EP0786921B1 - Digitaler Demodulator - Google Patents
Digitaler Demodulator Download PDFInfo
- Publication number
- EP0786921B1 EP0786921B1 EP96101105A EP96101105A EP0786921B1 EP 0786921 B1 EP0786921 B1 EP 0786921B1 EP 96101105 A EP96101105 A EP 96101105A EP 96101105 A EP96101105 A EP 96101105A EP 0786921 B1 EP0786921 B1 EP 0786921B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- phase
- quadrature
- phase signal
- demodulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S1/00—Two-channel systems
- H04S1/007—Two-channel systems in which the audio signals are in digital form
Definitions
- the invention relates to a digital demodulator for a quadrature-modulated signal, which transmits a combination signal by means of amplitude and phase modulation.
- Quadrature modulated signals are often used when in one Signals belonging to the transmission channel, but which are independent of one another are to be transferred.
- One such application is the transmission of Stereo signals according to the C-QUAM standard, in which a sum signal over the Amplitude modulation and a difference signal as well as a pilot tone over the Phase modulation of the respective carrier is transmitted.
- An example of one associated digital demodulator is published in DE 43 40 012 A1 described.
- a quadrature signal source forms from the received one quadrature-modulated signal using a quadrature mixer, an in-phase signal and a Quadrature phase signal. Digitization can take place before or after Quadrature mixer done.
- a coordinate converter By means of a coordinate converter, in particular according to The Cordic algorithm works from the digitized in-phase signal and the digitized quadrature phase signal, a magnitude signal and a phase signal are formed.
- a control loop controlled by the phase signal controls the oscillator frequency of the Quadrature mixer exactly to the value of the carrier frequency, so that the in-phase signal and the quadrature phase signal are transformed into the baseband.
- a remaining average phase deviation is corrected by the control loop also intervenes in the phase signal and adds or subtracts a correction signal there, that pulls the temporal average of the phase signal to the zero phase value.
- Decoder which essentially contains a known stereo matrix, forms from the Amount signal and the phase signal, the left and right signal as well as the Pilot signal at 25 Hz.
- the object of the invention is to provide an improved digital demodulator for such Quadrature modulated signals indicate the better of digital signal processing is adapted and places less demands on the quadrature signal source.
- the main advantage of this arrangement is that the output signals of the Quadrature signal source, the digitized in-phase signal and the digitized Quadrature phase signal do not have to have the exact baseband position, but only must be in a relatively low frequency range.
- the range of this deep Frequency range depends on the digitization frequency and should be as possible not be greater than a tenth of the digitization frequency.
- This cheap Boundary conditions allow that a digital quadrature mixer in the simplest way can be realized by digital switchers because the quadrature modulated digital signal only to be multiplied by the values +1, -1 and 0.
- the first control loop is advantageously controlled via the slope of the first Phase signal resulting from the difference between at least two in time neighboring samples.
- control loops have one Integrator included. Accumulator loops are particularly suitable for this sufficient job capacity so that there is no overflow in normal operation.
- control signal of the first and / or second control loop is of this type is designed that it as an additive or subtractive correction signal via a Adding circuit can be combined with the respective phase signal.
- the two control signals can be added combine so that only a single adder for correction in the phase signal path is required.
- the integrator for the first and second Control loop can be formed together by the two control signals in the adder Accumulator circuit are supplied. Its output then provides the common one Actuating signal.
- the modification device corresponds to a predetermined signal characteristic, the inverse to the signal characteristic on the transmitter side.
- the modification device can be a have nonlinear characteristics, e.g. is on the C-QUAM standard as a characteristic a tangent curve is prescribed for the receiver side.
- the tangent course can be defined by a memory table or by a polynomial approximation as in the DE 43 40 012 already mentioned.
- an input stage 1 receives quadrature modulated signal sq from an antenna, cable or other Facility.
- a quadrature signal source 2 with connected oscillator 2.1 which as Mixing signal sx emits a digital signal with a predetermined frequency fx an in-phase signal I and a from the quadrature-modulated signal sq Quadrature phase signal Q, both signals I and Q being digitized.
- the Digitization can be in the quadrature signal source 2 or already in the Entry level 1 take place.
