EP0804300A1 - Verfahren und vorrichtung zur herstellung von stahlband mit kaltwalzeigenschaften - Google Patents
Verfahren und vorrichtung zur herstellung von stahlband mit kaltwalzeigenschaftenInfo
- Publication number
- EP0804300A1 EP0804300A1 EP95932632A EP95932632A EP0804300A1 EP 0804300 A1 EP0804300 A1 EP 0804300A1 EP 95932632 A EP95932632 A EP 95932632A EP 95932632 A EP95932632 A EP 95932632A EP 0804300 A1 EP0804300 A1 EP 0804300A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rolling
- strip
- thickness
- cooling
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/46—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
- B21B1/463—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/021—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
- C21D8/0215—Rapid solidification; Thin strip casting
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/24—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
- B21B1/26—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/30—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
- B21B1/32—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
- B21B1/34—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work by hot-rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/46—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
- B21B1/466—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a non-continuous process, i.e. the cast being cut before rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2201/00—Special rolling modes
- B21B2201/04—Ferritic rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2201/00—Special rolling modes
- B21B2201/12—Isothermic rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2201/00—Special rolling modes
- B21B2201/14—Soft reduction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/004—Heating the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B45/0215—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
- B21B45/0218—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4998—Combined manufacture including applying or shaping of fluent material
- Y10T29/49988—Metal casting
- Y10T29/49991—Combined with rolling
Definitions
- the invention relates to a method for producing steel strip with cold rolling properties according to the preamble of claim 1 and a system for performing this method
- a generic method is known from EP 0 541 574 B1, in which finished strip with cold rolling properties is produced directly in a hot rolling mill from a raw material produced by casting close to final dimensions. It provides that a thin slab strand with a maximum thickness of 100 mm is first produced in a continuous casting installation, with a rolling device being arranged directly behind the continuous casting mold. on which the casting strand is rolled to the solidification thickness with a liquid and solid core (casting rolls). The thin slab strand is then descaled and hot-rolled to a thickness of 10 - 30 mm at temperatures above 1100 ° C on a rolling device with, for example, three stands. The intermediate strip, which is hot-rolled in this way, is divided into partial lengths using band shears.
- the known method aims at the production of cold rolling strip with as little energy expenditure as possible.
- the hot rolling is carried out in part with the heat remaining from the continuous casting process.
- the disadvantage here is the need to provide inductive heating of the strip-shaped intermediate product for the second part of the hot rolling despite the use of the heat from the continuous casting
- the object of the invention is. to specify a method and a plant for its implementation, in which a separate reheating of the strip-shaped intermediate product and the energy and plant expenditure associated therewith are avoided.
- the properties of the material produced should be improved as far as possible in the direction of the cold rolling properties.
- the present invention only provides a single coherent hot rolling process, that is to say it dispenses with a second hot rolling process and the inductive intermediate heating required for this.
- the hot rolling takes place in a single pass, at the end of which there is accelerated cooling to a temperature in the range from 850 to 600 ° C.
- the finished steel strip is then produced by isothermal rolling in at least three pass passes, in each of which a thickness reduction of at least 35% takes place, and following this finishing rolling accelerated to a temperature of at most only 100 ⁇ C cooled.
- the finish rolling takes place at a comparatively significantly lower temperature (approx. 250 to 600 ° C.).
- ⁇ T 0 to 20 ° C.
- the method should expediently be operated in such a way that the heat input by means of a specially introduced deformation work ("speed up") is always above the heat loss to be expected due to radiation and the temperature control is ensured by means of targeted cooling between the rolling passes. If, in fact, the actual temperature of the steel strip has fallen below a critical value during the rolling process, it is hardly possible to achieve a return to the desired value by changing the rolling parameters.
- the intermediate vessel 11 allows the contained steel melt to flow in a continuous flow into a continuous casting mold 12 arranged underneath, which has liquid cooling (not shown) and leads to the formation of a casting strand consisting of a continuous shell and a liquid core.
