EP0786921A1 - Digitaler Demodulator - Google Patents
Digitaler Demodulator Download PDFInfo
- Publication number
- EP0786921A1 EP0786921A1 EP96101105A EP96101105A EP0786921A1 EP 0786921 A1 EP0786921 A1 EP 0786921A1 EP 96101105 A EP96101105 A EP 96101105A EP 96101105 A EP96101105 A EP 96101105A EP 0786921 A1 EP0786921 A1 EP 0786921A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- phase
- phase signal
- quadrature
- forms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S1/00—Two-channel systems
- H04S1/007—Two-channel systems in which the audio signals are in digital form
Definitions
- the invention relates to a digital demodulator for a quadrature-modulated signal, which transmits a combination signal by means of amplitude and phase modulation.
- Quadrature-modulated signals are often used when signals that belong together but are supposed to be independent of each other are to be transmitted in a transmission channel.
- One such application is the transmission of stereo signals according to the C-QUAM standard, in which a sum signal is transmitted via the amplitude modulation and a difference signal and a pilot tone via the phase modulation of the respective carrier.
- An example of an associated digital demodulator is described in DE 43 40 012 A1.
- a quadrature signal source forms an in-phase signal and a quadrature-phase signal from the received quadrature-modulated signal by means of a quadrature mixer. The digitization can take place before or after the quadrature mixer.
- a magnitude signal and a phase signal are formed from the digitized in-phase signal and the digitized quadrature phase signal by means of a coordinate converter, which operates in particular according to the Cordic algorithm.
- a control loop controlled by the phase signal controls the oscillator frequency of the quadrature mixer exactly to the value of the carrier frequency, so that the in-phase signal and the quadrature phase signal are transformed into the baseband.
- a remaining mean phase deviation is corrected in that the control loop also intervenes in the phase signal and there adds or subtracts a correction signal which pulls the temporal mean value of the phase signal to the zero phase value.
- a decoder which essentially contains a known stereo matrix, forms the desired left and right signal and the pilot signal at 25 Hz from the magnitude signal and the phase signal.
- the object of the invention is to provide an improved digital demodulator for such quadrature-modulated signals, which is better suited to digital signal processing is adapted and places less demands on the quadrature signal source.
- the main advantage of this arrangement is that the output signals of the quadrature signal source, the digitized in-phase signal and the digitized quadrature phase signal do not have to have the exact baseband position, but only have to be in a relatively low frequency range.
- the bandwidth of this low frequency range depends on the digitization frequency and should preferably not be greater than one tenth of the digitization frequency.
- the first control loop is advantageously controlled via the slope of the first phase signal, which results from the difference between at least two temporally adjacent samples.
- this also includes the fact that further samples can be acquired to form the difference, whereby a better averaging is achieved and disturbance variables can be better suppressed.
- control loops contain an integrator. Accumulator loops with sufficient place capacity are particularly suitable for this, so that no overflow takes place in normal operation.
- control signal of the first and / or second control circuit is designed such that it can be combined with the respective phase signal as an additive or subtractive correction signal via an adding circuit.
- the two control signals can be combined additively, so that only a single adder is required for correction in the phase signal path.
- the integrator for the first and second control loops can be designed jointly by feeding the two control signals to the adder in the accumulator loop. Its output then provides the common control signal.
- the third Phase signal before the decoder is to be modified by means of an evaluation device.
- the evaluation device corresponds to a predetermined signal characteristic which is inverse to the signal characteristic on the transmitter side.
- the evaluation device can have a non-linear characteristic curve, for example in the case of the C-QUAM standard, a tangent curve is prescribed as the characteristic curve on the receiver side.
- the course of the tangent can be defined by a memory table or by a polynomial approximation as in DE 43 40 012 already mentioned.
- an input stage 1 receives a quadrature modulated signal sq from an antenna, a cable or another device.
- a quadrature signal source 2 with connected oscillator 2.1 which emits a digital signal with a predetermined frequency fx as the mixing signal sx, forms an in-phase signal I and a quadrature phase signal Q from the quadrature-modulated signal sq, both signals I and Q being digitized.
- the digitization can take place in the quadrature signal source 2 or already in the input stage 1.
- C-QUAM Compatible - Quadrature Amplitude Modulation
- the amount of this pointer should always assume the value 1 + S, the value 1 representing the carrier with a constant size.
- the size of the difference signal D only affects the phase position of the pointer M (t).
- a pilot tone P with a frequency of 25 Hz at 5% modulation is also modulated onto the differential signal D, which enables stereo detection and thus automatic stereo switching.
- the quadrature signal source 2 is followed by a coordinate converter 3, which forms an absolute signal b and a first phase signal p1 from the in-phase signal I and the quadrature phase signal Q.
- the coordinate converter 3 carries out a conversion of Cartesian coordinates into polar coordinates.
- the well-known Cordic algorithm is particularly suitable for this implementation, which determines the searched values with an iterative approximation with arbitrary accuracy.
- the difference between the mixing frequency fx and the carrier frequency f results in a residual frequency fr and thus a remaining rotational frequency ⁇ r of the complex pointer M (t).
- the first phase signal p1 is not constant but increases or decreases constantly over time, cf. also Fig. 2.
- This corresponds to a constant offset frequency ⁇ r which is brought to the value zero by means of a first control circuit 4, in that the mean slope mt of the first phase signal p1 is compensated by a first actuating signal c1 with an equally large negative slope.
- the actuating signal c1 is added to the first phase signal p1 by means of a first adder 5 and thus forms a second phase signal p2, cf. also FIG. 3.
- FIG. 3 In FIG.
- the slope is formed by a difference former 6 from two successive sample values, which are then weighted and / or averaged by means of a first filter device 7.
- the output of the first filter device 7 is integrated by means of an integrator 8, the output of which supplies the first actuating signal c1 to the first adder 5.
- the difference generator 6 consists of a first retarder 6.1 and a subtractor 6.2.
- the integrator 8 consists of an accumulator loop with a second adder 8.1 and a second delay 8.2.
- the output signals of the two control loops 4, 9 are fed to the second adder 8.1 as inverted signals, so that the control direction in the first adder 5 is correct.
- the time average tm of the second phase signal p2 is shown in FIG. 3 as a slightly rising straight line below the zero phase reference axis.
- the time average tm of the second phase signal p2 is brought exactly to the zero phase reference axis by means of a second control loop 9. This is achieved by means of a second filter device 10 and the integrator 8, in that the output signal of the first adder 5 is fed directly or via an evaluation device 11 to the input of the second filter device 10, at the output of which there is a further input of the integrator 8.
- the second control circuit 9 forms a second control signal c2, which is additively / subtractively added to the first or second phase signal p1, p2 by means of the first adder 5 and thus forms a third phase signal p3 which is correct in terms of its slope and phase on average over time.
- the second phase signal p2 supplies the input signal of the second control loop.
- the instantaneous deviations of the third phase signal p3 from the zero phase reference position thus only correspond to the sought difference signal D and the pilot signal P.
- the sought components L, R, P of the stereo combination signal are formed from the magnitude signal b and the third phase signal p3 .
- the third phase signal p3 is generally modified beforehand by means of the evaluation device 11, for example by determining the associated tangent value. Since the magnitude signal b contains the carrier amplitude, the third phase signal p3 or the modified phase signal p3 'is normalized to the carrier amplitude for the stereo matrix in the decoder 12. This is done by means of a multiplier 13, the first input of which is fed with the magnitude signal b and the second input of which is fed with the third phase signal p3 or p3 '.
- the second and third phase signals p2, p3 are identical in FIG. 1 because the output of the first and second control loops 4, 9 is formed by the common adder 5.
- the mode of operation of the demodulator is more understandable by considering p2, p3 separately.
- the remaining rotation frequency ⁇ r of the complex pointer M (t) corresponds to a steady increase mp in the middle phase mp1, which is represented by a sawtooth-shaped, solid line.
- the first phase signal p1 is preferably represented as a two's complement number whose lower or upper value limit corresponds to the phase angle - ⁇ or + ⁇ .
- the steadily increasing phase mp1 thus jumps back from the phase value + ⁇ to the phase value - ⁇ .
- the coupling of the respective phase value to the two's complement number representation has the great advantage that phase difference values are reproduced correctly, even if the phase has meanwhile overflowed.
- the dashed area around the middle phase mp1 indicates the area in which the first phase signal p1 is due to the modulation the difference signal D and the pilot signal P can stop.
- FIG. 3 schematically shows the time profile of the second phase signal p2, which is obtained by a phase correction using the first control loop 4.
- the middle phase mp2 in this case still has a very slight slope tm. However, the middle phase mp2 does not lie on the zero-phase reference axis as required - at best by chance.
- the zero phase position is corrected by the second control circuit 9, which also suppresses the slight remaining slope tm.
- the instantaneous phase of the second phase signal p2 lies in the phase range around the middle phase mp2 shown in dashed lines.
- the modulation vector M (t) rotating with the frequency ⁇ is shown in a complex pointer representation.
- the modulation components 1 + S and D define the instantaneous amplitude and phase ⁇ of the pointer compared to a reference pointer rotating with a constant amplitude and a constant frequency.
- the revolving reference pointer specifies the reference phase via the in-phase signal I.
- the quadrature phase signal Q is perpendicular to this. From these two signals I, Q, the coordinate converter 3 determines the current length 1 + S and the current phase ⁇ of the pointer M (t).
- the pointer representation is independent of the rotation frequency ⁇ . This representation applies both to the high-frequency transmitted quadrature signal sq and to the quadrature components I, Q, the associated reference pointer of which rotates at the low rotation frequency ⁇ r .
- the demodulator according to the invention can be implemented as a program sequence in a processor, in particular in a monolithically integrated circuit, or as a circuit or in a mixed form. It is irrelevant how the individual functional units are implemented in detail and whether the functional units also serve other purposes.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Stereo-Broadcasting Methods (AREA)
Abstract
Description
- Die Erfindung betrifft einen digitalen Demodulator für ein quadraturmoduliertes Signal, das mittels einer Amplituden- und Phasenmodulation ein Kombinationssignal überträgt.
- Quadraturmodulierte Signale werden gerne angewendet, wenn in einem Übertragungskanal zusammengehörige Signale, die aber unabhängig voneinander sein sollen, zu übertragen sind. Eine derartige Anwendung ist die Übertragung von Stereosignalen nach dem C-QUAM-Standard, bei der ein Summensignal über die Amplitudenmodulation und ein Differenzsignal sowie ein Pilotton über die Phasenmodulation des jeweiligen Trägers übertragen wird. Ein Beispiel für einen zugehörigen digitalen Demodulator ist in der Offenlegungschrift DE 43 40 012 A1 beschrieben. Eine Quadratursignalquelle bildet aus dem empfangenen quadraturmodulierten Signal mittels eines Quadraturmischers ein Inphasensignal und ein Quadraturphasensignal. Die Digitalisierung kann dabei vor oder nach dem Quadraturmischer erfolgen. Mittels eines Koordinatenumsetzers, der insbesondere nach dem Cordic-Algorithmus arbeitet, wird aus dem digitalisierten Inphasensignal und dem digitalisierten Quadraturphasensignal ein Betragssignal und ein Phasensignal gebildet. Ein vom Phasensignal gesteuerter Regelkreis steuert die Oszillatorfrequenz des Quadraturmischers exakt auf den Wert der Trägerfrequenz, so daß das Inphasensignal und das Quadraturphasensignal in das Basisband transformiert werden. Eine verbleibende mittlere Phasenabweichung wird dadurch korrigiert, daß der Regelkreis auch in das Phasensignal eingreift und dort ein Korrektursignal addiert oder subtrahiert, das den zeitlichen Mittelwert des Phasensignals auf den Nullphasenwert zieht. Ein Dekodierer, der im wesentlichen eine bekannte Stereomatrix enthält, bildet aus dem Betragssignal und dem Phasensignal das gesuchte Links- und Rechtssignal sowie das Pilotsignal bei 25 Hz.
- Aufgabe der Erfindung ist es, einen verbesserten digitalen Demodulator für derartige quadraturmodulierte Signale anzugeben, der besser an die digitale Signalverarbeitung angepaßt ist und geringere Anforderungen an die Quadratursignalquelle stellt.
- Die Aufgabe wird durch die Erfindung entsprechend den Merkmalen des Anspruchs 1 wie folgt gelöst:
- eine Quadratursignalquelle, die abhängig vom empfangenen quadraturmodulierten Signal ein digitalisiertes Inphasensignal und ein digitalisiertes Quadraturphasensignal in tiefer Frequenzlage liefert,
- ein Koordinatenumsetzer, der aus dem digitalisierten Inphasensignal und dem digitalisierten Quadraturphasensignal ein Betragssignal und ein erstes Phasensignal bildet,
- ein dem Koordinatenumsetzer nachgeschalteter erster Regelkreis, der die Steigung des ersten Phasensignals im zeitlichen Mittel auf den Wert Null oder einen Restwert regelt und damit ein zweites Phasensignal bildet,
- ein dem Koordinatenumsetzer nachgeschalteter zweiter Regelkreis, der den zeitlichen Mittelwert des zweiten Phasensignals auf einen Phasenbezugswert, insbesondere eine Nullphasenlage, regelt und damit ein drittes Phasensignal bildet, und
- ein Dekodierer, der aus dem Betragssignal und dem dritten Phasensignal mindestens eine digitalisierte Komponente des Kombinationssignals bildet.
- Der wesentliche Vorteil dieser Anordnung besteht darin, daß die Ausgangssignale der Quadratursignalquelle, das digitalsierte Inphasensignal und das digitalisierte Quadraturphasensignal nicht die exakte Basisbandlage aufweisen müssen, sondern nur in einem relativ tiefen Frequenzbereich liegen müssen. Die Bandbreite dieses tiefen Frequenzbereiches hängt von der Digitalisierungsfrequenz ab und soll dabei möglichst nicht größer sein als ein Zehntel der Digitalisierungsfrequenz. Diese günstigen Randbedingungen erlauben, daß ein digitaler Quadraturmischer auf einfachste Weise durch digitale Umschalter zu realisieren ist, weil das quadraturmodulierte Digitalsignal lediglich mit den Werten +1, -1 und 0 zu multiplizieren ist. Bei einer exakten Transformation des quadraturmodulierten Digitalsignals in das Basisband wäre eine exakte Frequenzanpassung des digitalen Mischungssignals erforderlich, was nur über eine sehr aufwendige Sinus/Cosinus-Tabelle mit zwei aufwendigen digitalen Multiplizierern zu realisieren wäre. Eine analoge Ausführung des Quadraturmischers mit nachfolgender Digitalisierung des Inphasen- und Quadraturphasensignals ist natürlich ebenfalls möglich, wobei nach der Erfindung die Oszillatorfrequenz nicht nachgeregelt werden muß und daher unkritisch gegenüber der Frequenzlage und Driftänderungen ist. Die Erfindung vermeidet somit eine phasenstarre Nachführung des Quadraturmischers, aufwendige Sinus/Cosinus-Tabellen und aufwendige Multiplizierer bei der Quadraturmischung.
- Eine vorteilhafte Ansteuerung des ersten Regelkreises erfolgt über die Steigung des ersten Phasensignals, die sich aus der Differenzbildung zwischen mindestens zwei zeitlich benachbarten Abtastwerten ergibt. Dies schließt selbstverständlich mit ein, daß weitere Abtastwerte zur Differenzbildung erfaßt werden können, wobei eine bessere Mittelwertbildung erreicht wird und Störgrößen besser unterdrückt werden können.
- Für die Genauigkeit der Regelung ist es ferner zweckmäßig, wenn die Regelkreise einen Integrator enthalten. Hierfür eignen sich insbesondere Akkumulatorschleifen mit genügender Stellenkapazität, damit im Normalbetrieb kein Überlauf stattfindet.
- Von Vorteil ist, wenn das Stellsignal des ersten und/oder zweiten Regelkreises derart ausgebildet ist, daß es als additives oder subtraktives Korrektursignal über eine Addierschaltung mit dem jeweiligen Phasensignal kombiniert werden kann. Bei geeigneter Ausführung der beiden Regelkreise lassen sich die beiden Stellsignale additiv kombinieren, so daß nur ein einziger Addierer zur Korrektur im Phasensignalpfad erforderlich ist. In gleicher Weise kann der Integrator für den ersten und zweiten Regelkreis gemeinsam ausgebildet sein, indem die beiden Stellsignale dem Addierer im Akkumulatorkreis zugeführt sind. Dessen Ausgang liefert dann das gemeinsame Stellsignal.
- Für die jeweilige Übertragungsnorm kann es erforderlich sein, daß das dritte Phasensignal vor dem Dekodierer mittels einer Bewertungseinrichtung zu modifizieren ist. Die Bewertungseinrichtung entspricht einer vorgegebenen Signalkennlinie, die invers zur Signalkennlinie auf der Senderseite ist. Die Bewertungseinrichtung kann dabei eine nichtlineare Kennlinie aufweisen, z.B. ist bei dem C-QUAM-Standard als Kennlinie auf der Empfängerseite ein Tangensverlauf vorgeschrieben. Der Tangensverlauf kann dabei durch eine Speichertabelle definiert sein oder durch eine Polynomannäherung wie in der bereits genannten DE 43 40 012.
- Die Erfindung und vorteilhafte Ausgestaltungen werden nun anhand der Zeichnung mit mehreren Figuren näher erläutert:
- Fig. 1 zeigt schematisch als Schaltung einen digitalen Demodulator nach der Erfindung,
- Fig. 2 zeigt im Zeitdiagramm das zugehörige erste Phasensignal,
- Fig. 3 zeigt im Zeitdiagramm das zugehörige zweite Phasensignal und
- Fig. 4 zeigt einige Signale anhand einer komplexen Zeigerdarstellung.
- In der schematischen Darstellung von Fig. 1 empfängt eine Eingangsstufe 1 ein qudraturmoduliertes Signal sq von einer Antenne, einem Kabel oder einer sonstigen Einrichtung. Eine Quadratursignalquelle 2 mit angeschlossenem Oszillator 2.1, der als Mischungssignal sx ein digitales Signal mit einer vorgegebenen Frequenz fx abgibt, bildet aus dem quadraturmodulierten Signal sq ein Inphasensignal I und ein Quadraturphasensignal Q, wobei beide Signale I und Q digitalisiert sind. Die Digitalisierung kann dabei in der Quadratursignalquelle 2 oder bereits in der Eingangssstufe 1 erfolgen.
- Zum Verständnis für das C-QUAM-Stereo-Übertragungsverfahren werden im folgenden, einige kurze Erläuterungen eingeschoben, vgl. hierzu Fig. 4. Die Abkürzung C-QUAM steht für "Compatibel - Quadratur Amplitude Modulation", einem AM-Stereoübertragungsverfahren, das von Motorola entwickelt wurde und zur Zeit insbesondere in USA und Australien verwendet wird. Für die Stereoübertragung wird aus der Links- und Rechtsinformation L bzw. R, wie bei nahezu allen Stereo-Standards, zuächst in ein Summen- und ein Differenzsignal S bzw. D gebildet:
- Das modulierte Signal erhält man aus dem Realteil (=Re) und Imaginärteil eines komplexen Zeigers M(t), der sich entsprechend der Trägerfrequenz f mit der Rotationsfrequenz ω dreht. Der Betrag dieses Zeigers soll dabei immer den Wert 1+S annehmen, wobei der Wert 1 den Träger mit konstant angenommener Größe repräsentiert. Die Größe des Differenzsignals D wirkt sich ausschließlich auf die Phäsenlage des Zeigers M(t) aus. Der Phasenwinkel ϕ des Modulationsvektors M(t) ergibt sich zu:
-
- Auf das Differenzsignal D wird ferner ein Pilotton P mit einer Frequenz von 25 Hz bei 5 % Aussteuerung moduliert, der eine Stereoerkennung und damit eine automatische Stereoumschaltung ermöglicht.
