EP0790408B1 - Circuit de mesure pour courant ionique dans des dispositifs d'allumages pour moteurs à combustion interne - Google Patents

Circuit de mesure pour courant ionique dans des dispositifs d'allumages pour moteurs à combustion interne Download PDF

Info

Publication number
EP0790408B1
EP0790408B1 EP97101842A EP97101842A EP0790408B1 EP 0790408 B1 EP0790408 B1 EP 0790408B1 EP 97101842 A EP97101842 A EP 97101842A EP 97101842 A EP97101842 A EP 97101842A EP 0790408 B1 EP0790408 B1 EP 0790408B1
Authority
EP
European Patent Office
Prior art keywords
ignition
circuit arrangement
accordance
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97101842A
Other languages
German (de)
English (en)
Other versions
EP0790408A2 (fr
EP0790408A3 (fr
Inventor
Ulrich Dr. Bahr
Michael Daetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
DaimlerChrysler AG
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG, Volkswagen AG filed Critical DaimlerChrysler AG
Publication of EP0790408A2 publication Critical patent/EP0790408A2/fr
Publication of EP0790408A3 publication Critical patent/EP0790408A3/fr
Application granted granted Critical
Publication of EP0790408B1 publication Critical patent/EP0790408B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • F02P3/0453Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/0456Opening or closing the primary coil circuit with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits

Definitions

  • the invention relates to a circuit arrangement for ion current measurement according to the preamble of claim 1.
  • Such an ion current measuring circuit is known from US 5483818, which a differential amplifier connected as an inverting amplifier has, for this is the low potential side of the secondary winding Ignition coil through a resistor with the inverting input of the Differential amplifier connected while at its non-inverting Input voltage of approx. 40 V is applied.
  • To achieve the inverting amplifier property is the output through a resistor fed back to the inverting input and at the same time the Output signal for evaluating the ion current of a threshold circuit fed.
  • the further inverting amplifier is corresponding how the amplifier connected directly to the secondary winding is constructed, its output via a resistor with the inverting Input of the further amplifier is connected and its non-inverting The same bias voltage is fed to the input.
  • the object of the present invention is therefore a circuit arrangement for ion current measurement of the type mentioned at the beginning specify that avoids this disadvantage.
  • Another advantage that can be achieved with the present invention lies in one Lowering the value of the measuring voltage below that in the prior art specified voltage value of 40 V.
  • an ignition current measuring resistor connected in series.
  • the at this ignition current measuring resistor The voltage drop that occurs during the burning period of the Spark plug in an advantageous manner as a measurement signal for the amount of ignition current serve.
  • This ignition current measurement signal can be used to to control the ignition sequence for a secondary ignition.
  • the second diverting circuit branch can be via a Output of the inverting amplifier controllable semiconductor switch, in particular a transistor with the ground potential of the circuit arrangement get connected. This allows the Increase the current carrying capacity of the differential amplifier.
  • a Switched differential amplifier provided as an inverting amplifier.
  • the one input of such a differential amplifier connected to the low potential side of the secondary winding of the ignition coil, while a reference voltage is supplied to the other input, whose value corresponds to the measuring voltage and at which the output over a measuring resistor is connected to the one input.
  • the ion current is thus converted into an as simple as possible Measuring signal serving voltage converted, which then a Evaluation is fed.
  • the reference voltage supplied to such a differential amplifier becomes generated in the simplest way with a constant voltage source.
  • the use of a multi-cylinder internal combustion engine Measuring paths of the spark plugs serving as ion current probes in parallel are switched, so that the advantage of low circuit complexity preserved.
  • the measuring sections should be used as an ion current probe serving spark plugs are measured completely independently, but the circuits can also be present several times, the Output signals are then time-multiplexed in a suitable form.
  • the Invention a parallel circuit from a dissipation resistor and at least one Zener diode connected in series to the secondary winding to the energy that is left after the spark has been torn off located in the ignition coil or the secondary capacitances quickly dissipate so that the ion current measurement can then be carried out without great delay is feasible.
  • a parallel circuit from a dissipation resistor and at least one Zener diode connected in series to the secondary winding to the energy that is left after the spark has been torn off located in the ignition coil or the secondary capacitances quickly dissipate so that the ion current measurement can then be carried out without great delay is feasible.
  • two antiserially connected zener diodes instead of just one Zener diode used to be compared to use only to achieve a decay behavior of a single Zener diode, the Duration is shorter and also symmetrical.
  • FIG. 1 shows a transistor ignition system of a 4-cylinder internal combustion engine, each with an ignition output stage assigned to a cylinder, each ignition output stage comprising an ignition coil Tr 1 ,..., Tr 4 , a primary winding P 1 ,..., P 4 and a secondary winding S 1 , ..., S 4 comprises, and an ignition transistor 1a, ..., 1d connected to the primary winding P 1 , ..., P 4 with associated spark plug Zk 1 , ..., Zk 4 is constructed.
  • the primary windings P 1 ,..., P 4 are connected with one connection to an on-board battery voltage U B of 12 V, for example, provided by an on-board battery, while the other connection is connected to the associated ignition transistor 1a,..., 1d.
  • the ignition transistors 1a, ..., 1d are controlled by their control electrodes controlled a circuit 2a for cylinder selection, which in turn with a Control circuit 2 is connected, the corresponding ignition trigger for the individual cylinders of this circuit 2a supplies.
  • control unit 4 the function of an engine management takes over and in turn controls the control circuit 2.
  • this control unit 4 receives motor parameters via an input E, such as load, speed and temperature.
  • Corresponding actuators are controlled via outputs A.
  • the secondary windings S 1 , ..., S 4 are each connected with their high voltage side to the associated spark plug Zk 1 , ..., Zk 4 , while their low potential side are combined in a circuit node S via a dissipation resistor R 3 .
  • This circuit node S is connected to the input of a differential amplifier 3 connected as a non-inverting amplifier, in that this circuit node S is connected to the inverting input of this differential amplifier 3.
  • a constant reference voltage U ref preferably 20 V
  • This constant reference voltage U ref is fed to the secondary windings S 1 , ..., S 4 via this differential amplifier 3 by means of a measuring resistor R1 fed back to the inverting input and thus reaches the spark plugs Zk 1 , ... working as ion measuring current paths as the test voltage U test . , Mark 4 .
  • the circuit according to the figure has a first and second diverting circuit branches A1 and A2.
  • the first discharge circuit branch A1 connects the circuit node S to the ground potential of the circuit via a semiconductor diode D 2
  • the second discharge circuit branch A2 consists of a series connection of an ignition current discharge resistor R 2 , a further semiconductor diode D 1 and a pnp transistor T
  • the ignition current measurement resistor R 2 is connected to the circuit node S and the collector electrode of the transistor T is at the ground potential of the circuit.
  • the base electrode of this transistor T is driven by the output of the differential amplifier 3.
