EP0794383A2 - Buse de pulvérisation par pression - Google Patents

Buse de pulvérisation par pression Download PDF

Info

Publication number
EP0794383A2
EP0794383A2 EP97810083A EP97810083A EP0794383A2 EP 0794383 A2 EP0794383 A2 EP 0794383A2 EP 97810083 A EP97810083 A EP 97810083A EP 97810083 A EP97810083 A EP 97810083A EP 0794383 A2 EP0794383 A2 EP 0794383A2
Authority
EP
European Patent Office
Prior art keywords
swirl
liquid
nozzle
tube
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97810083A
Other languages
German (de)
English (en)
Other versions
EP0794383A3 (fr
EP0794383B1 (fr
Inventor
Klaus Dr. Döbbeling
Peter Dr. Jansohn
Hans Peter Knöpfel
Christian Dr. Steinbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0794383A2 publication Critical patent/EP0794383A2/fr
Publication of EP0794383A3 publication Critical patent/EP0794383A3/fr
Application granted granted Critical
Publication of EP0794383B1 publication Critical patent/EP0794383B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3478Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet the liquid flowing at least two different courses before reaching the swirl chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3442Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a cone having the same axis as the outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0408Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing two or more liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/24Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
    • F23D11/26Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • F23D11/383Nozzles; Cleaning devices therefor with swirl means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3431Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves
    • B05B1/3447Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels being formed at the interface of cooperating elements, e.g. by means of grooves the interface being a cylinder having the same axis as the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the invention relates to the field of combustion technology. It relates to a pressure atomizing nozzle, comprising a nozzle body, in which a turbulence or swirl chamber is formed, which is connected to an outside space via a nozzle bore and has at least one supply channel for the liquid to be atomized, through which said liquid can be supplied under pressure, and a method of operating this pressure atomizing nozzle.
  • Atomizer burners are known in which the oil which is burned is finely divided mechanically. It is broken down into fine droplets of approximately 10 to 400 ⁇ m in diameter (oil mist), which evaporate and burn in the flame when mixed with the combustion air.
  • pressure atomizers see Lueger - Lexikon dertechnik, Manual Verlags-Anstalt Stuttgart, 1965, Volume 7, p.600
  • the oil is supplied to an atomizer nozzle under high pressure by an oil pump.
  • the oil enters a swirl chamber via essentially tangential slots and leaves the nozzle via a nozzle bore. It is thereby achieved that the oil particles receive two components of motion, an axial and a radial.
  • the oil film emerging from the nozzle bore as a rotating hollow cylinder widens into a hollow cone due to the centrifugal force whose edges start to vibrate unstably and tear into small oil droplets.
  • the atomized oil forms a cone with a more or less large opening angle.
  • Swirl nozzles pressure atomizers
  • air-assisted atomizers of the known types with a pressure of up to approx. 100 bar are hardly suitable for this because they do not allow a small angle of propagation, the atomization quality is restricted and the impulse of the drop spray is low.
  • This consists of a nozzle body, in which a turbulence chamber is formed, which is connected to an outside space via at least one nozzle bore, and which has at least one supply channel for the liquid to be atomized, which can be supplied under pressure. It is characterized in that the cross-sectional area of the feed channel opening into the turbulence chamber is larger by a factor of 2 to 10 than the cross-sectional area of the nozzle bore.
  • This arrangement makes it possible to generate a high level of turbulence in the turbulence chamber, which does not subside on the way to the point of exit from the nozzle.
  • the fluid jet is caused to decay rapidly by the turbulence generated in front of the nozzle bore in the outside space, that is to say after leaving the nozzle bore, resulting in low angles of propagation of 20 ° and less.
  • the droplet size is also very small.
  • the aim is to generate a drop spray over the entire load range of the gas turbine (approx. 10% to 120% fuel mass flow based on nominal load conditions), which enables stable, low-pollution combustion in a given air flow field .
  • the fuel admission pressure drops due to the falling total fuel mass flow.
  • the energy required for atomization for pressure atomizers is over given the fuel admission pressure, so that the atomization quality worsens in this load range and the penetration depth of the fuel spray into the air flow becomes smaller due to the low fuel admission pressure.
  • the invention tries to avoid all of these disadvantages. It is based on the task of developing a pressure atomizing nozzle which has a simple construction, requires only a small installation space and enables a spray angle of the liquid to be atomized which is adapted to the respective operating conditions.
  • a sufficiently large nozzle admission pressure should be generated even with small fuel mass flows (approx. 25% based on nominal load conditions), while the nozzle with a large fuel mass flow (approx. 100-120% based on nominal load conditions) should not generate an excessively high nozzle admission pressure should need.
  • the drop spray produced in this way is intended to enable low-pollutant and stable combustion over the entire load range of the gas turbine.
  • a pressure atomizing nozzle comprising a nozzle body, in which a turbulence and / or swirl chamber is formed, which is connected to an outside space via a nozzle bore and has at least one first feed channel for the liquid to be atomized, through which said liquid is submerged Pressure can be supplied, in that at least one further supply channel for part of the liquid to be atomized or for a second liquid to be atomized opens into the chamber, through which said part of the liquid or the second liquid can be supplied under pressure and with swirl .
  • this two-stage pressure atomizing nozzle enables adaptation of the pot spray (atomization quality, drop size, spray angle) to the respective load conditions. Furthermore, the nozzle is characterized by a simple design that takes up little space.
  • the main atomizer stage thus consists of a swirl-free, turbulence-assisted pressure atomizer nozzle which, at high nozzle admission pressures, for example 100 bar, delivers very fine atomization with extremely small spray angles.
  • the rotating movement creates a hollow cone flow at the nozzle hole, so that the liquid only exits the nozzle as a film from a certain mass fraction that is supplied by the swirl stage. If the mass fraction of the swirl stage is increased with falling total liquid mass flow, the liquid admission pressure can be kept at a high level, so that fine atomization can be maintained even with a low mass flow.
  • the liquid spray cone angle is larger at low load, this compensates for the lower penetration depth of the liquid spray into the air flow. Since a very small spray cone angle is desired at full load and overload, the liquid mass flow to be atomized flowing through the swirl channels is reduced or completely switched off in these cases.
  • the liquid to be atomized can be fed into the chamber via the first feed channel (s) with swirling action.