- the hot casting strand arrives in a casting roller device arranged below the continuous casting mold 12, which further reduces the thickness of the casting strand with the partially liquid core.
- the thin slab strand 1 with a thickness of 30 to 100 mm, preferably 40 to 70 mm emerges from the casting roller device 13.
- the thickness reduction during casting rolling is at least 10%, preferably at least 30%.
- the strand then passes into a descaling device 19, which is preferably designed as a hydromechanical descaling device.
- the thin slab mill 1 has a temperature in the range of 1150 up to 900 ° C.
- the thin slab strand 1 is fed to a hot rolling device 15 directly downstream of the descaling device 19, in which the thickness of the thin slab strand 1 is reduced by at least 50% to form an intermediate belt of a maximum of 20 mm, preferably 10 to 20 mm, in thickness.
- a compensating furnace (not shown) directly in front of the hot rolling device 15, which holds the thin slab strand 1, which is expediently separated into partial lengths, at the desired hot rolling temperature.
- the hot rolling device 15 which expediently has two or three stands or else one Reversing rolling mill has, it is normally recommended to switch on a separating unit, for example in the form of a band shear 17, to divide the intermediate strip produced into the partial lengths already mentioned.
- the hot-rolled intermediate strip according to the invention accelerates cooled to a temperature in the range 850-600 ⁇ C.
- the respective expedient to either end Abkuhltemperatur ⁇ chtet on the chemical composition of the steel used and on the desired Gefugezusammen GmbH and after to be obtained mechanical properties in the finished strip.
- the cooling takes place in a first cooling device 18, which is connected directly to the band shears 17 in the diagram shown.
- a winding device 20 In many cases it is advisable, for reasons of space, to wind up the sections of the intermediate strip which are at the temperature desired for the subsequent finish rolling in a winding device 20 to form intermediate strip coiis and to keep them at the desired temperature in a compensating furnace 21.
- the intermediate strip for carrying out the subsequent finishing rolling is unwound again on an unwinding device 22 directly downstream of this compensating furnace 21.
- a Walzein ⁇ chtung 24 For the finishing rolling, which is carried out of the isothermal rolling in the temperature range from 600 to 850 C in ⁇ form, a Walzein ⁇ chtung 24 is provided which has at least three scaffolding.
- a rolling device with four or a maximum of five stands is recommended. An even larger number of finishing stands is generally not practical.
- the rolling stands are operated in such a way that the strip thickness is reduced by at least 25% per roll pass.
- the finished strip leaving the rolling mill has a maximum thickness of 2 mm, preferably a thickness of 0.5 to 1.5 mm.
- the actual temperature of the steel strip in the rolling device 24 is monitored by temperature sensors (not shown).
- the steel strip emerging from the rolling device 24 is immediately accelerated in a second cooling device 25 to a temperature of at most 100 ° C.
- the accelerated cooling expediently takes place at a cooling rate in the range from 10 to 25 ° C./s.
- the finished strip can be passed through a liquid cooling bath.
- spray cooling devices with the smallest possible roller spacing of less than 250 mm can also be used in the course of the roller table in a manner known per se.
- the finished strip produced in this way should expediently be wound up in the form of coils for removal.
- a corresponding winding device 26 is provided in the system diagram.
- intermediate band coils provided between the hot rolling device 15 and the rolling device 24 has the advantage that, on the one hand, an intermediate material buffer is created which allows the rolling devices to operate less prone to malfunction, and, on the other hand, the compensation furnace 21 required for maintaining the temperature of such a buffer material only has a comparatively small area claimed.
- the casting strand When it emerged from the continuous casting mold, the casting strand still had a liquid core with a format of 80 mm thick and 1300 mm wide. The mean temperature of this cast strand was about 1310 at the mold outlet ⁇ C. In this state, the Dünnbrammengibilitiestrang was introduced into a casting roll and reduced in thickness by 25%, so that a solidification thickness of 60 mm yielded. After descaling with the help of a pressurized water jet, the thin slab strand was reduced in thickness on a three-stand hot rolling mill by approx. 66%, so that an intermediate strip with a thickness of 20 mm was created.