  • the first diverting circuit branch A1 serves to derive negative voltage peaks occurring in one of the spark plugs Zk 1 ,... Zk 4 at the moment of a high voltage breakdown.
  • the actual ignition current is derived via the second derivation switching branch A 2 , which can also be constructed without the transistor T, which only serves to increase the current carrying capacity of the differential amplifier 3. If such a transistor T is dispensed with, the cathode of the semiconductor diode D 1 is connected directly to the output of the differential amplifier 3, so that the diverting branch A 2 is connected in parallel with the ion measuring resistor R 1 .
  • the generation of an ignition pulse by the control circuit 2 leads to the activation of the corresponding ignition transistor 1a, ..., 1d.
  • the ignition spark generated in this way on the associated spark plug Zk 1 ,..., Zk 4 leads to a certain burning duration, which is accompanied by an ignition current.
  • This ignition current flows through the low-resistance leakage circuit branch A 2 to a part via the differential amplifier 3 and to another part in accordance with the set operating point of the transistor T to ground potential.
  • This operating point of the transistor T is determined by the output signal U ion of the differential amplifier 3, which, by means of the feedback via the ion measuring resistor R 1, regulates its potential at the inverting input to the U ref potential, which represents the measuring voltage for the subsequent ion current measurement. An overload of the differential amplifier 3 by the ignition current is thus avoided by using such a transistor T.
  • the output signal U ion of the differential amplifier 3 indicates the level of the ignition current flowing through the ignition current measuring resistor R 2 and can therefore be used as a measurement signal of the ignition current after evaluation for charging and burning time control of the internal combustion engine.
  • the value of the ignition current measuring resistor R 2 is chosen so that its voltage drop U R2 with the value R 2 • I ignition is in the range of a few volts. Such a value for the resistor R 2 would be 15 ⁇ , for example.
  • the measuring voltage for the level of the ignition current could also be tapped at the emitter of the transistor T or with high resistance at the anode of the diode D 1 .
  • the tolerances of the base-emitter voltage of the transistor T or the diode forward voltage of the diode D 1 would then not be included in the measurement.
  • Another possibility for generating a measuring voltage for the ignition current is given in FIG. 2 explained below.
  • the residual energy still remaining in the corresponding secondary winding S 1 ,... S 4 or in the secondary capacitances must be rapidly dissipated.
  • the already mentioned dissipation resistor R 3 to which two antiserially connected Zener diodes Z 1 and Z 2 are connected in parallel.
  • the value of the dissipation resistance R 3 is preferably chosen so that it corresponds to the value (L sek / C sek ) 1/2 , the quantities L sek and C sek representing the coil inductance or coil and stray capacitances effective on the secondary side.
  • the value of this dissipation resistance R 2 will usually be in the range between 10 k ⁇ and 100 k ⁇ and thus causes the energy to dissipate rapidly.
  • the two Zener diodes Z 1 and Z 2 are necessary to limit the voltage drop occurring across the dissipation resistor R 3 , which would otherwise result in a considerable reduction in the ignition energy.
  • an ignition current of 100 mA at a resistor of 50 k ⁇ would cause a voltage drop of 5000 V.
  • the Zener voltages of the Zener diodes Z 1 and Z 2 are therefore chosen so that there is only a slight reduction in the ignition energy, for example in the amount of 50 V.
  • Zener diode Z 2 instead of using two Zener diodes Z 1 and Z 2 , it is also possible to provide only the Zener diode Z 2 and to dispense with the Zener diode Z 1 . However, this would cause the swing-out behavior to be asymmetrical and the swing-out duration to be extended somewhat. On the other hand, it would be advantageous that the voltage loss in ignition mode would be less than 1 V.
  • Zener diodes are in series with the secondary winding of the ignition coils Tr 1 ,... Tr 4 and the ion current measuring resistor R 1 , their leakage currents have no negative effect in the subsequent ion current measurement.
  • the reference voltage U ref serving as measurement voltage U test is applied by the inverting differential amplifier 3 to the secondary windings S 1 ,... S 4 , which then generates an ion current at the corresponding spark plug.
  • the inverting differential amplifier 3 converts this ion current into a voltage signal U ion , which is now fed to the evaluation unit 5 as a measurement signal of the ion current, the evaluation result of which is then forwarded to the control unit 4.
  • the measuring voltage U test supplied to the secondary windings S 1 , ..., S 4 of the ignition coils Tr 1 , ..., Tr 4 which can be between 5 and 30 V, preferably 20 V, is constant during the entire ion current measurement period. Since the ion current is in the ⁇ A range, a differential amplifier 3 with a low input current is used, which is available inexpensively today.
  • this measuring voltage U test means that there is no need to recharge stray capacitances, as can occur in other known systems when exposed to alternating current, such as, for example, with knocking combustion. This advantage is particularly noticeable when several ion measuring sections are operated in parallel, as shown in the figure, since effective stray capacities can then be multiplied.
  • another resistor in the supply line to its inverting input (not shown in the figure) can be provided.
  • FIG. 2 shows a detail of the circuit diagram of Figure 1 with the inverting amplifier connected as a differential amplifier 3 and the associated two Ableitscenszweigen A 1 and A2.
  • the difference from FIG. 1 lies in the wiring of the ignition current measuring resistor R 2 , which is now arranged on the ground side, namely between the collector of the transistor T and the ground potential.
  • the measurement voltage U Zünd which is proportional to the ignition current, is therefore ground-related, which is advantageous for the further use of this measurement signal.
  • the ion current signal can be used to knock the Detect internal combustion engine and control the ignition timing to set up a corresponding knock control.
  • Another application is to use the ion current signal both for Detection of ignition misfires as well as for the detection of Use camshaft position.
  • the circuit arrangement according to the invention for ion current measurement is not only in transistor ignition systems, as shown in the exemplary embodiment, usable, but also for alternating current ignitions or High voltage capacitor ignitions.