  • the pressure atomizer nozzle is operated at full and overload operation via a main pressure swirl stage with a low swirl, by swirling the entire liquid to be atomized via at least one first supply channel to the swirl chamber, where a swirled flow is generated which then passes through the nozzle bore into the outside space , and in partial and low-load operation it is additionally operated via a further pressure swirl stage with a larger swirl, in that part of the liquid to be atomized or a second liquid to be atomized is more swirled through the at least one further supply channel and there is a strongly swirled flow is generated, which then passes through the nozzle bore into the outside space, the proportion of the more swirled liquid supplied via the further swirl stage being increased as the total liquid mass flow decreases, this can be done e way an excellent adaptation of the atomization to the respective load range.
  • the nozzle according to the invention is advantageously used in a premix burner of the double-cone design or in a four-slot burner, part of the combustion air (approx. 3 to 7%) being conducted in the jacket flow around the nozzle in the vicinity of the nozzle. This avoids local detachment and recirculation areas. The recirculation zone is prevented from moving into the interior of the burner.
  • FIGS. 1 to 3 show a first exemplary embodiment of the invention, FIG. 1 showing the pressure atomizing nozzle in a partial longitudinal section and FIGS. 2 and 3 showing two cross sections in different planes.
  • the pressure atomizing nozzle comprises a nozzle body 30, consisting of a first tube 31, which is closed at its end seen in the direction of flow by a conical cover 32. In the middle of the cover 32 there is a nozzle bore 33, the longitudinal axis of which is designated by 34.
  • a second tube 35 which has a smaller outside diameter than the inside diameter of the first tube 31, is inserted into the tube 31 and extends as far as the cover 32 and rests thereon.
  • the annular space 36 between the two tubes 31 and 35 serves to supply the or a part of the liquid 37 to be atomized.
  • the end of the tube 35 resting on the cover 32 is provided with four tangentially arranged slots 38 which connect the annular space 36 to produce a chamber 39 which serves as a swirl chamber for the liquid 37 to be atomized flowing through the slots 38.
  • the chamber 39 is delimited by the inner walls of the cover 32 and the second tube 35, and by a filler 40 which is inserted in the interior of the second tube 35 and fastened therein. This filler 40 is spaced from the top edge of the slots 38, however, it can also be at the same height in another embodiment variant.
  • the pressure atomizing nozzle according to the invention thus has two stages - a turbulence generator stage (see FIG. 2) and a pressure swirl stage (see FIG. 3).
  • the pressure atomizing nozzle can also be provided with more or fewer slots 38 or feed channels 41.
  • the feed channel 41 can extend over the entire circumference of the filler 40, so that an annular gap results as a feed channel into the turbulence chamber 39. A different distribution of the channels over the circumference is also possible.
  • FIGS. 4 to 6 show a further exemplary embodiment of the invention, FIG. 4 showing the pressure atomizing nozzle according to the invention in a partial longitudinal section and FIGS. 5 and 6 showing two cross sections in different planes.
  • the structure of the nozzle differs from the exemplary embodiment described above only in that a swirl main stage is present in the nozzle instead of the turbulence generator stage.
  • the supply channels 41a in contrast to the supply channels 41 in FIG. 1, are not arranged axially aligned in the filler 40, but are positioned tangentially, so that the liquid 37 to be atomized swirls in both via the channels 38 and via the channels 41a the chamber 39 arrives. It is important that the liquid 37 to be atomized receives only a small swirl, which leads to a narrow spray cone angle ⁇ , when it has flowed through the channels 41a, while the swirl of the liquid 37 is greater after flowing through the channels 38 and thus a larger one Spray cone angle ⁇ is achievable.
  • the pressure atomizing nozzle comprises a nozzle body 30, consisting of a first tube 31, which is closed at its end seen in the direction of flow by a conical cover 32. In turn, the nozzle bore 33 is arranged in the cover 32.
  • a second tube 35 is inserted, which has a smaller outside diameter than the inside diameter of the first tube 31, so that an annular channel 36 is formed between the tubes 31 and 35, which according to FIG. 7 has a different height due to different inserts can have.
  • This ring channel 36 serves as a feed line for a swirl stage.
  • the second tube 35 is delimited by a filler 40 of larger diameter, which encloses the chamber 39 with the cover 32 of the first tube 31.
  • At least one tangential swirl channel 38 for connecting the ring channel 36 to the chamber 39 is arranged in the filler 40.
  • 6 channels 38 are advantageous.
  • at least one feed channel 41 is also arranged axially parallel as a turbulence channel for the liquid to be atomized, the feed channel / feed channels 41 opening into the swirl channel / swirl channels 38.
  • channels 38 and 41 are arranged so that, for example, the swirl channels 38 into the Open channels 41, so that the liquid to be atomized only enters the chamber 39 via the channels 41.
  • Fig. 8 shows a schematic representation of a possible liquid supply system to the pressure atomizing nozzle.
  • the liquid to be atomized in this case liquid fuel (oil) 12
  • a return valve 49 is used to set the pump admission pressure.
  • a shut-off valve 50 is arranged in the fuel line between the pump 42 and the pressure vessel 43.
  • Two lines 44, 45 extend from the pressure vessel 43, the line 44 feeding the annular space 36 (and thus the swirl atomizer stage) and the line 45 being connected to the feed channels 41 (turbulence generator stage) or 41a (swirl atomizer stage).
  • a control valve 46 and 47 is arranged in each of the lines 44 and 45, which allow the respective amount of liquid supplied to be regulated.
  • one of the two valves 46, 47 can also be completely closed, so that in this case only one of the two atomizing stages of the nozzle is in operation. Smooth switching is possible between the two stages.
  • several burners for example a gas turbine combustion chamber, are to be supplied with fuel via this fuel supply system.
  • the circuit shown has the advantage that only the two valves 46, 47, i.e. only one control valve per stage.
  • FIG. 9 Another embodiment variant analogous to FIG. 8 is shown in FIG. 9.
  • the pressure atomizing nozzle is fed with water 51 via a feed line 44 and with oil 12 via a feed line 45.
  • a pump 42 is arranged in each of the lines 44 and 45 and a shut-off valve 50 is arranged downstream, with which the lines 44 and 45 can optionally be closed.
  • the amount of the liquids 12, 51 to be atomized is regulated by means of the control valves 46, 47. If, as indicated in FIG. 9, several burners, for example a gas turbine combustion chamber, are supplied with liquid fuel 12 or water 51 via this liquid supply system, then the nozzle can be operated at the start or at partial load by only atomizing oil 12 finely via the main swirl stage .
  • the swirl stage can be designed for maximum pressure at maximum fuel mass flow ⁇ BS .
  • water 51 is then supplied via line 44.
  • Water 51 and oil 12 mix in chamber 39 and form an emulsion which is atomized when it emerges from the nozzle. This leads to a reduction in NOx emissions.
  • FIG. 10 shows the distribution of the fuel mass flow in BS as a function of the radius R of the spray in a pressure atomizer nozzle according to the embodiment variant shown in FIG. 1 at a certain distance from the nozzle. If only the turbulence-generating stage is operated, a very narrow spray cone angle ⁇ is achieved. If, on the other hand, only the swirl generator stage is operated, this has an effect in a larger spray cone angle ⁇ . With the combined operation of both stages, the mass distribution between the two stages can be varied continuously.
