EP0925380B1 - Verfahren zur herstellung von drähten aus selbstaushärtendem stahl, von profildrähten und verwendung für biegsame röhrleitungen - Google Patents

Verfahren zur herstellung von drähten aus selbstaushärtendem stahl, von profildrähten und verwendung für biegsame röhrleitungen Download PDF

Info

Publication number
EP0925380B1
EP0925380B1 EP97940193A EP97940193A EP0925380B1 EP 0925380 B1 EP0925380 B1 EP 0925380B1 EP 97940193 A EP97940193 A EP 97940193A EP 97940193 A EP97940193 A EP 97940193A EP 0925380 B1 EP0925380 B1 EP 0925380B1
Authority
EP
European Patent Office
Prior art keywords
wire
steel
hrc
equal
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97940193A
Other languages
English (en)
French (fr)
Other versions
EP0925380A1 (de
Inventor
José MALLEN HERRERO
François Ropital
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
Coflexip SA
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coflexip SA, IFP Energies Nouvelles IFPEN filed Critical Coflexip SA
Publication of EP0925380A1 publication Critical patent/EP0925380A1/de
Application granted granted Critical
Publication of EP0925380B1 publication Critical patent/EP0925380B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/045Manufacture of wire or bars with particular section or properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to elongated elements of great length, such as steel wires to reinforce flexible pipes intended for the transport of effluent under pressure.
  • the invention relates to a method of manufacturing these reinforcing threads, the threads obtained by the process and flexible pipes which include such reinforcing wires in their structure.
  • sealing is ensured by one or more sheaths made of polymer, mechanical resistance to internal and external pressure and to stresses external mechanical, is carried out by one or more layers of armor constituted by steel wires or profiles with a specific profile.
  • the flexible tube comprises at least one of the following armor plies: a carcass for resistance to external pressure in wires or profiles laid at an angle close to 90 ° relative to the axis, a resistance ply to the internal pressure (called vault) laid with an angle greater than 55 °, the elongated elements of the carcass and the vault preferably being staplable wires, and at least one layer of tensile strength armor laid with a lower angle at 55 °.
  • the vault and the tensile armor are replaced by two layers of symmetrical armor reinforced at an angle of about 55 °, or by two pairs of layers reinforced at 55 °, or by a set of at least at least two plies, the winding angle of at least one ply being less than 55 ° and the winding angle of at least one other ply being greater than 55 °.
  • the steel of the wires making up the armor must be chosen in such a way that these wires, given their cross-section, provide the mechanical resistance necessary in service, at the same time as they resist corrosion, in particular in certain cases in the presence of H 2 S.
  • These steel wires may have profiles, that is to say straight sections, various: substantially flat or flat, U-shaped, T-shaped, Z-shaped, with or without hooking means on a neighboring wire, or circular.
  • NACE standards have been provided to assess the suitability of a steel structural element to be used in the presence of H 2 S.
  • the steels must undergo a test on a representative sample, under stress in H 2 S medium with a pH 2.8 to 3.4 (NACE Test Method TM 0177 relating to stress cracking effects, commonly known as "Sulfide Stress Corrosion Cracking" or SSCC), to be considered as usable in the manufacture of metallic structures which must resist effects of stress corrosion in the presence of H 2 S.
  • HIC hydrogen-induced cracking effects
  • the test procedure recommended by the above standard consists in exposing samples, without voltage, in a seawater solution saturated with H 2 S, at ambient temperature and pressure, at a pH between 4, 8 and 5.4. The procedure plans to then carry out metallographic examinations to quantify the cracking of the samples, or to note the absence of cracking.
  • the armouring wires of the hoses are made with soft or semi-hard carbon-manganese steels (0.15 to 0.50% carbon) having a ferrite-perlite structure, to which, after cold forming of the wire rod, an appropriate annealing heat treatment is applied to bring the hardness to the accepted value, if necessary.
  • the NACE 0175 standard defines that such carbon-manganese steels are compatible with an H 2 S medium if they have a hardness less than or equal to 22 HRC. It has thus been verified that armor wires as described above, made of carbon-manganese steel and having a ferrite-pearlite structure, can be produced by cold forming followed by annealing so as to satisfy the traditional NACE criteria.
  • the steels and the production methods used to make the armouring wires for the hoses must be such that the forming wire can be produced in very large continuous lengths, of the order of several hundred meters or several kilometers.
  • the wire thus manufactured is wound on spools for its subsequent use to produce the armor plies of the hoses.
