EP0785965A1 - Durch extrusion hergestellte, vorgeschäumte polyolefinteilchen - Google Patents

Durch extrusion hergestellte, vorgeschäumte polyolefinteilchen

Info

Publication number
EP0785965A1
EP0785965A1 EP95935911A EP95935911A EP0785965A1 EP 0785965 A1 EP0785965 A1 EP 0785965A1 EP 95935911 A EP95935911 A EP 95935911A EP 95935911 A EP95935911 A EP 95935911A EP 0785965 A1 EP0785965 A1 EP 0785965A1
Authority
EP
European Patent Office
Prior art keywords
polyolefin
particles
extrusion
blowing agent
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95935911A
Other languages
English (en)
French (fr)
Inventor
Joachim Fischer
Franz-Josef Dietzen
Gerd Ehrmann
Isidoor De Grave
Jens Rieger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0785965A1 publication Critical patent/EP0785965A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene

Definitions

  • Pre-expanded polyolefin particles made by extrusion
  • the invention relates to prefoamed polyolefin particles produced by extrusion and subsequent granulation.
  • Pre-expanded polyolefin particles in particular based on a copolymer of propylene with small amounts of ethylene, are being used to an increasing extent for the production of foam molded parts in the automotive, packaging and leisure sectors.
  • the foam particles are usually produced by suspending finely divided polyolefin granules in water, impregnating them with a volatile blowing agent under pressure at temperatures close to the softening temperature of the polyolefin, relaxing and thereby foaming (see EP-A 53333).
  • the polyolefin has a special crystal structure, which is characterized in that it has a peak characteristic of the polyolefin and a high-temperature peak (so-called “double peak”) in a DSC curve.
  • EP-A 588 321 describes a particularly elegant and simple method for producing prefoamed polypropylene particles.
  • Polypropylene is melted in an extruder, a blowing agent is injected into this melt and mixed homogeneously at 125 to 250.degree. The homogeneous mass is pressed out through a round nozzle, foams up and is cut into foam particles.
  • the polypropylene used should have a melt strength of 5 to 40 cN and a branched structure.
  • the foam particles produced in this way have a very narrow processing range in the production of molded parts and do not weld sufficiently well to one another. For this reason, the molded parts have relatively poor mechanical properties; especially elongation at break and tensile strength leave something to be desired.
  • the invention was therefore based on the object of providing pre-foamed polyolefin particles which had been produced from a conventional, ie not melt-strengthened, polyolefin by extrusion and subsequent granulation and which can be welded to molded parts with good mechanical properties without problems. It was found that this is the case if the polyolefin in the foam particles has a crystal structure with a double peak, the distance between the two tips being at least 5 ° C., preferably more than 8 ° C.
  • polyolefins are crystalline olefin polymers whose X-ray crystallinity is above 25% at 25 ° C.
  • Low, medium and high density polyethylenes between 0.88 to 0.965 g / cm 3 polypropylene and ethylene and propylene copolymers which contain at least 50 mol% of ethylene or propylene units are suitable for the process.
  • Suitable comonomers are, for example, ⁇ -alkenes having up to 12 carbon atoms, such as ethylene, propylene, butene, pentene, hexene, octene, and also vinyl esters, such as vinyl acetate, esters of acrylic acid, methacrylic acid, maleic acid or fumaric acid with alcohols which have 1 to 8 Contain carbon atoms, copolymers of ethylene and acrylic acid or their derivatives, and ionomers. Mixtures of different olefin polymers can also be used.
  • Ethylene-propylene copolymers and copolymers of ethylene and / or propylene with a C 4 - bis are preferably used
  • propylene copolymers are copolymers of propylene with 0.5 to 6% by weight of ethylene or 0.5 to 15% by weight of butene (1).
  • Particularly preferred ethylene copolymers are copolymers of ethylene with 1 to 18% by weight of butene (1), hexene (1) or octene (1).
  • a C 4 - to C 8 - ⁇ -01e-fin such as butene-1, pentene-1, hexene-1, heptene-1 or octene-1.
  • the copolymers should have a G modulus of 100 to 900, preferably 150 to 750 N / mm 2 .
  • the copolymers are prepared in a known manner by copolymerizing the monomers using transition metal catalysts.