  • FIG. 11 shows the distribution of the fuel mass flow in BS as a function of the radius R of the spray in a pressure atomizer nozzle according to the embodiment variant shown in FIG. 4 at a certain distance from the nozzle.
  • the pressure atomizing nozzle according to the invention can, for example, be installed in a gas turbine burner and operated as follows:
  • a pressure atomizer nozzle is to be used in an embodiment variant according to FIG. 1. Since a very narrow spray cone angle ⁇ is desired for full load and overload, only the turbulence-assisted atomizer stage is used. For this purpose, the entire fuel mass flow to be atomized is supplied without swirl to the turbulence chamber 39 via at least one feed channel 41 (four feed channels 41 according to FIG. 1), a highly turbulent flow being generated there, which then passes through the nozzle bore 33 into the burner.
  • This main stage delivers a very fine atomization with an extremely narrow spray cone angle ⁇ (approx. 20 °) at nozzle admission pressures of approx. 100 bar.
  • this turbulence-assisted pressure atomizer stage is combined with a swirl stage for the generation of small drops at low throughputs.
  • part of the fuel to be atomized is swirled into the chamber 30 via at least one further feed channel 38 (four feed channels 38 according to FIG. 1), so that the turbulence chamber 30 is additionally used as a swirl chamber.
  • the rotating movement creates a hollow cone flow at the nozzle bore 33. From a certain mass fraction that is passed through the swirl stage, the fuel only emerges as a film from the nozzle.
  • the fuel admission pressure can be kept at a high level (> 10 bar) and fine atomization can be maintained even with a low mass flow.
  • the spray cone angle becomes low load ⁇ enlarged. Since the depth of penetration of the fuel spray into the air flow is lower at low load than at full load, this is compensated for by the larger spray cone angle ⁇ .
  • a very narrow spray cone angle ⁇ is desirable for full load and overload. For this purpose, the fuel mass flow flowing through the swirl channels 38 must be switched off completely, so that the behavior of a pure turbulence-assisted pressure atomizer nozzle is achieved.
  • a pressure atomizer nozzle according to FIG. 4 is used, then during full and overload operation of the gas turbine, the entire fuel to be atomized is fed to the swirl chamber 39 with a small swirl via at least one first feed channel 41a (four feed channels 41a according to FIG. 4), one swirling there Flow is generated, which then passes through the nozzle bore 33 into the outside space. Due to the low swirl, a narrow spray cone angle ⁇ is achieved, which leads to fine atomization of the fuel at high pressures. In partial and low-load operation, part of the fuel to be atomized is additionally swirled to the chamber 39 via the at least one further feed channel 38 (four feed channels 38 according to FIG. 4).
  • the pressure atomizing nozzle according to the invention can be installed, for example, in a premix burner of the double-cone type, the basic structure of which is described in EP 0 321 809 B1.
  • the two partial cone bodies 1, 2 are arranged radially offset from one another with respect to their longitudinal symmetry axes 1b, 2b. This creates tangential air inlet slots 19, 20 on both sides of the partial cone bodies 1, 2 in the opposite inflow arrangement, through which the combustion air 15 flows into the interior 14 of the burner, ie into the cone cavity formed by the two partial cone bodies 1, 2.
  • the partial cone bodies 1, 2 expand in a straight line in the direction of flow, ie they have a constant angle ⁇ with the burner axis 5.
  • the two partial cone bodies 1, 2 each have a cylindrical starting part 1a, 2a, which also run offset.
  • the pressure atomizing nozzle 3 according to the invention, which is arranged approximately in the narrowest cross section of the conical interior 14 of the burner.
  • the burner can also be designed without a cylindrical initial part, that is to say purely conical.
  • the liquid fuel 12 is atomized by means of the nozzle 3 in the manner described above. Different spray cone angles ⁇ result depending on the respective operating conditions.
  • the fuel spray 4 is enclosed in the interior 14 of the burner by the combustion air stream 15 flowing tangentially into the burner through the air inlet slots 19, 20; the mixture is ignited only at the outlet of the burner, the flame being stabilized in the region of the burner mouth by a backflow zone 6.
  • the two partial cone bodies 1, 2 each have a fuel feed line 8, 9 along the air inlet slots 19, 20, which are provided on the long side with openings 17 through which a further fuel 13 (gaseous or liquid) can flow.
  • This fuel 13 is mixed with the combustion air 15 flowing through the tangential air inlet slots 19, 20 into the interior of the burner, which is represented by the arrows 16. Mixed operation of the burner via the nozzle 3 and the fuel feeds 8, 9 is possible.
  • a front plate 10 is arranged with openings 11, through which dilution air or cooling air can be supplied to the combustion chamber 22 if necessary. In addition, this air supply ensures that flame stabilization takes place at the burner outlet. There is a stable flame front 7 with a backflow zone 6.
  • guide plates 21a, 21b can be seen from FIGS. 13 to 15. These can be opened or closed, for example, about a pivot point 23, so that the original gap size of the tangential air inlet slots 19, 20 is thereby changed. Of course, the burner can also be operated without these baffles 21a, 21b.
  • a burner can also be operated with the method just described, consisting essentially of a swirl generator 100 for a combustion air stream 15 and of means for injecting a fuel, in which a mixing section 220 is arranged downstream of the swirl generator 100 and this has transition channels 201 running in the flow direction within a first section part 200 for transferring a flow formed in the swirl generator 100 into the flow cross section 18 downstream of the transition channels 201 of the mixing section 220, the means for injecting the fuel being a pressure atomizer nozzle according to the invention, which according to one of the The method described above is operated.
  • the swirl generator 100 is preferably a conical structure, which is acted upon tangentially several times (for example via four slots) by the combustion air flow 15 flowing in tangentially.
  • This combustion air flow 15 wraps around the fuel drop spray 4, which was previously formed by atomizing the liquid fuel 12 in the two-stage pressure atomizing nozzle 3.
  • the flow that is formed is seamlessly transferred to a transition piece 200, which is extended by a tube 18, using a transition geometry (transition channels 201) provided downstream of the swirl generator 100. Both parts form the mixing section 220, to which the actual combustion chamber (not shown here) is connected on the downstream side.
  • the mixing section allows the fuel to be premixed very well with the combustion air, enables low-loss flow control and prevents the flame from re-igniting from the combustion chamber due to the maximum axial speed on the axis. Since the axial speed drops towards the wall, bores 48 are provided in the wall of the tube, through which combustion air 15 flows, which causes an increase in speed along the wall. Only downstream of the mixing tube 220 does a central backflow zone 6, which has the properties of a flame holder, form. It is also advantageous here if 3 up to 7% of the combustion air flow 15 are guided as a jacket air flow 15a around the pressure atomizing nozzle. This in turn prevents separation and recirculation areas in the vicinity of the nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Nozzles (AREA)
EP97810083A 1996-03-05 1997-02-20 Méthode d'exploitation d'une buse de pulvérisation par pression Expired - Lifetime EP0794383B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19608349 1996-03-05
DE19608349A DE19608349A1 (de) 1996-03-05 1996-03-05 Druckzerstäuberdüse