Claims (10)

  1. Montage pour la mesure du courant ionique dans la chambre de combustion d'un moteur à combustion interne, constitué par :
    a) une bobine d'allumage (Tr1, ..., Tr4) comportant un enroulement primaire et un enroulement secondaire (P1, ..., P4, S1, ..., S4),
    b) une bougie d'allumage (Zk1, ..., Zk4), qui est reliée à l'enroulement secondaire (S1, ..., S4) et sert simultanément de sonde du courant ionique,
    c) un amplificateur inverseur (3, R1), qui est raccordé au côté du potentiel faible de l'enroulement secondaire (S1, ..., S4) de la bobine d'allumage (Tr1, ..., Tr4) pour produire une tension de mesure constante (UM) pour la mesure du courant ionique,
    caractérisé par la caractéristique suivante :
    d) pour l'obtention du courant d'allumage circulant pendant l'allumage de la bougie d'allumage en direction du potentiel de masse du montage, il est prévu
    d1) une première branche de circuit de dérivation (A1) comportant une diode semiconductrice (D2), et
    d2) une seconde branche de circuit de dérivation (A2), qui est branchée en parallèle avec l'amplificateur inverseur (3, R1) et possède une autre diode semiconductrice (D1).
  2. Montage selon la revendication 2, caractérisé en ce que la seconde branche de circuit de dérivation (A2) comporte une résistance (R2) de mesure du courant d'allumage, branchée en série avec l'autre diode semiconductrice (D1).
  3. Montage selon la revendication 1 ou 2, caractérisé en ce que la seconde branche de circuit de dérivation (A2) est reliée au potentiel de masse par l'intermédiaire d'un interrupteur à semiconducteurs (T), notamment d'un transistor, pouvant être commandé parla sortie de l'amplificateur inverseur (3,R1).
  4. Montage selon la revendication 3, caractérisé en ce que la résistance (R2) de mesure du courant d'allumage est disposée dans la branche d'émetteur du transistor (T).
  5. Montage selon la revendication 3, caractérisé en ce que la résistance (R2) de mesure du courant d'allumage est disposée dans la branche de collecteur du transistor (T).
  6. Montage selon l'une des revendications précédentes, caractérisé en ce qu'un amplificateur différentiel (3) est prévu en tant qu'amplificateur inverseur.
  7. Montage selon la revendication 6, caractérisé en ce qu'une première entrée de l'amplificateur différentiel (3) est reliée au potentiel négatif de l'enroulement secondaire (S1, ..., S4) de la bobine d'allumage (Tr1, ..., Tr4) et qu'à l'autre entrée est envoyée une tension de référence (Uref), dont la valeur correspond à la tension de mesure (Utest), et que la sortie de l'amplificateur différentiel (3) est reliée à la première entrée par l'intermédiaire de la résistance (R1) de mesure du courant ionique.
  8. Montage selon l'une des revendications précédentes, caractérisé en ce qu'en série avec l'enroulement secondaire (S1, ..., S4) est branché un circuit en parallèle formé par une résistance de dissipation (R3) et au moins une diode Zener (Z1, Z2).
  9. Montage selon la revendication 8, caractérisé en ce que deux diodes Zener (Z1, Z2) branchées selon un montage anti-série sont montées en parallèle avec la résistance de dissipation (R2).
  10. Utilisation du montage selon l'une des revendications 2 à 9 pour une mesure du courant d'allumage, avec laquelle la chute de tension apparaissant aux bornes de la résistance de mesure du courant d'allumage (R2) sert de signal de mesure pour l'intensité du courant d'allumage.
EP97101842A 1996-02-16 1997-02-06 Circuit de mesure pour courant ionique dans des dispositifs d'allumages pour moteurs à combustion interne Expired - Lifetime EP0790408B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19605803 1996-02-16
DE19605803A DE19605803A1 (de) 1996-02-16 1996-02-16 Schaltungsanordnung zur Ionenstrommessung