  • the copolymers are generally linear, uncrosslinked and not melt-solidified.
  • the crystallite point, determined by the DSC method is generally zwi ⁇ rule 95 and 170 C C.
  • the heat of fusion is generally from 30 to 130 J / g, preferred wise between 35 and 120 J / g.
  • Copolymers with a melt index MFI (230; 2.16) (according to DIN 53 735) of 0.1 to 50, in particular 0.5 to 20 [g / 10 min] are preferably used.
  • the foam particles according to the invention are produced by impregnating polyolefin particles with a blowing agent in an extruder at a low temperature, homogenizing and dwelling the mass at higher temperatures and finally pressing out with foaming.
  • the polyolefin particles are impregnated with a volatile blowing agent.
  • Fine semolina with particle sizes of 0.01 to 10 mm, such as is obtained directly in the polymerization, or granules with particle sizes of 0.1 to 10 mm, as is obtained in the extrusion of the polyolefin, can be used.
  • Suitable blowing agents are organic compounds with boiling points between 0 and 150 ° C., for example n-butane, isobutane, n-pentane, isopentane, neopentane, cyclopentane or cyclohexane, heptanes, octanes,
  • Halogenated hydrocarbons and their mixtures The amount of blowing agent depends on the desired bulk density of the foam particles. It is preferably 5 to 40, in particular 8 to 30 parts by weight, based on 100 parts by weight of polyolefin. At this point it is also possible to add conventional additives in effective amounts, such as dyes, pigments, nucleating agents, stabilizers, flame retardants, lubricants and antistatic agents.
  • the polyolefin particles are impregnated with the blowing agent preferably in the only slightly sheared feed zone of an extruder. It is essential that the swelling takes place at a relatively low temperature, ie the temperature must be 50 to 180, preferably 100 to 150 ° C. below the crystalline melting point of the polyolefin and at least 10 ° C. below the boiling point of the blowing agent, so that the latter does not evaporate.
  • the temperature By applying an excess pressure of maximum 10 bar, low-boiling blowing agents, such as butanes, can also be metered in at room temperature.
  • the polyolefin particles are fed to zone A, for example via a cell-wheel lock.
  • the temperature in the zone A is preferably zwi ⁇ 's 10 and 40 C C, especially at room temperature.
  • the residence time in this zone is preferably 0.1 to 5 minutes.
  • the polyolefin is soaked with the blowing agent to such an extent that its viscosity is greatly reduced.
  • zone B The described lowering of the viscosity makes it possible to carry out the homogenization in zone B at temperatures which are 2 to 50 ° C., preferably 5 to 40 ° C. below the crystallite melting point of the pure polyolefin lie. This is a further advantage over the method according to EP-A 588 321, where extrusion takes place at considerably higher temperatures.
  • This homogenization with simultaneous temperature increase is preferably carried out in a second zone (homogenization zone) of the extruder already used in stage A.
  • zine B in order to regulate the cell diameter, small amounts (for example 0.1 to 5% by weight) of carbon dioxide or nitrogen can be metered in.
  • the mass is then kept for a time, preferably 1 to 60 minutes, at a temperature which is 2 to 50 ° C. below the crystalline melting point of the polyolefin.
  • This is expediently carried out in a residence time zone C downstream of zone B, for example a static mixer (Sulzer mixer) or a low-shear extruder (single-screw extruder).
  • the resulting foam particles are ellipsoid to spherical.
  • the average diameter is 2 to 20 mm.
  • Their debris weight can be set within wide limits between 0.01 and 0.2 g ⁇ cm "-, preferably between 0.01 and 0.15 g • cm -1 .
  • the number of cells is generally 0.1 to 1000 cells per mm 2 .
  • Shaped parts with good mechanical properties can be produced in a conventional manner from the pre-expanded particles according to the invention by welding.
  • a dwell time zone C consisting of 4 Sulzer mixers (DN * • »80 mm) was connected to the gear pump. These were kept at 130 ° C. After a dwell time of 45 min, the polymer containing blowing agent was pressed out of a round nozzle with a diameter of 2 mm and was blown by means of a granulator from
  • the foam particles obtained had a diameter of 10 mm. Their bulk density was .22 g • L ⁇ -.
  • the DSC curve shows two maxima at 146 ° C and 160 ° C.

Abstract

Die Erfindung betrifft durch Extrusion und anschließende Granulierung hergestellte, vorgeschäumte Polyolefinteilchen, die eine Kristallstruktur mit einem Doppelpeak aufweisen.

Description

Durch Extrusion hergestellte, vorgeschäumte Polyolefinteilchen
Beschreibung
Die Erfindung betrifft durch Extrusion und anschließende Granu¬ lierung hergestellte, vorgeschäumte Polyolefinteilchen.
Vorgeschäumte Polyolefinteilchen, insbesondere auf Basis eines Copolymeren des Propylens mit geringen Mengen Ethylen werden in steigendem Maß zur Herstellung von Schaumstoff-Formteilen im Automobilbau, Verpackungswesen und Freizeitbereich eingesetzt. Die Schaumstoffteilchen werden üblicherweise hergestellt, indem man feinteiliges Polyolefingranulat in Wasser suspendiert, bei Temperaturen nahe der Erweichungstemperatur des Polyolefins unter Druck mit einem flüchtigen Treibmittel imprägniert, entspannt und dabei aufschäumt (siehe EP-A 53333) . In den so hergestellten Schaumteilchen hat das Polyolefin eine spezielle Kristall¬ struktur, die dadurch charakterisiert ist, daß es in einer DSC- Kurve eine für das Polyolefin charakteristische Spitze und eine Hochtemperaturspitze (sogen. "Doppelpeak") aufweist.
In der EP-A 588 321 ist ein besonders elegantes und einfaches Verfahren zur Herstellung von vorgeschäumten Polypropylenteilchen beschrieben. Dabei wird in einem Extruder Polypropylen aufge¬ schmolzen, in diese Schmelze wird ein Treibmittel injiziert und bei 125 bis 250°C homogen eingemischt. Die homogene Masse wird durch eine Runddüse ausgepreßt, schäumt dabei auf und wird zu Schaumstoffteilchen geschnitten. Das eingesetzte Polypropylen soll eine Schmelzefestigkeit von 5 bis 40 cN und eine verzweigte Struktur aufweisen. Es hat sich aber gezeigt, daß die so herge¬ stellten Schaumpartikel bei der Formteilherstellung eine sehr enge Verarbeitungsbreite haben und nicht ausreichend gut mitein¬ ander verschweißen. Aus diesem Grund haben die Formteile verhält- nismäßig schlechte mechanische Eigenschaften; insbesondere Bruch¬ dehnung und Zugfestigkeit lassen zu wünschen übrig.
Der Erfindung lag also die Aufgabe zugrunde, aus einem konventio¬ nellen, d.h. nicht schmelzeverfestigten Polyolefin durch Extrusion und anschließende Granulierung hergestellte, vor¬ geschäumte Polyolefinteilchen bereitzustellen, die sich problem¬ los zu Formteilen mit guten mechanischen Eigenschaften ver¬ schweißen lassen. Es wurde gefunden, daß dies der Fall ist, wenn das Polyolefin in den Schaumstoffteilchen eine Kristallstruktur mit Doppelpeak auf¬ weist, wobei der Abstand zwischen den beiden Spitzen mindestens 5"C, vorzugsweise mehr als 8°C beträgt.
Polyolefine im Sinne der Erfindung sind kristalline Olefinpoly- merisate, deren Röntgenkristallinität bei 25°C über 25 % liegt. Für das Verfahren eignen sich Polyethylene niedriger, mittlerer und hoher Dichte zwischen 0,88 bis 0,965 g/cm3, Polypropylen so- wie Ethylen- und Propylencopolymere, die mindestens 50 Mol.-% Ethylen- bzw. Propylen-Einheiten enthalten. Geeignete Comonomere sind beispielsweise α-Alkene mit bis zu 12 Kohlenstoffatomen, wie Ethylen, Propylen, Buten, Penten, Hexen, Octen, ferner Vinyl- ester, wie Vinylacetat, Ester der Acrylsäure, Methacrylsäure, Maleinsäure oder Fumarsäure mit Alkoholen, die 1 bis 8 C-Atome enthalten, Copolymere aus Ethylen und Acrylsäure bzw. deren Deri¬ vaten, sowie Ionomeren. Auch Mischungen verschiedener Olefinpoly- erisate können verwendet werden.