Publications (3)

Publication Number Publication Date
EP0794383A2 true EP0794383A2 (fr) 1997-09-10
EP0794383A3 EP0794383A3 (fr) 1998-04-01
EP0794383B1 EP0794383B1 (fr) 2002-11-06

Family

ID=7787198

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810083A Expired - Lifetime EP0794383B1 (fr) 1996-03-05 1997-02-20 Méthode d'exploitation d'une buse de pulvérisation par pression

Country Status (5)

Country Link
US (1) US5934555A (fr)
EP (1) EP0794383B1 (fr)
JP (1) JPH09327641A (fr)
CN (1) CN1164442A (fr)
DE (2) DE19608349A1 (fr)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892212A3 (fr) * 1997-07-17 1999-02-10 Abb Research Ltd. Buse de pulvérisation par pression
EP0911583A1 (fr) * 1997-10-27 1999-04-28 Asea Brown Boveri AG Procédé de mise en oeuvre d'un brûleur à prémélange
EP0924461A1 (fr) 1997-12-22 1999-06-23 Abb Research Ltd. Buse de pulvérisation par pression à deux étages
EP0924460A1 (fr) 1997-12-22 1999-06-23 Abb Research Ltd. Buse de pulvérisation par pression à deux étages
WO1999047270A1 (fr) * 1998-03-18 1999-09-23 Slowik Guenter Procede permettant de modifier le mouvement de rotation d'un fluide dans la chambre de rotation d'un gicleur et generateur de rotation pour gicleurs
DE10008389A1 (de) * 2000-02-23 2001-08-30 Guenter Slowik Verfahren und Leitungssystem zur Beeinflussung des Tropfenspektrums von fluiden Stoffen bei deren Zerstäubung
US7972133B2 (en) 2006-03-27 2011-07-05 Alstom Technology Ltd. Burner for the operation of a heat generator and method of use
CN102580867A (zh) * 2012-02-10 2012-07-18 烟台润达垃圾处理环保股份有限公司 一种液体高速雾化机
RU2482925C1 (ru) * 2012-04-19 2013-05-27 Олег Савельевич Кочетов Центробежная вихревая форсунка кочетова
RU2486964C1 (ru) * 2012-04-19 2013-07-10 Олег Савельевич Кочетов Центробежная вихревая форсунка
RU2493521C1 (ru) * 2012-04-10 2013-09-20 Олег Савельевич Кочетов Система кочетова оборотного водоснабжения
RU2493520C1 (ru) * 2012-04-10 2013-09-20 Олег Савельевич Кочетов Система оборотного водоснабжения
RU2500482C1 (ru) * 2012-08-16 2013-12-10 Олег Савельевич Кочетов Широкофакельная центробежная форсунка
RU2550837C1 (ru) * 2013-11-27 2015-05-20 Олег Савельевич Кочетов Центробежная вихревая форсунка кочетова
RU2550838C1 (ru) * 2013-11-06 2015-05-20 Олег Савельевич Кочетов Форсунка вихревая кочетова
RU2550839C1 (ru) * 2013-11-06 2015-05-20 Олег Савельевич Кочетов Форсунка кочетова
RU2561974C1 (ru) * 2014-04-16 2015-09-10 Олег Савельевич Кочетов Широкофакельная центробежная форсунка
RU2564279C1 (ru) * 2014-05-22 2015-09-27 Олег Савельевич Кочетов Вихревая форсунка кочетова
CN104456553B (zh) * 2014-11-24 2016-08-10 浙江大学 适用于研究液体燃料燃烧特性的锥形火焰燃烧器及其方法
RU2605115C1 (ru) * 2015-09-25 2016-12-20 Олег Савельевич Кочетов Вихревая форсунка кочетова
RU2605114C1 (ru) * 2015-09-25 2016-12-20 Олег Савельевич Кочетов Вихревая форсунка кочетова
RU2634776C2 (ru) * 2016-03-14 2017-11-03 Олег Савельевич Кочетов Центробежная форсунка
RU2645978C1 (ru) * 2016-10-17 2018-02-28 Олег Савельевич Кочетов Способ оборотного водоснабжения с применением градирен
RU2648068C2 (ru) * 2015-03-20 2018-03-22 Мария Михайловна Стареева Центробежная широкофакельная форсунка
RU2650123C1 (ru) * 2017-03-13 2018-04-09 Олег Савельевич Кочетов Форсунка вихревая
RU2654736C1 (ru) * 2017-11-08 2018-05-22 Олег Савельевич Кочетов Акустическая форсунка
RU2656459C1 (ru) * 2017-11-08 2018-06-05 Олег Савельевич Кочетов Вихревая акустическая форсунка
RU2656445C1 (ru) * 2017-11-08 2018-06-05 Олег Савельевич Кочетов Форсунка акустическая с вихревым распылителем
RU2657488C1 (ru) * 2017-11-08 2018-06-14 Олег Савельевич Кочетов Вихревая акустическая форсунка с вихревым блоком
RU2657487C1 (ru) * 2017-11-08 2018-06-14 Олег Савельевич Кочетов Форсунка акустическая
RU2657493C1 (ru) * 2017-09-07 2018-06-14 Олег Савельевич Кочетов Центробежная форсунка
RU2658030C1 (ru) * 2017-11-08 2018-06-19 Олег Савельевич Кочетов Форсунка вихревая
RU2658029C1 (ru) * 2017-11-08 2018-06-19 Олег Савельевич Кочетов Акустический блок для форсунки
RU2664877C1 (ru) * 2017-09-18 2018-08-23 Олег Савельевич Кочетов Широкофакельная центробежная форсунка
RU2665408C1 (ru) * 2017-10-12 2018-08-29 Олег Савельевич Кочетов Газопромыватель
RU2665401C1 (ru) * 2017-10-12 2018-08-29 Олег Савельевич Кочетов Конический форсуночный скруббер
RU2665399C1 (ru) * 2017-10-12 2018-08-29 Олег Савельевич Кочетов Скруббер
RU2668898C1 (ru) * 2017-12-05 2018-10-04 Олег Савельевич Кочетов Газопромыватель
RU2669831C2 (ru) * 2015-09-25 2018-10-16 Мария Михайловна Стареева Вихревая форсунка кочетова
RU2670831C2 (ru) * 2015-09-25 2018-10-25 Анна Михайловна Стареева Вихревая форсунка кочетова

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19713377A1 (de) 1997-04-01 1998-10-15 Siemens Ag Düse, Verwendung einer Düse und Verfahren zur Eindüsung eines ersten Fluids in ein zweites Fluid
EP0911582B1 (fr) * 1997-10-27 2003-12-10 ALSTOM (Switzerland) Ltd Procédé d'utilisation d'un brûleur à prémélange et brûleur à prémélange
US6598801B1 (en) * 2000-11-17 2003-07-29 General Electric Company Methods and apparatus for injecting water into gas turbine engines
ATE298632T1 (de) * 2001-04-13 2005-07-15 Urea Casale Sa Vorrichtung zur wirbelschichtgranulation
US20030155434A1 (en) * 2002-02-01 2003-08-21 Rini Daniel P. Spray nozzle apparatus and method of use
US6886342B2 (en) * 2002-12-17 2005-05-03 Pratt & Whitney Canada Corp. Vortex fuel nozzle to reduce noise levels and improve mixing
GB0300939D0 (en) * 2003-01-16 2003-02-12 Unilever Plc Method of creating a cosmetic spray
DE10345342A1 (de) * 2003-09-19 2005-04-28 Engelhard Arzneimittel Gmbh Verfahren zur Herstellung eines lagerstabilen Extraktes aus Efeublättern, sowie ein nach diesem Verfahren hergestellter Extrakt
WO2005078348A1 (fr) * 2004-02-12 2005-08-25 Alstom Technology Ltd Systeme de bruleur de premelange pour faire fonctionner une chambre de combustion, et procede pour faire fonctionner une chambre de combustion
US6951455B2 (en) * 2004-02-25 2005-10-04 Jacob Goldman Gas burner
RU2265467C1 (ru) * 2004-06-16 2005-12-10 Долотказин Владимир Исмаилович Огнетушитель
EP1828684A1 (fr) * 2004-12-23 2007-09-05 Alstom Technology Ltd Bruleur de premelange dote d'un parcours de melange
US7597275B2 (en) * 2005-07-25 2009-10-06 Isothermal Systems Research, Inc. Methods and apparatus for atomization of a liquid
US7621739B2 (en) * 2005-07-25 2009-11-24 Isothermal Systems Research, Inc. Injection molding apparatus for producing an atomizer
GB0515592D0 (en) 2005-07-28 2005-09-07 Glaxo Group Ltd Nozzle for a nasal inhaler
FR2891314B1 (fr) * 2005-09-28 2015-04-24 Snecma Bras d'injecteur anti-cokefaction.
JP2008031847A (ja) * 2006-07-26 2008-02-14 Hitachi Ltd ガスタービン燃焼器とその運転方法、及びガスタービン燃焼器の改造方法
EP2058590B1 (fr) * 2007-11-09 2016-03-23 Alstom Technology Ltd Procédé de fonctionnement d'un brûleur
GB0803959D0 (en) * 2008-03-03 2008-04-09 Pursuit Dynamics Plc An improved mist generating apparatus
CN101910723B (zh) * 2007-11-27 2013-07-24 阿尔斯通技术有限公司 用于在预混燃烧器中燃烧氢气的设备
US9291139B2 (en) * 2008-08-27 2016-03-22 Woodward, Inc. Dual action fuel injection nozzle
EP2177273A1 (fr) * 2008-10-16 2010-04-21 Urea Casale S.A. Procédé de vaporisation et buse d'atomisation d'un liquide
TWM362371U (en) * 2009-02-24 2009-08-01 jin-chi Liu Nozzle structure for gas combustor
CN101987288B (zh) * 2009-08-06 2013-06-05 中国石油大学(北京) 可控粒径的喷雾造粒喷嘴
US8141363B2 (en) * 2009-10-08 2012-03-27 General Electric Company Apparatus and method for cooling nozzles
JP5483344B2 (ja) * 2010-02-26 2014-05-07 株式会社吉野工業所 噴霧器
WO2012162525A2 (fr) 2011-05-26 2012-11-29 Georgia-Pacific Wood Products Llc Systèmes et procédés pour ajuster la teneur en humidité d'un plaquage
US9745936B2 (en) 2012-02-16 2017-08-29 Delavan Inc Variable angle multi-point injection
CN102765119B (zh) * 2012-07-25 2015-02-25 哥乐巴环保科技(上海)有限公司 一种施胶喷嘴
US8960571B2 (en) * 2012-08-17 2015-02-24 Spraying Systems Co. Full cone air-assisted spray nozzle assembly
CN102872786A (zh) * 2012-09-11 2013-01-16 宁波锦莱化工有限公司 一种扁形氯化反应装置
WO2014062076A1 (fr) * 2012-10-17 2014-04-24 Schlumberger Canada Limited Brûleur à phases multiples
EP2962041B1 (fr) * 2013-02-28 2020-05-13 United Technologies Corporation Chambre de combustion de turbine à gaz avec gicleur d'injecteur de carburant à turbulence variable
JP6021705B2 (ja) * 2013-03-22 2016-11-09 三菱重工業株式会社 燃焼器、および、ガスタービン
JP6209411B2 (ja) * 2013-09-26 2017-10-04 新日鐵住金株式会社 コークス炉ガス回収装置及びコークス炉ガス回収用スプレーノズル
CN104289339A (zh) * 2014-10-29 2015-01-21 无锡纳润特科技有限公司 脱硫雾化喷嘴结构
CN104390215A (zh) * 2014-11-17 2015-03-04 浙江大学 适用于研究液体燃料燃烧特性的锥形火焰燃烧器及其方法
EP3088802A1 (fr) * 2015-04-29 2016-11-02 General Electric Technology GmbH Buse pour un lobe de combustion de turbine a gaz
GB201512932D0 (en) * 2015-07-22 2015-09-02 Linde Ag A Nebuliser
JP6804755B2 (ja) * 2015-11-26 2020-12-23 ウエムラ技研株式会社 渦巻型噴射ノズル
RU2635603C2 (ru) * 2016-05-04 2017-11-14 Общество с ограниченной ответственностью "ПРОСТОР" Центробежная форсунка
CN105863720A (zh) * 2016-05-06 2016-08-17 太原理工大学 一种矿用气泡雾化细水雾降尘设备
US11020758B2 (en) * 2016-07-21 2021-06-01 University Of Louisiana At Lafayette Device and method for fuel injection using swirl burst injector
CN108160359B (zh) * 2016-12-08 2024-03-08 斯普瑞喷雾系统(上海)有限公司 可实现多种喷雾功能的喷嘴装置
CN106824578A (zh) * 2016-12-26 2017-06-13 包光华 一种雾化喷嘴
US10641493B2 (en) 2017-06-19 2020-05-05 General Electric Company Aerodynamic fastening of turbomachine fuel injectors
CN107191928B (zh) * 2017-06-23 2023-09-22 山西大学 一种多级雾化油枪
CN109909083B (zh) * 2018-01-18 2024-09-06 漳州英特捷自动化科技有限公司 一种可自动清堵的旋流雾化喷头
CN108636625B (zh) 2018-03-13 2021-09-14 因诺弥斯特有限责任公司 多模式流体喷嘴
CN108745676B (zh) * 2018-06-14 2024-06-18 汇专科技集团股份有限公司 一种气流约束型微细油雾喷嘴装置
DE102018125848A1 (de) * 2018-10-18 2020-04-23 Man Energy Solutions Se Brennkammer einer Gasturbine, Gasturbine und Verfahren zum Betreiben derselben
CN109027391A (zh) * 2018-10-18 2018-12-18 广西卡迪亚科技有限公司 一种组合式液气两相流体精密计量喷雾电磁阀
CN110314783B (zh) * 2019-07-24 2023-07-28 山东钢铁集团有限公司 一种膛线加速式雾化喷枪及操作方法
CN111450703B (zh) * 2020-05-09 2024-05-07 中国华能集团有限公司 燃煤锅炉高温喷氨脱硝装置
CN113019728B (zh) * 2021-02-16 2023-01-06 河津市龙门炭黑有限公司 一种炭黑生产用二级雾化原料油喷嘴
CN113522640B (zh) * 2021-09-16 2021-12-03 浙大宁波理工学院 一种用于给新能源汽车驱动电机铁芯精准上胶的喷胶头
CN114823430B (zh) * 2022-06-28 2022-10-18 江苏芯梦半导体设备有限公司 一种用于晶圆清洗的设备及方法
EP4309799A1 (fr) * 2022-07-22 2024-01-24 Blue Planet Aqua UG Dispositif de tourbillonement d'un liquide
CN115228642A (zh) * 2022-08-02 2022-10-25 北京航空航天大学 小流量分散流雾化喷嘴及低流速雾化器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2628867A (en) * 1948-01-07 1953-02-17 Gen Motors Corp Duplex nozzle
DE893133C (de) * 1944-06-14 1953-10-12 Verwertungsgesellschaft Dr Ing Verfahren und Duese zum kontinuierlichen Einspritzen verschieden grosser Brennstoffmengen, insbesondere fuer Strahltriebwerke
DE918422C (de) * 1945-02-03 1954-09-27 Verwertungsgesellschaft Dr Ing Duese zum kontinuierlichen Einspritzen sehr verschieden grosser Brennstoffmengen
FR2039104A5 (fr) * 1969-04-01 1971-01-15 Parker Hannifin Corp
GB2088037A (en) * 1980-11-25 1982-06-03 Gen Electric Fuel Nozzle for a Gas Turbine Engine
EP0121877A2 (fr) * 1983-04-06 1984-10-17 BASF Aktiengesellschaft Buse de pulvérisation en forme d'un cône creux
EP0496016A1 (fr) * 1991-01-23 1992-07-29 Asea Brown Boveri Ag Buse de pulvérisation haute-pression
DE4415863A1 (de) * 1994-05-05 1995-11-09 Tecaro Ag Ölbrennerdüse

