EP0812461A1 - Vorrichtung zur ansteuerung wenigstens eines elektromagnetischen verbrauchers - Google Patents

Vorrichtung zur ansteuerung wenigstens eines elektromagnetischen verbrauchers

Info

Publication number
EP0812461A1
EP0812461A1 EP96901227A EP96901227A EP0812461A1 EP 0812461 A1 EP0812461 A1 EP 0812461A1 EP 96901227 A EP96901227 A EP 96901227A EP 96901227 A EP96901227 A EP 96901227A EP 0812461 A1 EP0812461 A1 EP 0812461A1
Authority
EP
European Patent Office
Prior art keywords
current
consumer
phase
switching means
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96901227A
Other languages
English (en)
French (fr)
Other versions
EP0812461B1 (de
Inventor
Klaus Dressler
Rainer Burkel
Engelbert Tillhon
Andreas Werner
Wilhelm Eyberg
Andreas Koch
Udo Schulz
Wolfgang Krampe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19539071A external-priority patent/DE19539071A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0812461A1 publication Critical patent/EP0812461A1/de
Application granted granted Critical
Publication of EP0812461B1 publication Critical patent/EP0812461B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1816Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2075Type of transistors or particular use thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1816Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator
    • H01F2007/1822Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator using a capacitor to produce a boost voltage