- the temperature at the entry into the hot rolling mill was at 1130 C and ⁇ at the outlet at 938 ° C.
- this intermediate belt was divided into sections and cooled to a temperature of about 700 ° C. accelerated.
- a compensating oven which was also operated at 700 C ⁇
- the finishing train generated from the partial lengths were fed. This had a total of five stands, which were operated with a total thickness reduction of 95%.
- the intermediate belt fed to the first roll stand at 650 ⁇ C had a somewhat elevated temperature of 658 ⁇ C when it emerged from this stand, which was reduced to approx. 650 ⁇ C again by a spray cooling device arranged in front of the second roll stand.
- the outlet temperature of the second roll stand of 664 C ⁇ through a further spray cooling device on an inlet temperature for the third rolling stand 650 C ⁇ was reduced prior to the third roll stand.
- the finished strip produced in this way with 1 was 0 mm in thickness in a water cooling at a cooling rate of 21 ⁇ C / s cooled down to about 90 ° C and subsequently wound into finished coils.
- the finished strip produced in this way showed excellent mechanical and technological properties that were comparable to that of a cold strip.
- the production route according to the invention leads to a particularly fine-grained microstructure, which is clearly less expensive than the result according to the method known from EP 0 541 574 B1.
- reheating to 1100 ° C. before the second hot rolling leads to a significant grain coarsening, which is excluded in the method according to the invention because of the selected temperature range from 850 to 600 ° C.
- Another difference with regard to grain size formation comes from the different finish rolling.
- further dynamic grain refinement with a simultaneous increase in strength and toughness takes place during isothermal rolling, which takes place at temperatures lying at the recrystallization threshold, at the prescribed overall degree of deformation of well over 90%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
- Continuous Casting (AREA)
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4438783 | 1994-10-20 | ||
DE4438783 | 1994-10-20 | ||
DE19520832A DE19520832A1 (de) | 1994-10-20 | 1995-05-31 | Verfahren und Vorrichtung zur Herstellung von Stahlband mit Kaltwalzeigenschaften |
DE19520832 | 1995-05-31 | ||
PCT/DE1995/001347 WO1996012573A1 (de) | 1994-10-20 | 1995-09-21 | Verfahren und vorrichtung zur herstellung von stahlband mit kaltwalzeigenschaften |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0804300A1 true EP0804300A1 (de) | 1997-11-05 |
EP0804300B1 EP0804300B1 (de) | 1999-05-06 |
Family
ID=25941531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95932632A Expired - Lifetime EP0804300B1 (de) | 1994-10-20 | 1995-09-21 | Verfahren und vorrichtung zur herstellung von stahlband mit kaltwalzeigenschaften |
Country Status (8)
Country | Link |
---|---|
US (1) | US5832985A (de) |
EP (1) | EP0804300B1 (de) |
JP (1) | JP3807628B2 (de) |
CN (1) | CN1062196C (de) |
AT (1) | ATE179640T1 (de) |
AU (1) | AU686014B2 (de) |
CA (1) | CA2202616C (de) |
WO (1) | WO1996012573A1 (de) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1003293C2 (nl) | 1996-06-07 | 1997-12-10 | Hoogovens Staal Bv | Werkwijze en inrichting voor het vervaardigen van een stalen band. |
IT1289036B1 (it) * | 1996-12-09 | 1998-09-25 | Danieli Off Mecc | Linea di colata continua compatta |