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE251040C (fr) *
AT41323B (de) * 1907-12-24 1910-03-10 Adder Cash Register Syndicate Anzeigevorrichtung für Kassenregistrier- und dergleichen Apparate.
US2539778A (en) * 1947-05-03 1951-01-30 Gilbert & Barker Mfg Co Rotary, internal-mixing, air-atomizing nozzle for oil burners
DE857924C (de) * 1949-06-03 1952-12-04 Emil Dr-Ing Kirschbaum Zerstaeubungsduese
DE862599C (de) * 1950-11-03 1953-01-12 Paul Lechler Fa Zerstaeuber zum gleichzeitigen Zerstaeuben mehrerer Stoffe
US3512719A (en) * 1968-04-05 1970-05-19 Morton E Phelps Siphon nozzle
DE1956799A1 (de) * 1969-11-12 1971-05-13 Allpackma A Miebach Gmbh Vorrichtung zum dosierten Abfuellen bzw. Zugeben fliessfaehiger Massen
US3638865A (en) * 1970-08-31 1972-02-01 Gen Electric Fuel spray nozzle
US3717306A (en) * 1971-03-10 1973-02-20 Hushon R Nozzle for spraying foaming materials
US3804333A (en) * 1972-10-16 1974-04-16 Gulf Research Development Co Liquid waste burner
DE2320442C3 (de) * 1973-04-21 1978-04-27 Smit Nijmegen B.V., Nijmegen (Niederlande) Brenner zur Verbrennung von flüssigem Brennstoff
CH595555A5 (fr) * 1975-12-12 1978-02-15 Bbc Brown Boveri & Cie
US4265085A (en) * 1979-05-30 1981-05-05 United Technologies Corporation Radially staged low emission can-annular combustor
DE3423373A1 (de) * 1983-08-29 1985-03-07 Institut für Getreideverarbeitung im VEB Kombinat Nahrungsmittel und Kaffee, DDR 1505 Bergholz-Rehbrücke Duese zur zerstaeubung viskoser fluessigkeiten
DD245825B3 (de) * 1986-02-10 1992-11-26 H J Herzog Stroemungstechnisch Spruehduese zur bekaempfung von staub- glimmbraenden
CH674561A5 (fr) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
DE4118538C2 (de) * 1991-06-06 1994-04-28 Maurer Friedrich Soehne Zweistoffdüse
DE4440681C2 (de) * 1994-11-15 1996-10-17 Awab Umformtechn Gmbh & Co Kg Sprühdüse, insbesondere zum Versprühen von Wasser in Brandschutzanlagen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE893133C (de) * 1944-06-14 1953-10-12 Verwertungsgesellschaft Dr Ing Verfahren und Duese zum kontinuierlichen Einspritzen verschieden grosser Brennstoffmengen, insbesondere fuer Strahltriebwerke
DE918422C (de) * 1945-02-03 1954-09-27 Verwertungsgesellschaft Dr Ing Duese zum kontinuierlichen Einspritzen sehr verschieden grosser Brennstoffmengen
US2628867A (en) * 1948-01-07 1953-02-17 Gen Motors Corp Duplex nozzle
FR2039104A5 (fr) * 1969-04-01 1971-01-15 Parker Hannifin Corp
GB2088037A (en) * 1980-11-25 1982-06-03 Gen Electric Fuel Nozzle for a Gas Turbine Engine
EP0121877A2 (fr) * 1983-04-06 1984-10-17 BASF Aktiengesellschaft Buse de pulvérisation en forme d'un cône creux
EP0496016A1 (fr) * 1991-01-23 1992-07-29 Asea Brown Boveri Ag Buse de pulvérisation haute-pression
DE4415863A1 (de) * 1994-05-05 1995-11-09 Tecaro Ag Ölbrennerdüse