Definitions

  • the invention relates to a device for controlling at least one electromagnetic consumer according to the preambles of the independent claims.
  • Such a device for controlling an electromagnetic consumer is known for example from the unpublished DE-OS 44 13 240.
  • the energy released when switching off is stored in a capacitor.
  • the energy released during the transition from a holding current to current 0 is transferred to a capacitor.
  • the invention is based on the object of providing a device of the simplest possible design in a device for controlling an electromagnetic consumer. len, in which the switch-on process is accelerated and the total energy consumption is minimized.
  • FIG. 1 shows a first circuit arrangement of the device according to the invention
  • FIG. 2 shows a second circuit arrangement
  • FIG. 3 shows various signals plotted over time.
  • the device according to the invention is preferably used in internal combustion engines, in particular in self-igniting internal combustion engines.
  • the fuel metering is controlled by means of electromagnetic valves.
  • These electromagnetic valves are referred to below as consumers.
  • the invention is not restricted to this application, it can be used wherever fast-switching electromagnetic consumers are required.
  • the opening and closing times of the solenoid valve determine the start and end of injection of the fuel into the cylinder.
  • FIG. 1 The most important elements of the device according to the invention are shown in FIG.
  • the embodiment shown is a four-cylinder internal combustion engine.
  • An injection valve is assigned to each consumer and a cylinder of the internal combustion engine is assigned to each injection valve. If the number of cylinders in the internal combustion engine is higher, correspondingly more valves, switching means and diodes are to be provided.
  • connection of the consumers 100 to 103 are connected to a voltage supply 105 via a switching means 115 and a diode 110.
  • the diode 110 is arranged in such a way that its anode is connected to the positive pole and its cathode is connected to the switching means 115.
  • the switching means 115 is preferably a field effect transistor.
  • the second connection of the consumers 100 to 103 is connected to a resistance means 125 via a respective second switching means 120, 121, 122 and 123.
  • the switching means 120 to 123 are also preferably field-effect transistors.
  • the switching means 120 to 123 are referred to as low-side switches and the switching means 115 as high-side switches.
  • the second connection of the resistance means 125 is connected to the second connection of the voltage supply.
  • a diode 130, 131, 132 and 133 is assigned to each consumer 100 to 103.
  • the anode connection of the diodes is in contact with the connection point between the consumer and the low-side switch.
  • the cathode connection is connected to a capacitor 145 and a further switching means 140.
  • the second connection of the switching means 140 is in contact with the first connections of the consumers 100 to 103.
  • the switching means 140 is also preferably a field effect transistor. This switching means 140 is also referred to as a booster switch.
  • the second connection of the capacitor 145 is also connected to the second connection of the supply voltage 105.
  • the highside switch 115 is acted upon by a control unit 160 with a control signal AH.
  • the switching means 120 is acted upon by the control unit 160 with a control signal ALI, the switching means 121 with a control signal AL2, the switching means 122 with a control signal AL3, the switching means 123 with a control signal AL4 and the switching means 140 with a control signal AC.
  • a diode 150 is connected between the second connection of the voltage supply 105 and the connection point between the switching means 115 and the first connections of the consumers 100 to 103.
  • the anode of the diode is connected to the second connection of the voltage supply 105.
  • the current flowing through the consumer can be determined by means of the resistor 125.
  • the current measuring resistor 125 is only possible if one of the switching means 120 to 123 is closed.
  • the current measuring resistor can also be arranged elsewhere.
  • the second connection of the capacitor 145 can be connected to the connection point between the current measuring means 125 and the switching means 120 to 123. In this case, a current measurement is also possible with the low-side switch blocked.
  • the current measuring means can be arranged between the voltage supply and the highside switch or between the highside switch and the consumers.
  • FIG. 2 A corresponding device is shown in FIG. 2, in which the consumers 100 to 103 are divided into two groups. Consumers 100 and 101 form a first group and consumers 102 and 103 form a second group of consumers. The consumers are assigned to the individual groups in such a way that consumers which are to be controlled simultaneously under certain operating conditions are assigned to different groups.
  • a highside switch 115 and 116 is provided for each group.
  • Diode 111 corresponds to diode 110 of the first group.
  • the booster transistor 140 must also be designed twice.
  • the booster transistor of the second group is designated 141.
  • the capacitor 145 in the second group is designated 146.
  • two further control lines are provided for the switching means 116 and 141.
  • the highside switch 115 of the first group is supplied with the signal AH1 and the highside switch 116 of the second group with AH2.
  • the booster switch 140 of the first group is with the signal AC1 and the booster switch 141 of the second group is with the signal AC2 applied.
  • the resistor 125 is also to be interpreted twice, this is designated 126 in the second group.
  • FIG. 3b shows the drive signal AH for the highside switches 115, 116.
  • FIG. 3c shows the control signal AL of one of the lowside switches.
  • the current I flowing through the consumer and the voltage UC applied to the capacitor 145 in FIG. 3e are plotted over time in FIG. 3d.
  • a metering cycle for a solenoid valve is shown.
  • phase 1 Before the consumer is activated, the output stage is switched off.
  • the control signals AC, AH and AL are at low potential. This means that the highside switch 115, the lowside switches 120 to 123 and the booster switch 140 block the current flow. No electricity flows through the consumers.
  • the capacitor 145 is charged to its maximum voltage UC. This assumes a value of approximately 80 volts, for example, whereas the voltage of the voltage supply assumes a value of approximately 12 volts.
  • the low-side switch is activated, which is assigned to the consumer who is to meter the fuel.
  • the signal AL assumes a high level.
  • a high signal is output on line AC, which controls switch 140.
  • the highside switch 115 is not activated; it continues to block.
  • This control of the switching means causes the capacitor 145 through the Booster switch 140, the corresponding consumer, the low side switch assigned to the consumer and the current measuring means 125 a current flows.
  • the current I rises very quickly due to the high voltage at the consumer.
  • Phase 1 ends when the voltage across capacitor 145 falls below a certain value U2.
  • the inrush current is taken over by the highside switch 115 and the booster is deactivated.
  • the control signal for the booster switch 140 is withdrawn, so that the switch 140 blocks.
  • the control signals AH and AL for the highside switch 115 and the low-side switch assigned to the consumer are set to a high level so that these switches release the current flow.
  • a current flows from the voltage supply 105 via the diode 110, the high-side switch 115, the consumer, the corresponding low-side switch, the current measuring resistor 125 back to the voltage source 105 of the current measuring resistor 125 is detected, regulated to a predeterminable value for the starting current IA. This means that when the target current IA for the starting current is reached, the highside switch 115 is activated so that it blocks. If a further threshold is undershot, it is released again.
  • the second phase ends when the control unit 160 detects the end of the tightening phase. This can be the case, for example be when a switching point detection detects that the solenoid valve armature has reached its new end position. If the switching point detection does not recognize within a predetermined time that the solenoid valve armature has reached its new end position, an error is recognized.
  • the control signal for the corresponding low-side switch is withdrawn. This has the effect that a current flows from the respective consumer through the diode 130 to 133 assigned to the consumer into the capacitor 145 and the energy stored in the consumer is transferred to the capacitor 145.
  • the highside switch 115 is controlled in the embodiment shown so that it remains closed.
  • the current drops from the starting current IA to the holding current IH.
  • the voltage applied to capacitor 145 rises to a value U3, which is, however, clearly below the value UI.
  • the third phase ends when the setpoint IH for the holding current is reached.
  • the energy released during the transition from the pull-in current IA to the holding current IH is stored in the capacitor. It is particularly advantageous here that the transition from the pull-in current to the holding current takes place quickly due to the tendon deletion.
  • the third phase is followed by the fourth phase, which is also referred to as holding current control.
  • the control signal for the low-side switch remains at its high level, that is to say the low-side switch assigned to the consumer remains closed.
  • the high-side switch 115 By opening and closing the high-side switch 115, the current flowing through the consumer is adjusted to the setpoint value for the holding current.
  • a freewheeling circuit acts. The current flows from the consumer through the low-side switch, the resistor 125 and the free-wheeling diode 150.
  • Phase 4 is ended when the injection process is completed.
  • the corresponding low-side switch is switched off and the highside switch 115 is activated.
  • the current flowing through the consumer also drops rapidly to zero.
  • the voltage U applied to capacitor 145 rises by a smaller value than in the third phase.
  • the setpoint for the current I changes from a high to a low value.
  • the low-side switch assigned to the consumer is driven in such a way that it blocks the flow of current.
  • the energy released is reloaded into the capacitor 145, 146. Snow is extinguished in these phases. This causes the current to quickly reach its new set point.
  • phase two and four the current is regulated by touching the high-side switch.
  • the highside switch is blocked, the freewheeling diode 150 is active.
  • the current slowly drops in these phases. This leads to a lower switching frequency.
  • the output stage is inactive, which means that there is no fuel metering.
  • the current flowing through the consumer rather flows, remains at 0 and the voltage across capacitor 145 remains at its value.
  • the highside switch 115 is brought back into its conductive state by the control signal AH.
  • a current flow in one of the consumers is initialized. The current flows, for example, via the diode 110, the switch 115, the consumer 100, the switching means 120 and the like
  • phase 8 in which all control signals are withdrawn and all switches are brought into their locked state. This phase corresponds to phase 0.
  • each cylinder has only one injection interval per metering cycle, then no difficulties arise with a device according to FIG. 1. If, on the other hand, it is provided that a pre-injection takes place before the actual main injection or a post-injection takes place after the actual main injection, then the case may occur that the solenoid valves of two cylinders have to be activated simultaneously. In particular the main injection and the pre- Injection of the subsequent cylinder or the post-injection and the pre-injection of the subsequent cylinder can overlap in time. In a circuit arrangement according to FIG. 1, this means that two loads are selected via the low-side switch, but only a common current control is possible by means of the high-side switch 115.
  • 115 or 116 can be selected. According to the invention it is provided that in each case the consumers are assigned to different groups which are assigned to the cylinders into which fuel is metered one after the other.
  • the device according to the invention was illustrated using the example of an internal combustion engine with four cylinders.
  • the procedure can also be applied to internal combustion engines with a different number of cylinders.
  • a transition from a high current level to a lower current level takes place after the current control phase, a part of the stored electrical energy being used to partially charge the capacitor.
  • the capacitor is charged further at the control end when the load current is quenched. If afterwards the charge of the capacitor is not sufficient to switch it on again, periodically switching the load current on and off (night clocking) between two injection processes and storing the electrical energy leads to a further voltage increase.
  • High engine speeds mean shorter periods of time, which can be used to increase the voltage by means of night clocking. At high speeds, it is not possible to step up between two injections, so that the capacitor cannot be charged to the required voltage. According to the invention it is therefore proposed in a further embodiment that the voltage step-up is already carried out during the current regulation and the capacitor is fully charged again during the activation. This eliminates the need for overclocking in the control gap. Furthermore, the risk of undesired injection occurring is reduced since the consumer is not energized between the two injection processes.
  • control signals AC for the booster transistor 41 are shown, in FIG. 4b the control signal AH for the high-side switch, in FIG. 4c the control signal AL of a low-side switch, in FIG. 4d a control signal AS that takes into account the state of charge of the capacitor, in FIG. 4e the current I flowing through the consumer and in FIG. 4f the voltage U falling across the capacitor is plotted over time.
  • the output stage is switched off in phase 0, which is before the consumer is activated.
  • the control signals AC, AH, AL and the signal AS are at a low potential. This means that the high-side switch, 115, the low-side switch 120-123 and the booster switch 140 block the current flow. No electricity flows through the consumers.
  • the capacitor 145 is charged to its maximum voltage U10. This takes on a value of approx. 80 volts, whereas the power supply assumes values of approx. 12 volts.
  • the first phase at the beginning of the control corresponds to the first phase of the procedure according to FIG. 3.
  • the signal AS rises to its high level. This indicates that the voltage drop across the capacitor is less than a predetermined threshold value US.
  • the inrush current is taken over by the high-side switch 115 and the booster is deactivated.
  • the control signal AT for the booster switch 140 is withdrawn, so that the switch 140 blocks.
  • the control signals AH and AL for the high-side switch 115 and the low-side switch assigned to the consumer assume a high level, so that these switches release the current flow.
  • a current flows from the voltage supply 105 via the diode 110, the high-side switch 115, the consumer - 14
  • the current measuring resistor 125 back to the voltage source 105.
  • Current measuring resistor 125 is detected, regulated to a predetermined value for the pull-in current IA. This means that when the target current IA for the pull-in current is reached, the low-side switch 120 to 125 is controlled so that it blocks. If it falls below a further threshold, it is released again. As a result, when the low-side switch 120 to 125 is open, a current flows from the respective consumer through the diode 130 to 133 assigned to the consumer into the capacitor 145 and the energy stored in the consumer is transferred to the capacitor 145. At the same time, the voltage U applied to capacitor 145 rises.
  • the second phase ends when the control unit 160 detects the end of the tightening phase. This can e.g. be the case when a switching point detection recognizes that the solenoid valve armature has reached its new end position.
  • the control signal for the corresponding low-side switch is withdrawn in accordance with the third phase in accordance with the first embodiment.
  • This causes a current to flow from the respective consumer through the diode 130-133 associated with the consumer into the capacitor 145.
  • the energy stored in the consumer is transferred to the capacitor 145.
  • the current drops from the pull-in current IA to the holding current IH.
  • the voltage U that is present at the capacitor 145 rises.
  • the third phase ends when the setpoint for the holding current is reached. The at Energy released from the pull-in current to the holding current is stored in the capacitor.
  • the third phase is followed by the fourth phase, which is also referred to as holding current control.
  • the drive signal for the high-side switch remains at its high level, i. H. the high-side switch remains closed.
  • the low-side switch is opened and closed, the current flowing through the consumer is adjusted to the setpoint for the holding current.
  • the low-side switch is blocked, the current flows from the respective consumer through the diode 130-133 assigned to the consumer into the capacitor 145. As a result, the energy stored in the consumer is transferred to the capacitor.
  • the signal AS changes to a low potential.
  • the current control is no longer carried out by means of the low-side switch but by means of the high-side switch. This means that the low side switch is always in its conductive position and the high side switch changes between its locked and its open position.
  • the highside switch 115 is blocked, a freewheeling circuit acts. The current flows from the consumer through the low-side switch, resistor 125 and free-wheeling diode 150.
  • the fourth phase has ended when the injection process is complete.
  • the subsequent fifth phase corresponds to the fifth phase of the procedure according to FIG. 3.
  • Phases six and seven, according to FIG. 3, are not necessary with this type of control.
  • the output stage arrangement operates as a current-regulating step-up converter.
  • the high-side switch is continuously switched on.
  • the current is controlled by the low-side switch assigned to the individual consumer. Which is periodically switched on and off for current regulation.
  • the threshold value US for the capacitor voltage is preferably selected so that the voltage at the end of phase 4a together with the voltage rise in the fifth phase gives a voltage value which is required for rapid switching on.
  • the circuit arrangement works as a step-up converter.
  • the current control takes place in phase 4b by means of the high-side switch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Magnetically Actuated Valves (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Es wird eine Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers beschrieben. Die Vorrichtung umfaßt ein erstes Schaltmittel (115, 116), das zwischen einem ersten Anschluß einer Versorgungsspannung und einem ersten Anschluß wenigstens eines Verbrauchers (100, 101, 102, 103) angeordnet ist, zweite Schaltmittel (120, 121, 122, 123), die zwischen einem zweiten Anschluß eines zugeordneten Verbrauchers (100, 101, 102, 103) und dem zweiten Anschluß der Spannungsversorgung angeordnet sind. Beim Übergang von einem ersten höheren Stromwert (IA) auf einen zweiten niederen Stromwert (IH) wird die freiwerdende Energie in einem Speichermittel (145, 146) gespeichert.