PT954392E (pt) | 1996-12-19 | 2004-12-31 | Corus Staal Bv | Processo para producao de tira de aco ou chapa |
GB2322320A (en) * | 1997-02-21 | 1998-08-26 | Kvaerner Metals Cont Casting | Continuous casting with rolling stages separated by a temperature controlling stage |
DE19712616C2 (de) * | 1997-03-26 | 1999-07-15 | Thyssen Stahl Ag | Warmwalzen von Stahlband |
KR100368253B1 (ko) * | 1997-12-09 | 2003-03-15 | 주식회사 포스코 | 미니밀프로세스에의한열연판의제조방법 |
GB9802443D0 (en) * | 1998-02-05 | 1998-04-01 | Kvaerner Metals Cont Casting | Method and apparatus for the manufacture of light gauge steel strip |
DE19860570C1 (de) * | 1998-12-22 | 2000-10-05 | Sms Demag Ag | Verfahren zur Erzeugung von runden Knüppeln |
DE19915624A1 (de) * | 1999-04-03 | 2000-10-05 | Sms Demag Ag | Verfahren und Anordnung zur kontinuierlichen Herstellung von Fertigprofilen aus Metall |
FR2795005B1 (fr) * | 1999-06-17 | 2001-08-31 | Lorraine Laminage | Procede de fabrication de toles aptes a l'emboutissage par coulee directe de bandes minces, et toles ainsi obtenues |
DE10325955A1 (de) * | 2003-06-07 | 2004-12-23 | Sms Demag Ag | Verfahren und Anlage zum Erzeugen von Stahlprodukten mit bester Oberflächenqualität |
US7666351B2 (en) * | 2004-06-30 | 2010-02-23 | Sumitomo Electric Industries, Ltd. | Method of producing a magnesium-alloy material |
PL1662011T3 (pl) * | 2004-11-24 | 2009-06-30 | Giovanni Arvedi | Walcowana na gorąco taśma ze stali dwufazowej, mająca właściwości taśmy walcowanej na zimno |
DE102005052774A1 (de) * | 2004-12-21 | 2006-06-29 | Salzgitter Flachstahl Gmbh | Verfahren zum Erzeugen von Warmbändern aus Leichtbaustahl |
CA2611390C (en) * | 2005-07-19 | 2012-05-15 | Giovanni Arvedi | Process and plant for manufacturing steel plates without interruption |
CA2611396C (en) | 2005-07-19 | 2012-06-19 | Giovanni Arvedi | Process and related plant for manufacturing steel long products without interruption |
ITMI20051764A1 (it) * | 2005-09-22 | 2007-03-23 | Danieli Off Mecc | Processo e impianto per la produzione di nastro metallico |
DE102005047936A1 (de) * | 2005-10-06 | 2007-04-12 | Sms Demag Ag | Verfahren und Vorrichtung zum Reinigen von Brammen, Dünnbrammen, Profilen oder dergleichen |
ITRM20050523A1 (it) * | 2005-10-21 | 2007-04-22 | Danieli Off Mecc | Processo e impianto per la produzione di nastro metallico. |
AT504782B1 (de) * | 2005-11-09 | 2008-08-15 | Siemens Vai Metals Tech Gmbh | Verfahren zur herstellung eines warmgewalzten stahlbandes und kombinierte giess- und walzanlage zur durchführung des verfahrens |
ITRM20070150A1 (it) * | 2007-03-21 | 2008-09-22 | Danieli Off Mecc | Processo e impianto per la produzione di nastro metallico |
DE102008003222A1 (de) * | 2007-09-13 | 2009-03-19 | Sms Demag Ag | Kompakte flexible CSP-Anlage für Endlos-, Semi-Endlos- und Batchbetrieb |
DE102010008389A1 (de) * | 2010-02-17 | 2011-08-18 | Kocks Technik GmbH & Co. KG, 40721 | Walzanlage zum Erzeugen eines rohrförmigen Produkts und Verfahren zum Erzeugen eines rohrförmigen Produkts |
AT511674B1 (de) * | 2011-06-24 | 2013-04-15 | Siemens Vai Metals Tech Gmbh | Inbetriebnahme einer fertigwalzstrasse in einer giess-walz-verbundanlage |
AT511657B1 (de) * | 2011-06-24 | 2013-04-15 | Siemens Vai Metals Tech Gmbh | Inbetriebnahme einer fertigwalzstrasse in einer giess-walz-verbundanlage |
KR101449180B1 (ko) * | 2012-12-21 | 2014-10-08 | 주식회사 포스코 | 고강도강의 형상 교정 및 압연 방법과 형상 교정 장치 |
CN103894572B (zh) * | 2014-04-10 | 2016-09-07 | 北京科技大学 | 一种连铸坯预处理方法 |