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892212A3 (fr) * 1997-07-17 1999-02-10 Abb Research Ltd. Buse de pulvérisation par pression
EP0911583A1 (fr) * 1997-10-27 1999-04-28 Asea Brown Boveri AG Procédé de mise en oeuvre d'un brûleur à prémélange
US6270338B1 (en) 1997-10-27 2001-08-07 Asea Brown Boveri Ag Method for operating a premix burner
EP0924461A1 (fr) 1997-12-22 1999-06-23 Abb Research Ltd. Buse de pulvérisation par pression à deux étages
EP0924460A1 (fr) 1997-12-22 1999-06-23 Abb Research Ltd. Buse de pulvérisation par pression à deux étages
US6036479A (en) * 1997-12-22 2000-03-14 Abb Research Ltd. Two-stage pressure atomizer nozzle
WO1999047270A1 (fr) * 1998-03-18 1999-09-23 Slowik Guenter Procede permettant de modifier le mouvement de rotation d'un fluide dans la chambre de rotation d'un gicleur et generateur de rotation pour gicleurs
US6517012B1 (en) 1998-03-18 2003-02-11 Slowik Guenter Method for varying the swirling movement of a fluid in the swirl chamber of a nozzle, and a nozzle system
DE10008389A1 (de) * 2000-02-23 2001-08-30 Guenter Slowik Verfahren und Leitungssystem zur Beeinflussung des Tropfenspektrums von fluiden Stoffen bei deren Zerstäubung
US7972133B2 (en) 2006-03-27 2011-07-05 Alstom Technology Ltd. Burner for the operation of a heat generator and method of use
CN102580867A (zh) * 2012-02-10 2012-07-18 烟台润达垃圾处理环保股份有限公司 一种液体高速雾化机
RU2493521C1 (ru) * 2012-04-10 2013-09-20 Олег Савельевич Кочетов Система кочетова оборотного водоснабжения
RU2493520C1 (ru) * 2012-04-10 2013-09-20 Олег Савельевич Кочетов Система оборотного водоснабжения
RU2482925C1 (ru) * 2012-04-19 2013-05-27 Олег Савельевич Кочетов Центробежная вихревая форсунка кочетова
RU2486964C1 (ru) * 2012-04-19 2013-07-10 Олег Савельевич Кочетов Центробежная вихревая форсунка
RU2500482C1 (ru) * 2012-08-16 2013-12-10 Олег Савельевич Кочетов Широкофакельная центробежная форсунка
RU2550838C1 (ru) * 2013-11-06 2015-05-20 Олег Савельевич Кочетов Форсунка вихревая кочетова
RU2550839C1 (ru) * 2013-11-06 2015-05-20 Олег Савельевич Кочетов Форсунка кочетова
RU2550837C1 (ru) * 2013-11-27 2015-05-20 Олег Савельевич Кочетов Центробежная вихревая форсунка кочетова
RU2561974C1 (ru) * 2014-04-16 2015-09-10 Олег Савельевич Кочетов Широкофакельная центробежная форсунка
RU2564279C1 (ru) * 2014-05-22 2015-09-27 Олег Савельевич Кочетов Вихревая форсунка кочетова
CN104456553B (zh) * 2014-11-24 2016-08-10 浙江大学 适用于研究液体燃料燃烧特性的锥形火焰燃烧器及其方法
RU2648068C2 (ru) * 2015-03-20 2018-03-22 Мария Михайловна Стареева Центробежная широкофакельная форсунка
RU2605115C1 (ru) * 2015-09-25 2016-12-20 Олег Савельевич Кочетов Вихревая форсунка кочетова
RU2605114C1 (ru) * 2015-09-25 2016-12-20 Олег Савельевич Кочетов Вихревая форсунка кочетова
RU2670831C9 (ru) * 2015-09-25 2018-11-29 Анна Михайловна Стареева Вихревая форсунка кочетова
RU2670831C2 (ru) * 2015-09-25 2018-10-25 Анна Михайловна Стареева Вихревая форсунка кочетова
RU2669831C2 (ru) * 2015-09-25 2018-10-16 Мария Михайловна Стареева Вихревая форсунка кочетова
RU2634776C2 (ru) * 2016-03-14 2017-11-03 Олег Савельевич Кочетов Центробежная форсунка
RU2645978C1 (ru) * 2016-10-17 2018-02-28 Олег Савельевич Кочетов Способ оборотного водоснабжения с применением градирен
RU2650123C1 (ru) * 2017-03-13 2018-04-09 Олег Савельевич Кочетов Форсунка вихревая
RU2657493C1 (ru) * 2017-09-07 2018-06-14 Олег Савельевич Кочетов Центробежная форсунка
RU2664877C1 (ru) * 2017-09-18 2018-08-23 Олег Савельевич Кочетов Широкофакельная центробежная форсунка
RU2665399C1 (ru) * 2017-10-12 2018-08-29 Олег Савельевич Кочетов Скруббер
RU2665401C1 (ru) * 2017-10-12 2018-08-29 Олег Савельевич Кочетов Конический форсуночный скруббер
RU2665408C1 (ru) * 2017-10-12 2018-08-29 Олег Савельевич Кочетов Газопромыватель
RU2656459C1 (ru) * 2017-11-08 2018-06-05 Олег Савельевич Кочетов Вихревая акустическая форсунка
RU2658029C1 (ru) * 2017-11-08 2018-06-19 Олег Савельевич Кочетов Акустический блок для форсунки
RU2658030C1 (ru) * 2017-11-08 2018-06-19 Олег Савельевич Кочетов Форсунка вихревая
RU2657487C1 (ru) * 2017-11-08 2018-06-14 Олег Савельевич Кочетов Форсунка акустическая
RU2657488C1 (ru) * 2017-11-08 2018-06-14 Олег Савельевич Кочетов Вихревая акустическая форсунка с вихревым блоком
RU2656445C1 (ru) * 2017-11-08 2018-06-05 Олег Савельевич Кочетов Форсунка акустическая с вихревым распылителем
RU2654736C1 (ru) * 2017-11-08 2018-05-22 Олег Савельевич Кочетов Акустическая форсунка
RU2668898C1 (ru) * 2017-12-05 2018-10-04 Олег Савельевич Кочетов Газопромыватель