Bevorzugt eingesetzt werden Ethylen-Propylen-Copolymere und Copolymere von Ethylen und/oder Propylen mit einem C4- bis
Ctj-o-Olefin.
Besonders bevorzugte Propylen-Copolymere sind Copolymere des Propylens mit 0,5 bis 6 Gew.-% Ethylen oder 0,5 bis 15 Gew.-% Buten (1). Besonders bevorzugte Ethylen-Copolymere sind Copolymere des Ethylens mit 1 bis 18 Gew.-% Buten (1), Hexen (1) oder Octen (1) .
Besonders bevorzugt sind auch Copolymere von Propylen mit 0,5 bis 6 Gew.-O, vorzugsweise 1,5 bis 6 Gew.-% Ethylen und 0,5 bis 6 Gew.-%, vorzugsweise 1,5 bis 6 Gew.-% eines C4- bis C8-α-01e- fins, wie Buten-1, Penten-1, Hexen-1, Hepten-1 oder Octen-1. Die Copolymeren sollen einen G-Modul von 100 bis 900, vorzugsweise 150 bis 750 N/mm2 aufweisen.
Die Herstellung der Copolymeren erfolgt in bekannter Weise durch Copolymerisation der Monomeren mittels Übergangsmetallkataly¬ satoren. Die Copolymeren sind im allgemeinen linear aufgebaut, unvernetzt und nicht schmelzeverfestigt. Der Kristallitschmelz- punkt, bestimmt nach der DSC-Methode, liegt im allgemeinen zwi¬ schen 95 und 170CC. Die Schmelzwärme, bestimmt nach der DSC- Methode, liegt im allgemeinen zwischen 30 und 130 J/g, vorzugs¬ weise zwischen 35 und 120 J/g. Vorzugsweise werden Copolymere mit einem Schmelzindex MFI (230; 2,16) (nach DIN 53 735) von 0,1 bis 50, insbesondere 0,5 bis 20 [g/10 min] verwendet. Die Herstellung der erfindungsgemäßen Schaumteilchen erfolgt bei einem bevorzugten Verfahren durch Tränken von Polyolefinpartikeln mit einem Treibmittel in einem Extruder bei niedriger Temperatur, Homogenisieren und Verweilen der Masse bei höheren Temperaturen und schließlich Auspressen unter Aufschäumen.
A. In einer ersten Zone A werden die Polyolefinpartikel mit einem flüchtigen Treibmittel getränkt. Dabei kann feiner Grieß mit Teilchengrößen von 0,01 bis 10 mm, wie er direkt bei der Polymerisation anfällt, eingesetzt werden, oder Gra¬ nulat mit Teilchengrößen von 0,1 bis 10 mm, wie es bei der Extrusion des Polyolefins anfällt. Geeignete Treibmittel sind organische Verbindungen mit Siedepunkten zwischen 0 und 150"C, beispielsweise n-Butan-, Isobutan, n-Pentan, Isopentan, Neopentan, Cyclopentan oder Cyclohexan, Heptane, Octane,
Halogenkohlenwasserstoffe, sowie deren Mischungen. Die Treib¬ mittelmenge richtet sich nach dem angestrebten Schüttgewicht der Schaumstoffteilchen. Sie beträgt bevorzugt 5 bis 40, ins¬ besondere 8 bis 30 Gew.-Teile, bezogen auf 100 Gew.-Teile Polyolefin. An dieser Stelle können auch übliche Zusatzstoffe in wirksamen Mengen, wie Farbstoffe, Pigmente, Keimbildner, Stabilisatoren, Flammschutzmittel, Gleitmittel und Anti- statika zugesetzt werden.
Das Tränken der Polyolefinpartikel mit dem Treibmittel er¬ folgt bevorzugt in der nur schwach gescherten Einzugszone eines Extruders. Wesentlich ist, daß das Anquellen bei ver¬ hältnismäßig niedriger Temperatur geschieht, d.h., die Temperatur muß 50 bis 180, vorzugsweise 100 bis 150°C unter- halb des Kristallitschmelzpunktes des Polyolefins und minde¬ stens 10°C unterhalb des Siedepunkts des Treibmittels liegen, damit letzeres nicht verdampft. Durch Anlegen eines Über¬ drucks von maximal 10 bar können tiefsiedene Treibmittel, wie die Butane, auch bei Raumtemperatur zudosiert werden. In die- sem Fall werden die Polyolefinpartikel z.B. über eine Zell- Rad-Schleuse der Zone A zugeführt. Bei den bevorzugten Propylencopolymeren mit Kristallitschmelzpunkten zwischen 100 und 165°C liegt die Temperatur in der Zone A bevorzugt zwi¬ schen 10 und 40CC, insbesondere bei Raumtemperatur. Die Ver- weilzeit in dieser Zone beträgt vorzugsweise 0,1 bis 5 min. Dabei wird das Polyolefin soweit mit dem Treibmittel ge¬ tränkt, daß seine Viskosität stark erniedrigt wird.