Publications (3)

Publication Number Publication Date
EP0790408A2 EP0790408A2 (fr) 1997-08-20
EP0790408A3 EP0790408A3 (fr) 1999-01-20
EP0790408B1 true EP0790408B1 (fr) 2001-11-14

Family

ID=7785611

Family Applications (3)

Application Number Title Priority Date Filing Date
EP97101843A Expired - Lifetime EP0790409B1 (fr) 1996-02-16 1997-02-06 Circuit de mesure pour courant ionique dans des dispositifs d'allumages pour moteurs à combustion interne
EP97101844A Expired - Lifetime EP0790406B1 (fr) 1996-02-16 1997-02-06 Système d'allumage électronique pour moteurs à combustion interne
EP97101842A Expired - Lifetime EP0790408B1 (fr) 1996-02-16 1997-02-06 Circuit de mesure pour courant ionique dans des dispositifs d'allumages pour moteurs à combustion interne

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP97101843A Expired - Lifetime EP0790409B1 (fr) 1996-02-16 1997-02-06 Circuit de mesure pour courant ionique dans des dispositifs d'allumages pour moteurs à combustion interne
EP97101844A Expired - Lifetime EP0790406B1 (fr) 1996-02-16 1997-02-06 Système d'allumage électronique pour moteurs à combustion interne

Country Status (4)