Description

Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers
Stand der Technik
Die Erfindung betrifft eine Vorrichtung zur Ansteuerung we- nigstens eines elektromagnetischen Verbrauchers gemäß den Oberbegriffen der unabhängigen Ansprüche.
Eine solche Vorrichtung zur Ansteuerung eines elektromagne¬ tischen Verbrauchers ist beispielsweise aus der nicht vor- veröffentlichten DE-OS 44 13 240 bekannt. Bei dieser Vor¬ richtung wird die beim Abschalten freiwerdende Energie in einem Kondensator gespeichert. Dabei wird die beim Übergang von einem Haltestrom auf den Strom 0 freiwerdende Energie in einen Kondensator umgeladen.
Die beim Übergang vom Anzugsstrom auf den Haltestrom frei- werdende Energie geht bei dieser Einrichtung verloren.
Aufgabe der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, bei einer Vorrich¬ tung zur Ansteuerung eines elektromagnetischen Verbrauchers eine möglichst einfach aufgebaute Einrichtung bereitzustel- len, bei der der Einschaltvorgang beschleunigt und der Ge¬ samtenergieverbrauch minimiert wird.
Vorteile der Erfindung
Die erfindungsgemäße Anordnung mit den Merkmalen der unab¬ hängigen Ansprüche weist den Vorteil auf, daß die beim Über¬ gang von dem Anzugsstrom auf den Haltestrom freiwerdende Energie zurückgewonnen werden kann. Einer besonders vorteil- haften Ausführungsform ist es möglich, daß mit der gleichen Endstufe zwei Verbraucher gleichzeitig in unterschiedlicher Weise angesteuert werden. Das heißt, es sind zeitlich über¬ lappende Einspritzungen möglich. Zeichnung
Die erfindungsgemäße Einrichtung wird nachstehend anhand den in der Zeichnung dargestellten Ausführungsformen erläutert. Es zeigen Figur 1 eine erste Schaltungsanordnung der erfin¬ dungsgemäßen Einrichtung, Figur 2 eine zweite Schaltungsan- Ordnung und Figur 3 verschiedene über der Zeit aufgetragene Signale.
Beschreibung der Ausführungsbeispiele
Die erfindungsgemäße Einrichtung wird bevorzugt bei Brenn¬ kraftmaschinen, insbesondere bei selbstzündenden Brennkraft¬ maschinen, eingesetzt. Dort wird die Kraftstoffzumessung mittels elektromagnetischer Ventile gesteuert. Diese elek¬ tromagnetischen Ventile werden im folgenden als Verbraucher bezeichnet. Die Erfindung ist nicht auf diese Anwendung be¬ schränkt, sie kann überall dort eingesetzt werden, wo schnell schaltende elektromagnetische Verbraucher benötigt werden. Bei der Anwendung bei Brennkraf maschinen, insbesondere bei selbstzündenden Brennkraf maschinen legen der Öffnungs- und Schließzeitpunkt des Magnetventils den Einspritzbeginn bzw. das Einspritzende des Kraftstoffs in den Zylinder fest.
In Figur 1 sind die wesentlichsten Elemente der erfindungs¬ gemäßen Einrichtung dargestellt. Bei der dargestellten Aus¬ führungsform handelt es sich um eine Vierzylinderbrennkraft- maschine. Hierbei ist jedem Verbraucher ein Einspritzventil und jedem Einspritzventil ein Zylinder der Brennkraftmaschi¬ ne zugeordnet. Bei höheren Zylinderzahlen der Brennkraftma¬ schine sind entsprechend mehr Ventile, Schaltmittel und Dioden vorzusehen.
Mit 100, 101, 102 und 103 sind vier Verbraucher dargestellt. Jeweils ein Anschluß der Verbraucher 100 bis 103 stehen über ein Schaltmittel 115 und eine Diode 110 mit einer Spannungs- versorgung 105 in Verbindung.
Die Diode 110 ist so angeordnet, daß sie mit ihrer Anode mit dem Pluspol und mit ihrer Kathode mit dem Schaltmittel 115 in Verbindung steht. Bei dem Schaltmittel 115 handelt es sich vorzugsweise um einen Feldeffekttransistor.
Jeweils der zweite Anschluß der Verbraucher 100 bis 103 steht über jeweils ein zweites Schaltmittel 120, 121, 122 und 123 mit einem Widerstandsmittel 125 in Verbindung. Bei dem Schaltmittel 120 bis 123 handelt es sich ebenfalls vor¬ zugsweise um Feldeffekttransistoren. Die Schaltmittel 120 bis 123 werden als Lowside-Schalter und das Schaltmittel 115 als Highside-Schalter bezeichnet. Der zweite Anschluß des Widerstandsmittels 125 steht mit dem zweiten Anschluß der Spannungsversorgung in Verbindung. Jedem Verbraucher 100 bis 103 ist eine Diode 130, 131, 132 und 133 zugeordnet. Der Anodenanschluß der Dioden steht je¬ weils mit dem Verbindungspunkt zwischen Verbraucher und Lowside-Schalter in Kontakt. Der Kathodenanschluß steht mit einem Kondensator 145 sowie einem weiteren Schaltmittel 140 in Verbindung. Der zweite Anschluß des Schaltmittels 140 steht mit den ersten Anschlüssen der Verbraucher 100 bis 103 in Kontakt. Bei dem Schaltmittel 140 handelt es sich eben¬ falls vorzugsweise um einen Feldeffekttransistor. Dieses Schaltmittel 140 wird auch als Booster-Schalter bezeichnet. Der zweite Anschluß des Kondensators 145 steht ebenfalls mit dem zweiten Anschluß der Versorgungsspannung 105 in Verbin¬ dung.
Der Highside-Schalter 115 wird von einer Steuereinheit 160 mit einem Ansteuersignal AH beaufschlagt. Das Schaltmittel 120 wird von der Steuereinheit 160 mit einem Ansteuersignal ALI, das Schaltmittel 121 mit einem Ansteuersignal AL2, das Schaltmittel 122 mit einem Ansteuersignal AL3, das Schalt- mittel 123 mit einem Ansteuersignal AL4 und das Schaltmittel 140 mit einem Ansteuersignal AC beaufschlagt.
Zwischen dem zweiten Anschluß der Spannungsversorgung 105 und dem Verbindungspunkt zwischen dem Schaltmittel 115 und den ersten Anschlüssen der Verbraucher 100 bis 103 ist eine Diode 150 geschaltet. Hierbei ist die Anode der Diode mit dem zweiten Anschluß der Spannungsversorgung 105 verbunden.
Mittels des Widerstandes 125 kann der durch den Verbraucher fließende Strom ermittelt werden.
Mit der dargestellten Anordnung ist eine Strommessung über den Strommeßwiderstand 125 nur möglich, wenn eines der Schaltmittel 120 bis 123 geschlossen ist. Um den Strom auch bei geöffneten Lowside-Schaltern erfassen zu können, kann der Strommeßwiderstand auch an anderer Stelle angeordnet werden. Beispielsweise kann der zweite Anschluß des Konden¬ sators 145 mit dem Verbindungspunkt zwischen dem Strommeß- mittel 125 und dem Schaltmittel 120 bis 123 verbunden wer¬ den. In diesem Fall ist auch eine Strommessung bei gesperr¬ tem Lowside-Schalter möglich. Ferner kann das Strommeßmittel zwischen der Spannungsversorgung und dem Highside-Schalter bzw. zwischen dem Highside-Schalter und den Verbrauchern an- geordnet sein.
In Figur 2 ist eine entsprechende Vorrichtung dargestellt, bei der die Verbraucher 100 bis 103 in zwei Gruppen aufge¬ teilt sind. Die Verbraucher 100 und 101 bilden eine erste Gruppe, und die Verbraucher 102 und 103 bilden eine zweite Gruppe von Verbrauchern. Die Verbraucher werden den einzel¬ nen Gruppen derart zugeordnet, daß Verbraucher, die unter bestimmten Betriebszuständen gleichzeitig anzusteuern sind, unterschiedlichen Gruppen zugeordnet werden.