B. Durch die beschriebene Absenkung der Viskosität ist es mög- lieh, in der Zone B das Homogenisieren bei Temperaturen durchzuführen, die 2 bis 50°C, vorzugsweise 5 bis 40°C unter¬ halb des Kristallitschmelzpunktes des reinen Polyolefins liegen. Dies ist ein weiterer Vorteil gegenüber αem Verfahren nach EP-A 588 321, wo bei wesentlich honeren Temperaturen ex- trudiert wird. Dieses Homogenisieren unter gleichzeitiger Temperaturerhöhung wird vorzugsweise in einer 2. Zone (Homo- genisierzone) des bereits in Stufe A benutzten Extruders durchgeführt. In der Zine B kann zur Regulierung des Zell¬ durchmessers in kleinen Mengen (z.B. 0,1 bis 5 Gew.-%) Koh¬ lendioxid bzw. Stickstoff zudosiert werden.
C. Anschließend wird die Masse einige Zeit, vorzugsweise 1 bis 60 min bei einer Temperatur, die 2 bis 50°C unterhalb des Kristallitschmelzpunktes des Polyolefins liegt, gehalten. Dies geschieht zweckmaßigerweise in einer der Zone B nach¬ geschalteten Verweilzeitzone C, beispielsweise einem sta- tischen Mischer (Sulzer-Mischer) oder einem schwach scherenden Extruder (Einschneckenextruder) .
Zur Verbesserung des Masseubergangs zwischen den Zonen B und C kann es besonders bei Verwendung eines statiscnen Mischers vorteilhaft sein, an der Übergangsstelle zwischen diese Zone eine Zahnradpumpe vorzusehen.
D. Schließlich w rd die Masse aus dem Extruder, zweckmaßiger¬ weise durch eine oder mehrere Runddusen an die Atmosphäre ausgepreßt . Das durch den plötzlichen Druckverlust expan¬ dierte Polyolefin wird direkt anschließend granuliert, zweck¬ maßigerweise durch einen Heißabschlag.
Die entstandenen Schaumstoffteilchen sind ellipsiod bis kugelfor- mig. Der mittlere Durchmesser beträgt 2 bis 20 mm. Ihr Schutt¬ gewicht kann in weiten Grenzen zwischen 0,01 und 0,2 g • cm"-, vorzugsweise zwischen 0,01 und 0,15 g • cm-1 eingestellt werden. Die Zellzahl betragt im allgemeinen 0,1 bis 1000 Zellen pro mm2.
Aus den erfindungsgemäßen vorgeschäumten Teilchen können durch Verschweißen auf übliche Weise Formteile mit guten mechanischen Eigenschaften hergestellt werden.
Beispiel
In die Einzugszone A eines Doppelschneckenextruders (D - 60 mm, L = 36*D) wurden kontinuierlich 15 kg/h eines grießformigen Copolymeren des Propylens mit 2,5 Gew.-% Ethylen (Kristallit- schmelzpunkt 147,5=C) , sowie 0,15 kg/h Talkum zugeführt. Zwischen Einzugszone und der Übergangsstelle in die Homogenisierzone wurde das Treibmittel (3 kg/h Cyclopentan) eingespritzt. Die Temperatur an dieser Stelle betrug 25°C, es herrschte Normaldruck. Danach erfolgte der Übergang m die Homogenisierzone B, wo der Extruder auf eine Gehäusetemperatur von 100~ beheizt wurde. Da¬ durch und durch die Friktionswärme stieg die Massetemperatur auf 125rC, wobei die Masse punktuell aufschmolz. Danach wurde mittels einer auf 130°C temperierte Zahnradpumpe ein Druck von etwa
170 bar aufgebaut. An die Zahnradpumpe schloß sich eine Verweil¬ zeitzone C, bestehend aus 4 Sulzermischern (DN *•» 80 mm) an. Diese wurden auf 130 C gehalten. Nach einer Verweilzeit von 45 min wurde das treibmittelhaltige Polymere aus einer Runddüse mit Durch- messer 2 mm ausgepreßt und mittels eines Granulators der Fa.
Berstorff granuliert. Die erhaltenen Schaumpartikel hatten einen Durchmesser von 10 mm. Ihre Schüttdichte betrug .22 g • L~- . Die DSC-Kurve zeigt zwei Maxima bei 146°C und 160°C.