  • a heat treatment is to be provided after welding. But it is important, in order not to excessively overload the manufacturing costs, that this heat treatment after welding makes it possible to achieve the goal set in a sufficiently short time, a few minutes if possible, preferably less than 30 minutes.
  • the form wire is hardened in a liquid, typically, with water or oil, which requires controlling with a high precision the conditions for carrying out the quenching operation, and what risks make the wire drawing operations more difficult.
  • the object of the present invention is to describe a process for obtaining an elongated element of great length intended for the manufacture of flexible tube, the elongated element having optimized mechanical characteristics as well as, in an application according to the invention , good resistance to H 2 S.
  • the structure of the steel of the shaped wire thus obtained can preferably be of the type martensite-bainite, preferably predominantly bainitic.
  • the amount of ferrite will preferably be low, in particular less or equal to 10%, and advantageously less than or equal to 1%.
  • Hot rolling or drawing of the forming wire can be carried out from a ingot or wire rod previously rolled and brought to the temperature of transformation by means of suitable ovens.
  • the air quenching level of the wire wound in a crown mainly depends on steel grade and cooling conditions.
  • the main parameters which define the cooling conditions are in particular: the temperature at the end of rolling, the section of the wire, the quantity of wire and the compactness of the crown, the dynamics cooling.
  • the choice of cooling systems and mode is conditioned by steel grade, cross-section and quantity of wire. Cooling of the calm air type corresponds, for example, to the rapid handling of the crown after rolling.
  • agitated or forced air cooling corresponds to ventilation of the crown by blower or forced air.
  • the crown can be ventilated under bell.
  • the type of agitated or forced air cooling is advantageously used.
  • the structure obtained after cooling is preferably predominantly bainite with a percentage between 0 and 30% martensite.
  • the bainite is in the lower bainite state and not higher bainite.
  • the structure may contain only a small amount of ferrite, preferably less or equal to 10%, and advantageously less than or equal to 1%.
  • the method according to the invention has the advantage that its industrial implementation can be carried out relatively economically and easily.
  • the characteristics of the wire produced are less sensitive to possible variations of the various parameters involved in the air quenching operation, both in terms of adjusting the austenitization temperature and at the level of the development of the cooling device. It is thus possible, relatively easily and stable and with a reduced risk of appearance of defects, to obtain the desired qualities, in particular the absence of tapure, high resistance, as well as in the case of the embodiment. described below, good resistance of the steel, after heat treatment of tempering, to corrosion in the presence of H 2 S.
  • the wire thus obtained may not be able to resist H 2 S under certain operating conditions, but it can be used very advantageously, in particular after a possible thermal expansion treatment, as armor wire for flexible pipes thanks to its excellent optimized mechanical properties, in particular by the combination of a high mechanical strength and a ductility higher than that which can be obtained with known methods.
  • the rupture limit Rm can reach 1000 to 1600 MPa, equal to or greater than that of the most resistant armor wires currently known, and the elongation at break can be greater than 5%, possibly greater than 10% and possibly exceeding 15% in some cases. Whereas for known steel wires with ferrite-perlite structure having a level of resistance comparable to the work hardened state, these have an elongation at break not exceeding 5%.
  • the invention thus makes it possible to form a shaped wire having after air cooling a relatively bainitic dominant structure homogeneous throughout the thickness of the wire, despite the increase in the thickness of the wire.
  • We can thus obtain in such a predominantly lower bainite structure with a percentage of martensite between 0 and 30%, a total content of bainite and martensite commonly at least 90%, and in the most favorable cases, can reach approximately 100%.
  • the values in the table correspond to the typical average values for a sample of wire wound in a crown and after cooling, ie air quenched, depending on the steel grade used.
  • This carbon equivalent formulation is, in itself, well known, but generally in order to fix, for the steel considered, not an equivalent carbon minimum as in the present invention, but a maximum value so as to facilitate welding by reducing the hardness in the heat affected areas, and to get rid of a heat treatment after welding.
  • the threads then have a composition characterized by a carbon generally equivalent between 0.5 and 0.6 and not exceeding 0.75.