Bereits in Figur 1 beschriebene Elemente sind in Figur 2 mit entsprechenden Bezugszeichen bezeichnet. Für jede Gruppe ist jeweils ein Highside-Schalter 115 und 116 vorgesehen. Die Diode 111 entspricht der Diode 110 der ersten Gruppe. Ent- sprechend ist der Booster-Transistor 140 ebenfalls doppelt auszulegen. Der Booster-Transistor der zweiten Gruppe ist mit 141 bezeichnet. Entsprechend ist der Kondensator 145 in der zweiten Gruppe mit 146 bezeichnet. Desweiteren sind zwei weitere Ansteuerleitungen für die Schaltmittel 116 und 141 vorgesehen. Der Highside-Schalter 115 der ersten Gruppe wird mit dem Signal AHl und der Highside-Schalter 116 der zweiten Gruppe mit AH2 beaufschlagt. Der Booster-Schalter 140 der ersten Gruppe wird mit dem Signal AC1 und der Booster-Schalter 141 der zweiten Gruppe wird mit dem Signal AC2 beaufschlagt. Entsprechend ist auch der Widerstand 125 doppelt auszulegen, dieser wird in der zweiten Gruppe mit 126 bezeichnet.
In Figur 3a ist das Ansteuersignal AC für den
Booster-Transistor 140 bzw. 141 aufgetragen. In Figur 3b ist das Ansteuersignal AH für die Highside-Schalter 115, 116 aufgetragen. Figur 3c zeigt das Ansteuersignal AL eines der Lowside-Schalter. In Figur 3d ist der durch den Verbraucher fließende Strom I und in Figur 3e die am Kondensator 145 an¬ liegende Spannung UC über der Zeit aufgetragen. Hierbei ist ein Zumeßzyklus für ein Magnetventil dargestellt.
In jedem Zumeßzyklus werden verschiedene Phasen unterschie- den. In einer Phase 0, vor der Ansteuerung des Verbrauchers ist die Endstufe abgeschaltet. Die Ansteuersignale AC, AH und AL befinden sich auf niederem Potential. Dies bedeutet, daß der Highside-Schalter 115, die Lowside-Schalter 120 bis 123 und der Boosterschalter 140 den Stromfluß sperren. Durch die Verbraucher fließt kein Strom. Der Kondensator 145 ist auf seine maximale Spannung UC aufgeladen. Diese nimmt bei¬ spielsweise einen Wert von ca. 80 Volt an, wohingegen die Spannung der Spannungsversorgung einen Wert von ca. 12 V an¬ nimmt.
In der ersten Phase zu Beginn der Ansteuerung, die als Boosterbetrieb bezeichnet wird, wird der Lowside-Schalter angesteuert, der dem Verbraucher zugeordnet ist, der Kraft¬ stoff zumessen soll. Dies bedeutet, daß ab der Phase 1 das Signal AL einen hohen Pegel annimmt. Gleichzeitig wird auf die Leitung AC ein hohes Signal ausgegeben, das den Schalter 140 durchsteuert. Der Highside-Schalter 115 wird nicht ange¬ steuert, dieser sperrt weiterhin. Diese Ansteuerung der Schaltmittel bewirkt, daß vom Kondensator 145 über den Boosterschalter 140, den entsprechenden Verbraucher, den dem Verbraucher zugeordneten Lowside-Schalter und das Stromme߬ mittel 125 ein Strom fließt. In dieser Phase steigt der Strom I bedingt durch die hohe Spannung am Verbraucher sehr schnell an. Die Phase 1 endet, wenn die am Kondensator 145 anliegende Spannung einen bestimmten Wert U2 unterschreitet.
In der zweiten Phase, die als AnzugsStromregelung bezeichnet wird, wird der Einschaltstrom von dem Highside-Schalter 115 übernommen und der Booster inaktiviert. In der zweiten Phase wird das Ansteuersignal für den Boosterschalter 140 zurück¬ genommen, so daß der Schalter 140 sperrt. Die Ansteuersigna- le AH und AL für den Highside-Schalter 115 und dem Verbrau¬ cher zugeordneten Lowside-Schalter werden auf hohen Pegel gesetzt, damit diese Schalter den Stromfluß freigeben. Somit fließt ein Strom von der Spannungsversorgung 105 über die Diode 110, den Highside-Schalter 115, den Verbraucher, den entsprechenden Lowside-Schalter, den Strommeßwiderstand 125 zurück zur Spannungsquelle 105. Durch Antakten des High- Side-Schalters kann der Strom, der mittels des Stromme߬ widerstandes 125 erfaßt wird, auf einen vorgebbaren Wert für den Anzugsstrom IA geregelt werden. Das heißt, bei Erreichen des Sollstroms IA für den Anzugsstrom wird der Highside-Schalter 115 so angesteuert, daß er sperrt. Bei Un- terschreiten einer weiteren Schwelle wird er wieder freige¬ geben.
Bei gesperrten Highside-Schalter 115 wirkt ein Freilauf¬ kreis. Der Strom fließt vom Verbraucher durch den Lowside-Schalter, den Widerstand 125 und die Freilaufdiode 150.
Die zweite Phase endet, wenn von der Steuereinheit 160 das Ende der Anzugsphase erkannt wird. Dies kann z.B. der Fall sein, wenn eine Schaltzeitpunkterkennung erkennt, daß der Magnetventilanker seine neue Endlage erreicht hat. Erkennt die Schaltzeitpunkterkennung nicht innerhalb einer vorgege¬ ben Zeit, daß der Magnetventilanker seine neue Endlage er- reicht hat, so wird auf Fehler erkannt.
In der dritten Phase, die auch als erste Schnellδschung be¬ zeichnet wird, wird das Ansteuersignal für den entsprechen¬ den Lowside-Schalter zurückgenommen. Dies bewirkt, daß ein Strom von dem jeweiligen Verbraucher durch die dem Verbrau¬ cher zugeordnete Diode 130 bis 133 in den Kondensator 145 fließt und die im Verbraucher gespeicherte Energie in den Kondensator 145 umgeladen wird. Der Highside-Schalter 115 wird dabei in der dargestellten Ausführungsform so angesteu- ert, daß er geschlossen bleibt. In dieser Phase sinkt der Strom vom Anzugsstrom IA auf den Haltestrom IH ab. Gleich¬ zeitig steigt die Spannung, die am Kondensator 145 anliegt, auf einen Wert U3, der aber deutlich unter dem Wert UI liegt. Die dritte Phase ist beendet, wenn der Sollwert IH für den Haltestrom erreicht wird. Die beim Übergang vom An¬ zugsstrom IA auf den Haltestrom IH freiwerdende Energie wird in dem Kondensator gespeichert. Besonders vorteilhaft ist hierbei, daß der Übergang vom Anzugsstrom auf den Haltestrom auf Grund der Sehnellöschung schnell erfolgt.
An die dritte Phase schließt sich die vierte Phase an, die auch als Haltestromregelung bezeichnet wird. Entsprechend wie in der zweiten Phase bleibt das Ansteuersignal für den Lowside-Schalter auf seinem hohen Niveau, das heißt der dem Verbraucher zugeordnete Lowside-Schalter bleibt geschlossen. Durch Öffnen und Schließen des High-Side-Schalters 115 wird der Strom, der durch den Verbraucher fließt, auf den Soll¬ wert für den Haltestrom eingeregelt. Bei gesperrten Highside-Schalter 115 wirkt ein Freilaufkreis. Der Strom fließt vom Verbraucher durch den Lowside-Schalter, den Wi¬ derstand 125 und die Freilaufdiode 150. Die Phase 4 ist be¬ endet, wenn der Einspritzvorgang abgeschlossen ist.
