EP0786019B1 - Verwendung von guanidiniumsalzen ungesättigter fettsäuren als korrosionsschutzwirkstoff - Google Patents

Verwendung von guanidiniumsalzen ungesättigter fettsäuren als korrosionsschutzwirkstoff Download PDF

Info

Publication number
EP0786019B1
EP0786019B1 EP95935435A EP95935435A EP0786019B1 EP 0786019 B1 EP0786019 B1 EP 0786019B1 EP 95935435 A EP95935435 A EP 95935435A EP 95935435 A EP95935435 A EP 95935435A EP 0786019 B1 EP0786019 B1 EP 0786019B1
Authority
EP
European Patent Office
Prior art keywords
oil
fatty acids
acid
guanidinium salts
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95935435A
Other languages
English (en)
French (fr)
Other versions
EP0786019A1 (de
Inventor
Jürgen Geke
Horst-Dieter Speckmann
Bernd Stedry
Alfred Westfechtel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0786019A1 publication Critical patent/EP0786019A1/de
Application granted granted Critical
Publication of EP0786019B1 publication Critical patent/EP0786019B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/146Nitrogen-containing compounds containing a multiple nitrogen-to-carbon bond

Definitions

  • the invention relates to oil-based anti-corrosion agents for metallic, especially iron-based surfaces, preferably in the form of oil-in-water emulsions are used.
  • the invention provides alkylamine free Corrosion protection agents are available, which are characterized by good Characterize oil solubility and at the same time the emulsification of the oil phase effect in water.
  • Anti-rust emulsions are used for the temporary protection of metallic materials against atmospheric influences that cause corrosion. She essentially contain non-polar or polar oils, emulsifiers, corrosion inhibitors and water. Their effect is based on the adsorption of inhibitor molecules on the metal surface and the formation of a protective film from emulsion components, which acts as a diffusion barrier for atmospheric oxygen as well as water works. T. Forster et al. report in "Surface-Surface", 1989, No. 4, pp. 8-12, on modes of action and investigation methods of anti-rust emulsions.
  • Previously used corrosion protection agents contain components such as for example petroleum sulfonates, salts of alkylsulfonamidocarboxylic acids and Amine or other salts of partial esters of alkyl or alkenyl succinic acid.
  • EP-A-566 956 describes anti-corrosion agents based on an amine-free salt of a half-ester of an alkyl or Alkenyl succinic acid.
  • Sulfur-containing corrosion inhibitors such as alkylarylsulfonic acids, Petroleum sulfonates or salts of alkyl sulfonamido carboxylic acids show the disadvantage that they are easily from microorganisms, such as sulfur-reducing Bacteria can be broken down, causing significant odor nuisance can lead.
  • Corrosion protection agents containing alkylamine, in particular those with secondary amines, because of the risk of formation health-endangering nitrosamines are increasingly viewed critically. Therefore there is a need for sulfur and alkylamine-free anti-corrosion agents.
  • stearic acid derivatives have been described as anti-corrosion agents (DE-C-32 03 491).
  • examples include 9,10-dihydroxystearic acid and their alkali salts and their oligomeric condensates, 9,10-epoxistearic acid, their alkali salts and their oligomeric estolides and finally mixed oligomerizates of 9,10-epoxy and 9,10-dihydroxystearic acid.
  • Anticorrosive in the form of oil-in-water emulsions for use should come as pure oily, i.e. water-free concentrates to be placed on the market by adding water at the location of the Application to be brought into the ready-to-use emulsion form.
  • This Oil concentrates contain the corrosion inhibitors, which are therefore oil-soluble have to be. So that the oil concentrates spontaneously when diluted with water form an emulsion, so it can be self-emulsifying, it was previously required that these concentrates in addition to the corrosion inhibitors Contain emulsifiers. Possible interactions between the surface active Emulsifiers and the polar corrosion inhibitors often act negative on emulsification behavior and on corrosion protection effect from and this complicates the product formulation. This problem could be solved eliminate if oil-soluble anti-corrosion agents with emulsifying Properties could be made available.
  • GB-A-602 617 relates to oil-in-water emulsions which use a guanidine salt as an emulsifier contain a saturated monocarboxylic acid with at least 10 carbon atoms. Such Emulsions are used, for example, as lubricants. Preferably These emulsions contain a combination of a guanidine salt as an emulsifier a saturated fatty acid with at least 10 carbon atoms and an alkylolamine salt a carboxylic acid with at least 10 carbon atoms and also free alkylolamine. It it is mentioned that guanidine salts of unsaturated fatty acids, for example oleates, are unsuitable because of the instability of the resulting emulsions.
  • the object of the present invention is to create new sulfur and to provide alkylamine-free anti-corrosion agents whose Oil solutions are not unacceptably high even at high concentrations of active ingredients Have viscosities, and at the same time an emulsification of the oil phase effect when mixed with water, without additional Emulsifiers are required.
  • “Fatty acids” are understood here to mean carboxylic acids which, if appropriate May be substituted by OH.
  • the unsaturated fatty acids that can be used can be divided into two groups: native fatty acids, like them occur as a component of natural oils and fats and so-called dimer fatty acids, the technically through, usually acid catalyzed, dimerization suitable fatty acids are accessible.
  • the unsaturated ones that can be used Fatty acids are therefore once characterized in that they are native Represent fatty acids, that is branched or preferably linear, one have up to six, preferably one to three double bonds and preferably Contain 11 to 28, in particular 18 to 22 carbon atoms.
  • Suitable unsaturated fatty acids of this type are preferably monobasic and selected from undecylenic acid, myristoleic acid, palmitoleic acid, Oleic acid, ricinoleic acid, erucic acid, linoleic acid, linolenic acid, Arachidonic acid and mixtures thereof.
  • unsaturated fatty acids suitable from the group of the so-called dimer acids are polybasic, preferably dibasic. Such are in particular dimer acids suitable, which have 36 to 44 carbon atoms.
  • guanidinium salts can be more defined, purer Fatty acids can be used with advantage. Because of economical reasons in practice, however, one becomes guanidinium salts of technical fatty acid mixtures use that in addition to unsaturated fatty acids different C chain lengths also contain certain proportions of saturated fatty acids can. Such technical fatty acid mixtures can, for example can be obtained by splitting suitable natural oils and fats. In terms of the use according to the invention, however, it is necessary that the technical fatty acid mixtures at least 50 wt .-%, preferably at least 80% by weight of unsaturated fatty acids of the above Carbon chain lengths exist.
  • dimer fatty acids which can likewise be used according to the invention, generally do not represent pure substances either, but can contain fatty acids of different carbon chain lengths and / or different degrees of oligomerization.
  • trimerization or polymerization products can also be present in addition to unreacted and / or isomerized monomer fatty acids.
  • dimer fatty acids we mean product mixtures that consist of at least 50% by weight, preferably at least 70% by weight, of dimer fatty acid with a C chain length between 36 and 44.
  • Such products are commercially available, for example from Unichema under the product group name Pripol R or from Henkel KGaA under the product group name Empol R.
  • guanidinium salts of the abovementioned fatty acids they are used as solutions in hydrocarbons which are liquid at working temperature, dialkyl ethers and / or acetals which are largely insoluble in water, and mixtures thereof.
  • ester oils such as oleyl oleate, esterification products of aliphatic dicarboxylic acids (preferably C 8-9 ) with branched Guerbet alcohols (preferably C 12-20 ) (EP-A-489 809), esters of C 1- 5- nonocarboxylic acids with mono- or polyfunctional alcohols (described for example in DE-A-39 07 391), esters of C 6-11 -nonocarboxylic acids with mono- or polyfunctional alcohols (described for example in DE-A-39 07 392), and Alkoxylation products of triglycerides with 0.5 - 3 mol EO and / or PO, for example glycerol propoxylate trioleate (German patent application DE-A-43 23 771).
  • oil-like solvents These essentially water-insoluble solvents are described below referred to as "oil-like solvents”.
  • Solutions which contain between 1 and 45% by weight are preferably used. contain dissolved in guanidinium salts of unsaturated fatty acids. With less The corrosion protection effect decreases significantly, while at higher levels, the solutions are usually so highly viscous that their Handling and their use for emulsion formation is unnecessarily difficult.
  • hydrocarbons come into consideration at working temperature, So a temperature between about 10 and about 90 ° C liquid are.
  • paraffin oil or mineral oil where in the case of Mineral oil for ecological and toxicological reasons low-aromatic mineral oils are preferred.
  • Suitable oils of this type are commercially available. Examples include pioneer oil 4556 from Hansen & Rosenthal, Enerpar 3036 from Manual BP and Parex Paraffin II from Leuna-Werke.
  • dialkyl ethers are in water dissolve no more than 5% by weight, preferably not more than 0.5% by weight.
  • Suitable examples are dialkyl ethers with 6 to 24, preferably 8 to 18 C atoms per alkyl radical, the alkyl radicals being straight-chain independently of one another or can be branched, saturated or unsaturated and preferably n-octyl, 2-ethylhexyl, stearyl and / or isostearyl radicals represent.
  • dialkyl ethers can still have free hydroxyl groups and are then referred to as hydroxy mixed ethers.
  • the use of such Dialkyl ether in metalworking fluids is for example in German patent application DE-A-42 37 501.
  • Such dialkyl ethers are commercially available, for example from Henkel KGaA at Name Cetiol-OE (dioctyl ether).
  • guanidinium salts As an oil-like solvent for the use according to the invention of the guanidinium salts come acetals based on monovalent aldehydes with 1 to 25, preferably 1 to 10 carbon atoms, and monohydric alcohols with 1 to 25, in particular 2 to 20 carbon atoms.
  • the usage such acetals as a mineral oil substitute, oil component or base oil in lubricating oils and in metalworking fluids is known from EP-A-512 501. There is also a general rule for making such Acetale communicated.
  • the use according to the invention of the guanidinium salts of unsaturated fatty acids happens preferably in such a way that the solution of the guanidinium salts in one of the above-mentioned oil-like solvents or in Mixtures of these are used as the oil phase of an oil-in-water emulsion becomes.
  • the proportion of the oil phase is, including the solution of Guanidinium salts of the unsaturated fatty acids is understood at the Emulsion preferably between 0.5 and 50% by weight, in particular between 5 and 20% by weight.
  • the rule of thumb is that the proportion of the oil phase the lower the concentration, the higher the concentration of the guanidinium salts unsaturated fatty acids in the oil phase.
  • Oil phase a concentration of a guanidinium salt of an unsaturated Fatty acid, for example guanidinium oleate, has between 5 and 20% by weight.
  • the invention encompasses the use of guanidinium salts polyunsaturated fatty acids with 6 to 44 carbon atoms according to one or more of claims 1 to 9, wherein the guanidinium salts are more unsaturated Fatty acids are dissolved in an oil-in-water emulsion and being an oil phase oily solvent or solvent mixture according to one or more of the Claims 6 to 9 is used and the proportion of the oil phase in the Emulsion between 0.5 and 50, preferably 5 to 20 wt .-% and the proportion of Guanidinium salts 1 to 45, preferably 5 to 20 wt .-% based on the oil phase is.
  • the viscosity of the solutions of the guanidinium salts can be increased by adding glycols unsaturated fatty acids in the oil-like solvents on application technology favorable values can be set without the ability to form emulsions Water is affected by this.
  • glycols are butyl diglycol, Hexylene glycol or dipropylene glycol suitable in the guanidinium salt solution Amounts from 1 to 10% by weight can be added.
  • the glycols can either be the solution of the guanidinium salts Unsaturated fatty acids added in oil-like solvents or the oily solvent before the reaction described below of guanidinium salts of volatile acids with unsaturated fatty acids be added. Because of the favorable effect on corrosion protection the use of hexylene glycol is preferred.
  • the procedure is preferably such that a solution of the guanidinium salts in the oil-like solvent Mixed water. Since the guanidinium salts in both the oil-like solvents are soluble in water, they will be between water and distribute oil phase. The distribution balance depends on the individual case the chosen oily solvent and the type of unsaturated Fatty acid. As described in Example 11, an emulsion can also do this are obtained by having an aqueous solution of the guanidinium salts emulsified with oil. Here too it is to be expected that there will be a distribution equilibrium which sets guanidinium salts.
  • the proportion of the oil phase, which contains the guanidinium salts of unsaturated fatty acids at least partially dissolved, in the oil-in-water emulsion is from about 0.5 to about 50% by weight and is preferably in the range from about 5 to about 20% by weight. %.
  • Such an emulsion is usually stable for the periods of several hours required in terms of application technology without further co-emulsifiers. In special circumstances, for example if the emulsion contains further active ingredients such as builder salts or use-related impurities, it may be necessary to stabilize the emulsion by using additional co-emulsifiers.
  • Nonionic surfactants in particular ethoxylation products of fatty alcohols, such as, for example, an adduct of 6 moles of ethylene oxide with 1 mole of a C 12/14 fatty alcohol mixture, or anionic emulsifiers such as, for example, alkylbenzenesulfonates, are suitable for this.
  • fatty alcohols such as, for example, an adduct of 6 moles of ethylene oxide with 1 mole of a C 12/14 fatty alcohol mixture
  • anionic emulsifiers such as, for example, alkylbenzenesulfonates
  • the emulsion can be in the form of a conventional, milky opaque Emulsion present. It can also be advantageous for special purposes be the emulsion in the form of an almost transparent so-called microemulsion with an oil content of up to 50% by weight, as is caused by phase inversion is available from a water-in-oil emulsion.
  • Example 11 One possible implementation is in Example 11 below specified.
  • the invention relates to oil-in-water emulsions that are considered by Phase inversion microemulsions are available, the oil phase of which oily solvent or solvent mixture selected from at Working temperature liquid hydrocarbons, largely water-insoluble Dialkyl ethers, alcohols, ester oils and / or acetals and mixtures thereof, represents and guanidinium salts of mono- or polyunsaturated fatty acids with 6 to 44 carbon atoms in concentrations of 1 to 45% by weight, preferably 5 to 20 Wt .-%, dissolved in relation to the oil phase and the proportion of Oil phase on the emulsion between 0.5 and 50 wt .-%, preferably 5 to 20 % By weight.
  • oily solvent or solvent mixture selected from at Working temperature liquid hydrocarbons, largely water-insoluble Dialkyl ethers, alcohols, ester oils and / or acetals and mixtures thereof, represents and guanidinium salts of mono- or polyunsaturated fatty acids with 6 to
  • guanidinium salts of unsaturated fatty acids is described in the above-mentioned US Pat. No. 2,978,415.
  • a mixture of unsaturated fatty acids can be dissolved in an organic solvent such as methyl isobutyl ketone and guanidinium carbonate can be added.
  • an organic solvent such as methyl isobutyl ketone
  • guanidinium carbonate can be added.
  • the solvent and the water of reaction can be removed, the product remaining in the form of a brown, waxy paste.
  • oil-like solvents as the solvent for the reaction of the unsaturated fatty acids with guanidinium salts of volatile acids, for example guanidinium carbonate, as the oil phase to be used for later emulsion preparation.
  • guanidinium salts of volatile acids for example guanidinium carbonate
  • Examples 1 to 5 describe processes according to the invention for the preparation of solutions and emulsions used.
  • reaction mixture is heated to 100 ° C. and stirred until the acid number is less than 20 (about 2 hours). A slight gassing can be observed during the reaction time and the solution changes color from light yellow to beige brown. During the reaction, the elimination of 1 mol of carbonic acid corresponding to 1 mol of H 2 O and 1 mol of CO 2 , 62 g, is theoretically to be expected. A viscous, beige-brown, transparent oil solution is obtained as the reaction product.
  • Solvent dioctyl ether Cetiol-0E, Henkel KGaA.
  • reaction time A slight gassing can be observed during the reaction time and the solution changes color from light yellow to beige brown.
  • water jet vacuum is applied (15 min) at 100 ° C to remove CO 2 and water.
  • the reaction mixture is diluted with 6620 g of mineral oil.
  • a beige-brown, transparent oil solution is obtained as a reaction product, from which emulsions can be produced by adding 90% by weight of water.
  • Example 10 The corrosion protection effect of an emulsion was analogous to Example 10 tested by adding the product from Example 5 with water in the Weight ratio 1: 9 was obtained: after 7 days there was no corrosion, severe corrosion observed after 20 days.
  • the product from example was used for a corrosion test analogous to example 10 5 mixed with 5 wt .-% hexylene glycol. By adding water An emulsion was obtained in a weight ratio of 1: 9 and for testing the corrosion protection effect used. Result: After 8 days none, severe corrosion after 13 days.
  • a microemulsion by the phase inversion method To prepare a microemulsion by the phase inversion method, 2.6 parts by weight of this guanidinium oleate and 0.26 part by weight of sodium citrate were dissolved in 51.04 parts by weight of water. The solution was mixed with 40 parts by weight of mineral oil (pioneer oil 4556) and 6.1 parts by weight of emulsifier (adduct of 4 mol of ethylene oxide with a C 12/14 fatty alcohol mixture) at a temperature above the phase inversion temperature of 35 ° determined by preliminary tests C mixed by stirring and cooled below the phase inversion temperature. A transparent microemulsion was obtained which can be diluted by adding water.
  • mineral oil pioneer oil 4556
  • emulsifier adduct of 4 mol of ethylene oxide with a C 12/14 fatty alcohol mixture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Colloid Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Load-Engaging Elements For Cranes (AREA)
  • Connection Of Plates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Paints Or Removers (AREA)

Description

Die Erfindung betrifft ölbasierte Korrosionsschutzmittel für metallische, insbesondere eisenbasierte Oberflächen, die vorzugsweise in Form von Öl-in-Wasser-Emulsionen zum Einsatz kommen. Die Erfindung stellt alkylaminfreie Korrosionsschutzwirkstoffe zur Verfügung, die sich durch eine gute Öllöslichkeit auszeichnen und die gleichzeitig die Emulgierung der Ölphase in Wasser bewirken.
Rostschutzemulsionen werden zum temporären Schutz metallischer Werkstoffe vor atmosphärischen, eine Korrosion bewirkenden Einflüssen eingesetzt. Sie enthalten im wesentlichen unpolare oder polare Öle, Emulgatoren, Korrosionsinhibitoren und Wasser. Ihre Wirkung beruht auf der Adsorption von Inhibitormolekülen auf der Metalloberfläche und der Bildung eines Schutzfilms aus Emulsionsbestandteilen, der als Diffusionsbarriere für Luftsauerstoff sowie Wasser wirkt. T. Förster et al. berichten in "Oberfläche-Surface", 1989, Nr. 4, S. 8-12, über Wirkungsweisen und Untersuchungsmethoden von Rostschutzemulsionen.
Bisher gebräuchliche Korrosionsschutzmittel enthalten Bestandteile wie beispielsweise Petrolsulfonate, Salze von Alkylsulfonamidocarbonsäuren und Amin- oder andere Salze von Teilestern von Alkyl- oder Alkenylbernsteinsäure. Beispielsweise beschreibt die EP-A-566 956 Korrosionsschutzmittel basierend auf einem aminfreien Salz eines Halbesters einer Alkyl- oder Alkenylbernsteinsäure.
Schwefelhaltige Korrosionsinhibitoren wie beispielsweise Alkylarylsulfonsäuren, Petrolsulfonate oder Salze von Alkylsulfonamidocarbonsäuren zeigen den Nachteil, daß sie leicht von Mikroorganismen, wie schwefelreduzierenden Bakterien, abgebaut werden können, was zu beträchtlichen Geruchsbelästigungen führen kann. Alkylaminhaltige Korrosionsschutzmittel, insbesondere solche mit sekundären Aminen, werden wegen der Gefahr der Bildung gesundheitsgefährdender Nitrosamine zunehmend kritisch betrachtet. Daher besteht ein Bedarf an schwefel- und alkylaminfreien Korrosionsschutzwirkstoffen. Für rein ölige Systeme, beispielsweise für Schmieröle und Schmierfette, wurden Stearinsäurederivate als Korrosionsschutzmittel beschrieben (DE-C-32 03 491). Beispiele hierfür sind 9,10-Dihydroxystearinsäure und deren Alkalisalze sowie deren oligomere Kondensate, 9,10-Epoxistearinsäure, deren Alkalisalze sowie deren oligomere Estolide und schließlich Mischoligomerisate aus 9,10-Epoxi- und 9,10-Dihydroxystearinsäure.
Korrosionsschutzmittel, die in Form von Öl-in-Wasser-Emulsionen zur Anwendung kommen sollen, können als rein ölige, also wasserfreie Konzentrate in den Handel gebracht werden, um durch Versetzen mit Wasser am Ort der Anwendung in die anwendungsfertige Emulsionsform gebracht zu werden. Diese Ölkonzentrate enthalten die Korrosionsinhibitoren, die folglich öllöslich sein müssen. Damit die Ölkonzentrate beim Verdünnen mit Wasser spontan eine Emulsion bilden, also selbstemulgierend sein können, war es bisher erforderlich, daß diese Konzentrate neben den Korrosionsinhibitoren auch Emulgatoren enthalten. Mögliche Wechselwirkungen zwischen den oberflächenaktiven Emulgatoren und den polaren Korrosionsinhibitoren wirken sich häufig negativ-auf Emulgierverhalten und auf Korrosionsschutzwirkung aus und erschweren hierdurch die Produktformulierung. Dieses Problem ließe sich beseitigen, wenn öllösliche Korrosionsschutzwirkstoffe mit emulgierenden Eigenschaften zur Verfügung gestellt werden könnten.
Aus der US-A-2,978,415 sind Guanidiniumsalze ungesättigter Fettsäuren sowie Verfahren zu ihrer Herstellung bekannt. Diese Guanidinseifen ungesättigter Fettsäuren werden bei der Reinigung von Textilien mit Lösungsmitteln, also bei der sogenannten "Chemischen Reinigung" oder "Trockenreinigung", als reinigungsverstärkende Wirkstoffe eingesetzt. Für diese Anwendung, die in rein organischer Phase geschieht, ist weder eine Korrosionsschutzwirkung noch ein Emulgiervermögen von Bedeutung. Demgemäß enthält diese US-Schrift keine Angaben über eine entsprechende Wirkung der Guanidinseifen ungesättigter Fettsäuren.
Chemical Abstracts, Vol. 115 (1991), Nr. 12, Referat 115:118 225y, beschreibt Untersuchungen über die Korrosionsschutzwirkung von Guanidinsalzen auf Eisen- und Nichteisenmetlle in Wasser, welches Chlorid-, Hydrogencarbonat- und Sulfat-lonen enthält. Untersucht wurden die Caprylat-, Carbonat-, Caprat- und Laurat-Salze.
Die GB-A-602 617 betrifft Öl-in-Wasser-Emulsionen, die als Emulgator ein Guanidinsalz einer gesättigten Monocarbonsäure mit mindestens 10 C-Atomen enthalten. Derartige Emulsionen finden beispielsweise als Schmiermittel Verwendung. Vorzugsweise enthalten diese Emulsionen als Emulgator eine Kombination aus einem Guanidinsalz einer gesättigten Fettsäure mit mindestens 10 C-Atomen und einem Alkylolaminsalz einer Carbonsäure mit mindestens 10 C-Atomen sowie ferner freies Alkylolamin. Es wird erwähnt, daß Guanidinsalze von ungesättigten Fettsäuren, beispielsweise Oleate, wegen der Instabilität der resultierenden Emulsionen nicht geeignet sind.
Die Aufgabe der vorliegenden Erfindung besteht darin, neue schwefel- und alkylaminfreie Korrosionsschutzwirkstoffe zur Verfügung zu stellen, deren Öllösungen auch bei hohen Wirkstoffkonzentrationen keine unakzeptabel hohen Viskositäten aufweisen, und die gleichzeitig eine Emulgierung der Ölphase beim Versetzen mit Wasser bewirken, ohne daß hierfür zusätzliche Emulgatoren erforderlich sind.
Diese Aufgabe wird gelöst durch die Verwendung von Guanidiniumsalzen ein-oder mehrfach ungesättigter Fettsäuren mit 6 bis 44 Kohlenstoffatomen zur Erzielung eines temporären Korrosionsschutzes auf metallischen, vorzugsweise eisenbasierten Oberflächen.
Unter "Fettsäuren" werden hierbei Carbonsäuren verstanden, die gegebenenfalls OH-substituiert sein können. Die verwendbaren ungesättigten Fettsäuren lassen sich in zwei Gruppen einteilen: Native Fettsäuren, wie sie als Bestandteil natürlicher Öle und Fette vorkommen und sogenannte Dimerfettsäuren, die technisch durch, in der Regel säurekatalysierte, Dimerisierung geeigneter Fettsäuren zugänglich sind. Die verwendbaren ungesättigten Fettsäuren sind also einmal dadurch charakterisiert, daß sie native Fettsäuren darstellen, also verzweigt oder vorzugsweise linear sind, eine bis sechs, vorzugsweise eine bis drei Doppelbindungen aufweisen und vorzugsweise 11 bis 28, insbesondere 18 bis 22 Kohlenstoffatome enthalten. Geeignete ungesättigte Fettsäuren dieser Art sind vorzugsweise einbasisch und ausgewählt aus Undecylensäure, Myristoleinsäure, Palmitoleinsäure, Ölsäure, Rhizinolsäure, Erucasäure, Linolsäure, Linolensäure, Arachidonsäure und deren Mischungen. Andererseits sind ungesättigte Fettsäuren aus der Gruppe der sogenannten Dimersäuren geeignet. Diese sind mehrbasisch, vorzugsweise zweibasisch. Insbesondere sind solche Dimersäuren geeignet, die 36 bis 44 Kohlenstoffatome aufweisen.
Für den erfindungsgemäßen Zweck können Guanidiniumsalze definierter, reiner Fettsäuren mit Vorteil verwendet werden. Aus wirtschaftlichen Gründen wird man in der Praxis jedoch Guanidiniumsalze technischer Fettsäuregemische einsetzen, die neben ungesättigten Fettsäuren unterschiedlicher C-Kettenlängen auch noch bestimmte Anteile gesättigter Fettsäuren enthalten können. Solche technischen Fettsäuregemische können beispielsweise durch die Spaltung geeigneter natürlicher Öle und Fette erhalten werden. Im Sinne der erfindungsgemäßen Verwendung ist es allerdings erforderlich, daß die technischen Fettsäuregemische zumindest zu 50 Gew.-%, vorzugsweise zu mindestens 80 Gew.-% aus ungesättigten Fettsäuren der vorstehend genannten Kohlenstoff-Kettenlängen bestehen.
Die erfindungsgemäß ebenfalls einsetzbaren sogenannten Dimerfettsäuren stellen in der Regel ebenfalls keine Reinsubstanzen dar, sondern können Fettsäuren unterschiedlicher C-Kettenlängen und/oder unterschiedlicher Oligomerisierungsgrade enthalten. Neben den eigentlichen Dimerfettsäuren können beispielsweise auch Trimerisierungs- oder Polymerisierungsprodukte neben unreagierten und/oder isomerisierten Monomerfettsäuren vorliegen. Wenn hier von Dimerfettsäuren die Rede ist, so sind damit solche Produktgemische gemeint, die zu mindestens 50 Gew.-%, vorzugsweise zu mindestens 70 Gew.-% aus Dimerfettsäure einer C-Kettenlänge zwischen 36 und 44 bestehen. Solche Produkte sind im Handel erhältlich, beispielsweise durch die Firma Unichema unter der Produktgruppenbezeichnung PripolR oder von der Firma Henkel KGaA unter der Produktgruppenbezeichnung EmpolR.
Für die erfindungsgemäße Verwendung von Guanidiniumsalzen der vorstehend genannten Fettsäuren setzt man diese als Lösungen in bei Arbeitstemperatur flüssigen Kohlenwasserstoffen, weitgehend wasserunlöslichen Dialkylethern und/oder Acetalen sowie Mischungen hiervon ein. Als Ölphase zum Lösen der Guanidiniumsalze ungesättigter Fettsäuren eignen sich ferner Esteröle wie beispielsweise Oleyloleat, Veresterungsprodukte aliphatischer Dicarbonsäuren (vorzugsweise C8-9) mit verzweigten Guerbetalkoholen (vorzugsweise C12-20) (EP-A-489 809), Ester von C1-5-Nonocarbonsäuren mit ein- oder mehrfunktionellen Alkoholen (beispielsweise beschrieben in DE-A-39 07 391), Ester von C6-11-Nonocarbonsäuren mit ein- oder mehrfunktionellen Alkoholen (beispielsweise beschrieben in DE-A-39 07 392), sowie Alkoxylierungsprodukte von Triglyceriden mit 0,5 - 3 Mol EO und/oder PO, beispielsweise Glycerinpropoxylat-Trioleat (Deutsche Patentanmeldung DE-A-43 23 771). Weiterhin geeignet sind bei Arbeitstemperatur flüssige, weitgehend wasserunlösliche gesättigte oder ungesättigte Fettalkohole mit 6 bis 36 C-Atomen, wobei sowohl einfache Alkohole als auch alpha, omega-Diole in Betracht kommen.
Diese im wesentlichen nicht wasserlösliche Lösungsmittel werden im weiteren als "ölartige Lösungsmittel" bezeichnet.
Vorzugsweise verwendet man solche Lösungen, die zwischen 1 und 45 Gew.-% an Guanidiniumsalzen ungesättigter Fettsäuren gelöst enthalten. Bei geringeren Gehalten läßt die Korrosionsschutzwirkung deutlich nach, während bei höheren Gehalten die Lösungen in der Regel so hochviskos werden, daß ihre Handhabung und ihr Einsatz zur Emulsionsbildung unnötig erschwert wird.
Höhere Konzentrationen sind jedoch im Sinne der Erfindung ebenfalls verwendbar, wenn man die hiermit verbundenen Schwierigkeiten der Emulsionsbildung in Kauf nimmt, beispielsweise vorheriges Erhitzen von Konzentrat und Ansatzwasser und den Einsatz technischer Emulgierhilfsmittel wie beispielsweise schnell laufende Zahnscheiben oder Ultraschall.
Als ölartige Lösungsmittel für die Guanidiniumsalze ungesättigter Fettsäuren kommen beispielsweise Kohlenwasserstoffe in Betracht, die bei Arbeitstemperatur, also einer Temperatur zwischen etwa 10 und etwa 90 °C flüssig sind. Beispiele hierfür sind Paraffinöl oder Mineralöl, wobei im Falle von Mineralöl aus ökologischen und toxikologischen Gründen aromaten-arme Mineralöle bevorzugt sind. Geeignete Öle dieser Art sind im Handel erhältlich. Beispielsweise genannt seien Pionieröl 4556 der Firma Hansen & Rosenthal, Enerpar 3036 der Deutschen BP sowie Parex Paraffin II der Leuna-Werke.
Weiterhin kommen als ölartige Lösungsmittel für die Guanidiniumsalze ungesättigter Fettsäuren bei den o.g. Arbeitstemperaturen flüssige, weitgehend wasserunlösliche Dialkylether in Betracht. Unter "weitgehend wasserunlöslich" sind solche Dialkylether zu verstehen, die sich in Wasser zu nicht mehr als 5 Gew.-%, vorzugsweise zu nicht mehr als 0,5 Gew.-% lösen. Geeignete Beispiele sind Dialkylether mit 6 bis 24, vorzugsweise 8 bis 18 C-Atomen pro Alkylrest, wobei die Alkylreste unabhängig voneinander geradkettig oder verzweigtkettig, gesättigt oder ungesättigt sein können und vorzugsweise n-0ctyl-, 2-Ethylhexyl-, Stearyl- und/oder Isostearylreste darstellen. Die Dialkylether können noch freie Hydroxylgruppen aufweisen und werden dann als Hydroxymischether bezeichnet. Die Verwendung derartiger Dialkylether in Metallbearbeitungs-Flüssigkeiten ist beispielsweise in der deutschen Patentanmeldung DE-A-42 37 501 beschrieben. Solche Dialkylether sind im Handel erhältlich, beispielsweise von der Henkel KGaA unter der Bezeichnung Cetiol-OE (Dioctylether).
Als ölartige Lösungsmittel für die erfindungsgemäße Verwendung der Guanidiniumsalze kommen weiterhin Acetale auf Basis von einwertigen Aldehyden mit 1 bis 25, vorzugsweise 1 bis 10 C-Atomen, und einwertigen Alkoholen mit 1 bis 25, insbesondere 2 bis 20 C-Atomen in Betracht. Die Verwendung solcher Acetale als Mineralölersatz, Ölkomponente oder Basisöl in Schmierölen und in Metallbearbeitungsflüssigkeiten ist aus der EP-A-512 501 bekannt. Dort wird auch eine allgemeine Vorschrift zur Herstellung solcher Acetale mitgeteilt.
Die erfindungsgemäße Verwendung der Guanidiniumsalze ungesättigter Fettsäuren geschieht vorzugsweise in der Art, daß die Lösung der Guanidiniumsalze in einem der vorstehend genannten ölartigen Lösungsmitteln oder in Mischungen hiervon als Ölphase einer Öl-in-Wasser-Emulsion eingesetzt wird. Dabei beträgt der Mengenanteil der Ölphase, worunter die Lösung der Guanidiniumsalze der ungesättigten Fettsäuren verstanden wird, an der Emulsion vorzugsweise zwischen 0,5 und 50 Gew.-%, insbesondere zwischen 5 und 20 Gew.-%. Dabei gilt die Faustregel, daß der Mengenanteil der Ölphase um so geringer gewählt werden kann, je höher die Konzentration der Guanidiniumsalze ungesättigter Fettsäuren in der Ölphase ist. Gute Korrosionsschutzergebnisse werden beispielsweise erzielt, wenn man eine Öl-in-Wasser-Emulsion mit einem Anteil Ölphase von 10 Gew.- % einsetzt, wobei die Ölphase eine Konzentration an einem Guanidiniumsalz einer ungesättigten Fettsäure, beispielsweise Guanidiniumoleat, zwischen 5 und 20 Gew.-% aufweist.
Dementsprechend umfaßt die Erfindung die Verwendung von Guanidiniumsalzen einoder mehrfach ungesättigter Fettsäuren mit 6 bis 44 Kohlenstoffatomen gemäß einem oder mehreren der Patentansprüche 1 bis 9, wobei die Guanidiniumsalze ungesättigter Fettsäuren in einer Öl-in-Wasser-Emulsion gelöst sind und wobei als Ölphase ein ölartiges Lösungsmittel oder Lösungsmittelgemisch gemäß einem oder mehreren der Patentansprüche 6 bis 9 verwendet wird und der Mengenanteil der Ölphase an der Emulsion zwischen 0,5 und 50, vorzugsweise 5 bis 20 Gew.-% und der Anteil der Guanidiniumsalze 1 bis 45, vorzugsweise 5 bis 20 Gew.-% bezüglich der Ölphase beträgt.
Durch Zusatz von Glykolen kann die Viskosität der Lösungen der Guanidiniumsalze ungeästtigter Fettsäuren in den ölartigen Lösungsmitteln auf anwendungstechnisch günstige Werte eingestellt werden, ohne daß die Fähigkeit zur Emulsionsbildung mit Wasser hierdurch beeinflußt wird. Als Glykole sind beispielsweise Butyldiglykol, Hexylenglykol oder Dipropylenglykol geeignet, die der Guanidiniumsalzlösung in Mengen von 1 bis 10 Gew.-% zugesetzt werden können. Die Glykole können entweder der Lösung der Guanidiniumsalze ungesättigter Fettsäuren in ölartigen Lösungsmitteln zugesetzt oder dem ölartigen Lösungsmittel vor der nachstehend beschriebenen Umsetzung von Guanidiniumsalzen flüchtiger Säuren mit ungesättigten Fettsäuren zugegeben werden. Wegen der günstigen Auswirkung auf den Korrosionsschutz ist die Verwendung von Hexylenglykol bevorzugt.
Bei der Herstellung von Emulsionen geht man vorzugsweise so vor, daß man eine Lösung der Guanidiniumsalze in dem ölartigen Lösungsmittel mit Wasser vermischt. Da die Guanidiniumsalze sowohl in den ölartigen Lösungsmitteln als auch in Wasser löslich sind, werden sie sich zwischen Wasser- und Ölphase verteilen. Im Einzelfall hängt das Verteilungsgleichgewicht vom gewählten ölartigen Lösungsmittel und von dem Typ der ungesättigten Fettsäure ab. Wie in Beispiel 11 beschrieben, kann eine Emulsion auch dadurch erhalten werden, daß man eine wäßrige Lösung der Guanidiniumsalze mit Öl emulgiert. Auch hierbei ist zu erwarten, daß sich ein Verteilungsgleichgewicht der Guanidiniumsalze einstellt.
Der Mengenanteil der Ölphase, die die Guanidiniumsalze ungesättigter Fettsäuren zumindest anteilig gelöst enthält, an der Öl-in-Wasser-Emulsion beträgt etwa 0,5 bis etwa 50 Gew.-% und liegt vorzugsweise im Bereich von etwa 5 bis etwa 20 Gew.-%. Eine solche Emulsion ist üblicherweise für die anwendungstechnisch erforderlichen Zeiträume von mehreren Stunden ohne weitere Co-Emulgatoren stabil. Unter besonderen Umständen, beispielsweise wenn die Emulsion weitere Wirkstoffe wie beispielsweise Buildersalze oder gebrauchsbedingte Verunreinigungen enthält, kann es erforderlich sein, die Emulsion durch Verwendung zusätzlicher Co-Emulgatoren zu stabilisieren. Hierfür kommen nichtionische Tenside, insbesondere Ethoxylierungsprodukte von Fettalkoholen wie beispielsweise ein Anlagerungsprodukt von 6 Mol Ethylenoxid an 1 Mol eines C12/14-Fettalkoholgemischs, oder anionische Emulgatoren wie beispielsweise Alkylbenzolsulfonate in Betracht. Die erforderlichen Mengen hängen von den weiteren Emulsionsbestandteilen ab und müssen durch Versuche ermittelt werden. Als Richtwert kann der Einsatz von bis zu 20 % Gew.-% Co-Emulgator bezogen auf den Mengenanteil der Öllösung genommen werden.
Die Emulsion kann in Form einer konventionellen, milchig-undurchsichtigen Emulsion vorliegen. Für spezielle Einsatzzwecke kann es auch vorteilhaft sein, die Emulsion in Form einer nahezu transparenten sogenannten Mikroemulsion mit einem Ölanteil bis zu 50 Gew.-%, wie sie durch Phaseninversion aus einer Wasser-in-Öl-Emulsion erhältlich ist, einzusetzen. Eine solche Phaseninversion, die beispielsweise durch Variation der Temperatur erfolgen kann, wird auch als PIT (= "Phaseninversionstemperatur")-Methode bezeichnet. Sie ist in der Deutschen Patentanmeldung DE-A-43 23 908 näher beschrieben. Eine Ausführungsmöglichkeit ist im nachfolgenden Beispiel 11 angegeben.
Dementsprechend betrifft die Erfindung Öl-in-Wasser-Emulsionen, die als durch Phaseninversion erhältliche Mikroemulsionen vorliegen, wobei deren Ölphase ein ölartiges Lösungsmittel oder Lösungsmittelgemisch, ausgewählt aus bei Arbeitstemperatur flüssigen Kohlenwasserstoffen, weitgehend wasserunlöslichen Dialkylethern, Alkoholen, Esterölen und/oder Acetalen sowie Mischungen hiervon, darstellt und Guanidiniumsalze ein- oder mehrfach ungesättigter Fettsäuren mit 6 bis 44 Kohlenstoffatomen in Konzentrationen von 1 bis 45 Gew.-%, vorzugsweise 5 bis 20 Gew.-%, bezüglich der Ölphase gelöst enthält und wobei der Mengenanteil der Ölphase an der Emulsion zwischen 0,5 und 50 Gew.-%, vorzugsweise 5 bis 20 Gew.-%, beträgt.
Die Herstellung der Guanidiniumsalze ungesättigter Fettsäuren ist in der eingangs erwähnten US-A-2,978,415 beschrieben. Beispielsweise kann ein Gemisch ungesättigter Fettsäuren in einem organischen Lösungsmittel wie Methylisobutylketon gelöst und mit Guanidiniumcarbonat versetzt werden. Nach Beenden der Umsetzung, die unter Abspaltung von Wasser und CO2 verläuft, können das Lösungsmittel und das Reaktionswasser entfernt werden, wobei das Produkt in Form einer braunen, wachsartigen Paste zurückbleibt. Für die erfindungsgemäße Verwendung empfiehlt es sich, als Lösungsmittel für die Umsetzung der ungesättigten Fettsäuren mit Guanidiniumsalzen flüchtiger Säuren, beispielsweise Guanidiniumcarbonat, direkt ölartige Lösungsmittel als die zur späteren Emulsionsbereitung zu verwendende Ölphase einzusetzen. Ein Herstellbeispiel wird nachstehend beschrieben.
Je nach verwendetem ölartigem Lösungsmittel kann es empfehlenswert sein, das bei der Umsetzung von Guanidiniumcarbonat mit der Fettsäure entstehende Reaktionswasser mehr oder weniger vollständig aus dem Reaktionsprodukt zu entfernen, da die Viskositäten der erhaltenen Lösungen stark vom Wassergehalt abhängen können. Das optimale Vorgehen während der Herstellung (Erhitzen, Anlegen von Vakuum) hängt einerseits von der eingesetzten ungesättigten Fettsäure bzw. von dem Fettsäuregemisch und andererseits von dem verwendeten ölartigen Lösungsmittel ab und muß für den konkreten Fall empirisch ermittelt werden.
Vorteilhaft ist es, bei der Herstellung der Lösungen von Guanidiniumsalzen ungesättigter Fettsäuren in dem ölartigen Lösungsmittel homogene Flüssigkeiten zu erhalten, deren Viskosität es erlaubt, sie ohne weitere technische Maßnahmen zur Emulsionsbildung in Wasser einlaufen zu lassen. Hochviskose, pastenartige Systeme sind schwieriger zu handhaben und daher weniger bevorzugt. Guanindiniumsalze gesättigter Fettsäuren, die als Korrosionsinhibitoren bekannt sind, sind für die erfindungsgemäße Verwendung ungeeignet, da ihre Öllösungen in den erfindungsgemäßen Konzentrationsbereichen keine beweglichen Flüssigkeiten, sondern wachsartige Pasten darstellen.