  • application FR 95/03093 which mainly describes the production of the yarn shaped by cold forming followed by quenching in a liquid, also offers a variant of shaping the wire by hot forming necessarily followed by a liquid quenching operation, but in this case it is specified that the wire must have a rupture limit Rm less than or equal to 850 MPa after hot rolling. So that in the present invention, the shaped wire after hot rolling has a hardness at least equal to 40 HRC, corresponding to an Rm of at least 1200 MPa.
  • the method may comprise, after the crown has cooled, possibly supplemented by an expansion treatment, a final tempering heat treatment under determined conditions to obtain a hardness greater than or equal to 20 HRC and less than or equal to 35 HRC, preferably greater than or equal to 22 HRC and less than or equal to 28 HRC, and more particularly less than 26 HRC, the tempering operation having resulted in the transformation of the predominantly lower bainite structure into a tempered tempered type structure having extremely fine carbide nodules in a state of very great dispersion in a ferrite matrix produced by tempering of the bainite-martensite structure.
  • the conditions of the final tempering treatment can be adapted from so as to obtain a hardness less than or equal to 28 HRC compatible with the conditions that can provide an environment with a pH close to 3.
  • a steel according to the present invention does not exhibit blistering or crack in HIC tests, and furthermore does not show cracking when subjected to tests according to standard NACE 0177 (SSCC) with a tensile stress at least equal to 60% of the elastic limit and up to approximately 90% of the latter.
  • SSCC standard NACE 0177
  • the final income can be made in a bundle in an oven.
  • the tempering temperature can be at most equal to a lower temperature from about 10 ° C to 30 ° C relative to the AC1 temperature at the start of austenitization of steel, in order to avoid excessive coalescence of carbide which could lead to a decrease in characteristics.
  • This hot transformation process has the advantage of manufacturing costs reduced. It also makes it possible to obtain wires with the shape of larger sections than the cold rolling.
  • the form wire has a structure of the hardened type, predominantly bainite lower with a percentage between 0 and 50% martensite.
  • the structure may contain only a small amount of ferrite.
  • Wire may have hardness greater than 40 HRC.
  • the size of the austenitic grain is between the indices 5 and 12, and advantageously between indices 8 and 11, according to standard NF 04102.
  • the shaping wire has a structure of the quenched type income exhibiting extremely fine carbide nodules in a state of very large dispersion in a ferrite matrix produced by tempering of a bainite-martensite structure.
  • the form wire can have a section having at least one of the general forms following: U, T, Z, rectangular or round.
  • the section of the form wire can have a width L and a thickness e, and have the following proportions: L / e greater than 1 and less than 7.
  • the thickness can vary between 1 mm and 20 mm, up to 30 mm.
  • the profile of the form wire may include means for hooking with a wire adjacent.
  • the shaped wire according to the invention may have a bainite martensite structure having an HRC hardness greater than or equal to 40, preferably greater than or equal to 45.
  • the wire thus obtained may not be able to resist to H 2 S under certain operating conditions, but it can be very advantageously used as armouring wire for flexible pipes thanks to its excellent optimized mechanical properties, in particular by the combination of high mechanical strength and of a ductility higher than that which can be obtained with the known methods.
  • the rupture limit Rm can reach 1000 to 1600 MPa, preferably greater than or equal to 1200 MPa.
  • Such a wire can advantageously be used to make the armor of hoses intended for the transport of weakly corrosive crude oil ("sweet crude”), degassed oil (“dead oil”) or water.
  • the process for producing such a wire will include a hot transformation, air cooling of the wire obtained and stored in a ring at the end of transformation, preferably followed by an expansion treatment.
  • the form wire according to the invention remaining wound in a crown undergoes a tempering treatment so as to present a structure of the quenched type, tempered with an HRC hardness greater than or equal to 20 and less than or equal to 35 , preferably greater than or equal to 22 and less than or equal to 28, and in particular less than or equal to 26.
  • the wire thus obtained may have properties of resistance to H 2 S under the operating conditions described above , in particular following HIC tests in very acidic medium (pH close to 2.8 or 3).
  • the mechanical resistance Rm can be of the order of 700 to 900 MPa under a pH close to 3 and can reach at least 1100 MPa with a higher pH.
  • the stress applied in the SSCC tests according to NACE, with a pH close to 2.8 can be at least 400 MPa and can reach 600 MPa.
  • the allowable stresses may be higher, up to approximately 90% of the Elastic limit.
  • the method according to the invention makes it possible to produce steel shaped wires.