In der anschließenden fünften Phase, die auch als zweite Schneilöschung und Schnellδschungsüberprüfung bezeichnet wird, wird der entsprechende Lowside-Schalter abgeschaltet und der Highside-Schalter 115 durchgesteuert. In dieser Phase fällt der Strom, der durch den Verbraucher fließt, ebenfalls schnell auf den Wert Null ab. Gleichzeitig steigt die Spannung U, die am Kondensator 145 anliegt, um einen kleineren Wert an, als in der dritten Phase.
In der 3 und 5 Phase geht der Sollwert für den Strom I von einem hohen auf einen niederen Wert über. In diesen Phasen wird jeweils der dem Verbraucher zugeordnete Low-Sideschalter derart angesteuert, daß er den Stromfluß sperrt. Die frei werdende Energie wird dabei in den Konden¬ sator 145, 146 umgeladen. In diesen Phasen erfolgt eine Schneilöschung. Dies bewirkt, daß der Strom rasch seinen neuen Sollwert erreicht.
In den Phasen zwei und vier erfolgt eine Stromregelung durch Antakten des High-Side-Schalters. Bei gesperrtem Highside-Schalter ist die Freilaufdiode 150 aktiv. In diesen Phasen fällt der Strom langsam ab. Dies führt zu einer ge¬ ringeren Schaltfrequenz.
In der sechsten Phase, ist die Endstufe inaktiv, das heißt, es erfolgt keine Kraftstoffzumessung. Dies bedeutet, das An¬ steuersignal AC für den Booster-Schalter 140, das Ansteuer¬ signal AH für den Highside-Schalter und das Ansteuersignal AL für die Lowside-Schalter nehmen alle niedriges Niveau an und alle Schalter sperren. Der Strom, der durch den Verbrau- eher fließt, bleibt auf 0 und die Spannung am Kondensator 145 bleibt auf ihrem Wert.
In der siebten Phase nach der Ansteuerung, die auch als Nachtaktung bezeichnet wird, wird der Highside-Schalter 115 durch das Ansteuersignal AH wieder in seinen leitenden Zu¬ stand gebracht. Durch Schließen eines Lowside-Schalters wird ein Stromfluß in einem der Verbraucher initialisiert. Der Strom fließt beispielsweise über die Diode 110, den Schalter 115, den Verbraucher 100, das Schaltmittel 120 und das
Strommeßmittel 125 zurück in die Spannungsquelle. Bei Errei¬ chen eines Sollwertes für den Strom, der so gewählt ist, daß das Magnetventil noch nicht reagiert, wird der Lowside-Schalter so angesteuert, daß er öffnet. Dies bewirkt wiederum eine Schneilöschung für den Strompfad bestehend aus dem Verbraucher, einem der Dioden 130 bis 133 und dem Kon¬ densator 145. Dadurch steigt die am Kondensator 145 anlie¬ gende Spannung an. Sobald der Strom seinen Nullwert wieder erreicht, wird der Lowside-Schalter 120 wieder aktiviert. Dieser Vorgang wird solange wiederholt, bis die Spannung am Kondensator 145 schrittweise wieder den Wert UI erreicht.
Anschließend erfolgt die Phase 8, in der alle Ansteuersigna- le zurückgenommen und alle Schalter in ihrem gesperrten Zu- stand gebracht werden. Diese Phase entspricht der Phase 0.
Ist vorgesehen, daß pro Zumeßzyklus jeder Zylinder nur ein Einspritzintervall aufweist, so treten bei einer Einrichtung gemäß Figur 1 keine Schwierigkeiten auf. Ist dagegen vorge- sehen, daß eine Voreinspritzung vor der eigentlichen Haupt¬ einspritzung bzw. eine Nacheinspritzung nach der eigentli¬ chen Haupteinspritzung erfolgt, so kann der Fall eintreten, daß die Magnetventile zweier Zylinder gleichzeitig anzusteu¬ ern sind. Insbesondere die Haupteinspritzung und die Vor- einspritzung des nachfolgenden Zylinders bzw. die Nachein¬ spritzung und die Voreinspritzung des nachfolgenden Zylin¬ ders können sich zeitlich überlappen. Dies führt bei einer Schaltungsanordnung gemäß Figur 1 dazu, daß über die Lowside-Schalter zwei Verbraucher ausgewählt werden, mittels des High-Side-Schalters 115 aber nur eine gemeinsame Stromregelung möglich ist. Mit dieser Anordnung können zwei Ventile nicht gleichzeitig unterschiedlich angesteuert werden. So ist es beispielsweise nicht möglich, bei einem Magnetventil den Strom auf den Haltestrom und beim anderen Magnetventil auf den Anzugsstrom zu regeln. Ferner muß der Kondensator 145 werden, bevor das nächste Ventil angesteuert werden kann. Wenn die Ausschaltpunkte und die Einschaltpunkt zweier Ventile sehr kurz aufeinander folgen, ist es nicht möglich den Kondensator 145 zu laden.
Eine solche Ansteuerung, bei dem zwei Magnetventile gleich¬ zeitig unterschiedlich bestromt werden bzw. daß der Konden¬ sator 145 geladen wird, ist dagegen mit einer Einrichtung gemäß Figur 2 möglich. Bei dieser Anordnung werden die Ver¬ braucher in zwei Gruppen aufgeteilt. Jeder Gruppe von Ver¬ brauchern ist ein Highside-Schalter 115, 116, ein Booster-Schalter 140, 141, ein Meßwiderstand 125, 126 und ein Kondensator 145, 146 zugeordnet. Jeweils eine Gruppe von Verbrauchern kann mittels des jeweiligen Highside-Schalter
115 bzw. 116 ausgewählt werden. Erfindungsgemäß ist vorgese¬ hen, daß jeweils die Verbraucher unterschiedlichen Gruppen zugeordnet werden, die den Zylindern zugeordnet sind, in die nacheinander Kraftstoff zugemessen wird.
Die erfindungsgemäße Vorrichtung wurde am Beispiel einer Brennkraftmaschine mit vier Zylindern dargestellt. Die Vor¬ gehensweise ist auch auf Brennkraftmaschinen mit anderer Zylinderzahl übertragbar. Hierzu ist eine entsprechende An- zahl von Verbrauchern, Schaltmitteln und weiteren Elementen vorzusehen. Auch kann vorgesehen sein, daß die Verbraucher in eine größere Anzahl von Gruppen aufgeteilt wird. Dies ist insbesondere bei höheren Zylinderzahlen sinnvoll.
Bei der bisher beschriebenen Ausführungsform erfolgt nach der Stromregelphase ein Übergang von einem hohen Stromniveau auf niedrigeres Stromniveau, wobei ein Teil der gespeicherten elektrischen Energie benützt wird, um den Kondensator teilweise aufzuladen. Ein weitere Aufladung des Kondensators erfolgt am Ansteuerende bei der Sehnellδschung des Laststroms. Reicht danach die Ladung des Kondensators für ein erneutes Einschalten noch nicht aus, wird durch periodisches Ein- und Ausschalten des Laststroms (Nachtakten) zwischen zwei Einspritzvorgängen und Speicherung der elektrischen Energie eine weitere Spannungserhδhung erreicht.
Hohe Motordrehzahlen bedingen kürzer werdende Zeitspannen, die zur Spannungshochsetzung mittels Nachtaktung genutzt werden können. Bei hohen Drehzahlen ist die Hochsetzung in der Zeit zwischen zwei Einspritzungen nicht möglich, so daß der Kondensator nicht auf die erforderliche Spannung aufgeladen werden kann. Erfindungsgemäß wird daher bei einer weiteren Ausführungsform vorgeschlagen, daß die Spannungshochsetzung bereits während der Stromregelung durchgeführt wird und der Kondensator während der Ansteuerung wieder vollständig aufgeladen wird. Dadurch kann das Nachtakten in der Ansteuerlücke entfallen. Desweiteren wird das Risiko verringert, daß es zu einer unerwünschten Einspritzung kommt, da der Verbraucher zwischen den zwei Einspritzvorgängen nicht bestromt wird.