Also Published As

Publication number Publication date
EP0794383A3 (fr) 1998-04-01
DE19608349A1 (de) 1997-09-11
JPH09327641A (ja) 1997-12-22
CN1164442A (zh) 1997-11-12
EP0794383B1 (fr) 2002-11-06
DE59708638D1 (de) 2002-12-12
US5934555A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
EP0794383B1 (fr) Méthode d'exploitation d'une buse de pulvérisation par pression
EP0892212B1 (fr) Buse de pulvérisation par pression
EP0902233B1 (fr) Buse de pulvérisation par pression combinée
EP1802915B1 (fr) Bruleur pour turbine a gaz
DE3029095C2 (de) Doppelbrennstoffinjektor für ein Gasturbinentriebwerk
DE69718253T2 (de) Vorrichtung zur Einspritzung von mit Luft zerstäubten Einzelstrahlen aus flüssigem Brennstoff
EP0911583B1 (fr) Procédé de mise en oeuvre d'un brûleur à prémélange
DE60106815T2 (de) Ölzerstäuber
EP0777081B1 (fr) Brûleur à prémélange
CH680467A5 (fr)
EP0276696A2 (fr) Brûleur hybride pour fonctionnement en prémélange au gaz et/ou au mazout, notamment pour turbines à gaz
DE2446398A1 (de) Axialwirbelvergaser mit zentraleinspritzung
DE2143012A1 (de) Brennersysteme
EP1030109B1 (fr) Injecteur de combustible pour l'injection de combustibles liquides et/ou gazeux dans une chambre de combustion
EP0711953B1 (fr) Brûleur à prémélange
EP0924460B1 (fr) Buse de pulvérisation par pression à deux étages
EP0641971A2 (fr) Procédé pour commander un brûleur à prémélange
EP0718550B1 (fr) Gicleur
EP0924461B1 (fr) Buse de pulvérisation par pression à deux étages
EP0742411B1 (fr) Alimentation en air pour une chambre de combustion à prémélange
EP0911582B1 (fr) Procédé d'utilisation d'un brûleur à prémélange et brûleur à prémélange
EP0483554B1 (fr) Procédé pour la réduction au minimum des émissions de NOx dans une combustion
DE69423900T2 (de) V-jet atomisateur
EP0496016B1 (fr) Buse de pulvérisation haute-pression
DE2552864A1 (de) Verfahren und brenner zum verbrennen von fluessigen brennstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19980825

17Q First examination report despatched

Effective date: 20000616

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: METHOD OF OPERATING A PRESSURISED ATOMISING NOZZLE

RTI1 Title (correction)

Free format text: METHOD OF OPERATING A PRESSURISED ATOMISING NOZZLE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20021106

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021106

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

REF Corresponds to:

Ref document number: 59708638

Country of ref document: DE

Date of ref document: 20021212

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030313

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59708638

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59708638

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59708638

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59708638

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160218

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160217

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59708638

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59708638

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59708638

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170219