- In Fig. 1 schließt sich an die Quadratursignalquelle 2 ein Koordinatenumsetzer 3 an, der aus dem Inphasensignal I und dem Quadraturphasensignal Q ein Betragssginal b und ein erstes Phasensignal p1 bildet. Der Koordinatenumsetzer 3 führt eine Umsetzung von karthesischen Koordinaten in Polarkoordinaten aus. Für diese Umsetzung eignet sich insbesondere der bekannte Cordic-Algorithmus, der die gesuchten Werte über eine iterative Näherung mit beliebiger Genauigkeit bestimmt.
- Wie eingangs erwähnt, ist es nicht erforderlich, daß die Quadraturmischung direkt in das Basisband erfolgt. Wenn das Inphasensignal I und das Quadraturphasensignal Q mit einer Frequenz von 19 kHz abgetastet werden, dann reicht es für die Demodulation nach der Erfindung aus, wenn die restliche Rotationsfrequenz ωr des komplexen Zeigers M(t) kleiner als 2 kHz bleibt.
- Die Differenz aus der Mischungsfrequenz fx und der Trägerfrequenz f ergibt eine Restfrequenz fr und damit eine verbleibende Rotationsfrequenz ωr des komplexen Zeigers M(t). Sie bewirkt, daß das erste Phasensignal p1 nicht konstant ist sondern im zeitlichen Mittel konstant zu- oder abnimmt, vgl. auch Fig. 2. Dies entspricht einer konstanten Versatzfrequenz ωr die mittels eines ersten Regelkreises 4 auf den Wert Null gebracht wird, indem die mittlere Steigung mt des ersten Phasensignals p1 durch ein erstes Stellsignal c1 mit einer gleichgroßen negativen Steigung kompensiert wird. Das Stellsignal c1 wird mittels eines ersten Addierers 5 dem ersten Phasensignal p1 hinzugefügt und bildet damit ein zweites Phasensignal p2, vgl. auch Fig. 3. In Fig. 1 wird die Steigung durch einen Differenzbildner 6 aus zwei aufeinanderfolgenden Abtastwerten gebildet, die dann mittels einer ersten Filtereinrichtung 7 gewichtet und/oder gemittelt werden. Der Ausgang der ersten Filtereinrichtung 7 wird mittels eines Integrators 8 integriert, dessen Ausgang das erste Stellsignal c1 an den ersten Addierer 5 liefert. Der Differenzbildner 6 besteht aus einem ersten Verzögerer 6.1 und einem Subtrahierer 6.2. Der Integrator 8 besteht aus einer Akkumulatorschleife mit einem zweiten Addierer 8.1 und einem zweiten Verzögerer 8.2. Die Ausgangssignale der beiden Regelschleifen 4, 9 werden dem zweiten Addierer 8.1 als invertierte Signale zugeführt, damit die Regelrichtung beim ersten Addierer 5 stimmt.
- Die Kompensation der mittleren Steigung mp bewirkt aber noch nicht, daß das zweite Phasensignal p2 im zeitlichen Mittel exakt auf den Phasenbezugswert zu liegen kommt. Der zeitliche Mittelwert tm des zweiten Phasensignals p2 ist in Fig. 3 als leicht ansteigende Gerade unterhalb der Nullphasenbezugsachse dargestellt. Mittels eines zweiten Regelkreises 9 wird der zeitliche Mittelwert tm des zweiten Phasensignals p2 exakt auf die Nullphasenbezugsachse gebracht. Dies wird mittels einer zweiten Filtereinrichtung 10 und dem Integrator 8 erreicht, indem das Ausgangssignal des ersten Addierers 5 direkt oder über eine Bewertungseinrichtung 11 dem Eingang der zweiten Filtereinrichtung 10 zugeführt wird, an deren Ausgang ein weiterer Eingang des Integrators 8 liegt. Als Ergebnis bildet der zweite Regelkreis 9 ein zweites Stellsignal c2, das mittels des ersten Addierers 5 additiv/subtraktiv dem ersten bzw. zweiten Phasensignal p1, p2 hinzugefügt wird und damit ein drittes Phasensignal p3 bildet, das bezüglich seiner Steigung und Phase im zeitlichen Mittel richtig liegt. Das zweite Phasensignal p2 liefert mit seinem Mittelwert mp2 das Eingangssignal des zweiten Regelkreises. Die momentanen Abweichungen des dritten Phasensignals p3 von der Nullphasenbezugslage entsprechen somit nur noch dem gesuchten Differenzsignal D und dem Pilotsignal P. Mittels eines Dekodierers 12 werden aus dem Betragssignal b und dem dritten Phasensignal p3 die gesuchten Komponenten L, R, P des Stereo-Kombinationssignals gebildet. Entsprechend dem Übertragungsstandard wird in der Regel zuvor das dritte Phasensignal p3 mittels der Bewertungseinrichtung 11 modifiziert, indem beispielsweise der zugehörige Tangenswert bestimmt wird. Da im Betragssignal b die Trägeramplitude enthalten ist, wird für die Stereo-Matrix im Dekodierer 12 das dritte Phasensignal p3 bzw. das modifizierte Phasensignal p3' auf die Trägeramplitude normiert. Dies erfolgt mittels eines Multiplizierers 13, dessen erster Eingang mit dem Betragssignal b und dessen zweiter Eingang mit dem dritten Phasensignal p3 bzw. p3' gespeist ist.
- Es wird darauf hingewiesen, daß in Fig. 1 das zweite und dritte Phasensignal p2, p3 identisch sind, weil der Ausgang des ersten und zweiten Regelkreises 4, 9 durch den gemeinsamen Addierer 5 gebildet wird. Die Funktionsweise des Demodulators wird durch die getrennte Betrachtung von p2, p3 verständlicher.
- In Fig. 2 ist schematisch der zeitliche Verlauf des ersten Phasensignals p1 dargestellt. Der restlichen Rotationsfrequenz ωr des komplexen Zeigers M(t) entspricht eine stetige Zunahme mp der mittleren Phase mp1, die durch eine sägezahnförmige, durchgezogene Linie dargestellt ist. Das erste Phasensignal p1 wird vorzugsweise als Zweierkomplement-Zahlenwert dargestellt, dessen untere bzw. obere Wertegrenze dem Phasenwinkel -π bzw. +π entspricht. Die stetig zunehmende Phase mp1 springt somit gleichsam von dem Phasenwert +π auf den Phasenwert -π zurück. Die Ankopplung des jeweiligen Phasenwertes an die Zweierkomplement-Zahlendarstellung hat den großen Vorteil, daß Phasendifferenzwerte richtig wiedergegeben werden, auch wenn die Phase zwischenzeitlich übergelaufen ist. Der gestrichelte Bereich um die mittlere Phase mp1 gibt den Bereich an, in dem sich das erste Phasensignal p1 durch die Modulation mit dem Differenzsignal D und dem Pilotsignal P aufhalten kann.
- In Fig. 3 ist schematisch der zeitliche Verlauf des zweiten Phasensignals p2 dargestellt, das durch eine Phasenkorrektur mittels des ersten Regelkreises 4 erhalten wird. Die mittlere Phase mp2 hat hierbei allenfalls noch eine ganz geringfügige Steigung tm. Die mittlere Phase mp2 liegt jedoch nicht wie erforderlich auf der Nullphasen-Bezugsachse - allenfalls zufällig. Die Korrektur der Nullphasenlage erfolgt durch den zweiten Regelkreis 9, der auch die geringfügige restliche Steigung tm unterdrückt. Die momentane Phase des zweiten Phasensignals p2 liegt dabei in dem gestrichelt dargestellten Phasenbereich um die mittlere Phase mp2.
- In Fig. 4 wird wie bereits erläuert in einer komplexen Zeigerdarstellung der mit der Frequenz ω rotierende Modulationsvektor M(t) dargestellt. Die Modulationskomponenten 1+S und D definieren dabei die momentane Amplitude und Phase ϕ des Zeigers gegenüber einem mit konstanter Amplitude und mit konstanter Frequenz umlaufenden Bezugszeiger. Beim hochfrequent übertragenen Quadratursignal sq ist dies der zugehörige Träger. Der umlaufende Bezugszeiger gibt über das Inphasensignal I die Bezugsphase vor. Senkrecht dazu steht das Quadraturphasensignal Q. Aus diesen beiden Signalen I,Q bestimmt der Koordinatenumsetzer 3 die momentane Länge 1+S und momentane Phase ϕ des Zeigers M(t). Die Zeigerdarstellung ist unabhängig von der Rotationsfrequenz ω. So gilt diese Darstellung sowohl für das hochfrequent übertragene Quadratursignal sq als auch für die Quadraturkomponenten I,Q, deren zugehöriger Bezugszeiger mit der niedrigen Rotationsfrequenz ωr umläuft.
- Die Realisierung des Demodulators nach der Erfindung kann als Programmablauf in einem Prozessor, insbesondere in einer monolithisch integrierten Schaltung, oder als Schaltung oder in gemischter Form erfolgen. Es ist dabei unerheblich, wie die einzelnen Funtionseinheiten im Detail realisiert sind und ob die Funktionseinheiten auch anderen Zwecken dienen.