  • the tempered martensite-bainite type the structure of which has extremely fine carbide nodules in a state of very great dispersion in a ferrite matrix produced by tempering of a martensite-bainite structure. It is interesting to compare this steel with other steels already proposed or used to make armor wires intended for the same use, such as steels obtained by spheroidization treatment from a hardened ferrite-perlite structure. these steels also comprising carbide elements in a ferritic matrix.
  • the spheroidized carbide elements of these steels are considerably less fine and less dispersed than in the case of the steel according to the invention, which makes it possible to clearly identify the difference between the two types of material.
  • the superior properties of shaped wire according to the invention in terms of mechanical resistance and compatibility with H 2 S, compared to the wires of the prior art, in particular in spheroidized steel, can have a relation to having a much finer and more dispersed nodular structure.
  • the tempering temperature must be at least about 10 to 30 ° C lower than the temperature AC1, this condition resulting from the fact that it has been found that under these conditions the wire tempering has very good H 2 S resistance characteristics. It can thus be seen that the grade 35CDV6 requires adjusting the tempering temperature with a little more precision.
  • the invention has in particular the advantage that from the same batches of crown of shaped wires obtained according to the method according to the invention, it is possible to produce, depending on the needs, either very strong steel wires. mechanically but not sometimes having the required properties of resistance to H 2 S, ie wires resistant to H 2 S even under the most severe conditions.
  • the manufacturing range is preferably supplemented by an expansion treatment.
  • the production range is, at least, supplemented by an additional stage of final income.
  • the invention can be applied to a flexible tube for the transport of an effluent comprising H 2 S, the tube possibly comprising at least one layer of reinforcements of reinforcement under pressure and / or under tension comprising wires form according to the invention.
  • Table I gives the chemical analysis of three grades of steels which can be used according to the method of the present invention, different samples of yarn having been made in these shades on a trial basis.
  • the products T10, T14 correspond to a T section of height 10 and 14 mm, of sections 132 mm2 and 276 mm2 respectively.
  • the product 15 * 5 corresponds to a rectangular section wire 15 mm wide and 5 mm thick with a cross section of 75 mm2.
  • the products ⁇ 15, ⁇ 16 and ⁇ 19 correspond to a wire of circular section of diameter 15, 16, 19 mm having respectively section 176 mm2, 201 mm2 and 283 mm2.
  • the different products referenced in Table I were manufactured by rolling hot, at temperatures which have been chosen, taking into account the profile, the nuance steel, so that the final temperature is higher than the AC3 temperature, preferably about 10 to 50 ° C.
  • the wire crowns are cooled in still air.
  • the following description shows the good homogeneity of the crowns after air rolling and cooling, mechanical characterization of unprocessed products hot rolling, defining the areas of income to obtain an HRC hardness between 20 and 30 corresponding as a first approximation to values of Rp0,2 between 650 and 750 MPa and Rm values between 800 and 850 MPa.
  • the crowns were cut into three sections: A1-A2, B1-B2, C1-C2 to take samples at the start (A1), at the end (C2) and in two intermediate portions (B1 and C1).
  • Rm MPa
  • Rp 0.2
  • HRC 35CDV6 A1 1760 1030 50 ⁇ 19 B1 1754 1060 50 C1 1742 1110 50 C2 1984 1054 53 T10 A1 2200 1344 55 B1 1851 1236 52 Cl1 1927 1233 52 C2 2172 1403 55 22CD12 A1 1392 840 42 ⁇ 15 B1 1381 813 43 C1 1387 838 42 C2 1422 862 44 T14 A1 1445 896 43 B1 1381 813 42 C1 1398 843 42 C2 1491 911 44 30CD12 A1 1502 931 42 T14 B1 1524 982 45 C1 1540 1003 45 C2 1549 1004 45
  • the 30CD12 grade has better homogeneity in the Rm values, representative of better quenchability due to the carbon content of 0.30% and the presence of 0.22% Ni.
  • Tables III, IV and V give respectively the mechanical characteristics products respectively produced in grades 35CDV6, 22CD12 and 30CD12 in tempering treatment temperature function of about 3 hours.
  • the tempering conditions for obtaining a hardness value of between 20 to 25 HRC lead to tempering on the order of three hours at a temperature very close to the point AC1. This peculiarity is due to the vanadium content.
  • the wires produced from this grade can be reserved for flexible pipes of short length.
  • the samples are subjected to the NACE TM 0177 test under a stress of 500 MPa (65% of Rp 0.2 ), for 30 days, without obtaining a rupture.
  • the SSCC behavior was established according to standard TM0177 method C, that is to say under so-called "ring" solicitation.
  • Method C the rings were made so that the samples curved by plastic deformation, present, in the absence of forces external, a curvature corresponding to that of the coiled armor wire to form a pressure vault type armor with an inside diameter of 4 inches (101.6 mm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Claims (20)