Beispiele
Beispiele 1 bis 5 beschreiben nicht erfindungsgemässe Verfahren zur Herstellung von verwendete Lösungen und Emulsionen.
Beispiel 1
In Anlehnung an die US-A-2,978,415 wird die Herstellung einer Guanidiniumoleatlösung in Mineralöl beschrieben, die 38 Gew.-% des Salzes enthält: In einer beheizbaren Rührapparatur mit Stickstoffüberleitung werden 610,6 g technische Ölsäure der Säurezahl 202 (EdenorR Ti05GA, Henkel KGaA, Düsseldorf), entsprechend 2 Mol + 10 % Überschuß, mit 1096 g Mineralöl (Pionieröl 4556, Hansen & Rosenthal) vermischt. Unter Rühren bei Raumtemperatur und unter Stickstoffüberleitung werden portionsweise 180 g (1 Mol) Guanidiniumcarbonat (Linz Chemie, Linz (Österreich)) eingetragen. Nach Ende der Zugabe wird die Reaktionsmischung auf 100 °C aufgeheizt und solange gerührt, bis die Säurezahl kleiner als 20 ist (ca. 2 Stunden). Während der Reaktionszeit ist ein leichtes Gasen zu beobachten und die Lösung verfärbt sich von hell-gelb nach beige-braun. Während der Umsetzung ist theoretisch die Abspaltung von 1 Mol Kohlensäure entsprechend 1 Mol H2O und 1 Mol CO2, 62 g, zu erwarten. Als Reaktionsprodukt wird eine dickflüssige, beigebraune, transparente Öllösung erhalten.
Beispiele 2 bis 4
Die Herstellung gemäß Beispiel 1 wurde unter Variation des Lösungsmittels, ansonsten jedoch identisch wiederholt.
Beispiel 2
Lösungsmittel: paraffinisches Prozeßöl Enerpar 3036, Deutsche BP
Beispiel 3
Paraffinöl Parex Paraffin II, Leuna-Werke
Beispiel 4
Lösungsmittel: Dioctylether Cetiol-0E, Henkel KGaA.
Es wurden jeweils braune, transparente, dickflüssige aber bewegliche Flüssigkeiten erhalten.
Beispiel 5
In Anlehnung an die US-A-2,978,415 wird die Herstellung einer Guanidiniumoleatlösung in Mineralöl beschrieben, die 10 Gew.-% des Salzes enthält: In einer beheizbaren Rührapparatur mit Stickstoffüberleitung werden 638 g technische Ölsäure der Säurezahl 202 (EdenorR Ti05GA, Henkel KGaA, Düsseldorf), entsprechend 2 Mol + 15 % Überschuß, mit 190 g Mineralöl (Pionieröl 4556, Hansen & Rosenthal) vermischt. Unter Rühren bei Raumtemperatur und unter Stickstoffüberleitung werden portionsweise 180 g (1 Mol) Guanidiniumcarbonat (Linz Chemie, Linz (Österreich)) eingetragen. Nach Ende der Zugabe wird die Reaktionsmischung auf 100 °C aufgeheizt und solange gerührt, bis die Säurezahl kleiner als 20 ist (ca. 2 Stunden). Während der Reaktionszeit ist ein leichtes Gasen zu beobachten und die Lösung verfärbt sich von hell-gelb nach beige-braun. Nach der Hauptreaktion wird Wasserstrahlvakuum angelegt (15 min) bei 100 °C, um CO2 und Wasser zu entfernen. Mit 6620 g Mineralöl wird die Reaktionsmischung verdünnt. Als Reaktionsprodukt wird eine beige-braune, transparente Öllösung erhalten, aus der durch Zugabe von 90 Gew.-% Wasser Emulsionen hergestellt werden können.
Beispiele 6 bis 10, Vergleichsbeispiele 1 bis 3
Die Überprüfung der Korrosionsschutzwirkung erfolgte nach dem Schwitzwassertest nach DIN 50017 KFW. Hierzu wurden Stahlbleche der Qualität ST 1405 mit den Abmessungen 5 cm x 10 cm mit einer wäßrigen Tensidlösung abgebürstet, mit Wasser und Alkohol gespült und getrocknet. Danach wurden die Bleche in Öllösungen gemäß den Beispielen 1 bis 5 getaucht. Als Vergleichsbeispiele 1 bis 3 wurden 20 gew.-%ige Lösungen von Ba-Petronate 70 TBN (Firma Witco) in Ölen gemäß Tabelle verwendet.
Nach 24 Stunden Abtropfzeit begann der Testzyklus, wobei die Prüfbleche täglich auf Korrosion überprüft wurden. Die Ergebnisse sind in der Tabelle zusammengefaßt. Dabei bedeuten "Spuren von Korossion": maximal 3 Korrosionspunkte auf der Oberfläche, "leichte Korrosion": weniger als 20 % der Oberfläche korrodiert, "starke Korrosion": über 20 % der Oberfläche korrodiert.
Korrosionsschutzprüfung: Schwitzwassertest nach DIN 50017 KFW
Prüfsubstanz Ergebnisse
Beisp. 6 Produkt aus Beisp. 1 bis 13 Tage keine Korrosion bis 24 Tage Spuren von Korrosion nach 25 Tagen Abbruch mit leichter Korrosion
Beisp. 7 Produkt aus Beisp. 2 nach 25 Tagen Abbruch ohne Korrosion
Beisp. 8 Produkt aus Beisp. 3 bis 16 Tage keine Korrosion nach 25 Tagen Abbruch mit Spuren von Korrosion
Beisp. 9 Produkt aus Beisp. 4 bis 15 Tage keine Korrosion nach 25 Tagen Abbruch mit Spuren von Korrosion
Beisp.10 Produkt aus Beisp. 5 bis 7 Tage keine Korrosion nach 20 Tagen starke Korrosion
Vergl. 1 Barium-Petrolsulfonat in Pionieröl 4556 nach 1 Tag starke Korrosion (> 20 % korrodiert)
Vergl. 2 Barium-Petrolsulfonat in Enerpar 3036 bis 2 Tage keine Korrosion bis 3 Tage Spuren von Korrosion nach 5 Tagen Abbruch mit starker Korrosion
Vergl. 3 Barium-Petrolsulfonat in Parex Paraffin II bis 1 Tag Spuren von Korrosion nach 5 Tagen Abbruch mit starker Korrosion
Korrosionsschutzwirkung von Emulsionen
Analog zu Beispiel 10 wurde die Korrosionsschutzwirkung einer Emulsion geprüft, die durch Versetzen des Produkts aus Beispiel 5 mit Wasser im Gewichtsverhältnis 1 : 9 erhalten wurde: Nach 7 Tagen wurde keine Korrosion, nach 20 Tagen starke Korrosion beobachtet.
Viskositätsregulierung
Für eine Korrosionsprüfung analog Beispiel 10 wurde das Produkt aus Beispiel 5 mit 5 Gew.-% Hexylenglykol vermischt. Durch Versetzen mit Wasser im Gewichtsverhältnis 1 : 9 wurde eine Emulsion erhalten und für die Prüfung der Korrosionsschutzwirkung verwendet. Ergebnis: Nach 8 Tagen keine, nach 13 Tagen starke Korrosion.
Beispiel 11: Herstellung einer Mikroemulsion durch Phaseninversion.
In einem ersten Schritt wurde lösungsmittelfreies Guanidiniumoleat hergestellt, indem in einer Rührapparatur bei Raumtemperatur 90 g (= 0,5 Mol) Guanidiniumcarbonat mit 281 g (= 1 Mol) technischer Ölsäure der Säurezahl 202 (EdenorR Ti05, Henkel KGaA, Düsseldorf) vermischt wurde. Unter Rühren wurde die Temperatur innerhalb von 45 Minuten auf 150 °C gesteigert und 3,5 Stunden bei diesem Wert belassen. Es wurde ein gelbbraunes wachsartiges Produkt mit einer Säurezahl von 5 erhalten.
Zur Herstellung einer Mikroemulsion nach der Phaseninversionsmethode wurden 2,6 Gew.-Teile dieses Guanidiniumoleats und 0,26 Gew.-Teile Natriumcitrat in 51,04 Gew.-Teilen Wasser gelöst. Die Lösung wurde mit 40 Gew.-Teilen Mineralöl (Pionieröl 4556) und 6,1 Gew.-Teilen Emulgator (Anlagerungsprodukt von 4 Mol Ethylenoxid an ein C12/14-Fettalkoholgemisch) bei einer Temperatur oberhalb der durch Vorversuche ermittelten Phaseninversionstemperatur von 35 °C durch Rühren vermischt und unter die Phaseninversionstemperatur abgekühlt. Hierbei wurde eine transparente Mikroemulsion erhalten, die durch Versetzen mit Wasser verdünnt werden kann.