Country Link
US (3) US5758629A (fr)
EP (3) EP0790409B1 (fr)
DE (4) DE19605803A1 (fr)
ES (1) ES2166479T3 (fr)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19605803A1 (de) * 1996-02-16 1997-08-21 Daug Deutsche Automobilgesells Schaltungsanordnung zur Ionenstrommessung
JP3129403B2 (ja) * 1997-05-15 2001-01-29 トヨタ自動車株式会社 イオン電流検出装置
DE19720535C2 (de) * 1997-05-16 2002-11-21 Conti Temic Microelectronic Verfahren zur Erkennung klopfender Verbrennung bei einer Brennkraftmaschine mit einer Wechselspannungszündanlage
DE19829583C1 (de) * 1998-07-02 1999-10-07 Daimler Chrysler Ag Verfahren und Vorrichtung zur Bestimmung der Durchbruchspannung bei der Zündung einer Brennkraftmaschine
US6357427B1 (en) 1999-03-15 2002-03-19 Aerosance, Inc. System and method for ignition spark energy optimization
DE19917268B4 (de) 1999-04-16 2005-07-14 Siemens Flow Instruments A/S Verfahren zum Überprüfen eines elektromagnetischen Durchflußmessers und elektromagnetische Durchflußmesseranordnung
DE19917261C5 (de) * 1999-04-16 2010-09-09 Siemens Flow Instruments A/S Elektromagnetische Durchflußmesseranordnung
US6378513B1 (en) * 1999-07-22 2002-04-30 Delphi Technologies, Inc. Multicharge ignition system having secondary current feedback to trigger start of recharge event
US6186130B1 (en) * 1999-07-22 2001-02-13 Delphi Technologies, Inc. Multicharge implementation to maximize rate of energy delivery to a spark plug gap
DE19956032A1 (de) * 1999-11-22 2001-05-23 Volkswagen Ag Schaltung zur Zündaussetzererkennung bei einer Brennkraftmaschine
DE10031553A1 (de) * 2000-06-28 2002-01-10 Bosch Gmbh Robert Induktive Zündvorrichtung mit Ionenstrommeßeinrichtung
US6360587B1 (en) * 2000-08-10 2002-03-26 Delphi Technologies, Inc. Pre-ignition detector
AT409406B (de) * 2000-10-16 2002-08-26 Jenbacher Ag Zündsystem mit einer zündspule
DE10104753B4 (de) * 2001-02-02 2014-07-03 Volkswagen Ag Verfahren und Vorrichtung zum Erfassen des Verbrennungsablaufs in einem Brennraum eines Verbrennungsmotors
DE10125574A1 (de) * 2001-05-25 2002-11-28 Siemens Building Tech Ag Flammenüberwachungsvorrichtung
US6781384B2 (en) * 2001-07-24 2004-08-24 Agilent Technologies, Inc. Enhancing the stability of electrical discharges
DE10152171B4 (de) * 2001-10-23 2004-05-06 Robert Bosch Gmbh Vorrichtung zur Zündung einer Brennkraftmaschine
US6954074B2 (en) * 2002-11-01 2005-10-11 Visteon Global Technologies, Inc. Circuit for measuring ionization current in a combustion chamber of an internal combustion engine
US6935323B2 (en) * 2003-07-01 2005-08-30 Caterpillar Inc Low current extended duration spark ignition system
US7886239B2 (en) * 2005-08-04 2011-02-08 The Regents Of The University Of California Phase coherent differtial structures
JP4188367B2 (ja) * 2005-12-16 2008-11-26 三菱電機株式会社 内燃機関点火装置
AT504369B8 (de) 2006-05-12 2008-09-15 Ge Jenbacher Gmbh & Co Ohg Zündeinrichtung für eine brennkraftmaschine
US7603226B2 (en) * 2006-08-14 2009-10-13 Henein Naeim A Using ion current for in-cylinder NOx detection in diesel engines and their control
DE102007034390B4 (de) * 2007-07-24 2019-05-29 Daimler Ag Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
DE102007034399B4 (de) * 2007-07-24 2019-06-19 Daimler Ag Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
DE102008031027A1 (de) * 2008-06-30 2009-12-31 Texas Instruments Deutschland Gmbh Automatische Prüfeinrichtung
US20100006066A1 (en) * 2008-07-14 2010-01-14 Nicholas Danne Variable primary current for ionization
WO2011041692A2 (fr) * 2009-10-02 2011-04-07 Woodward Governor Company Bobine de détection d'ions à chargement automatique
DE102009057925B4 (de) * 2009-12-11 2012-12-27 Continental Automotive Gmbh Verfahren zum Betreiben einer Zündvorrichtung für eine Verbrennungskraftmaschine und Zündvorrichtung für eine Verbrennungskraftmaschine zur Durchführung des Verfahrens
EP2526394B1 (fr) 2010-01-20 2022-04-20 SEM Aktiebolag Dispositif et procédé pour analyser la performance d'un moteur
DE102010061799B4 (de) * 2010-11-23 2014-11-27 Continental Automotive Gmbh Verfahren zum Betreiben einer Zündvorrichtung für eine Verbrennungskraftmaschine und Zündvorrichtung für eine Verbrennungskraftmaschine zur Durchführung des Verfahrens