  1. Verfahren zur Herstellung eines Strahldrahts, ausgelegt, um als Bewehrungsdraht für flexible Leitungen verwendet werden zu können, dadurch gekennzeichnet, dass er die folgenden Stufen umfasst:
    Herstellung eines Formdrahts großer Länge durch Flachwalzen oder Heißziehen, beginnend mit einem Stahl, der die folgenden Elemente aufweist:
    C von 0,18 bis 0,45%,
    Mn von 0,4% bis 1,8%,
    Cr von 1 bis 4%,
    Si von 0,1% bis 0,6%,
    Mo von 0 bis 1,5%,
    Ni von 0 bis 1,5,
    höchstens 0,01% S, höchstens 0,15% V und höchstens 0,02 % P und der Rest Fe mit unvermeidlichen Verunreinigungen,
    wobei der Formdraht am Ende des Flachwalzens oder des Heißziehens eine Temperatur größer als die Temperatur AC3 von Stahl und vorzugsweise größer als 50 bis 200 °C hat,
    Aufrollen des Drahtes auf einen Bund, und
    Luftkühlung dieses Drahtbunds, um eine Rockwell-Härte von größer oder gleich 40 zu erhalten.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass nach Abkühlung des Bundes die Rockwell-Härte des Drahts größer oder gleich 45 ist.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Stahlformdraht die nachfolgenden Elemente umfasst:
    C von 0,20% bis 0,4%,
    Mn von 0,45% bis 1,5%,
    Cr von 1,5% bis 3,5%,
    Si von 0,1% bis 0,5%,
    Mo von 0,25 bis 0,1%,
    Ni von 0 bis 0,7%.
  4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Stahlformdraht höchstens 0,1 % Vanadium umfasst.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es eine thermische Behandlung der Vergütung bei den vorbestimmten Bedingungen zum Erhalten einer Rockwell-Härte größer oder gleich 20 und kleiner oder gleich 35 umfasst.
  6. Verfahren nach Anspruch 5 dadurch gekennzeichnet, dass die Temperatur der finalen Vergütung höchstens gleich einer Temperatur kleiner ca. 10 °C bis 30 °C im Verhältnis zu der Temperatur AC1 des Austenitisierungbeginns des Stahls ist.
  7. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Drahtbund nach der Luftabkühlung einer thermischen Behandlung zum Abbau der Eigenspannungen unterzogen wird.
  8. Formdraht mit konstantem Querschnitt und großer Länge, wobei der Draht dadurch gekennzeichnet ist, dass er aus einem Stahl gemacht ist, der die folgenden Elemente umfasst.
    C von 0,18 % bis 0,45%,
    Mn von 0,4% bis 1,8%,
    Cr von 1 bis 4%,
    Si von 0,1% bis 0,6%,
    Mo von 0 bis 1,5%,
    Ni von 0 bis 1,5%,
    höchstens 0,01% S, höchstens 0,15% V und höchstens 0,020 % P und der Rest Fe mit unvermeidlichen Verunreinigungen,
    der eine Struktur vom gehärteten Typ aufweist, überwiegend vom unteren Bainit mit einem Prozentsatz zwischen 0 und 50% Martensit
    eine Rockwell-Härte größer als 40 aufweist, und
    dieser Stahl ein Kohlenstoffäquivalent Ceq von wenigstens gleich 0,75 aufweist mit Ceq = C + Mm 6 + Cr + Mo + V 6 + Cu + Ni 15
  9. Draht gemäß Anspruch 8, dadurch gekennzeichnet, dass die Struktur lediglich wenig Ferrit, insbesondere weniger oder gleich 10%, vorzugsweise 1%, aufweist.
  10. Draht gemäß einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass er die folgenden Elemente umfasst:
    C von 0,20 bis 0,40%,
    Mn von 0,45% bis 1,5%,
    Cr von 1,5 bis 3,5%,