KR20170089045A (ko) * | 2015-12-21 | 2017-08-03 | 주식회사 포스코 | 마르텐사이트 함유 강판의 제조방법 및 장치 |
IT201700039423A1 (it) * | 2017-04-10 | 2018-10-10 | Arvedi Steel Eng S P A | Impianto e procedimento per la produzione in molteplici modalita' di nastri e lamiere d’acciaio |
CN111545719A (zh) * | 2020-05-11 | 2020-08-18 | 江苏联峰实业有限公司 | 一种钢坯梯度连铸设备及其连铸工艺 |
CN111589865B (zh) * | 2020-05-26 | 2022-04-05 | 中冶赛迪工程技术股份有限公司 | 一种低屈强比薄带钢连铸连轧生产线及生产工艺 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2000642B1 (de) * | 1968-01-24 | 1973-04-06 | Sumitomo Metal Ind | |
JPS6199631A (ja) * | 1984-10-22 | 1986-05-17 | Kawasaki Steel Corp | 深絞り用薄鋼板の製造方法 |
NL8702050A (nl) * | 1987-09-01 | 1989-04-03 | Hoogovens Groep Bv | Werkwijze en inrichting voor de vervaardiging van bandvormig vervormingsstaal met goede mechanische en oppervlakte-eigenschappen. |
NL8802892A (nl) * | 1988-11-24 | 1990-06-18 | Hoogovens Groep Bv | Werkwijze voor het vervaardigen van vervormingsstaal en band vervaardigd daarmee. |
IT1244295B (it) * | 1990-07-09 | 1994-07-08 | Giovanni Arvedi | Processo ed impianto per l'ottenimento di nastri di acciaio avvolti, aventi caratteristiche di laminati a freddo ottenuti direttamente in linea di laminazione a caldo |
WO1992022389A1 (en) * | 1991-06-18 | 1992-12-23 | Mannesmann Ag | Process and plant for obtaining steel strip coils having cold-rolled characteristics and directly obtained in a hot-rolling line |
US5276952A (en) * | 1992-05-12 | 1994-01-11 | Tippins Incorporated | Method and apparatus for intermediate thickness slab caster and inline hot strip and plate line |
AT398396B (de) * | 1993-02-16 | 1994-11-25 | Voest Alpine Ind Anlagen | Verfahren zum herstellen eines bandes, vorstreifens oder einer bramme |
-
1995
- 1995-09-21 WO PCT/DE1995/001347 patent/WO1996012573A1/de active IP Right Grant
- 1995-09-21 CN CN95195695A patent/CN1062196C/zh not_active Expired - Fee Related
- 1995-09-21 AU AU35613/95A patent/AU686014B2/en not_active Ceased
- 1995-09-21 JP JP51357596A patent/JP3807628B2/ja not_active Expired - Fee Related
- 1995-09-21 US US08/817,784 patent/US5832985A/en not_active Expired - Lifetime
- 1995-09-21 EP EP95932632A patent/EP0804300B1/de not_active Expired - Lifetime
- 1995-09-21 AT AT95932632T patent/ATE179640T1/de active
- 1995-09-21 CA CA002202616A patent/CA2202616C/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO9612573A1 * |
Also Published As
Publication number | Publication date |
---|---|
ATE179640T1 (de) | 1999-05-15 |
JP3807628B2 (ja) | 2006-08-09 |
JPH11511696A (ja) | 1999-10-12 |
US5832985A (en) | 1998-11-10 |
CA2202616A1 (en) | 1996-05-02 |
AU686014B2 (en) | 1998-01-29 |
AU3561395A (en) | 1996-05-15 |
EP0804300B1 (de) | 1999-05-06 |
CN1161009A (zh) | 1997-10-01 |
WO1996012573A1 (de) | 1996-05-02 |
CN1062196C (zh) | 2001-02-21 |
CA2202616C (en) | 2001-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0804300B1 (de) | Verfahren und vorrichtung zur herstellung von stahlband mit kaltwalzeigenschaften | |
EP1951451B1 (de) | Verfahren zur herstellung eines warmgewalzten stahlbandes und kombinierte giess- und walzanlage zur durchführung des verfahrens | |
EP1469954B2 (de) | Verfahren zur herstellung von warmband aus austenitischen nichtrostenden stählen | |
EP2035587B1 (de) | Verfahren und anlage zur herstellung von warmband-walzgut aus siliziumstahl auf der basis von dünnbrammen | |
DE4402402B4 (de) | Verfahren zur Herstellung von warmgewalztem Stahlband aus stranggegossenem Vormaterial und Anlage zur Durchführung des Verfahrens | |