Claims

Patentansprüche
1. Durch Extrusion und anschließende Granulierung hergestellte, vorgeschäumte Polyolefinteilchen, gekennzeichnet durch eine
Kristallstruktur, welche in einer DSC-Kurve (erhalten durch Erhitzen von 3 bis 6 mg der Schaumpartikel auf 220°C mit einer Aufheizgeschwindigkeit von 20°C/min mit einem Differentialkalorimeter) eine für das Polyolefin charakteri- stische Spitze und eine Hochtemperaturspitze aufweist, wobei der Abstand zwischen den beiden Spitzen mindestens 5°C be¬ trägt .
2. Vorgeschäumte Polyolefinteilchen nach Anspruch 1, dadurch ge- kennzeichnet, daß das Polyolefin ein statistisches Copolymer des Propylens mit 0,5 bis 6 Gew.-% Ethylen und/oder Buten-1 ist .
3. Vorgeschäumte Polyolefinteilchen nach Anspruch 1 mit einer Schüttdichte von 0,01 bis 0,2 g • cπr: .
4. Vorgeschäumte Polyolefinteilchen nach Anspruch 1 mit einem Durchmesser von 2 bis 20 mm.
5. Verfahren zur Herstellung der vorgeschäumten Polyolefin¬ teilchen nach Anspruch 1, dadurch gekennzeichnet, daß man
A. in einer Einzugszone eines Extruders Polyolefin-Partikel mit einem physikalischen Treibmittel bei einer Temperatur, die 50 bis 180°C unterhalb des Kristallit¬ schmelzpunktes des Polyolefins und mindestens 10°C unter¬ halb des Siedepunkts des Treibmittels liegt, tränkt.
B. in einer Homogenisierungszone des Extruders unter Tempe- raturerhöhung das treibmittelhaltige Polyolefin homo¬ genisiert, wobei die Massetemperatur 2 bis 50°C unterhalb des Kristallitschmelzpunktes des reinen Polyolefins liegt,
C. in einer Verweilzeitzone die Masse 1 bis 60 min bei dieser Temperatur hält, und
das treibmittelhaltige Polyolefin an die Atmosphäre aus¬ preßt, dadurch aufschäumt und schließlich granuliert. GEÄNDERTE ANSPRÜCHE
[heim Internationalen Büro am 27. März 1996 (27.03.96) ein-iecangen, ursprünglicher Anspruch 1 durch geänderten -naprjc-i ι ; alle weiteren Ansprüche unverändert (1 Seite)]
1. Vorgeschäumte Polyolefinteilchen, die durch Extrusion, Aus- pressen unter Aufschäumen und anschließende Granulierung des ausgeschäumten Strangs hergestellt wurden, gekennzeichnet durch eine Kristallstruktur, welche in einer DSC-Kurve (er¬ halten durch Erhitzen von 3 bis 6 mg der Schaumpartikel auf 220°C mit einer Aufheizgeschwindigkeit von 20°C/min mit einem Differentialkalorimeter) eine für das Polyolefin charakteri¬ stische Spitze und eine Hochtemperaturspitze aufweist, wobei der Abstand zwischen den beiden Spitzen mindestens 5°C be¬ trägt.