Claims (11)

  1. Verwendung von Guanidiniumsalzen ein- oder mehrfach ungesättigter Fettsäuren mit 6 bis 44 Kohlenstoffatomen zur Erzielung eines temporären Korrosionsschutzes auf metallischen Oberflächen.
  2. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß die ein- oder mehrfach ungesättigten Fettsäuren ausgewählt sind aus nativen Fettsäuren und/oder aus Dimerfettsäuren.
  3. Verwendung gemäß Anspruch 2, dadurch gekennzeichnet, daß die nativen Fettsäuren verzweigt oder linear sind, eine bis sechs Doppelbindungen aufweisen und 11 bis 28 Kohlenstoffatome enthalten.
  4. Verwendung gemäß Anspruch 3, dadurch gekennzeichnet, daß die nativen Fettsäuren einbasisch sind und ausgewählt sind aus Undecylensäure, Myristoleinsäure, Palmitoleinsäure, Ölsäure, Rhizinolsäure, Erucasäure, Linolsäure, Linolensäure, Arachidonsäure und deren Mischungen.
  5. Verwendung gemäß Anspruch 2, dadurch gekennzeichnet, daß die Dimerfettsäuren mehrbasisch sind und 36 bis 44 Kohlenstoffatome enthalten.
  6. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Guanidiniumsalze als Lösungen in ölartigen Lösungsmitteln ausgewählt aus bei Arbeitstemperatur flüssigen Kohlenwasserstoffen, weitgehend wasserunlöslichen Dialkylethern, Alkoholen, Esterölen und/oder Acetalen sowie Mischungen hiervon, in Konzentrationen zwischen 1 und 45 Gew.-%, eingesetzt werden.
  7. Verwendung gemäß Anspruch 6, dadurch gekennzeichnet, daß als Lösungsmittel für die Guanidiniumsalze Dialkylether mit 6 bis 24 C-Atomen pro Alkylrest verwendet werden, wobei die Alkylreste unabhängig voneinander geradkettig oder verzweigtkettig, gesättigt oder ungesättigt sind.
  8. Verwendung gemäß Anspruch 6, dadurch gekennzeichnet, daß als Lösungsmittel für die Guanidiniumsalze ein oder mehrere Acetale auf Basis von einwertigen Aldehyden mit 1 bis 25 C-Atomen und einwertigen Alkoholen mit 1 bis 25 C-Atomen verwendet werden.
  9. Verwendung gemäß Anspruch 6, dadurch gekennzeichnet, daß als Lösungsmittel für die Guanidiniumsalze Kohlenwasserstoffe in Form von Paraffinöl oder Mineralöl verwendet werden.
  10. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Guanidiniumsalze ungesättigter Fettsäuren in einer Öl-in-Wasser-Emulsion gelöst sind, wobei als Ölphase ein ölartiges Lösungsmittel oder Lösungsmittelgemisch gemäß einem oder mehreren der Ansprüche 6 bis 9 verwendet wird und der Mengenanteil der Ölphase an der Emulsion zwischen 0,5 und 50 Gew.-% und der Anteil der Guanidiniumsalze 1 bis 45 Gew.-% bezüglich der Ölphase beträgt.
  11. Öl-in-Wasser-Emulsion, die als durch Phaseninversion erhältliche Mikroemulsion vorliegt, wobei deren Ölphase ein ölartiges Lösungsmittel oder Lösungsmittelgemisch, ausgewählt aus bei Arbeitstemperatur flüssigen Kohlenwasserstoffen, weitgehend wasserunlöslichen Dialkylethern, Alkoholen, Esterölen und/oder Acetalen sowie Mischungen hiervon, darstellt und Guanidiniumsalze ein- oder mehrfach ungesättigter Fettsäuren mit 6 bis 44 Kohlenstoffatomen in Konzentrationen von 1 bis 45 Gew.-% bezüglich der Ölphase gelöst enthält und wobei der Mengenanteil der Ölphase an der Emulsion zwischen 0,5 und 50 Gew.-% beträgt.
EP95935435A 1994-10-14 1995-10-05 Verwendung von guanidiniumsalzen ungesättigter fettsäuren als korrosionsschutzwirkstoff Expired - Lifetime EP0786019B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4436764A DE4436764A1 (de) 1994-10-14 1994-10-14 Verwendung von Guanidiniumsalzen ungesättigter Fettsäuren als Korrosionsschutzwirkstoff
DE4436764 1994-10-14
PCT/EP1995/003931 WO1996012054A1 (de) 1994-10-14 1995-10-05 Verwendung von guanidiniumsalzen ungesättigter fettsäuren als korrosionsschutzwirkstoff