In Figur 4 sind entsprechend wie in Figur 3 die Ansteuersignale AC für den Booster-Transistor 41, in Figur 4b das Ansteuersignal AH für den High-Side-Schalter, in Figur 4c das Ansteuersignal AL eines Low-Side-Schalters, in Figur 4d ein Steuersignal AS das den Ladezustand des Kondensators berücksichtigt, in Figur 4e der durch den Verbraucher fließende Strom I und in Figur 4f die an Kondensator abfallende Spannung U über der Zeit aufgetragen.
Entsprechend wie bei dem Ansteuerverfahren gemäß Figur 3 werden verschiedene Phasen unterschieden. In einer Phase 0, die vor der Ansteuerung des Verbrauchers liegt, ist die Endstufe abgeschaltet. Die Ansteuersignale AC, AH, AL und das Signal AS befinden sich auf niederem Potential. Dies bedeutet, daß der High-Side-Schalter, 115 die Low-Side-Schalter 120 - 123 und der Boosterschalter 140 den Stromfluß sperren. Durch die Verbraucher fließt kein Strom. Der Kondensator 145 ist auf seine maximale Spannung U10 aufgeladen. Diese nimmt einen Wert von ca. 80 Volt an, wohingegen die Sannungsversorgung Werte von ca. 12 Volt annimmt.
Die erste Phase zu Beginn der Ansteuerung entspricht der ersten Phase der Vorgehensweise gemäß Figur 3. Während der Phase 1 steigt das Signal AS auf seinen hohen Pegel an. Dies zeigt an, daß die am Kondensator abfallende Spannung kleiner als ein vorgegebener Schwellwert US ist.
In der 2. Phase, die auch als Anzugstromregelung bezeichnet werden kann, wird der Einschaltstrom vom High-Side-Schalter 115 übernommen und der Booster inaktiviert. Dies bedeutet, daß in der 2. Phase das Ansteuersignal AT für den Booster-Schalter 140 zurückgenommen wird, so daß der Schalter 140 sperrt. Die Ansteuersignale AH und AL für den High-Side-Schalter 115 und dem Verbraucher zugeordneten Low-Side-Schalter nehmen einen hohen Pegel an, damit diese Schalter den Stromfluß freigeben. Somit fließt ein Strom von der Spannungsversorgung 105 über die Diode 110, den High-Side-Schalter 115, den Verbraucher, den - 14
entsprechenden Low-Side-Schalter, den Strommeßwiderstand 125 zurück zur Spannungsquelle 105.
Im Unterschied zur Phase 2 gemäß Figur 3 wird durch Antakten des Lowside-Schalters der Strom, der mittels des
Strommeßwiderstandes 125 erfaßt wird, auf einen vorgebbaren Wert für den Anzugstrom IA geregelt. Das heißt bei Erreichen des Sollstromes IA für den Anzugstrom wir der Low-Side-Schalter 120 bis 125 so angesteuert, daß er sperrt. Bei unterschreiten einer weiteren Schwelle wird er wieder freigegeben. Dies hat zur Folge, daß bei geöffnetem Low-Side-Schalter 120 bis 125 ein Strom vom jeweiligen Verbraucher durch die dem Verbraucher zugeordnete Diode 130 bis 133 in den Kondensator 145 fließt und die im Verbraucher gespeicherte Energie in den Kondensator 145 umgeladen wird. Gleichzeitig steigt die Spannung U, die am Kondensator 145 anliegt, an.
Die zweite Phase endet, wenn die Steuereinheit 160 das Ende der Anzugsphase erkennt. Dies kann z.B. der Fall sein, wenn eine Schaltzeitpunkterkennung erkennt, daß der Magnetventilanker seine neue Endlage erreicht hat.
In der dritten Phase, die auch als erste Schnellδschung bezeichnet wir, wird entsprechend der dritten Phase gemäß der ersten Ausführungsform das Ansteuersignal für den entsprechenden Low-Side-Schalter zurückgenommen. Dies bewirkt, daß ein Strom von dem jeweiligen Verbraucher durch die dem Verbraucher zugeordnete Diode 130-133 in den Kondensator 145 fließt. Die im Verbraucher gespeicherte Energie wird dabei in den Kondensator 145 umgeladen. In dieser Phase sinkt der Strom vom Anzugstrom IA auf den Haltestrom IH ab. Gleichzeitig steigt die Spannung U, die am Kondensator 145 anliegt an. Die dritte Phase ist beendet, wenn der Sollwert für den Haltestrom erreicht wird. Die beim Übergang vom Anzugstrom auf den Haltestrom frei werdende Energie wird im Kondensator gespeichert.
An die dritte Phase schließt sich die vierte Phase an, die auch als Haltestromregelung bezeichnet wird. Entsprechend wie in der zweiten Phase bleibt das Ansteuersignal für den High-Side-Schalter auf seinem hohe Niveau, d. h. der High-Side-Schalter bleibt geschlossen. Beim Öffnen und Schließen des Low-Side-Schalters wird der Strom, der durch den Verbraucher fließt auf den Sollwert für den Haltestrom eingeregelt. Bei gesperrtem Lowside-Schalter fließt der Strom vom jeweiligen Verbraucher durch die dem Verbraucher zugeordnete Diode 130-133 in den Kondensator 145. Dadurch wird die im Verbraucher gespeicherte Energie in den Kondensator umgeladen.
Sobald die am Kondensator abfallende Spannung U einen vorgegebenen Schwellwert US erreicht hat, wechselt das Signal AS auf niederes Potential ab. Damit ist der erste Teil 4a der vierten Phase beendet. Ab diesem Zeitpunkt erfolgt die Stromregelung nicht mehr mittels des Low-Side-Schalters sondern mittels des High-Side-Schalters. Das bedeutet, der Lowside- Schalter ist ständig in seiner leitenden Position und der High-Side-Schalter wechselt zwischen seiner gesperrten und seiner geöffneten Stellung. Bei gesperrtem Highside-Schalter 115 wirkt ein Freilaufkreis. Der Strom fließt vom Verbraucher durch den Lowside-Schalter, den Widerstand 125 und die Freilaufdiode 150. Die vierte Phase ist beendet, wenn der Einspritzvorgang abgeschlossen ist.
Die sich anschließende fünfte Phase entspricht der fünften Phase der Vorgehensweise gemäß Figur 3. Die Phasen sechs und sieben, gemäß Figur 3 sind bei dieser Art der Ansteuerung nicht erforderlich. Solange das Signal AS auf seinem hohen Pegel liegt, d.h. die Spannung am Kondensator den vorgegebenen Sollwert US noch nicht erreicht hat, arbeitet die Endstufenanordnung als stromregelnder Hochsetzsteller. In diesem Betriebszustand wird der High-Side- Schalter dauernd durchgeschaltet. Die Stromregelung erfolgt durch den dem einzelnen Verbraucher zugeordneten Lowside- Schalter. Der zur Stromregelung periodisch ein- und ausgeschaltet wird.
Hat die am Kondensator 145 abfallende Spannung U einen vorgegebenen Wert US erreicht, wird in einem anderen Betriebsmodus umgeschalte . In diesem Betriebsmodus erfolgt keine weitere Aufladung des Kondensators. Die Stromregelung erfolgt entsprechend wie in dem Ausführungsbeispiel bei Figur 3 mittels des High-Side-Schalters.
Der Schwellwert US für die Kondensatorspannung wird vorzugsweise so gewählt, daß die Spannung zum Ende der Phase 4a zusammen mit dem Spannungsanstieg in der fünften Phase einen Spannungswert ergibt, der zum schnellen Einschalten erforderlich ist. In der Phase 4a arbeitet die Schaltungsanordnung als Hochsetzsteller. Die Stromregelung erfolgt in der Phase 4b mittels des High-Side- Schalters.