- C-QUAM Compact - Quadrature Amplitude Modulation
- the amount of this pointer should always assume the value 1 + S, the value 1 representing the carrier with a constant size.
- the size of the difference signal D affects only the phase position of the pointer M (t).
- a pilot tone P with a frequency of 25 Hz is also applied to the difference signal D.
- 5% modulation modulated the stereo detection and thus an automatic Stereo switching enabled.
- the quadrature signal source 2 is followed by a coordinate converter 3 which from the in-phase signal I and the quadrature phase signal Q a magnitude signal b and a forms first phase signal p1.
- the coordinate converter 3 carries out a conversion from Cartesian coordinates in polar coordinates. Is suitable for this implementation in particular the well-known Cordic algorithm, which uses a iterative approximation determined with arbitrary precision.
- the quadrature mixing it is not necessary for the quadrature mixing to take place directly in the baseband. If the in-phase signal I and the quadrature phase signal Q are sampled at a frequency of 19 kHz, then it is sufficient for the demodulation according to the invention if the remaining rotational frequency ⁇ r of the complex pointer M (t) remains less than 2 kHz.
- the difference between the mixing frequency fx and the carrier frequency f results in a residual frequency fr and thus a remaining rotational frequency ⁇ r of the complex pointer M (t).
- the first phase signal p1 is not constant but increases or decreases constantly over time, cf. also Fig. 2.
- This corresponds to a constant offset frequency ⁇ r which is brought to the value zero by means of a first control circuit 4, in that the mean slope mt of the first phase signal p1 is compensated by a first actuating signal c1 with an equally large negative slope.
- the actuating signal c1 is added to the first phase signal p1 by means of a first adder 5 and thus forms a second phase signal p2, cf. also FIG. 3.
- FIG. 3 In FIG.
- the slope is formed by a difference former 6 from two successive sample values, which are then weighted and / or averaged by means of a first filter device 7.
- the output of the first filter device 7 is integrated by means of an integrator 8, the output of which supplies the first actuating signal c1 to the first adder 5.
- the difference generator 6 consists of a first retarder 6.1 and a subtractor 6.2.
- the integrator 8 consists of an accumulator loop with a second adder 8.1 and a second delay 8.2.
- the output signals of the two control loops 4, 9 are fed to the second adder 8.1 as inverted signals, so that the control direction in the first adder 5 is correct.
- the compensation of the mean slope mp does not cause the second Phase signal p2 comes to lie exactly on the phase reference value on average over time.
- the time average tm of the second phase signal p2 is easy in FIG. 3 rising straight line shown below the zero phase reference axis.
- a second control loop 9 becomes the time average tm of the second phase signal p2 brought exactly to the zero phase reference axis. This is done by means of a second Filter device 10 and the integrator 8 achieved by the output signal of the first Adders 5 directly or via a modification device 11 to the input of the second Filter device 10 is supplied, at the output of a further input of the Integrators 8 lies.
- the second control circuit 9 forms a second control signal c2, that by means of the first adder 5 additive / subtractive to the first Phase signal p1 and a first control signal c1 is added and thus forms a third phase signal p3 that is correct in terms of its slope and phase on average over time.
- phase signal p2 supplies the input signal of the second Control loop.
- the current deviations of the third phase signal p3 from the Zero phase reference position thus only correspond to the searched differential signal D and the pilot signal P.
- the magnitude signals b and the third phase signal p3 the sought components L, R, P of the stereo combination signal educated.
- the The third phase signal p3 is previously modified using the modification device 11, for example, by determining the associated tangent value. Because in the amount signal b the carrier amplitude is included, that is for the stereo matrix in the decoder 12 third phase signal p3 or the modified phase signal p3 'on the carrier amplitude normalized. This is done by means of a multiplier 13, the first input of which with the Magnitude signal b and its second input with the third phase signal p3 or p3 ' is fed.
- the remaining rotation frequency ⁇ r of the complex pointer M (t) corresponds to a steady increase mp in the middle phase mp1, which is represented by a sawtooth-shaped, solid line.
- the first phase signal p1 is preferably represented as a two's complement number whose lower or upper value limit corresponds to the phase angle - ⁇ or + ⁇ .