Publications (2)

Publication Number Publication Date
EP0786019A1 EP0786019A1 (de) 1997-07-30
EP0786019B1 true EP0786019B1 (de) 1999-05-12

Family

ID=6530785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95935435A Expired - Lifetime EP0786019B1 (de) 1994-10-14 1995-10-05 Verwendung von guanidiniumsalzen ungesättigter fettsäuren als korrosionsschutzwirkstoff

Country Status (9)

Country Link
US (1) US5749947A (de)
EP (1) EP0786019B1 (de)
JP (1) JPH10507231A (de)
AT (1) ATE180022T1 (de)
CA (1) CA2202678A1 (de)
DE (2) DE4436764A1 (de)
ES (1) ES2132722T3 (de)
FR (1) FR2725599B3 (de)
WO (1) WO1996012054A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19747895A1 (de) * 1997-10-30 1999-05-06 Henkel Kgaa Metallbehandlungsflüssigkeit für den neutralen pH-Bereich
FR2795432B1 (fr) * 1999-06-28 2001-08-24 Atofina Compositions inhibitrices de la corrosion pour fluides de transfert de chaleur
DE102007027372A1 (de) * 2007-06-11 2008-12-18 Cognis Oleochemicals Gmbh Verfahren zur Hydrierung von Glycerin
US8766024B2 (en) * 2009-11-20 2014-07-01 Phillips 66 Company Process to mitigate the corrosion of oils/fats
EP3395369A1 (de) * 2014-10-30 2018-10-31 Asahi Kasei Kabushiki Kaisha Verbesserer der transdermalen absorption und verbesserungshilfe der transdermalen absorption
CN112585207B (zh) * 2018-08-24 2023-05-26 三菱瓦斯化学株式会社 橡胶组合物及轮胎

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2978415A (en) * 1957-04-17 1961-04-04 American Cyanamid Co Guanidine soaps as dry cleaning detergents
DE3203491A1 (de) * 1982-02-03 1983-08-11 Henkel KGaA, 4000 Düsseldorf Verwendung von stearinsaeurederivaten als korrosionsschutzmittel
US5318954A (en) * 1989-03-08 1994-06-07 Henkel Kommanditgesellschaft Auf Aktien Use of selected ester oils of low carboxylic acids in drilling fluids
DE3907392A1 (de) * 1989-03-08 1990-09-13 Henkel Kgaa Ester von carbonsaeuren mittlerer kettenlaenge als bestnadteil der oelphase in invert-bohrspuelschlaemmen
DE3907391A1 (de) * 1989-03-08 1990-09-13 Henkel Kgaa Verwendung ausgewaehlter esteroele niederer carbonsaeuren in bohrspuelungen
DE3929069A1 (de) * 1989-09-01 1991-03-07 Henkel Kgaa Neues basisoel fuer die schmierstoffindustrie
DZ1577A1 (fr) * 1991-05-08 2002-02-17 Hoechst Ag Emploi d'acetals.
ATE140982T1 (de) * 1992-04-22 1996-08-15 Hoechst Ag Korrosionsschutzmittel
DE4237501A1 (de) * 1992-11-06 1994-05-11 Henkel Kgaa Dialkylether in Metalloberflächen-Behandlungsmitteln
DE4323771A1 (de) * 1993-07-15 1995-01-19 Henkel Kgaa Grundöl auf Triglyceridbasis für Hydrauliköle
DE4323908A1 (de) * 1993-07-16 1995-01-19 Henkel Kgaa Verfahren zur Herstellung von O/W-Emulsionen zum Reinigen und Passivieren von Metalloberflächen

Also Published As

Publication number Publication date
DE4436764A1 (de) 1996-04-18
ATE180022T1 (de) 1999-05-15
DE59505930D1 (de) 1999-06-17
CA2202678A1 (en) 1996-04-25
FR2725599B3 (fr) 1999-08-06
US5749947A (en) 1998-05-12
WO1996012054A1 (de) 1996-04-25
ES2132722T3 (es) 1999-08-16
EP0786019A1 (de) 1997-07-30
JPH10507231A (ja) 1998-07-14
FR2725599A1 (fr) 1996-04-19

Similar Documents

Publication Publication Date Title
EP0222311B1 (de) Verwendung von Alkoxyhydroxyfettsäuren als Korrosionsinhibitoren in Ölen und Ölhaltigen Emulsionen
EP0963244B1 (de) Schaumarmes emulgatorsystem und dieses enthaltendes emulsionskonzentrat
EP0494884B1 (de) Verfahren zur herstellung stabiler, niedrig-viskoser o/w-rostschutzemulsionen
DE2145296A1 (de) Additiv für eine Metallverarbeitungs-Komposition, sowie dessen Verwendung
DE2426114A1 (de) Antirostadditiv-zubereitungen
DE112015000678T5 (de) Wasserverdünnbarer Hochleistungsschmiersatz für Metallbearbeitungsanwendungen mit mehreren Metallen
DE60105777T2 (de) Wasserlösliche warmwalzzusamensetzungen für aluminium und aluminiumlegierungen
DD151185A5 (de) Nicht auf erdoel basierende metallkorrosionsschutzzusammensetzung
DE60105570T2 (de) Warmwalzverfahren zum Walzen von Aluminium und Aluminiumlegierungs-Blechen
EP0786019B1 (de) Verwendung von guanidiniumsalzen ungesättigter fettsäuren als korrosionsschutzwirkstoff
EP0247467A2 (de) Verwendung von Salzen von Estern langkettiger Fettalkohole mit alpha-Sulfofettsäuren
DE2840112A1 (de) Wassermischbare korrosionsschutzmittel
DE19956237A1 (de) Emulgatorsystem und dieses enthaltende Metallbearbeitungsemulsion
EP0584711B1 (de) Alkenylbernsteinsäurederivate als Metallbearbeitungshilfsmittel
WO2013139650A1 (de) Korrosionsschutzsystem für die behandlung von metalloberflächen
EP0024062B1 (de) Reaktionsschmiermittel und Verfahren zur Vorbereitung von Metallen für die Kaltverformung
DE4444878A1 (de) Stickstofffreie Korrosionsinhibitoren mit guter Pufferwirkung
EP0231524B1 (de) Verwendung von Alkylbenzoylacrylsäuren als Korrosionsinhibitoren
DE4323909A1 (de) Mittel zum Reinigen und Passivieren von Metalloberflächen
EP0501368B1 (de) Verwendung von Alkenylbernsteinsäurehalbamiden
EP1027477A1 (de) METALLBEHANDLUNGSFLÜSSIGKEIT FÜR DEN NEUTRALEN pH-BEREICH
DE10043040A1 (de) Verwendung von N-Alkyl-beta-alanin-Derivaten zur Herstellung von reinigenden Korrosionsschutzmitteln
DE4418807A1 (de) Betontrennmittel mit verbessertem Korrosionsschutz
EP0464473B1 (de) Salze von Alkenylbernsteinsäurehalbamiden und deren Verwendung als Korrosionsschutzmittel und Emulgatoren für Metallbearbeitungsöle
DE4240945A1 (de) Korrosionsschutzmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL PT SE

17Q First examination report despatched

Effective date: 19970630

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL PT SE

REF Corresponds to:

Ref document number: 180022

Country of ref document: AT

Date of ref document: 19990515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59505930

Country of ref document: DE

Date of ref document: 19990617

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2132722

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 19990920

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990929

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19991007

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991008

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991011

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19991013

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19991020

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991029

Year of fee payment: 5

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19990722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19991221

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001005

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 20001031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001005

EUG Se: european patent has lapsed

Ref document number: 95935435.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010629

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20011113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051005