Claims

Ansprüche
1. Vorrichtung zur Ansteuerung wenigstens eines elektroma¬ gnetischen Verbrauchers, insbesondere eines Magnetventils zur Steuerung der Kraftstoffzumessung in eine Brennkraftma- schine, mit einem ersten Schaltmittel (115, 116), das zwi¬ schen einem ersten Anschluß einer Versorgungsspannung und einem ersten Anschluß wenigstens eines Verbrauchers (100, 101, 102, 103) angeordnet ist, mit zweiten Schaltmitteln (120, 121, 122, 123), die zwischen einem zweiten Anschluß eines zugeordneten Verbrauchers (100, 101, 102, 103) und dem zweiten Anschluß der Spannungsversorgung angeordnet sind, dadurch gekennzeichnet, daß Mittel vorgesehen sind, die die Schaltmittel derart ansteuern, daß wenigstens die beim Übergang von einem Anzugstromwert (IA) auf einen Haltestromwert (IH) freiwerdende Energie in einem Speichermittel (145, 146) speicherbar ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß in einer ersten Phase der Ansteuerung der erste Anschluß des Verbrauchers mittels eines dritten Schaltmittels (140,141) mit dem Speichermittel (145, 146) verbindbar ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeich¬ net, daß die beim Öffnen des zweiten Schaltmittels freiwer¬ dende Energie in dem Speichermittel speicherbar ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß die beim Übergang von dem Haltestromwert (IA) auf den Wert Null freiwerdende Energie in dem Speichermittel (145) speicherbar ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß in einer Phase, in der der Strom auf einen Sollwert regelbar ist, ein Freilauf wirksam ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in einer Phase, in der der Strom auf einen Sollwert regelbar ist, die freiwerdende Energie in dem Speichermittel (145) speicherbar ist.
6. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die zweiten Schaltmittel in einer Phase im Anschluß an die Ansteuerung kurzzeitig derart angesteuert werden, daß der Verbraucher nicht reagiert und daß die beim Öffnen des zweiten Schaltmittels freiwerdende Energie in dem Speichermittel speicherbar ist.
7. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Speichermittel parallel zu den zwei¬ ten Schaltmitteln geschaltet ist.
8. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Verbraucher in wenigstens zwei Grup¬ pen aufteilbar sind, denen jeweils ein erstes Schaltmittel (115,116), ein drittes Schaltmittel (140, 141) und/oder ein Speichermittel (145, 146) zugeordnet ist.
EP96901227A 1995-03-02 1996-02-02 Vorrichtung zur ansteuerung wenigstens eines elektromagnetischen verbrauchers Expired - Lifetime EP0812461B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19507222 1995-03-02
DE19507222 1995-03-02
DE19539071 1995-10-20
DE19539071A DE19539071A1 (de) 1995-03-02 1995-10-20 Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers
PCT/DE1996/000160 WO1996027198A1 (de) 1995-03-02 1996-02-02 Vorrichtung zur ansteuerung wenigstens eines elektromagnetischen verbrauchers

Publications (2)

Publication Number Publication Date
EP0812461A1 true EP0812461A1 (de) 1997-12-17
EP0812461B1 EP0812461B1 (de) 1999-05-06

Family

ID=26012941

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96901227A Expired - Lifetime EP0812461B1 (de) 1995-03-02 1996-02-02 Vorrichtung zur ansteuerung wenigstens eines elektromagnetischen verbrauchers

Country Status (4)