CN102852693B (zh) * 2011-06-28 2015-05-27 比亚迪股份有限公司 一种点火线圈故障诊断系统及其诊断方法
US10054067B2 (en) * 2012-02-28 2018-08-21 Wayne State University Using ion current signal for engine performance and emissions measuring techniques and method for doing the same
DE102013004728A1 (de) 2013-03-19 2014-09-25 Daimler Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie Verbrennungskraftmaschine
JP6207223B2 (ja) * 2013-05-01 2017-10-04 キヤノン株式会社 モータ駆動装置およびその制御方法
US9249774B2 (en) * 2013-10-17 2016-02-02 Ford Global Technologies, Llc Spark plug fouling detection for ignition system
CN103745816B (zh) * 2013-12-31 2018-01-12 联合汽车电子有限公司 一种大能量点火线圈
AT517272B1 (de) 2015-06-03 2017-03-15 Ge Jenbacher Gmbh & Co Og Verfahren zum Betreiben einer Brennkraftmaschine
JP6956904B2 (ja) * 2018-12-25 2021-11-02 三菱電機株式会社 イオン電流検出回路、点火制御装置および点火システム
CN111835323A (zh) * 2019-04-17 2020-10-27 联合汽车电子有限公司 内驱点火igbt过载保护方法和装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945362A (en) * 1973-09-17 1976-03-23 General Motors Corporation Internal combustion engine ignition system
DE2623865A1 (de) * 1976-05-28 1977-12-08 Bosch Gmbh Robert Zuendanlage, insbesondere fuer brennkraftmaschinen
US4329576A (en) * 1979-11-05 1982-05-11 Rapistan, Inc. Data storage means and reading system therefor
US4380989A (en) * 1979-11-27 1983-04-26 Nippondenso Co., Ltd. Ignition system for internal combustion engine
DE3006665A1 (de) * 1980-02-22 1981-09-03 Robert Bosch Gmbh, 7000 Stuttgart Spannungsquelle zur ionenstrommessung am verbrennungsmotor
DE3327766A1 (de) * 1983-08-02 1985-02-14 Atlas Fahrzeugtechnik GmbH, 5980 Werdohl Schaltung zur klopferkennung an einem ottomotor
DE3615548A1 (de) * 1986-05-09 1987-11-12 Bosch Gmbh Robert Zuendanlage fuer brennkraftmaschinen
FR2603339B1 (fr) * 1986-08-27 1988-12-16 Renault Sport Dispositif de detection d'anomalie de combustion dans un cylindre de moteur a combustion interne a allumage commande
IT1208855B (it) * 1987-03-02 1989-07-10 Marelli Autronica Sistema di accensione ad energia di scintilla variabile per motori acombustione interna particolarmente per autoveicoli
SE457831B (sv) * 1987-08-27 1989-01-30 Saab Scania Ab Foerfarande och arrangemang foer detektering av joniseringsstroem i en foerbraenningsmotors taendsystem
US5056497A (en) * 1989-04-27 1991-10-15 Aisin Seiki Kabushiki Kaisha Ignition control system
DE3924985A1 (de) * 1989-07-28 1991-02-07 Volkswagen Ag Vollelektronische zuendeinrichtung fuer eine brennkraftmaschine
JP2552754B2 (ja) * 1990-05-18 1996-11-13 三菱電機株式会社 内燃機関燃焼検出装置
US5293129A (en) * 1990-11-09 1994-03-08 Mitsubishi Denki Kabushiki Kaisha Ionic current sensing apparatus for engine spark plug with negative ignition voltage and positive DC voltage application
US5309888A (en) * 1991-08-02 1994-05-10 Motorola, Inc. Ignition system
JP2536353B2 (ja) * 1991-10-04 1996-09-18 三菱電機株式会社 内燃機関のイオン電流検出装置
JPH05149229A (ja) * 1991-11-26 1993-06-15 Mitsubishi Electric Corp 内燃機関のイオン電流検出装置
US5337716A (en) * 1992-02-04 1994-08-16 Mitsubishi Denki Kabushiki Kaisha Control apparatus for internal combustion engine
US5446385A (en) * 1992-10-02 1995-08-29 Robert Bosch Gmbh Ignition system for internal combustion engines
US5483818A (en) * 1993-04-05 1996-01-16 Ford Motor Company Method and apparatus for detecting ionic current in the ignition system of an internal combustion engine
JPH06299941A (ja) * 1993-04-12 1994-10-25 Nippondenso Co Ltd イオン電流検出装置
JP2880058B2 (ja) * 1993-12-21 1999-04-05 本田技研工業株式会社 内燃機関の失火検出装置
JP3192541B2 (ja) * 1994-01-28 2001-07-30 三菱電機株式会社 内燃機関用失火検出回路
DE4437480C1 (de) * 1994-10-20 1996-03-21 Bosch Gmbh Robert Verfahren zur Funktionsüberwachung einer Brennkraftmaschine zum Erkennen von Zündaussetzern
JP3194676B2 (ja) * 1994-11-08 2001-07-30 三菱電機株式会社 内燃機関の失火検出装置
GB9515272D0 (en) * 1994-12-23 1995-09-20 Philips Electronics Uk Ltd An ignition control circuit, and engine system
DE19605803A1 (de) * 1996-02-16 1997-08-21 Daug Deutsche Automobilgesells Schaltungsanordnung zur Ionenstrommessung