EP95935911A 1994-10-15 1995-10-06 Durch extrusion hergestellte, vorgeschäumte polyolefinteilchen Withdrawn EP0785965A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4436980A DE4436980A1 (de) 1994-10-15 1994-10-15 Durch Extrusion hergestellte, vorgeschäumte Polyolefinteilchen
DE4436980 1994-10-15
PCT/EP1995/003946 WO1996011971A1 (de) 1994-10-15 1995-10-06 Durch extrusion hergestellte, vorgeschäumte polyolefinteilchen

Publications (1)

Publication Number Publication Date
EP0785965A1 true EP0785965A1 (de) 1997-07-30

Family

ID=6530924

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95935911A Withdrawn EP0785965A1 (de) 1994-10-15 1995-10-06 Durch extrusion hergestellte, vorgeschäumte polyolefinteilchen

Country Status (5)

Country Link
US (1) US5744505A (de)
EP (1) EP0785965A1 (de)
JP (1) JPH10507224A (de)
DE (1) DE4436980A1 (de)
WO (1) WO1996011971A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19739113A1 (de) * 1997-09-06 1999-03-11 Gefinex Polymerschaeume Gmbh Vorexpandierte polyolefinische Schaumpartikel
DE19740058C2 (de) * 1997-09-12 2001-10-31 Mannesmann Vdo Ag Verfahren zum Herstellen eines Schwimmers, kraftstoffbeständiger Schwimmer sowie Verwendung von miteinander verpreßten, durch Extrusion hergestellten Partikeln
JP3692760B2 (ja) * 1998-01-30 2005-09-07 株式会社カネカ ポリプロピレン系樹脂型内発泡成形体の製造方法
JP3950557B2 (ja) 1998-07-30 2007-08-01 株式会社カネカ ポリプロピレン系樹脂予備発泡粒子およびそれからの型内発泡成形体の製造方法
JP3581025B2 (ja) * 1998-08-03 2004-10-27 住友化学工業株式会社 無架橋ポリプロピレン系樹脂発泡シートの製造方法及び無架橋ポリプロピレン系樹脂発泡シート
JP5296279B2 (ja) 1999-12-28 2013-09-25 株式会社カネカ 発泡性ポリスチレン系樹脂粒子およびそれを用いた発泡体
FR2856950B1 (fr) * 2003-07-04 2007-03-02 Rhodia Polyamide Intermediates Procede de preparation de perle a base de polymere expanse
TW200708541A (en) * 2005-08-31 2007-03-01 Chi Lin Technology Co Ltd Method of making polyester foam particles
CN108329590A (zh) * 2018-02-08 2018-07-27 贵州省材料产业技术研究院 一种双峰结晶聚丙烯复合材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3466700D1 (en) * 1983-03-25 1987-11-12 Japan Styrene Paper Corp Polypropylene resin prefoamed particles
JPS60110734A (ja) * 1983-11-21 1985-06-17 Japan Styrene Paper Co Ltd 無架橋ポリプロピレン系樹脂予備発泡粒子
CA1280549C (en) * 1986-05-27 1991-02-19 Kyoichi Nakamura Pre-expanded particles of propylene resin
JP2878527B2 (ja) * 1992-06-22 1999-04-05 鐘淵化学工業株式会社 ポリエチレン系樹脂予備発泡粒子
IT1255364B (it) * 1992-09-15 1995-10-31 Himont Inc Processo per la preparazione di manufatti in polipropilene espanso mediante produzione di granuli pre-espansi e termoformatura per sinterizzazione degli stessi
DE4420590A1 (de) * 1994-06-13 1995-12-14 Basf Ag Polyolefin-Partikelschaum