- the steadily increasing phase mp1 thus jumps back from the phase value + ⁇ to the phase value - ⁇ .
- the coupling of the respective phase value to the two's complement number representation has the great advantage that phase difference values are reproduced correctly, even if the phase has meanwhile overflowed.
- the dashed area around the middle phase mp1 indicates the area in which the first phase signal p1 can be due to the modulation with the difference signal D and the pilot signal P.
- phase 3 schematically shows the time profile of the second phase signal p2, which is obtained by a phase correction by means of the first control loop 4.
- the middle phase mp2 has at most a very slight slope tm however, middle phase mp2 is not on the zero phase reference axis as required - at random, at best.
- the second phase corrects the zero phase position Control circuit 9, which also suppresses the slight remaining slope tm.
- the instantaneous phase of the second phase signal p2 is dashed phase range shown around the middle phase mp2.
- the modulation vector M (t) rotating with the frequency ⁇ is shown in a complex pointer representation.
- the modulation components 1 + S and D define the instantaneous amplitude and phase ⁇ of the pointer compared to a reference pointer rotating with a constant amplitude and a constant frequency.
- the revolving reference pointer specifies the reference phase via the in-phase signal I.
- the quadrature phase signal Q is perpendicular to this. From these two signals I, Q, the coordinate converter 3 determines the current length 1 + S and the current phase ⁇ of the pointer M (t).
- the pointer representation is independent of the rotation frequency ⁇ . This representation applies both to the high-frequency quadrature signal sq and to the quadrature components I, Q, the associated reference pointer of which rotates at the low rotation frequency ⁇ r .
- the implementation of the demodulator according to the invention can be done as a program in a processor, particularly in a monolithically integrated circuit, or as Circuit or in mixed form. It is irrelevant how the individual Functional units are realized in detail and whether the functional units are also different Serve purposes.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Stereo-Broadcasting Methods (AREA)
Description
- eine Quadratursignalquelle, die abhängig vom empfangenen quadraturmodulierten Signal ein digitalisiertes Inphasensignal und ein digitalisiertes Quadraturphasensignal in tiefer Frequenzlage liefert, wobei die Bandbreite des tiefen Frequenzbereiches nicht größer ist als ein Zehntel der Digitalisierungsfrequenz,
- ein Koordinatenumsetzer, der aus dem digitalisierten Inphasensignal und dem digitalisierten Quadraturphasensignal ein Betragssignal und ein erstes Phasensignal bildet,
- ein dem Koordinatenumsetzer nachgeschalteter erster Regelkreis, der die Steigung des ersten Phasensignals im zeitlichen Mittel auf den Wert Null oder einen Restwert regelt und damit ein zweites Phasensignal bildet,
- ein dem Koordinatenumsetzer nachgeschalteter zweiter Regelkreis, der den zeitlichen Mittelwert des zweiten Phasensignals auf einen Phasenbezugswert, insbesondere eine Nullphasenlage, regelt und damit ein drittes Phasensignal bildet, und
- ein Dekodierer, der aus dem Betragssignal und dem dritten Phasensignal mindestens eine digitalisierte Komponente des Kombinationssignals bildet.
Claims (7)
- Digitaler Demodulator für ein quadraturmoduliertes Signal (sq), das mittels einer Amplituden- und Phasenmodulation ein Kombinationssignal überträgt, miteiner Quadratursignalquelle (2), die abhängig vom empfangenen quadraturmodulierten Signal (sq) ein digitalisiertes Inphasensignal (I) und ein digitalisiertes Quadraturphasensignal (Q) in tiefer Frequenzlage liefert, wobei die Bandbreite des tiefen Frequenzbereiches nicht größer ist als ein Zehntel der Digitalisierungsfrequenz,einem Koordinatenumsetzer (3), der aus dem digitalisierten Inphasensignal (I) und dem digitalisierten Quadraturphasensignal (Q) ein Betragssignal (b) und ein erstes Phasensignal (p1) bildet,einem dem Koordinatenumsetzer (3) nachgeschalteten ersten Regelkreis (4), der die Steigung (mp) des ersten Phasensignals (p1) im zeitlichen Mittel auf den Wert Null oder einen Restwert regelt und damit ein zweites Phasensignal (p2) bildet,einem dem Koordinatenumsetzer (3) nachgeschalteten zweiten Regelkreis (9), der den zeitlichen Mittelwert (tm) des zweiten Phasensignals (p2) auf einen Phasenbezugswert, insbesondere eine Nullphasenlage, regelt und damit ein drittes Phasensignal (p3) bildet, undeinem Dekodierer (12), der aus dem Betragssignal (b) und dem dritten Phasensignal (p3) mindestens eine digitalisierte Komponente (R,L,P) des Kombinationssignals bildet.