    Si von 0,1 bis 0,5%,
    Mo von 0,25 bis 1%,
    Ni von 0 bis 0,7%.
  11. Draht gemäß einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass er höchstens 0,1% Vanadium umfasst.
  12. Formdraht mit konstantem Querschnitt und großer Länge, wobei dieser Draht dadurch gekennzeichnet ist, dass er aus Stahl gemacht ist, der im wesentlichen die folgenden Elemente umfasst:
    C von 0,18% bis 0,45%,
    Mn von 0,4% bis 1,8%,
    Cr von 1 bis 4%,
    Si von 0,1% bis 0,6%,
    Mo von 0 bis 1,5%,
    Ni von 0 bis 1,5%,
    höchstens 0,01% S, höchstens 0,15% V und 0,020 % P und der Rest Fe mit unvermeidlichen Verunreinigungen,
    und dass er eine Struktur vom gehärteten Vergütungstyp aufweist, in welcher Kohlenstoff extrem feine Karbidknötchen in einem Zustand sehr großer Dispersion in einer Ferritmatrix vorliegen,
    und dass er eine Rockwell-Härte größer oder gleich 20 und kleiner oder gleich 35 aufweist, und
    dieser Stahl ein Kohlenstoffäquivalent Ceq von wenigstens gleich 0,75 aufweist mit Ceq = C + Mm 6 + Cr + Mo + V 6 + Cu + Ni 15
  13. Draht gemäß Anspruch 12, dadurch gekennzeichnet, dass er eine Rockwell-Härte größer oder gleich 22 und kleiner oder gleich 28 aufweist.
  14. Draht gemäß einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, dass die Struktur entstanden ist durch Vergütung einer Struktur überwiegend aus unterem Bainit mit einem Prozentsatz, der zwischen und 0 und 50% Martensit liegt.
  15. Draht gemäß einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass er die folgenden Elemente umfasst:
    C von 0,20 bis 0,40%,
    Mn von 0,45% bis 1,5%,
    Cr von 1,5 bis 3,5%,
    Si von 0,1 bis 0,5%,
    Mo von 0,25 bis 1%,
    Ni von 0 bis 0,7%.
  16. Draht gemäß einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass er höchstens 0,1% Vanadium umfasst.
  17. Draht gemäß einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass er einen Querschnitt von wenigstens einer der folgenden allgemeinen Formen aufweist: U-, T-, Z-förmig, rechteckig oder rund.
  18. Draht gemäß Anspruch 17, dadurch gekennzeichnet, dass der Querschnitt des Formdrahts eine Breite L und eine Dicke e aufweist, und die Proportionen die folgenden sind: L/e größer als 1 und kleiner als 7, wobei die Dicke zwischen 1 mm und 30 mm variiert.
  19. Draht gemäß Anspruch 17, dadurch gekennzeichnet, dass das Profil des Formdrahts Mittel zum Verhaken mit einem benachbarten Draht aufweist.
  20. Flexibles Rohr, dadurch gekennzeichnet, dass es wenigstens eine Verstärkungsschicht aufweist, die Drahtformen gemäß einem der Ansprüche 8 bis 19 umfasst.
EP97940193A 1996-09-09 1997-09-08 Verfahren zur herstellung von drähten aus selbstaushärtendem stahl, von profildrähten und verwendung für biegsame röhrleitungen Expired - Lifetime EP0925380B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9610976A FR2753206B1 (fr) 1996-09-09 1996-09-09 Procede de fabrication de fils en acier auto-trempant, fils de forme et application a une conduite flexible
FR9610976 1996-09-09
PCT/FR1997/001578 WO1998010113A1 (fr) 1996-09-09 1997-09-08 Procede de fabrication de fils en acier auto-trempant, fils de forme et application a une conduite flexible