Also Published As

Publication number Publication date
EP0790408A2 (fr) 1997-08-20
ES2166479T3 (es) 2002-04-16
EP0790409A3 (fr) 1999-01-20
EP0790406B1 (fr) 2003-07-02
EP0790406A3 (fr) 1999-01-27
EP0790409B1 (fr) 2003-08-20
DE59710359D1 (de) 2003-08-07
EP0790409A2 (fr) 1997-08-20
EP0790408A3 (fr) 1999-01-20
US5758629A (en) 1998-06-02
DE59710592D1 (de) 2003-09-25
DE59705316D1 (de) 2001-12-20
US5914604A (en) 1999-06-22
US6043660A (en) 2000-03-28
EP0790406A2 (fr) 1997-08-20
DE19605803A1 (de) 1997-08-21

Similar Documents

Publication Publication Date Title
EP0790408B1 (fr) Circuit de mesure pour courant ionique dans des dispositifs d'allumages pour moteurs à combustion interne
DE19502402C2 (de) Verbrennungsaussetzer-Abtastschaltung für eine Brennkraftmaschine
DE10347252B4 (de) Schaltkreis zur Messung des Ionisations-Stroms in einer Verbrennungskammer einer Brennkraftmaschine mit innerer Verbrennung
DE19601353C2 (de) Verbrennungszustandserfassungsvorrichtung für eine Brennkraftmaschine mit innerer Verbrennung
DE19514633C2 (de) Vorrichtung zur Erfassung von Fehlzündungen in einer Brennkraftmaschine
DE19524539C1 (de) Schaltungsanordnung zur Ionenstrommessung im Verbrennungsraum einer Brennkraftmaschine
DE19517140C2 (de) Vorrichtung zur Erfassung von Fehlzündungen in einer Brennkraftmaschine
EP0752580B1 (fr) Circuit de mesure pour courant ionique
DE2922518C2 (de) Zündanlage für Brennkraftmaschine
DE10256456A1 (de) Überwachungsverfahren für einen Aktor und zugehörige Treiberschaltung
DE2734164A1 (de) Elektronische zuendsteueranordnung fuer brennkraftmaschinen, insbesondere von kraftfahrzeugen
EP0848161B1 (fr) Système d'allumage à bobines inductives pour moteur
DE1639125A1 (de) Analysator fuer einen Mehrzylinder-Verbrennungsmotor mit Funkenzuendung
EP0827569B1 (fr) Systeme d'allumage inductif
DE4020986C2 (de) Elektronisches Zündsystem für eine Brennkraftmaschine
DE19614288C1 (de) Schaltungsanordnung zur Ionenstrommessung im Verbrennungsraum einer Brennkraftmaschine und zur Wechselstromzündung der Brennkraftmaschine
DE4305197C2 (de) Zündvorrichtung für einen Mehrzylindermotor
DE19926079A1 (de) Vorrichtung zur Erfassung des Verbrennungszustandes eines Verbrennungsmotors
DE3931947A1 (de) Zuendvorrichtung fuer brennkraftmaschinen
DE112018008224T5 (de) Ionenstrom-Detektionsschaltung, Zündsteuerungsgerät und Zündsystem
EP1039304B1 (fr) Méthode de mesure d'une traversée de haute tension et dispositif associé
DE4223274A1 (de) Treiberschaltung fuer induktive lasten
EP0502549B1 (fr) Dispositif de surveillance de l'étincelle dans une installation d'allumage
DE2635574B2 (de) Stromspiegelschaltung
EP1003967B1 (fr) Dispositif de mesure et de diagnostic pour le systeme d'allumage d'un moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19990211

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

Owner name: DAIMLERCHRYSLER AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010405

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 59705316

Country of ref document: DE

Date of ref document: 20011220

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020204

Year of fee payment: 6

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020115

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2166479

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030207

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090223

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090122

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090212

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090206

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100206

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100206

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150228

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59705316

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160901