Claims (7)
- Digitaler Demodulator für ein quadraturmoduliertes Signal (sq), das mittels einer Amplituden- und Phasenmodulation ein Kombinationssignal überträgt, mit- einer Quadratursignalquelle (2), die abhängig vom empfangenen quadraturmodulierten Signal (sq) ein digitalisiertes Inphasensignal (I) und ein digitalisiertes Quadraturphasensignal (q) in tiefer Frequenzlage liefert,- einem Koordinatenumsetzer (3), der aus dem digitalisierten Inphasensignal (I) und dem digitalisierten Quadraturphasensignal (Q) ein Betragssignal (b) und ein erstes Phasensignal (p1) bildet,- einem dem Koordinatenumsetzer (3) nachgeschalteten ersten Regelkreis (4), der die Steigung (mp) des ersten Phasensignals (p1) im zeitlichen Mittel auf den Wert Null oder einen Restwert regelt und damit ein zweites Phasensignal (p2) bildet,- einem dem Koordinatenumsetzer (3) nachgeschalteten zweiten Regelkreis (9), der den zeitlichen Mittelwert (tm) des zweiten Phasensignals (p2) auf einen Phasenbezugswert, insbesondere eine Nullphasenlage, regelt und damit ein drittes Phasensignal (p3) bildet, und- einem Dekodierer (12), der aus dem Betragssignal (b) und dem dritten Phasensignal (p3) mindestens eine digitalisierte Komponente (R,L,P) des Kombinationssignals bildet.
- Demodulator nach Anspruch 1, dadurch gekennzeichnet, daß die Steigung (mp) des ersten Phasensignals (p1) aus der Differenz zwischen mindestens zwei zeitlich benachbarten Abtastwerten gebildet ist.
- Demodulator nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der erste und/oder zweite Regelkreis (4, 9) einen Integrator (8) enthält.
- Demodulator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der erste und/oder zweite Regelkreis (4, 9) ein erstes bzw. ein zweites Stellsignal (c1, c2) bildet, mit dem das erste und/oder zweite Phasensignal (p1, p2) additiv/subtraktiv in seinem Wert geändert wird.
- Demodulator nach Anspruch 4, dadurch gekennzeichnet, daß der Integrator (8) für den ersten und zweiten Regelkreis (4, 9) gemeinsam vorhanden ist.
- Demodulator nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das dritte Phasensignal (p3) dem Dekodierer (12) und/oder dem zweiten Regelkreis (9) über eine Bewertungseinrichtung (11) zugeführt ist.
- Demodulator nach Anspruch 6, dadurch gekennzeichnet, daß die Bewertungseinrichtung (11) einen Tangensbildner enthält.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96101105A EP0786921B1 (de) | 1996-01-26 | 1996-01-26 | Digitaler Demodulator |
DE59609450T DE59609450D1 (de) | 1996-01-26 | 1996-01-26 | Digitaler Demodulator |
US08/792,924 US5767739A (en) | 1996-01-26 | 1997-01-21 | Digital demodulator for quadrature amplitude and phase modulated signals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96101105A EP0786921B1 (de) | 1996-01-26 | 1996-01-26 | Digitaler Demodulator |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0786921A1 true EP0786921A1 (de) | 1997-07-30 |
EP0786921B1 EP0786921B1 (de) | 2002-07-17 |
Family
ID=8222441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96101105A Expired - Lifetime EP0786921B1 (de) | 1996-01-26 | 1996-01-26 | Digitaler Demodulator |
Country Status (3)
Country | Link |
---|---|
US (1) | US5767739A (de) |
EP (1) | EP0786921B1 (de) |
DE (1) | DE59609450D1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1592164A3 (de) * | 2004-04-26 | 2006-06-21 | Micronas GmbH | Verfahren und Schaltungsanordnung zum Bestimmen eines Taktsignal-Abtastzeitpunkts für Symbole eines Modulationsverfahrens |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4434451A1 (de) * | 1994-09-27 | 1996-03-28 | Blaupunkt Werke Gmbh | Amplitudendemodulator |
KR100441196B1 (ko) * | 2002-01-14 | 2004-07-21 | 기가텔레콤 (주) | 연속 위상 직교 진폭 변조 및 복조 장치 |
KR101016251B1 (ko) | 2002-04-10 | 2011-02-25 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | 스테레오 신호의 코딩 |
US10509295B2 (en) * | 2017-03-15 | 2019-12-17 | Elenion Technologies, Llc | Bias control of optical modulators |
US10942377B2 (en) * | 2018-10-08 | 2021-03-09 | Cisco Technology, Inc. | High swing AC-coupled Mach-Zehnder interferometer (MZI) driver |
CN111510406B (zh) * | 2020-06-03 | 2024-05-17 | 上海创远仪器技术股份有限公司 | 实现宽带iq调制实时预失真校准的电路及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2145594A (en) * | 1983-08-26 | 1985-03-27 | Nec Corp | Frequency offset correcting circuit |
EP0343273A1 (de) * | 1988-05-27 | 1989-11-29 | Deutsche ITT Industries GmbH | Korrekturschaltung für ein digitales Quadratur-Signalpaar |
EP0527432A2 (de) * | 1991-08-12 | 1993-02-17 | Motorola, Inc. | Schaltung und Verfahren zur Korrektur des Phasenfehlers in einem digitalen Empfänger |