Publications (2)

Publication Number Publication Date
EP0925380A1 EP0925380A1 (de) 1999-06-30
EP0925380B1 true EP0925380B1 (de) 2001-05-23

Family

ID=9495569

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97940193A Expired - Lifetime EP0925380B1 (de) 1996-09-09 1997-09-08 Verfahren zur herstellung von drähten aus selbstaushärtendem stahl, von profildrähten und verwendung für biegsame röhrleitungen

Country Status (10)

Country Link
US (1) US6291079B1 (de)
EP (1) EP0925380B1 (de)
JP (1) JP2000517381A (de)
AU (1) AU734607B2 (de)
BR (1) BR9711717A (de)
CA (1) CA2265573A1 (de)
DK (1) DK0925380T3 (de)
FR (1) FR2753206B1 (de)
NO (1) NO991119L (de)
WO (1) WO1998010113A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108118245A (zh) * 2017-12-25 2018-06-05 内蒙金属材料研究所 一种耐磨齿板用新型低合金耐磨钢及其热处理方法
FR3094652A1 (fr) * 2019-04-08 2020-10-09 Technip France Procédé de fabrication d’un fil d’armure d’une ligne flexible de transport de fluide et fil d’armure et ligne flexible issus d’un tel procédé

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39049E1 (en) 1992-07-28 2006-03-28 Eli Lilly And Company Methods for inhibiting bone loss
FR2802607B1 (fr) * 1999-12-15 2002-02-01 Inst Francais Du Petrole Conduite flexible comportant des armures en acier bas carbone
FR2866352B3 (fr) * 2004-02-12 2005-12-16 Trefileurope Fil de forme en acier trempe-revenu pour conduites en mer
WO2011050810A1 (en) 2009-10-28 2011-05-05 Nkt Flexibles I/S A flexible pipe and a method of producing a flexible pipe
IN2012DN05109A (de) 2009-12-15 2015-10-09 Nat Oil Well Varco Denmark I S
EP2519764B1 (de) 2009-12-28 2019-06-12 National Oilwell Varco Denmark I/S Unverbundener schlauch
US9395022B2 (en) 2010-05-12 2016-07-19 National Oilwell Varco Denmark I/S Unbonded flexible pipe
BR112013000899A2 (pt) 2010-07-14 2016-05-17 Nat Oilwell Varco Denmark Is tubo flexível não ligado
NO2665959T3 (de) 2011-01-20 2018-05-26
CA2823071A1 (en) 2011-01-20 2012-07-26 National Oilwell Varco Denmark I/S An unbonded flexible pipe
BR112013032388B1 (pt) 2011-06-17 2020-09-29 National Oilwell Varco Denmark I / S Tubo flexível não unido para aplicações fora da costa, e, uso de aço manganês
US10113673B2 (en) 2012-03-13 2018-10-30 National Oilwell Varco Denmark I/S Reinforcement element for an unbonded flexible pipe
AU2013231726B2 (en) 2012-03-13 2017-04-27 National Oilwell Varco Denmark I/S An unbonded flexible pipe with an optical fiber containing layer
CA2869588A1 (en) 2012-04-12 2013-10-17 National Oilwell Varco Denmark I/S A method of producing an unbonded flexible pipe and an unbonded flexible pipe
DK177627B1 (en) 2012-09-03 2013-12-16 Nat Oilwell Varco Denmark Is An unbonded flexible pipe
JP2015212412A (ja) * 2014-04-18 2015-11-26 株式会社神戸製鋼所 熱間圧延線材
EP3050978B1 (de) * 2015-01-30 2020-09-02 Technip France Flexible rohrförmige struktur mit stahlelement
KR102101635B1 (ko) * 2016-03-07 2020-04-17 닛폰세이테츠 가부시키가이샤 내수소 유기 균열성이 우수한 고강도 평강선
WO2017171070A1 (ja) * 2016-03-31 2017-10-05 株式会社神戸製鋼所 耐硫化物応力腐食割れ性に優れた高強度熱間圧延線材
CN110184441A (zh) * 2019-07-10 2019-08-30 李文来 光触媒除甲醛过滤网淬火装置
AU2020379563A1 (en) * 2019-11-08 2022-04-21 ATT Logistics, Ltd. Method for low heat input welding on oil and gas tubulars

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578124A (en) * 1984-01-20 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho High strength low carbon steels, steel articles thereof and method for manufacturing the steels
CA1332210C (en) * 1985-08-29 1994-10-04 Masaaki Katsumata High strength low carbon steel wire rods and method of producing them
JPS63145713A (ja) * 1986-12-09 1988-06-17 Nippon Steel Corp 耐水素誘起割れ特性にすぐれた高強度鋼線の製造法
JPH01279732A (ja) * 1988-04-30 1989-11-10 Nippon Steel Corp 耐水素誘起割れ特性に優れた高強度鋼線
JPH01279710A (ja) * 1988-04-30 1989-11-10 Nippon Steel Corp 耐水素誘起割れ特性に優れた高強度鋼線の製造法
FR2656242A1 (fr) * 1989-12-22 1991-06-28 Michelin & Cie Fil d'acier ayant une structure de type bainite inferieure ecrouie; procede pour produire ce fil.
JPH03274227A (ja) * 1990-03-24 1991-12-05 Nippon Steel Corp サワー環境用高強度鋼線の製造方法
JPH03281724A (ja) * 1990-03-30 1991-12-12 Nippon Steel Corp サワー環境用高強度鋼線の製造方法
JPH03281725A (ja) * 1990-03-30 1991-12-12 Nippon Steel Corp サワー環境用高強度鋼線の製造方法
JP2840977B2 (ja) * 1990-04-19 1998-12-24 新日本製鐵株式会社 サワー環境用高強度鋼線の製造方法
FR2661194B1 (fr) * 1990-04-20 1993-08-13 Coflexip Procede d'elaboration de fils d'acier destines a la fabrication de conduites flexibles, fils d'acier obtenus par ce procede et conduites flexibles renforcees par de tels fils.
FR2731371B1 (fr) * 1995-03-10 1997-04-30 Inst Francais Du Petrole Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible
JP3233188B2 (ja) * 1995-09-01 2001-11-26 住友電気工業株式会社 高靱性ばね用オイルテンパー線およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108118245A (zh) * 2017-12-25 2018-06-05 内蒙金属材料研究所 一种耐磨齿板用新型低合金耐磨钢及其热处理方法
FR3094652A1 (fr) * 2019-04-08 2020-10-09 Technip France Procédé de fabrication d’un fil d’armure d’une ligne flexible de transport de fluide et fil d’armure et ligne flexible issus d’un tel procédé
WO2020208040A1 (fr) * 2019-04-08 2020-10-15 Technip France Procédé de fabrication d'un fil d'armure d'une ligne flexible de transport de fluide et fil d'armure et ligne flexible issus d'un tel procédé