EP0853987A2 (de) | Anlage zum Herstellen eines Bandes, Vorstreifens oder einer Bramme | |
DE69902185T2 (de) | Verfahren und entsprechende fertigungsstrasse zur direkten herstellung von fertig gepressten oder tiefgezogenen teilen aus sehr dünnem , in linie gegossenem und warmgewalztem band | |
EP4003623A1 (de) | HERSTELLUNG EINES TIEFZIEHBAREN STAHLBANDS IN EINER GIEß-WALZ- VERBUNDANLAGE | |
DE19520832A1 (de) | Verfahren und Vorrichtung zur Herstellung von Stahlband mit Kaltwalzeigenschaften | |
AT409227B (de) | Verfahren und anlage zur herstellung von warmgewalztem stahlband aus einer stahlschmelze | |
DE19600990C2 (de) | Verfahren zum Warmwalzen von Stahlbändern | |
WO1997004891A1 (de) | Verfahren und einrichtung zum betreiben einer stranggiessanlage | |
DD287433A5 (de) | Verfahren zum herstellen eines stahlbandes mit einer dicke von weniger als 10 mm | |
EP3974072B1 (de) | Giess-walz-verbundanlage und verfahren zum betrieb der giess-walz-verbundanlage | |
EP0823294A1 (de) | Verfahren und Anlage zur Herstellung von Band aus niedriggekohlten und ultraniedriggekohlten Stählen | |
AT525283B1 (de) | Verfahren zur Herstellung eines Dualphasenstahlbands in einer Gieß-Walz-Verbundanlage, ein mit dem Verfahren hergestelltes Dualphasenstahlband und eine Gieß-Walz-Verbundanlage | |
EP0970256B1 (de) | Warmwalzen von stahlband | |
DE10025080A1 (de) | Verfahren zum Herstellen von Metallband | |
DE19749706C1 (de) | Verfahren zur Herstellung von dünnem warmgewalztem Stahlband | |
WO2024200274A1 (de) | Verfahren zur direkten herstellung eines trip-stahlbands in einer giess-walz-verbundanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970414 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE FR GB IT LI |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19980928 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE FR GB IT LI |
|
REF | Corresponds to: |
Ref document number: 179640 Country of ref document: AT Date of ref document: 19990515 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM & CO. PATENTANWAELTE Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990507 |
|
REF | Corresponds to: |
Ref document number: 59505866 Country of ref document: DE Date of ref document: 19990610 |
|
ET | Fr: translation filed | ||
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: HOOGOVENS STAAL BV Effective date: 20000207 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SMS DEMAG AG |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20010816 Year of fee payment: 7 |
|
PLBO | Opposition rejected |
Free format text: ORIGINAL CODE: EPIDOS REJO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 20011228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20100922 Year of fee payment: 16 Ref country code: FR Payment date: 20101005 Year of fee payment: 16 Ref country code: AT Payment date: 20100914 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100921 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100922 Year of fee payment: 16 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110921 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120531 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59505866 Country of ref document: DE Effective date: 20120403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110921 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 179640 Country of ref document: AT Kind code of ref document: T Effective date: 20110921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110921 |