DE4340012A1 (de) | 1993-11-24 | 1995-06-01 | Blaupunkt Werke Gmbh | Demodulator |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5497400A (en) * | 1993-12-06 | 1996-03-05 | Motorola, Inc. | Decision feedback demodulator with phase and frequency estimation |
-
1996
- 1996-01-26 EP EP96101105A patent/EP0786921B1/de not_active Expired - Lifetime
- 1996-01-26 DE DE59609450T patent/DE59609450D1/de not_active Expired - Fee Related
-
1997
- 1997-01-21 US US08/792,924 patent/US5767739A/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2145594A (en) * | 1983-08-26 | 1985-03-27 | Nec Corp | Frequency offset correcting circuit |
EP0343273A1 (de) * | 1988-05-27 | 1989-11-29 | Deutsche ITT Industries GmbH | Korrekturschaltung für ein digitales Quadratur-Signalpaar |
EP0527432A2 (de) * | 1991-08-12 | 1993-02-17 | Motorola, Inc. | Schaltung und Verfahren zur Korrektur des Phasenfehlers in einem digitalen Empfänger |
DE4340012A1 (de) | 1993-11-24 | 1995-06-01 | Blaupunkt Werke Gmbh | Demodulator |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1592164A3 (de) * | 2004-04-26 | 2006-06-21 | Micronas GmbH | Verfahren und Schaltungsanordnung zum Bestimmen eines Taktsignal-Abtastzeitpunkts für Symbole eines Modulationsverfahrens |
Also Published As
Publication number | Publication date |
---|---|
US5767739A (en) | 1998-06-16 |
DE59609450D1 (de) | 2002-08-22 |
EP0786921B1 (de) | 2002-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68926583T2 (de) | Interferenzunterdrückungsschaltung | |
DE3685645T2 (de) | System zur kompensation eines funkinterferenzsignals. | |
DE69736188T2 (de) | Verfahren in einem digitalen quadraturmodulator und -demodulator sowie digitaler quadraturmodulator und -demodulator | |
DE69224925T2 (de) | System zum Steuern von Phasen- und Verstärkungsfehlern in einem direkt umsetzenden I/Q-Empfänger | |
EP0062872A1 (de) | Empfangssystem | |
DE2646255A1 (de) | Digitales detektorsystem fuer differentielle phasenshift-umtastsignale | |
EP0084876A2 (de) | Demodulatoranordnung zur Demodulation von in Frequenzmodulation auf einer Trägerfrequenzwelle enthaltener Signale | |
EP0895386A1 (de) | Trägerregelkreis für einen Empfänger von digital übertragenen Signalen | |
DE69332216T2 (de) | Prozessor zur Trägerwellenrückgewinnung für ein QAM-Fernsehsignal | |
DE2656924C3 (de) | Phasendiskriminator in einem Empfänger eines Datenübertragungssystems | |
EP0936744B1 (de) | Trägererzeugungseinrichtung für einen digitalen Demodulator von MPX-Signalen | |
DE964250C (de) | Empfaenger fuer Restseitenband-Signale | |
EP0783794B1 (de) | Verfahren zur Amplituden-Demodulation | |
EP0786921B1 (de) | Digitaler Demodulator | |
EP0237590B1 (de) | Regelschaltung zur Regelung von zwei ca. 90o Phasenverschiebung aufweisenden Signalen | |
DE2556959A1 (de) | Automatischer bandpassentzerrer fuer datenuebertragungssysteme | |
DE69429476T2 (de) | System zur automatischen Frequenzregelung | |
DE1591408C2 (de) | Vorrichtung zum Empfang mehrerer Eingangssignale gleicher Frequenz | |
CH646023A5 (de) | Am-stereoempfaenger. | |
EP0602394B1 (de) | Verfahren und Vorrichtung zur Korrektur der Phasen- und Amplitudenfehler bei direktmischenden Empfangseinrichtungen | |
DE69927957T2 (de) | Demodulator mit Rotationsmitteln für Frequenzverschiebungskorrektur | |
DE2715741A1 (de) | Stereo-uebertragungseinrichtung | |
DE4340012B4 (de) | Demodulator | |
DE2654276B2 (de) | Phasensynchronisierende Schaltungsanordnung | |
DE10213423A1 (de) | Schaltungsanordnung zum Schieben der Phase eines Eingangssignals und Schaltungsanordnung zur Spiegelfrequenzunterdrückung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MICRONAS INTERMETALL GMBH |
|
17P | Request for examination filed |
Effective date: 19980130 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MICRONAS GMBH |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20010912 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020718 |
|
REF | Corresponds to: |
Ref document number: 59609450 Country of ref document: DE Date of ref document: 20020822 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030422 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20070124 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070125 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070228 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070521 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070117 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080126 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20080801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080801 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20081029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080126 |