Also Published As

Publication number Publication date
FR2753206A1 (fr) 1998-03-13
WO1998010113A1 (fr) 1998-03-12
EP0925380A1 (de) 1999-06-30
NO991119D0 (no) 1999-03-08
AU734607B2 (en) 2001-06-21
FR2753206B1 (fr) 1998-11-06
BR9711717A (pt) 1999-08-24
CA2265573A1 (fr) 1998-03-12
US6291079B1 (en) 2001-09-18
DK0925380T3 (da) 2001-08-06
AU4211897A (en) 1998-03-26
NO991119L (no) 1999-05-07
JP2000517381A (ja) 2000-12-26

Similar Documents

Publication Publication Date Title
EP0925380B1 (de) Verfahren zur herstellung von drähten aus selbstaushärtendem stahl, von profildrähten und verwendung für biegsame röhrleitungen
EP0813613B1 (de) Verfahren zur herstellung von stahldrähten, verstärkungsdrähte und verwendung in biegsamen rohrleitungen
EP0478771B1 (de) Verfahren zum herstellen von stahldraht für biegsame leitungen, nach diesem verfahren hergestellter draht und mit diesem draht verstärkte biegsame leitungen
EP2576849B1 (de) Verfahren zur herstellung eines profilierten drahtes, hergestellt aus einem gegenüber wasserstoffversprödung beständigen stahl mit hohen mechanischen eigenschaften
EP1913169B1 (de) Herstellungsprozess von stahlblechen mit hoher festigkeit und exzellenter dehnung und hergestellte produkte
EP2593574B1 (de) Niedriglegierter stahl mit hoher dehngrenze und hoher sulfid-spannungsrissbeständigkeit
CA2810167A1 (en) High-strength steel sheet having improved resistance to fracture and to hic
EP3087207B1 (de) Kaltgewalzter stahldraht mit hohem widerstand gegen wasserstoffversprödung und -ermüdung sowie verstärkung für schläuche damit
EP0976541A1 (de) Verbunddracht mit einem Kern aus Kohlenstoffstahl und einer Aussenschicht aus einem rostfreiem Stahl
WO2004104254A1 (fr) Tole laminee a froid et aluminiee en acier dual phase a tres haute resistance pour ceinture anti-implosion de televiseur, et procede de fabrication de cette tole
US6949149B2 (en) High strength, high carbon steel wire
FR2833617A1 (fr) Procede de fabrication de toles laminees a froid a tres haute resistance d'aciers dual phase micro-allies
CA2214012C (fr) Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible
EP1483068B1 (de) Verfahren zur herstellung von verstärkungsdrähten aus beschichtetem stahl für flexible rohrförmige leitungen zum transport von kohlenwasserstoffen, sowie verstärkte leitung
FR2866352A3 (fr) Fil de forme en acier trempe-revenu pour conduites en mer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DK FR GB NL

17Q First examination report despatched

Effective date: 19990809

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DK FR GB NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010523

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

NLS Nl: assignments of ep-patents

Owner name: INSTITUT FRANCAIS DU PETROLE

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040929

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060401

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110921

Year of fee payment: 15

Ref country code: FR

Payment date: 20110801

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110920

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120908

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001