Country Link
US (1) US5936827A (de)
EP (1) EP0812461B1 (de)
JP (1) JP3955622B2 (de)
WO (1) WO1996027198A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9603181D0 (en) * 1996-02-15 1996-04-17 Motorola Ltd Switching circuit for an inductive load
GB9619786D0 (en) * 1996-09-20 1996-11-06 Lucas Ind Plc Drive circuit
US5717562A (en) * 1996-10-15 1998-02-10 Caterpillar Inc. Solenoid injector driver circuit
DE19815628C1 (de) * 1998-04-07 1999-09-23 Siemens Ag Steuereinrichtung für ein Kraftstoff-Einspritzsystem
US6591813B1 (en) 1999-11-01 2003-07-15 Siemens Vdo Automotive Corporation Matrix injector driver circuit
US6591814B2 (en) 1999-11-01 2003-07-15 Siemens Vdo Automotive Corporation Matrix injector driver circuit
DE10022953A1 (de) * 2000-05-11 2001-11-15 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung der Kraftstoffeinspritzung
ITBO20000489A1 (it) * 2000-08-04 2002-02-04 Magneti Marelli Spa Metodo e dispositivo per il pilotaggio di un iniettore in un motore acombustione interna .
GB2367962B (en) * 2000-10-14 2004-07-21 Trw Ltd Multiple channel solenoid current monitor
DE10123519A1 (de) * 2001-05-15 2002-12-05 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erhöhung des Spannungsniveaus an hochdynamischen induktiven Stellgliedern
JP2003086422A (ja) * 2001-09-12 2003-03-20 Bosch Automotive Systems Corp 電磁弁駆動装置
US7057870B2 (en) * 2003-07-17 2006-06-06 Cummins, Inc. Inductive load driver circuit and system
ITTO20030609A1 (it) * 2003-08-05 2005-02-06 Fiat Ricerche Metodo di funzionamento di un dispositivo di comando di elettroattuatori induttivi.
FR2866165B1 (fr) * 2004-02-05 2006-04-07 Siemens Vdo Automotive Dispositif electronique de commande d'actionneurs
JP4609401B2 (ja) * 2006-09-20 2011-01-12 株式会社デンソー 電磁弁駆動装置
US7911758B2 (en) * 2008-05-13 2011-03-22 Automatic Switch Company Low power solenoid control system and method
FR2993093B1 (fr) 2012-07-03 2014-06-20 Valeo Sys Controle Moteur Sas Circuit electrique pour l'excitation d'au moins un electro-aimant
US9611797B2 (en) * 2012-10-30 2017-04-04 National Instruments Corporation Direct injection flexible multiplexing scheme
US9478338B2 (en) * 2014-12-03 2016-10-25 Eaton Corporation Actuator driver circuit
FR3094409B1 (fr) * 2019-03-26 2021-02-26 Continental Automotive Procédé de commande d’un injecteur de carburant haute pression
US11073051B2 (en) * 2019-06-24 2021-07-27 GM Global Technology Operations LLC Combination oil control valve and fuel injector driver

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1218673B (it) * 1987-08-25 1990-04-19 Marelli Autronica Circuito per il controllo di carichi induttivi in particolare per il comando degli elettroiniettori di un motore a ciclo diesel
US4862866A (en) * 1987-08-25 1989-09-05 Marelli Autronica S.P.A. Circuit for the piloting of inductive loads, particularly for operating the electro-injectors of a diesel-cycle internal combustion engine
DE3734415A1 (de) * 1987-10-12 1989-04-20 Bosch Gmbh Robert Schaltungsanordnung zur beschleunigung der versorgung eines elektromagnetischen verbrauchers
IT1223872B (it) * 1988-10-27 1990-09-29 Marelli Autronica Circuito per il pilotaggio di un carico induttivo in particolare per il comando degli elettroiniettori di un motore a ciclo diesel
IT1251259B (it) * 1991-12-23 1995-05-05 Elasis Sistema Ricerca Fiat Circuito di comando di carichi prevalentemente induttivi, in particolare elettroiniettori.
DE4237706C2 (de) * 1992-11-07 1996-09-12 Mtu Friedrichshafen Gmbh Einrichtung zur Aufschlagzeitpunkt-Erkennung für den Anker eines Magnetventils
DE607030T1 (de) * 1993-01-12 1995-05-18 Siliconix Inc PDM gemultiplexter Elektromagnetantrieb.
DE4413240A1 (de) * 1994-04-16 1995-10-19 Bosch Gmbh Robert Vorrichtung und ein Verfahren zur Ansteuerung eines elektromagnetischen Verbrauchers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9627198A1 *

Also Published As

Publication number Publication date
WO1996027198A1 (de) 1996-09-06
JP3955622B2 (ja) 2007-08-08
US5936827A (en) 1999-08-10
EP0812461B1 (de) 1999-05-06
JPH11501768A (ja) 1999-02-09

Similar Documents

Publication Publication Date Title
DE19539071A1 (de) Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers
EP0704097B1 (de) Vorrichtung und ein verfahren zur ansteuerung eines elektromagnetischen verbrauchers
EP0812461B1 (de) Vorrichtung zur ansteuerung wenigstens eines elektromagnetischen verbrauchers
EP0985814B1 (de) Verfahren und Vorrichtung zur Steuerung wenigstens eines Magnetventils
DE69533962T2 (de) Gleichstromwandler und denselben verwendende steuereinrichtung für induktive last
EP1185773B1 (de) Verfahren und vorrichtung zur ansteuerung eines kraftstoffeinspritzventils
DE102009006179B4 (de) Schaltungsanordnung zur Ansteuerung eines Einspritzventils
EP1792069B1 (de) Schaltungsanordnung und verfahren zum laden und entladen wenigstens einer kapazitiven last
WO2007025702A2 (de) Steuerungsanordnung für einen spannungskonverter und verfahren
WO2011131467A2 (de) Verfahren zum betreiben einer brennkraftmaschine, bei dem ein magnetventil zum einspritzen von kraftstoff betätigt wird
DE602004004664T2 (de) Vorrichtung zum Steuern der Elektroeinspritzventile und Elektroventile einer Brennkraftmaschine und eine Methode dafür
DE19634342A1 (de) Vorrichtung zur Ansteuerung wenigstens zweier elektromagnetischer Verbraucher
DE19808780A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines Verbrauchers
DE19701471A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE1576328B1 (de) Thyristorsteuereinrichtung fuer elektromagnetische Einspritzduesen
DE19821561A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
WO1997035109A1 (de) Induktive zündeinrichtung
DE19617264A1 (de) Vorrichtung und Verfahren zur Ansteuerung eines elektromagnetischen Verbrauchers
DE19912966A1 (de) Vorrichtung zur Steuerung eines Mengensteuerventils
EP0854281B1 (de) Verfahren und Vorrichtung zur Ansteuerung wenigstens eines elektromagnetischen Verbrauchers
DE3404245A1 (de) Hochspannungs-generatorschaltung fuer ein kraftfahrzeugzuendsystem
EP0945610A2 (de) Verfahren und Vorrichtung zum Schalten einer Induktivität
DE69804801T2 (de) Leistungssteuerschaltung für einen elektromagnetischen betätiger, wie einspritzventil oder elektromagnetventil
DE19826037C2 (de) Verfahren und Vorrichtung zur Ansteuerung wenigstens eines Verbrauchers
DE10015647A1 (de) Verfahren und Vorrichtung zur Ansteuerung zumindest eines elektromagnetischen Verbrauchers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19980114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 59601828

Country of ref document: DE

Date of ref document: 19990610

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990721

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140225

Year of fee payment: 19

Ref country code: FR

Payment date: 20140218

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150424

Year of fee payment: 20

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150202

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59601828

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302