- Demodulator nach Anspruch 1, dadurch gekennzeichnet, daß die Steigung (mp) des ersten Phasensignals (p1) aus der Differenz zwischen mindestens zwei zeitlich benachbarten Abtastwerten gebildet ist.
- Demodulator nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der erste und/oder zweite Regelkreis (4, 9) einen Integrator (8) enthält.
- Demodulator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der erste bzw. zweite Regelkreis (4, 9) ein erstes bzw. ein zweites Stellsignal (c1, c2) bildet, mit dem das erste bzw. zweite Phasensignal (p1, p2) additiv/subtraktiv in seinem Wert geändert wird.
- Demodulator nach Anspruch 3, dadurch gekennzeichnet, daß der Integrator (8) für den ersten und zweiten Regelkreis (4, 9) gemeinsam vorhanden ist.
- Demodulator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das dritte Phasensignal (p3) dem Dekodierer (12) und/oder dem zweiten Regelkreis (9) über eine Modifizierungseinrichtung (11) zugeführt ist.
- Demodulator nach Anspruch 6, dadurch gekennzeichnet, daß die Modifizierungseinrichtung (11) einen Tangensbildner enthält.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96101105A EP0786921B1 (de) | 1996-01-26 | 1996-01-26 | Digitaler Demodulator |
DE59609450T DE59609450D1 (de) | 1996-01-26 | 1996-01-26 | Digitaler Demodulator |
US08/792,924 US5767739A (en) | 1996-01-26 | 1997-01-21 | Digital demodulator for quadrature amplitude and phase modulated signals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96101105A EP0786921B1 (de) | 1996-01-26 | 1996-01-26 | Digitaler Demodulator |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0786921A1 EP0786921A1 (de) | 1997-07-30 |
EP0786921B1 true EP0786921B1 (de) | 2002-07-17 |
Family
ID=8222441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96101105A Expired - Lifetime EP0786921B1 (de) | 1996-01-26 | 1996-01-26 | Digitaler Demodulator |
Country Status (3)
Country | Link |
---|---|
US (1) | US5767739A (de) |
EP (1) | EP0786921B1 (de) |
DE (1) | DE59609450D1 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4434451A1 (de) * | 1994-09-27 | 1996-03-28 | Blaupunkt Werke Gmbh | Amplitudendemodulator |
KR100441196B1 (ko) * | 2002-01-14 | 2004-07-21 | 기가텔레콤 (주) | 연속 위상 직교 진폭 변조 및 복조 장치 |
BR0304231A (pt) | 2002-04-10 | 2004-07-27 | Koninkl Philips Electronics Nv | Métodos para codificação de um sinal de canais múltiplos, método e disposição para decodificação de informação de sinal de canais múltiplos, sinal de dados incluindo informação de sinal de canais múltiplos, meio legìvel por computador, e, dispositivo para comunicação de um sinal de canais múltiplos |
DE102004020300B3 (de) * | 2004-04-26 | 2005-09-22 | Micronas Gmbh | Verfahren und Schaltungsanordnung zum Bestimmen eines Taktsignal-Abtastzeitpunkts für Symbole eines Modulationsverfahrens |
US10509295B2 (en) * | 2017-03-15 | 2019-12-17 | Elenion Technologies, Llc | Bias control of optical modulators |
US10942377B2 (en) * | 2018-10-08 | 2021-03-09 | Cisco Technology, Inc. | High swing AC-coupled Mach-Zehnder interferometer (MZI) driver |
CN111510406B (zh) * | 2020-06-03 | 2024-05-17 | 上海创远仪器技术股份有限公司 | 实现宽带iq调制实时预失真校准的电路及方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6047513A (ja) * | 1983-08-26 | 1985-03-14 | Nec Corp | 周波数ずれ吸収回路 |
EP0343273B1 (de) * | 1988-05-27 | 1994-04-27 | Deutsche ITT Industries GmbH | Korrekturschaltung für ein digitales Quadratur-Signalpaar |
US5249204A (en) * | 1991-08-12 | 1993-09-28 | Motorola, Inc. | Circuit and method for phase error correction in a digital receiver |
DE4340012B4 (de) | 1993-11-24 | 2004-04-22 | Blaupunkt-Werke Gmbh | Demodulator |
US5497400A (en) * | 1993-12-06 | 1996-03-05 | Motorola, Inc. | Decision feedback demodulator with phase and frequency estimation |
