ltd Production of oil well steel pipe excellent in sulfide stress cracking resistance
WO2004067790A1 (en) * 2003-01-30 2004-08-12 Sumitomo Metal Industries, Ltd. Steel pipe for bearing elements, and methods for producing and cutting the same
JP2005034517A (en) * 2003-06-27 2005-02-10 Nisshin Steel Co Ltd Golf club steel shaft, and manufacturing method thereof
JP2006063402A (en) * 2004-08-27 2006-03-09 Sanyo Special Steel Co Ltd Steel used in parts for machinery superior in rolling fatigue life
US20080302450A1 (en) * 2004-07-05 2008-12-11 Arcelor France Object Comprising a Steel Part of Metal Construction Consisting of an Area Welded by a High Power Density Beam and Exhibiting an Excellent Toughness in a Molten Area, Method for Producing Said Object
JP2009235499A (en) * 2008-03-27 2009-10-15 Nisshin Steel Co Ltd Method for manufacturing hollow stabilizer
KR20120085098A (en) * 2011-01-21 2012-07-31 현대하이스코 주식회사 Steel pipe with a function of conveying 1000bar high-pressure concrete and the method of manufacturing the same
JP2014208888A (en) * 2013-03-14 2014-11-06 テナリス・コイルド・チユーブス・エルエルシー High performance material for coiled tubing applications and method of producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153868A (en) * 1983-02-22 1984-09-01 Nisshin Steel Co Ltd Shaft for golf club
JP2699184B2 (en) * 1988-12-09 1998-01-19 新日本製鐵株式会社 ERW steel pipe with high resistance to selective corrosion of ERW
JPH08260049A (en) * 1995-03-22 1996-10-08 Sumitomo Metal Ind Ltd Production of high carbon electric resistance welded tube with high workability
JP4706140B2 (en) * 2001-07-25 2011-06-22 株式会社ジェイテクト Life estimation method for bearing steel
JP2005013535A (en) * 2003-06-27 2005-01-20 Nisshin Steel Co Ltd Steel shaft for golf club
CN103205643B (en) * 2013-03-28 2015-08-26 宝山钢铁股份有限公司 A kind of high hardness wear-resisting steel pipe and manufacture method thereof
CN104841720B (en) * 2015-05-12 2017-06-16 攀钢集团成都钢钒有限公司 The method that heavy caliber thick wall Gr15 bushed bearings are produced with steel ingot

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116645A (en) * 1992-10-05 1994-04-26 Sumitomo Metal Ind Ltd Production of oil well steel pipe excellent in sulfide stress cracking resistance
WO2004067790A1 (en) * 2003-01-30 2004-08-12 Sumitomo Metal Industries, Ltd. Steel pipe for bearing elements, and methods for producing and cutting the same
JP2005034517A (en) * 2003-06-27 2005-02-10 Nisshin Steel Co Ltd Golf club steel shaft, and manufacturing method thereof
US20080302450A1 (en) * 2004-07-05 2008-12-11 Arcelor France Object Comprising a Steel Part of Metal Construction Consisting of an Area Welded by a High Power Density Beam and Exhibiting an Excellent Toughness in a Molten Area, Method for Producing Said Object
JP2006063402A (en) * 2004-08-27 2006-03-09 Sanyo Special Steel Co Ltd Steel used in parts for machinery superior in rolling fatigue life
JP2009235499A (en) * 2008-03-27 2009-10-15 Nisshin Steel Co Ltd Method for manufacturing hollow stabilizer
KR20120085098A (en) * 2011-01-21 2012-07-31 현대하이스코 주식회사 Steel pipe with a function of conveying 1000bar high-pressure concrete and the method of manufacturing the same
JP2014208888A (en) * 2013-03-14 2014-11-06 テナリス・コイルド・チユーブス・エルエルシー High performance material for coiled tubing applications and method of producing the same

Also Published As

Publication number Publication date
JP6630870B1 (en) 2020-01-15
TW201938813A (en) 2019-10-01
WO2019172314A1 (en) 2019-09-12
JPWO2019172314A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP4274177B2 (en) Steel pipe for bearing element parts, manufacturing method and cutting method thereof
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP5892267B2 (en) ERW steel pipe
JP5723232B2 (en) Steel for bearings with excellent rolling fatigue life
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP6065120B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2003147485A (en) High toughness high carbon steel sheet having excellent workability, and production method therefor
US20140182414A1 (en) Steel for induction hardening and crankshaft manufactured by using the same
JP6796472B2 (en) Hollow member and its manufacturing method
JP4500246B2 (en) Steel pipe for machine structural member and manufacturing method thereof
JP4964492B2 (en) Medium carbon steel sheet and method for producing the same
US20070000582A1 (en) Steel product for induction hardening, induction-hardened member using the same, and methods for production them
JP4471486B2 (en) Medium and high carbon steel plates with excellent deep drawability
JP6630870B1 (en) Steel pipe and method of manufacturing steel pipe
CN113631735B (en) Electric welded steel pipe for hollow stabilizer, and method for producing same
KR102526496B1 (en) Electric resistance welded steel pipe or tube
JP2022170056A (en) steel
JP4016721B2 (en) Seamless steel pipe manufacturing method
CN113811625A (en) Electric resistance welded steel pipe for hollow stabilizer
JP2010043331A (en) Method for manufacturing seamless steel pipe for high-strength carburized part
TW202030343A (en) Carbon alloy steel sheet and method for producing carbon alloy steel sheet
KR20200108067A (en) High carbon cold rolled steel sheet and manufacturing method thereof
JP7196549B2 (en) Steel pipe manufacturing method
JP6172378B2 (en) Case-hardened steel wire
JP2020152966A (en) Steel pipe having excellent transportability and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP