EP0786921B1 - Digitaler Demodulator - Google Patents

Digitaler Demodulator Download PDF

Info

Publication number
EP0786921B1
EP0786921B1 EP96101105A EP96101105A EP0786921B1 EP 0786921 B1 EP0786921 B1 EP 0786921B1 EP 96101105 A EP96101105 A EP 96101105A EP 96101105 A EP96101105 A EP 96101105A EP 0786921 B1 EP0786921 B1 EP 0786921B1
Authority
EP
European Patent Office
Prior art keywords
signal
phase
quadrature
phase signal
demodulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96101105A
Other languages
English (en)
French (fr)
Other versions
EP0786921A1 (de
Inventor
F.O. Dr. Witte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
Original Assignee
TDK Micronas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Micronas GmbH filed Critical TDK Micronas GmbH
Priority to EP96101105A priority Critical patent/EP0786921B1/de
Priority to DE59609450T priority patent/DE59609450D1/de
Priority to US08/792,924 priority patent/US5767739A/en
Publication of EP0786921A1 publication Critical patent/EP0786921A1/de
Application granted granted Critical
Publication of EP0786921B1 publication Critical patent/EP0786921B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/007Two-channel systems in which the audio signals are in digital form

Definitions

  • the invention relates to a digital demodulator for a quadrature-modulated signal, which transmits a combination signal by means of amplitude and phase modulation.
  • Quadrature modulated signals are often used when in one Signals belonging to the transmission channel, but which are independent of one another are to be transferred.
  • One such application is the transmission of Stereo signals according to the C-QUAM standard, in which a sum signal over the Amplitude modulation and a difference signal as well as a pilot tone over the Phase modulation of the respective carrier is transmitted.
  • An example of one associated digital demodulator is published in DE 43 40 012 A1 described.
  • a quadrature signal source forms from the received one quadrature-modulated signal using a quadrature mixer, an in-phase signal and a Quadrature phase signal. Digitization can take place before or after Quadrature mixer done.
  • a coordinate converter By means of a coordinate converter, in particular according to The Cordic algorithm works from the digitized in-phase signal and the digitized quadrature phase signal, a magnitude signal and a phase signal are formed.
  • a control loop controlled by the phase signal controls the oscillator frequency of the Quadrature mixer exactly to the value of the carrier frequency, so that the in-phase signal and the quadrature phase signal are transformed into the baseband.
  • a remaining average phase deviation is corrected by the control loop also intervenes in the phase signal and adds or subtracts a correction signal there, that pulls the temporal average of the phase signal to the zero phase value.
  • Decoder which essentially contains a known stereo matrix, forms from the Amount signal and the phase signal, the left and right signal as well as the Pilot signal at 25 Hz.
  • the object of the invention is to provide an improved digital demodulator for such Quadrature modulated signals indicate the better of digital signal processing is adapted and places less demands on the quadrature signal source.
  • the main advantage of this arrangement is that the output signals of the Quadrature signal source, the digitized in-phase signal and the digitized Quadrature phase signal do not have to have the exact baseband position, but only must be in a relatively low frequency range.
  • the range of this deep Frequency range depends on the digitization frequency and should be as possible not be greater than a tenth of the digitization frequency.
  • This cheap Boundary conditions allow that a digital quadrature mixer in the simplest way can be realized by digital switchers because the quadrature modulated digital signal only to be multiplied by the values +1, -1 and 0.
  • the first control loop is advantageously controlled via the slope of the first Phase signal resulting from the difference between at least two in time neighboring samples.
  • control loops have one Integrator included. Accumulator loops are particularly suitable for this sufficient job capacity so that there is no overflow in normal operation.
  • control signal of the first and / or second control loop is of this type is designed that it as an additive or subtractive correction signal via a Adding circuit can be combined with the respective phase signal.
  • the two control signals can be added combine so that only a single adder for correction in the phase signal path is required.
  • the integrator for the first and second Control loop can be formed together by the two control signals in the adder Accumulator circuit are supplied. Its output then provides the common one Actuating signal.
  • the modification device corresponds to a predetermined signal characteristic, the inverse to the signal characteristic on the transmitter side.
  • the modification device can be a have nonlinear characteristics, e.g. is on the C-QUAM standard as a characteristic a tangent curve is prescribed for the receiver side.
  • the tangent course can be defined by a memory table or by a polynomial approximation as in the DE 43 40 012 already mentioned.
  • an input stage 1 receives quadrature modulated signal sq from an antenna, cable or other Facility.
  • a quadrature signal source 2 with connected oscillator 2.1 which as Mixing signal sx emits a digital signal with a predetermined frequency fx an in-phase signal I and a from the quadrature-modulated signal sq Quadrature phase signal Q, both signals I and Q being digitized.
  • the Digitization can be in the quadrature signal source 2 or already in the Entry level 1 take place.
  • C-QUAM Compact - Quadrature Amplitude Modulation
  • the amount of this pointer should always assume the value 1 + S, the value 1 representing the carrier with a constant size.
  • the size of the difference signal D affects only the phase position of the pointer M (t).
  • a pilot tone P with a frequency of 25 Hz is also applied to the difference signal D.
  • 5% modulation modulated the stereo detection and thus an automatic Stereo switching enabled.
  • the quadrature signal source 2 is followed by a coordinate converter 3 which from the in-phase signal I and the quadrature phase signal Q a magnitude signal b and a forms first phase signal p1.
  • the coordinate converter 3 carries out a conversion from Cartesian coordinates in polar coordinates. Is suitable for this implementation in particular the well-known Cordic algorithm, which uses a iterative approximation determined with arbitrary precision.
  • the quadrature mixing it is not necessary for the quadrature mixing to take place directly in the baseband. If the in-phase signal I and the quadrature phase signal Q are sampled at a frequency of 19 kHz, then it is sufficient for the demodulation according to the invention if the remaining rotational frequency ⁇ r of the complex pointer M (t) remains less than 2 kHz.
  • the difference between the mixing frequency fx and the carrier frequency f results in a residual frequency fr and thus a remaining rotational frequency ⁇ r of the complex pointer M (t).
  • the first phase signal p1 is not constant but increases or decreases constantly over time, cf. also Fig. 2.
  • This corresponds to a constant offset frequency ⁇ r which is brought to the value zero by means of a first control circuit 4, in that the mean slope mt of the first phase signal p1 is compensated by a first actuating signal c1 with an equally large negative slope.
  • the actuating signal c1 is added to the first phase signal p1 by means of a first adder 5 and thus forms a second phase signal p2, cf. also FIG. 3.
  • FIG. 3 In FIG.
  • the slope is formed by a difference former 6 from two successive sample values, which are then weighted and / or averaged by means of a first filter device 7.
  • the output of the first filter device 7 is integrated by means of an integrator 8, the output of which supplies the first actuating signal c1 to the first adder 5.
  • the difference generator 6 consists of a first retarder 6.1 and a subtractor 6.2.
  • the integrator 8 consists of an accumulator loop with a second adder 8.1 and a second delay 8.2.
  • the output signals of the two control loops 4, 9 are fed to the second adder 8.1 as inverted signals, so that the control direction in the first adder 5 is correct.
  • the compensation of the mean slope mp does not cause the second Phase signal p2 comes to lie exactly on the phase reference value on average over time.
  • the time average tm of the second phase signal p2 is easy in FIG. 3 rising straight line shown below the zero phase reference axis.
  • a second control loop 9 becomes the time average tm of the second phase signal p2 brought exactly to the zero phase reference axis. This is done by means of a second Filter device 10 and the integrator 8 achieved by the output signal of the first Adders 5 directly or via a modification device 11 to the input of the second Filter device 10 is supplied, at the output of a further input of the Integrators 8 lies.
  • the second control circuit 9 forms a second control signal c2, that by means of the first adder 5 additive / subtractive to the first Phase signal p1 and a first control signal c1 is added and thus forms a third phase signal p3 that is correct in terms of its slope and phase on average over time.
  • phase signal p2 supplies the input signal of the second Control loop.
  • the current deviations of the third phase signal p3 from the Zero phase reference position thus only correspond to the searched differential signal D and the pilot signal P.
  • the magnitude signals b and the third phase signal p3 the sought components L, R, P of the stereo combination signal educated.
  • the The third phase signal p3 is previously modified using the modification device 11, for example, by determining the associated tangent value. Because in the amount signal b the carrier amplitude is included, that is for the stereo matrix in the decoder 12 third phase signal p3 or the modified phase signal p3 'on the carrier amplitude normalized. This is done by means of a multiplier 13, the first input of which with the Magnitude signal b and its second input with the third phase signal p3 or p3 ' is fed.
  • the remaining rotation frequency ⁇ r of the complex pointer M (t) corresponds to a steady increase mp in the middle phase mp1, which is represented by a sawtooth-shaped, solid line.
  • the first phase signal p1 is preferably represented as a two's complement number whose lower or upper value limit corresponds to the phase angle - ⁇ or + ⁇ .
  • the steadily increasing phase mp1 thus jumps back from the phase value + ⁇ to the phase value - ⁇ .
  • the coupling of the respective phase value to the two's complement number representation has the great advantage that phase difference values are reproduced correctly, even if the phase has meanwhile overflowed.
  • the dashed area around the middle phase mp1 indicates the area in which the first phase signal p1 can be due to the modulation with the difference signal D and the pilot signal P.
  • phase 3 schematically shows the time profile of the second phase signal p2, which is obtained by a phase correction by means of the first control loop 4.
  • the middle phase mp2 has at most a very slight slope tm however, middle phase mp2 is not on the zero phase reference axis as required - at random, at best.
  • the second phase corrects the zero phase position Control circuit 9, which also suppresses the slight remaining slope tm.
  • the instantaneous phase of the second phase signal p2 is dashed phase range shown around the middle phase mp2.
  • the modulation vector M (t) rotating with the frequency ⁇ is shown in a complex pointer representation.
  • the modulation components 1 + S and D define the instantaneous amplitude and phase ⁇ of the pointer compared to a reference pointer rotating with a constant amplitude and a constant frequency.
  • the revolving reference pointer specifies the reference phase via the in-phase signal I.
  • the quadrature phase signal Q is perpendicular to this. From these two signals I, Q, the coordinate converter 3 determines the current length 1 + S and the current phase ⁇ of the pointer M (t).
  • the pointer representation is independent of the rotation frequency ⁇ . This representation applies both to the high-frequency quadrature signal sq and to the quadrature components I, Q, the associated reference pointer of which rotates at the low rotation frequency ⁇ r .
  • the implementation of the demodulator according to the invention can be done as a program in a processor, particularly in a monolithically integrated circuit, or as Circuit or in mixed form. It is irrelevant how the individual Functional units are realized in detail and whether the functional units are also different Serve purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Stereo-Broadcasting Methods (AREA)

Description

Die Erfindung betrifft einen digitalen Demodulator für ein quadraturmoduliertes Signal, das mittels einer Amplituden- und Phasenmodulation ein Kombinationssignal überträgt.
Quadraturmodulierte Signale werden gerne angewendet, wenn in einem Übertragungskanal zusammengehörige Signale, die aber unabhängig voneinander sein sollen, zu übertragen sind. Eine derartige Anwendung ist die Übertragung von Stereosignalen nach dem C-QUAM-Standard, bei der ein Summensignal über die Amplitudenmodulation und ein Differenzsignal sowie ein Pilotton über die Phasenmodulation des jeweiligen Trägers übertragen wird. Ein Beispiel für einen zugehörigen digitalen Demodulator ist in der Offenlegungschrift DE 43 40 012 A1 beschrieben. Eine Quadratursignalquelle bildet aus dem empfangenen quadraturmodulierten Signal mittels eines Quadraturmischers ein Inphasensignal und ein Quadraturphasensignal. Die Digitalisierung kann dabei vor oder nach dem Quadraturmischer erfolgen. Mittels eines Koordinatenumsetzers, der insbesondere nach dem Cordic-Algorithmus arbeitet, wird aus dem digitalisierten Inphasensignal und dem digitalisierten Quadraturphasensignal ein Betragssignal und ein Phasensignal gebildet. Ein vom Phasensignal gesteuerter Regelkreis steuert die Oszillatorfrequenz des Quadraturmischers exakt auf den Wert der Trägerfrequenz, so daß das Inphasensignal und das Quadraturphasensignal in das Basisband transformiert werden. Eine verbleibende mittlere Phasenabweichung wird dadurch korrigiert, daß der Regelkreis auch in das Phasensignal eingreift und dort ein Korrektursignal addiert oder subtrahiert, das den zeitlichen Mittelwert des Phasensignals auf den Nullphasenwert zieht. Ein Dekodierer, der im wesentlichen eine bekannte Stereomatrix enthält, bildet aus dem Betragssignal und dem Phasensignal das gesuchte Links- und Rechtssignal sowie das Pilotsignal bei 25 Hz.
Aufgabe der Erfindung ist es, einen verbesserten digitalen Demodulator für derartige quadraturmodulierte Signale anzugeben, der besser an die digitale Signalverarbeitung angepaßt ist und geringere Anforderungen an die Quadratursignalquelle stellt.
Die Aufgabe wird durch die Erfindung entsprechend den Merkmalen des Anspruchs 1 wie folgt gelöst:
  • eine Quadratursignalquelle, die abhängig vom empfangenen quadraturmodulierten Signal ein digitalisiertes Inphasensignal und ein digitalisiertes Quadraturphasensignal in tiefer Frequenzlage liefert, wobei die Bandbreite des tiefen Frequenzbereiches nicht größer ist als ein Zehntel der Digitalisierungsfrequenz,
  • ein Koordinatenumsetzer, der aus dem digitalisierten Inphasensignal und dem digitalisierten Quadraturphasensignal ein Betragssignal und ein erstes Phasensignal bildet,
  • ein dem Koordinatenumsetzer nachgeschalteter erster Regelkreis, der die Steigung des ersten Phasensignals im zeitlichen Mittel auf den Wert Null oder einen Restwert regelt und damit ein zweites Phasensignal bildet,
  • ein dem Koordinatenumsetzer nachgeschalteter zweiter Regelkreis, der den zeitlichen Mittelwert des zweiten Phasensignals auf einen Phasenbezugswert, insbesondere eine Nullphasenlage, regelt und damit ein drittes Phasensignal bildet, und
  • ein Dekodierer, der aus dem Betragssignal und dem dritten Phasensignal mindestens eine digitalisierte Komponente des Kombinationssignals bildet.
Der wesentliche Vorteil dieser Anordnung besteht darin, daß die Ausgangssignale der Quadratursignalquelle, das digitalsierte Inphasensignal und das digitalisierte Quadraturphasensignal nicht die exakte Basisbandlage aufweisen müssen, sondern nur in einem relativ tiefen Frequenzbereich liegen müssen. Die Bandbreite dieses tiefen Frequenzbereiches hängt von der Digitalisierungsfrequenz ab und soll dabei möglichst nicht größer sein als ein Zehntel der Digitalisierungsfrequenz. Diese günstigen Randbedingungen erlauben, daß ein digitaler Quadraturmischer auf einfachste Weise durch digitale Umschalter zu realisieren ist, weil das quadraturmodulierte Digitalsignal lediglich mit den Werten +1, -1 und 0 zu multiplizieren ist. Bei einer exakten Transformation des quadraturmodulierten Digitalsignals in das Basisband wäre eine exakte Frequenzanpassung des digitalen Mischungssignals erforderlich, was nur über eine sehr aufwendige Sinus- und/oder Cosinus-Tabelle mit zwei aufwendigen digitalen Multiplizierern zu realisieren wäre. Eine analoge Ausführung des Quadraturmischers mit nachfolgender Digitalisierung des Inphasen- und Quadraturphasensignals ist natürlich ebenfalls möglich, wobei nach der Erfindung die Oszillatorfrequenz nicht nachgeregelt werden muß und daher unkritisch gegenüber der Frequenzlage und Driftänderungen ist. Die Erfindung vermeidet somit eine phasenstarre Nachführung des Quadraturmischers, aufwendige Sinus- und/oder Cosinus-Tabellen und aufwendige Multiplizierer bei der Quadraturmischung.
Eine vorteilhafte Ansteuerung des ersten Regelkreises erfolgt über die Steigung des ersten Phasensignals, die sich aus der Differenzbildung zwischen mindestens zwei zeitlich benachbarten Abtastwerten ergibt. Dies schließt selbstverständlich mit ein, daß weitere Abtastwerte zur Differenzbildung erfaßt werden können, wobei eine bessere Mittelwertbildung erreicht wird und Störgrößen besser unterdrückt werden können.
Für die Genauigkeit der Regelung ist es ferner zweckmäßig, wenn die Regelkreise einen Integrator enthalten. Hierfür eignen sich insbesondere Akkumulatorschleifen mit genügender Stellenkapazität, damit im Normalbetrieb kein Überlauf stattfindet.
Von Vorteil ist, wenn das Stellsignal des ersten und/oder zweiten Regelkreises derart ausgebildet ist, daß es als additives oder subtraktives Korrektursignal über eine Addierschaltung mit dem jeweiligen Phasensignal kombiniert werden kann. Bei geeigneter Ausführung der beiden Regelkreise lassen sich die beiden Stellsignale additiv kombinieren, so daß nur ein einziger Addierer zur Korrektur im Phasensignalpfad erforderlich ist. In gleicher Weise kann der Integrator für den ersten und zweiten Regelkreis gemeinsam ausgebildet sein, indem die beiden Stellsignale dem Addierer im Akkumulatorkreis zugeführt sind. Dessen Ausgang liefert dann das gemeinsame Stellsignal.
Für die jeweilige Übertragungsnorm kann es erforderlich sein, daß das dritte Phasensignal vor dem Dekodierer mittels einer Modifizierungseinrichtung zu modifizieren ist. Die Modifizierungseinrichtung entspricht einer vorgegebenen Signalkennlinie, die invers zur Signalkennlinie auf der Senderseite ist. Die Modifizierungseinrichtung kann dabei eine nichtlineare Kennlinie aufweisen, z.B. ist bei dem C-QUAM-Standard als Kennlinie auf der Empfängerseite ein Tangensverlauf vorgeschrieben. Der Tangensverlauf kann dabei durch eine Speichertabelle definiert sein oder durch eine Polynomannäherung wie in der bereits genannten DE 43 40 012.
Die Erfindung und vorteilhafte Ausgestaltungen werden nun anhand der Zeichnung mit mehreren Figuren näher erläutert:
  • Fig. 1 zeigt schematisch als Schaltung einen digitalen Demodulator nach der Erfindung,
  • Fig. 2 zeigt im Zeitdiagramm das zugehörige erste Phasensignal,
  • Fig. 3 zeigt im Zeitdiagramm das zugehörige zweite Phasensignal und
  • Fig. 4 zeigt einige Signale anhand einer komplexen Zeigerdarstellung.
  • In der schematischen Darstellung von Fig. 1 empfängt eine Eingangsstufe 1 ein qudraturmoduliertes Signal sq von einer Antenne, einem Kabel oder einer sonstigen Einrichtung. Eine Quadratursignalquelle 2 mit angeschlossenem Oszillator 2.1, der als Mischungssignal sx ein digitales Signal mit einer vorgegebenen Frequenz fx abgibt, bildet aus dem quadraturmodulierten Signal sq ein Inphasensignal I und ein Quadraturphasensignal Q, wobei beide Signale I und Q digitalisiert sind. Die Digitalisierung kann dabei in der Quadratursignalquelle 2 oder bereits in der Eingangssstufe 1 erfolgen.
    Zum Verständnis für das C-QUAM-Stereo-Übertragungsverfahren werden im folgenden, einige kurze Erläuterungen eingeschoben, vgl. hierzu Fig. 4. Die Abkürzung C-QUAM steht für "Compatibel - Quadratur Amplitude Modulation", einem AM-Stereoübertragungsverfahren, das von Motorola entwickelt wurde und zur Zeit insbesondere in USA und Australien verwendet wird. Für die Stereoübertragung wird aus der Links- und Rechtsinformation L bzw. R, wie bei nahezu allen Stereo-Standards, zuächst in ein Summen- und ein Differenzsignal S bzw. D gebildet: S = L + R und D = L - R.
    Das modulierte Signal erhält man aus dem Realteil (=Re) und Imaginärteil eines komplexen Zeigers M(t), der sich entsprechend der Trägerfrequenz f mit der Rotationsfrequenz ω dreht. Der Betrag dieses Zeigers soll dabei immer den Wert 1+S annehmen, wobei der Wert 1 den Träger mit konstant angenommener Größe repräsentiert. Die Größe des Differenzsignals D wirkt sich ausschließlich auf die Phasenlage des Zeigers M(t) aus. Der Phasenwinkel ϕ des Modulationsvektors M(t) ergibt sich zu: ϕ = arctan (D/(1 + S)).
    Das auf die Trägeramplitude normierte C-QUAM-Signal kann somit durch folgenden Ausdruck beschrieben werden: M(t) = Re {(1 + S) Exp (jx (ωt + ϕ)}.
    Auf das Differenzsignal D wird ferner ein Pilotton P mit einer Frequenz von 25 Hz bei 5 % Aussteuerung moduliert, der eine Stereoerkennung und damit eine automatische Stereoumschaltung ermöglicht.
    In Fig. 1 schließt sich an die Quadratursignalquelle 2 ein Koordinatenumsetzer 3 an, der aus dem Inphasensignal I und dem Quadraturphasensignal Q ein Betragssginal b und ein erstes Phasensignal p1 bildet. Der Koordinatenumsetzer 3 führt eine Umsetzung von karthesischen Koordinaten in Polarkoordinaten aus. Für diese Umsetzung eignet sich insbesondere der bekannte Cordic-Algorithmus, der die gesuchten Werte über eine iterative Näherung mit beliebiger Genauigkeit bestimmt.
    Wie eingangs erwähnt, ist es nicht erforderlich, daß die Quadraturmischung direkt in das Basisband erfolgt. Wenn das Inphasensignal I und das Quadraturphasensignal Q mit einer Frequenz von 19 kHz abgetastet werden, dann reicht es für die Demodulation nach der Erfindung aus, wenn die restliche Rotationsfrequenz ωr des komplexen Zeigers M(t) kleiner als 2 kHz bleibt.
    Die Differenz aus der Mischungsfrequenz fx und der Trägerfrequenz f ergibt eine Restfrequenz fr und damit eine verbleibende Rotationsfrequenz ωr des komplexen Zeigers M(t). Sie bewirkt, daß das erste Phasensignal p1 nicht konstant ist sondern im zeitlichen Mittel konstant zu- oder abnimmt, vgl. auch Fig. 2. Dies entspricht einer konstanten Versatzfrequenz ωr die mittels eines ersten Regelkreises 4 auf den Wert Null gebracht wird, indem die mittlere Steigung mt des ersten Phasensignals p1 durch ein erstes Stellsignal c1 mit einer gleichgroßen negativen Steigung kompensiert wird. Das Stellsignal c1 wird mittels eines ersten Addierers 5 dem ersten Phasensignal p1 hinzugefügt und bildet damit ein zweites Phasensignal p2, vgl. auch Fig. 3. In Fig. 1 wird die Steigung durch einen Differenzbildner 6 aus zwei aufeinanderfolgenden Abtastwerten gebildet, die dann mittels einer ersten Filtereinrichtung 7 gewichtet und/oder gemittelt werden. Der Ausgang der ersten Filtereinrichtung 7 wird mittels eines Integrators 8 integriert, dessen Ausgang das erste Stellsignal c1 an den ersten Addierer 5 liefert. Der Differenzbildner 6 besteht aus einem ersten Verzögerer 6.1 und einem Subtrahierer 6.2. Der Integrator 8 besteht aus einer Akkumulatorschleife mit einem zweiten Addierer 8.1 und einem zweiten Verzögerer 8.2. Die Ausgangssignale der beiden Regelschleifen 4, 9 werden dem zweiten Addierer 8.1 als invertierte Signale zugeführt, damit die Regelrichtung beim ersten Addierer 5 stimmt.
    Die Kompensation der mittleren Steigung mp bewirkt aber noch nicht, daß das zweite Phasensignal p2 im zeitlichen Mittel exakt auf den Phasenbezugswert zu liegen kommt. Der zeitliche Mittelwert tm des zweiten Phasensignals p2 ist in Fig. 3 als leicht ansteigende Gerade unterhalb der Nullphasenbezugsachse dargestellt. Mittels eines zweiten Regelkreises 9 wird der zeitliche Mittelwert tm des zweiten Phasensignals p2 exakt auf die Nullphasenbezugsachse gebracht. Dies wird mittels einer zweiten Filtereinrichtung 10 und dem Integrator 8 erreicht, indem das Ausgangssignal des ersten Addierers 5 direkt oder über eine Modifizierungseinrichtung 11 dem Eingang der zweiten Filtereinrichtung 10 zugeführt wird, an deren Ausgang ein weiterer Eingang des Integrators 8 liegt. Als Ergebnis bildet der zweite Regelkreis 9 ein zweites Stellsignal c2, das mittels des ersten Addierers 5 additiv/subtraktiv dem ersten Phasensignal p1 und einem ersten Stellsignal c1 hinzugefügt wird und damit ein drittes Phasensignal p3 bildet, das bezüglich seiner Steigung und Phase im zeitlichen Mittel richtig liegt. Das zweite Phasensignal p2 liefert mit seinem Mittelwert mp2 das Eingangssignal des zweiten Regelkreises. Die momentanen Abweichungen des dritten Phasensignals p3 von der Nullphasenbezugslage entsprechen somit nur noch dem gesuchten Differenzsignal D und dem Pilotsignal P. Mittels eines Dekodierers 12 werden aus dem Betragssignal b und dem dritten Phasensignal p3 die gesuchten Komponenten L, R, P des Stereo-Kombinationssignals gebildet. Entsprechend dem Übertragungsstandard wird in der Regel zuvor das dritte Phasensignal p3 mittels der Modifizierungseinrichtung 11 modifiziert, indem beispielsweise der zugehörige Tangenswert bestimmt wird. Da im Betragssignal b die Trägeramplitude enthalten ist, wird für die Stereo-Matrix im Dekodierer 12 das dritte Phasensignal p3 bzw. das modifizierte Phasensignal p3' auf die Trägeramplitude normiert. Dies erfolgt mittels eines Multiplizierers 13, dessen erster Eingang mit dem Betragssignal b und dessen zweiter Eingang mit dem dritten Phasensignal p3 bzw. p3' gespeist ist.
    Es wird darauf hingewiesen, daß in Fig. 1 das zweite und dritte Phasensignal p2, p3 identisch sind, weil der Ausgang des ersten und zweiten Regelkreises 4, 9 durch den gemeinsamen Addierer 5 gebildet wird. Die Funktionsweise des Demodulators wird durch die getrennte Betrachtung von p2, p3 verständlicher.
    In Fig. 2 ist schematisch der zeitliche Verlauf des ersten Phasensignals p1 dargestellt. Der restlichen Rotationsfrequenz ωr des komplexen Zeigers M(t) entspricht eine stetige Zunahme mp der mittleren Phase mp1, die durch eine sägezahnförmige, durchgezogene Linie dargestellt ist. Das erste Phasensignal p1 wird vorzugsweise als Zweierkomplement-Zahlenwert dargestellt, dessen untere bzw. obere Wertegrenze dem Phasenwinkel -π bzw. +π entspricht. Die stetig zunehmende Phase mp1 springt somit gleichsam von dem Phasenwert +π auf den Phasenwert -π zurück. Die Ankopplung des jeweiligen Phasenwertes an die Zweierkomplement-Zahlendarstellung hat den großen Vorteil, daß Phasendifferenzwerte richtig wiedergegeben werden, auch wenn die Phase zwischenzeitlich übergelaufen ist. Der gestrichelte Bereich um die mittlere Phase mp1 gibt den Bereich an, in dem sich das erste Phasensignal p1 durch die Modulation mit dem Differenzsignal D und dem Pilotsignal P aufhalten kann.
    In Fig. 3 ist schematisch der zeitliche Verlauf des zweiten Phasensignals p2 dargestellt, das durch eine Phasenkorrektur mittels des ersten Regelkreises 4 erhalten wird. Die mittlere Phase mp2 hat hierbei allenfalls noch eine ganz geringfügige Steigung tm. Die mittlere Phase mp2 liegt jedoch nicht wie erforderlich auf der Nullphasen-Bezugsachse - allenfalls zufällig. Die Korrektur der Nullphasenlage erfolgt durch den zweiten Regelkreis 9, der auch die geringfügige restliche Steigung tm unterdrückt. Die momentane Phase des zweiten Phasensignals p2 liegt dabei in dem gestrichelt dargestellten Phasenbereich um die mittlere Phase mp2.
    In Fig. 4 wird wie bereits erläuert in einer komplexen Zeigerdarstellung der mit der Frequenz ω rotierende Modulationsvektor M(t) dargestellt. Die Modulationskomponenten 1+S und D definieren dabei die momentane Amplitude und Phase ϕ des Zeigers gegenüber einem mit konstanter Amplitude und mit konstanter Frequenz umlaufenden Bezugszeiger. Beim hochfrequent übertragenen Quadratursignal sq ist dies der zugehörige Träger. Der umlaufende Bezugszeiger gibt über das Inphasensignal I die Bezugsphase vor. Senkrecht dazu steht das Quadraturphasensignal Q. Aus diesen beiden Signalen I,Q bestimmt der Koordinatenumsetzer 3 die momentane Länge 1+S und momentane Phase ϕ des Zeigers M(t). Die Zeigerdarstellung ist unabhängig von der Rotationsfrequenz ω. So gilt diese Darstellung sowohl für das hochfrequent übertragene Quadratursignal sq als auch für die Quadraturkomponenten I,Q, deren zugehöriger Bezugszeiger mit der niedrigen Rotationsfrequenz ωr umläuft.
    Die Realisierung des Demodulators nach der Erfindung kann als Programmablauf in einem Prozessor, insbesondere in einer monolithisch integrierten Schaltung, oder als Schaltung oder in gemischter Form erfolgen. Es ist dabei unerheblich, wie die einzelnen Funtionseinheiten im Detail realisiert sind und ob die Funktionseinheiten auch anderen Zwecken dienen.

    Claims (7)

    1. Digitaler Demodulator für ein quadraturmoduliertes Signal (sq), das mittels einer Amplituden- und Phasenmodulation ein Kombinationssignal überträgt, mit
      einer Quadratursignalquelle (2), die abhängig vom empfangenen quadraturmodulierten Signal (sq) ein digitalisiertes Inphasensignal (I) und ein digitalisiertes Quadraturphasensignal (Q) in tiefer Frequenzlage liefert, wobei die Bandbreite des tiefen Frequenzbereiches nicht größer ist als ein Zehntel der Digitalisierungsfrequenz,
      einem Koordinatenumsetzer (3), der aus dem digitalisierten Inphasensignal (I) und dem digitalisierten Quadraturphasensignal (Q) ein Betragssignal (b) und ein erstes Phasensignal (p1) bildet,
      einem dem Koordinatenumsetzer (3) nachgeschalteten ersten Regelkreis (4), der die Steigung (mp) des ersten Phasensignals (p1) im zeitlichen Mittel auf den Wert Null oder einen Restwert regelt und damit ein zweites Phasensignal (p2) bildet,
      einem dem Koordinatenumsetzer (3) nachgeschalteten zweiten Regelkreis (9), der den zeitlichen Mittelwert (tm) des zweiten Phasensignals (p2) auf einen Phasenbezugswert, insbesondere eine Nullphasenlage, regelt und damit ein drittes Phasensignal (p3) bildet, und
      einem Dekodierer (12), der aus dem Betragssignal (b) und dem dritten Phasensignal (p3) mindestens eine digitalisierte Komponente (R,L,P) des Kombinationssignals bildet.
    2. Demodulator nach Anspruch 1, dadurch gekennzeichnet, daß die Steigung (mp) des ersten Phasensignals (p1) aus der Differenz zwischen mindestens zwei zeitlich benachbarten Abtastwerten gebildet ist.
    3. Demodulator nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der erste und/oder zweite Regelkreis (4, 9) einen Integrator (8) enthält.
    4. Demodulator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der erste bzw. zweite Regelkreis (4, 9) ein erstes bzw. ein zweites Stellsignal (c1, c2) bildet, mit dem das erste bzw. zweite Phasensignal (p1, p2) additiv/subtraktiv in seinem Wert geändert wird.
    5. Demodulator nach Anspruch 3, dadurch gekennzeichnet, daß der Integrator (8) für den ersten und zweiten Regelkreis (4, 9) gemeinsam vorhanden ist.
    6. Demodulator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das dritte Phasensignal (p3) dem Dekodierer (12) und/oder dem zweiten Regelkreis (9) über eine Modifizierungseinrichtung (11) zugeführt ist.
    7. Demodulator nach Anspruch 6, dadurch gekennzeichnet, daß die Modifizierungseinrichtung (11) einen Tangensbildner enthält.
    EP96101105A 1996-01-26 1996-01-26 Digitaler Demodulator Expired - Lifetime EP0786921B1 (de)

    Priority Applications (3)

    Application Number Priority Date Filing Date Title
    EP96101105A EP0786921B1 (de) 1996-01-26 1996-01-26 Digitaler Demodulator
    DE59609450T DE59609450D1 (de) 1996-01-26 1996-01-26 Digitaler Demodulator
    US08/792,924 US5767739A (en) 1996-01-26 1997-01-21 Digital demodulator for quadrature amplitude and phase modulated signals

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP96101105A EP0786921B1 (de) 1996-01-26 1996-01-26 Digitaler Demodulator

    Publications (2)

    Publication Number Publication Date
    EP0786921A1 EP0786921A1 (de) 1997-07-30
    EP0786921B1 true EP0786921B1 (de) 2002-07-17

    Family

    ID=8222441

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96101105A Expired - Lifetime EP0786921B1 (de) 1996-01-26 1996-01-26 Digitaler Demodulator

    Country Status (3)

    Country Link
    US (1) US5767739A (de)
    EP (1) EP0786921B1 (de)
    DE (1) DE59609450D1 (de)

    Families Citing this family (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4434451A1 (de) * 1994-09-27 1996-03-28 Blaupunkt Werke Gmbh Amplitudendemodulator
    KR100441196B1 (ko) * 2002-01-14 2004-07-21 기가텔레콤 (주) 연속 위상 직교 진폭 변조 및 복조 장치
    BR0304231A (pt) 2002-04-10 2004-07-27 Koninkl Philips Electronics Nv Métodos para codificação de um sinal de canais múltiplos, método e disposição para decodificação de informação de sinal de canais múltiplos, sinal de dados incluindo informação de sinal de canais múltiplos, meio legìvel por computador, e, dispositivo para comunicação de um sinal de canais múltiplos
    DE102004020300B3 (de) * 2004-04-26 2005-09-22 Micronas Gmbh Verfahren und Schaltungsanordnung zum Bestimmen eines Taktsignal-Abtastzeitpunkts für Symbole eines Modulationsverfahrens
    US10509295B2 (en) * 2017-03-15 2019-12-17 Elenion Technologies, Llc Bias control of optical modulators
    US10942377B2 (en) * 2018-10-08 2021-03-09 Cisco Technology, Inc. High swing AC-coupled Mach-Zehnder interferometer (MZI) driver
    CN111510406B (zh) * 2020-06-03 2024-05-17 上海创远仪器技术股份有限公司 实现宽带iq调制实时预失真校准的电路及方法

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS6047513A (ja) * 1983-08-26 1985-03-14 Nec Corp 周波数ずれ吸収回路
    EP0343273B1 (de) * 1988-05-27 1994-04-27 Deutsche ITT Industries GmbH Korrekturschaltung für ein digitales Quadratur-Signalpaar
    US5249204A (en) * 1991-08-12 1993-09-28 Motorola, Inc. Circuit and method for phase error correction in a digital receiver
    DE4340012B4 (de) 1993-11-24 2004-04-22 Blaupunkt-Werke Gmbh Demodulator
    US5497400A (en) * 1993-12-06 1996-03-05 Motorola, Inc. Decision feedback demodulator with phase and frequency estimation

    Also Published As

    Publication number Publication date
    DE59609450D1 (de) 2002-08-22
    EP0786921A1 (de) 1997-07-30
    US5767739A (en) 1998-06-16

    Similar Documents

    Publication Publication Date Title
    DE68926583T2 (de) Interferenzunterdrückungsschaltung
    DE69736188T2 (de) Verfahren in einem digitalen quadraturmodulator und -demodulator sowie digitaler quadraturmodulator und -demodulator
    DE2309167C2 (de) Verfahren und Schaltungsanordnung zum Korrigieren eines durch Phasenzittern verfälschten elektrischen Übertragtungssignals
    EP0895386B1 (de) Trägerregelkreis für einen Empfänger von digital übertragenen Signalen
    DE69629855T2 (de) Verstärkervorrichtung
    DE2646255A1 (de) Digitales detektorsystem fuer differentielle phasenshift-umtastsignale
    EP0084876A2 (de) Demodulatoranordnung zur Demodulation von in Frequenzmodulation auf einer Trägerfrequenzwelle enthaltener Signale
    DE2902952A1 (de) Direktmischendes empfangssystem
    EP1759508A1 (de) Verfahren und vorrichtung zur gleichzeitigen kompensation von signalfehlern in iq-modulatoren
    DE2257275C3 (de) Schaltungsanordnung zur automatischen Entzerrung
    DE2656924C3 (de) Phasendiskriminator in einem Empfänger eines Datenübertragungssystems
    DE964250C (de) Empfaenger fuer Restseitenband-Signale
    EP0786921B1 (de) Digitaler Demodulator
    DE69729329T2 (de) Gerät und verfahren zur phasenschätzung
    DE2556959A1 (de) Automatischer bandpassentzerrer fuer datenuebertragungssysteme
    EP0579100A1 (de) Verfahren und Einrichtung zur Phasenkorrektur im Basisband eines PSK-Empfängers
    DE102007028066B3 (de) Verfahren und Vorrichtung zum Erzeugen eines Übertragungssignals
    DE69818075T2 (de) Signalverarbeitungssystem
    DE2842111A1 (de) Am-stereoempfaenger
    DE1591408C2 (de) Vorrichtung zum Empfang mehrerer Eingangssignale gleicher Frequenz
    DE69927957T2 (de) Demodulator mit Rotationsmitteln für Frequenzverschiebungskorrektur
    DE4340012B4 (de) Demodulator
    EP0602394B1 (de) Verfahren und Vorrichtung zur Korrektur der Phasen- und Amplitudenfehler bei direktmischenden Empfangseinrichtungen
    DE2715741A1 (de) Stereo-uebertragungseinrichtung
    DE2654276A1 (de) Phasensynchronisierende schaltungsanordnung

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT NL

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: MICRONAS INTERMETALL GMBH

    17P Request for examination filed

    Effective date: 19980130

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: MICRONAS GMBH

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20010912

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020718

    REF Corresponds to:

    Ref document number: 59609450

    Country of ref document: DE

    Date of ref document: 20020822

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20030422

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20070124

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20070125

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20070228

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20070521

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20070117

    Year of fee payment: 12

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20080126

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20080801

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080801

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080801

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20081029

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080126

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080126