-
1996
- 1996-01-26 EP EP96101105A patent/EP0786921B1/de not_active Expired - Lifetime
- 1996-01-26 DE DE59609450T patent/DE59609450D1/de not_active Expired - Fee Related
-
1997
- 1997-01-21 US US08/792,924 patent/US5767739A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE59609450D1 (de) | 2002-08-22 |
EP0786921A1 (de) | 1997-07-30 |
US5767739A (en) | 1998-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68926583T2 (de) | Interferenzunterdrückungsschaltung | |
DE69736188T2 (de) | Verfahren in einem digitalen quadraturmodulator und -demodulator sowie digitaler quadraturmodulator und -demodulator | |
DE2309167C2 (de) | Verfahren und Schaltungsanordnung zum Korrigieren eines durch Phasenzittern verfälschten elektrischen Übertragtungssignals | |
EP0895386B1 (de) | Trägerregelkreis für einen Empfänger von digital übertragenen Signalen | |
DE69629855T2 (de) | Verstärkervorrichtung | |
DE2646255A1 (de) | Digitales detektorsystem fuer differentielle phasenshift-umtastsignale | |
EP0084876A2 (de) | Demodulatoranordnung zur Demodulation von in Frequenzmodulation auf einer Trägerfrequenzwelle enthaltener Signale | |
DE2902952A1 (de) | Direktmischendes empfangssystem | |
EP1759508A1 (de) | Verfahren und vorrichtung zur gleichzeitigen kompensation von signalfehlern in iq-modulatoren | |
DE2257275C3 (de) | Schaltungsanordnung zur automatischen Entzerrung | |
DE2656924C3 (de) | Phasendiskriminator in einem Empfänger eines Datenübertragungssystems | |
DE964250C (de) | Empfaenger fuer Restseitenband-Signale | |
EP0786921B1 (de) | Digitaler Demodulator | |
DE69729329T2 (de) | Gerät und verfahren zur phasenschätzung | |
DE2556959A1 (de) | Automatischer bandpassentzerrer fuer datenuebertragungssysteme | |
EP0579100A1 (de) | Verfahren und Einrichtung zur Phasenkorrektur im Basisband eines PSK-Empfängers | |
DE102007028066B3 (de) | Verfahren und Vorrichtung zum Erzeugen eines Übertragungssignals | |
DE69818075T2 (de) | Signalverarbeitungssystem | |
DE2842111A1 (de) | Am-stereoempfaenger | |
DE1591408C2 (de) | Vorrichtung zum Empfang mehrerer Eingangssignale gleicher Frequenz | |
DE69927957T2 (de) | Demodulator mit Rotationsmitteln für Frequenzverschiebungskorrektur | |
DE4340012B4 (de) | Demodulator | |
EP0602394B1 (de) | Verfahren und Vorrichtung zur Korrektur der Phasen- und Amplitudenfehler bei direktmischenden Empfangseinrichtungen | |
DE2715741A1 (de) | Stereo-uebertragungseinrichtung | |
DE2654276A1 (de) | Phasensynchronisierende schaltungsanordnung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MICRONAS INTERMETALL GMBH |
|
17P | Request for examination filed |
Effective date: 19980130 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MICRONAS GMBH |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20010912 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020718 |
|
REF | Corresponds to: |
Ref document number: 59609450 Country of ref document: DE Date of ref document: 20020822 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030422 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20070124 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070125 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070228 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070521 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070117 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080126 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20080801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080801 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20081029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080126 |