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9611971A1 *

Also Published As

Publication number Publication date
MX9702620A (es) 1997-07-31
JPH10507224A (ja) 1998-07-14
WO1996011971A1 (de) 1996-04-25
US5744505A (en) 1998-04-28
DE4436980A1 (de) 1996-04-18

Similar Documents

Publication Publication Date Title
DE69837573T2 (de) Hochdichte polyethylenfilme mit verbesserter sperrfähigkeit
EP1159338B1 (de) Teilchenförmige, expandierbare styrolpolymerisate und verfahren zu ihrer herstellung
DE69630454T2 (de) Mikrozellschaum
DE69827294T2 (de) Expandierte polypropylenharzperlen und geformter artikel
EP1228127B1 (de) Partikelförmige, expandierbare olefinpolymerisate
DE3413083C2 (de)
EP2452968A1 (de) Verfahren zur Herstellung von expandierbaren thermoplastischen Partikeln mit Verbesserter Expandierbarkeit
EP0530486B1 (de) Schaumstoffe auf Basis eines Impact-Copolymeren
DE19681650B4 (de) Vorexpandierte Polyethylenkügelchen und Verfahren zu ihrer Herstellung
WO1996011971A1 (de) Durch extrusion hergestellte, vorgeschäumte polyolefinteilchen
EP1521799B1 (de) Offenzellige polypropylen-partikelschäume
DE2107683A1 (en) Particulate foamed polyolefin prodn - by expansion with opt halogenated hydrocarbons in presence of water
EP0778310B1 (de) Verfahren zur Herstellung von Polyolefin-Schaumstoffpartikeln
DE4332724A1 (de) Verfahren zur Herstellung von Schaumperlen
DE69931138T2 (de) Vorexpandierte Polypropylenharzteilchen und Verfahren zur Herstellung eines Formkörpers daraus durch Schäumen in der Form
EP0550862A1 (de) Polyolefin-Schaumstoffe mit homogener Zellstruktur
US3632532A (en) Production of expanded ethylene copolymers
EP1144491B1 (de) Expandierte polypropylen-partikel
DE19740472B4 (de) Verfahren zur Herstellung von expandierten Polypropylen-Partikeln
EP0687709A1 (de) Polyolefin-Partikelschaum
DE60010707T2 (de) Polymerschaumstoff und verfahren zur herstellung desselben mittels ölenthaltendem furnaceruss als isolationsverbesserer
DE2126812A1 (de) Verfahren zur Herstellung von Schaumstoffen aus hochmolekularen Olefinpolymerisaten
EP0453836B1 (de) Schaumstoffe auf Basis eines Olefincopolymeren
DE2323030A1 (de) Verfahren zur herstellung von schaumstoffen aus olefinpolymerisaten
DE2033007A1 (de) Verfahren zur Herstellung offenzelli ger Schaume aus Athylencopolymerisaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 19980520

18W Application withdrawn

Withdrawal date: 19980610