EP0776689A1 - Mischvorrichtung - Google Patents

Mischvorrichtung Download PDF

Info

Publication number
EP0776689A1
EP0776689A1 EP96810767A EP96810767A EP0776689A1 EP 0776689 A1 EP0776689 A1 EP 0776689A1 EP 96810767 A EP96810767 A EP 96810767A EP 96810767 A EP96810767 A EP 96810767A EP 0776689 A1 EP0776689 A1 EP 0776689A1
Authority
EP
European Patent Office
Prior art keywords
partition
edge
vortex
partial
mixing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96810767A
Other languages
English (en)
French (fr)
Other versions
EP0776689B1 (de
Inventor
Adnan Dr. Eroglu
Wolfgang Dr. Polifke
Peter Dr. Senior
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0776689A1 publication Critical patent/EP0776689A1/de
Application granted granted Critical
Publication of EP0776689B1 publication Critical patent/EP0776689B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • B01F25/43172Profiles, pillars, chevrons, i.e. long elements having a polygonal cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431971Mounted on the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/221Improvement of heat transfer
    • F05B2260/222Improvement of heat transfer by creating turbulence

Definitions

  • the invention relates to a mixing device for mixing two or more fluids, which may have the same or different mass flow, the fluids to be mixed flowing along a partition wall, at the downstream end of which a plurality of vortex generators with freely flowing surfaces are arranged, of which several are arranged side by side, the side surfaces of the vortex generator being flush with one side of the partition and enclosing the arrow angle with one another, the longitudinal edges of the side surfaces being at an angle of incidence to the wall and the two side surfaces comprising a connecting edge with one another, which is preferably perpendicular to the wall and is the edge first hit by the flow.
  • Such mixing devices are known, for example, from EP-A1-0 619 134. In many sectors, for example in chemistry, food or pharmaceutical production, etc., it is required to mix fluids intimately by the shortest route. The quality of the whole process mostly depends on the mixing quality achieved. The pressure drop on the occasion of the mixing process should remain in a "reasonable" range in order to keep the process costs low due to low pumping work.
  • the invention has for its object to improve the mixing in a mixing device of the type mentioned.
  • the advantages of the invention can be seen, inter alia, in that the introduction of the rear edges twisted relative to the partition wall extends the downstream edge of the partition wall. On the one hand, this increases the contact area of the streams to be mixed, and on the other hand, further eddies are generated by the trailing edges in the flow. These vortices support and reinforce the vortices of the vortex generator generated on the longitudinal edges. In addition, the mixing of the streams to be mixed is increased because the vortices propagate in the direction of the opposite stream, which creates a woven flow pattern.
  • the vortex generator element From a fluidic point of view, the vortex generator element has a very low pressure loss when flowing around, and it generates vortices without a dead water area. Finally, due to its generally hollow interior, the element can be cooled in a variety of ways and with various means.
  • the two side surfaces including the arrow angle ⁇ and the partial roof surfaces of the vortex generator are arranged symmetrically to a plane of symmetry, formed by an axis of symmetry and the connecting edge of the side surfaces. This creates swirls of equal swirl.
  • a vortex generator 9 essentially consists of several triangular surfaces with free flow. These are two partial roof surfaces 1, 2, two side surfaces 11, 13 and two partial floor surfaces not visible in FIG. 1. In their longitudinal extension, these surfaces run at certain angles in the direction of flow.
  • the two side surfaces 11 and 13 are each perpendicular to the associated upper side 21 of a partition wall 22, it being noted that this is not mandatory.
  • the side surfaces 11, 13, which consist of right-angled triangles, are fixed here with their longer catheter on the partition wall 22. They are oriented in such a way that they form a joint with their shorter cathete, including an arrow angle ⁇ .
  • the joint is designed as a sharp connecting edge 16 and is also perpendicular to the partition wall 22. Installed in a duct, the flow cross-section is hardly affected by blocking because of the sharp connecting edge.
  • An intersection 8 is formed by the longer cathets of the side surfaces 11, 13 and by the connecting edge 16, which lies in the partition.
  • the two side surfaces 11, 13 including the arrow angle ⁇ are symmetrical in shape, size and orientation and are arranged on both sides of a plane of symmetry which is formed by an axis of symmetry 17 and the connecting edge 16.
  • the axis of symmetry 17 is usually aligned in the same way as the channel axis and thus like the channel flow.
  • An essentially longitudinal edge 12 of the partial roof surface 1 is flush with the hypotenuse of the side surface 11, which protrudes into the flow channel. This longitudinal edge 12 runs at an angle of incidence ⁇ to the wall 22.
  • One downstream lying rear edge 5 of the partial roof surface 1 lies in a plane perpendicular to the axis of symmetry 17 and is rotated by an angle ⁇ with respect to the partition wall 22, so that the rear edge 5 comes to lie below the partition wall.
  • slots must therefore be made in the partition 22, or the partition must be adapted accordingly.
  • the partial roof surface 2 is symmetrical with respect to the partial roof surface with respect to the plane of symmetry, formed by the axis of symmetry 17 and the connecting edge 16.
  • a longitudinal edge 14 of the partial roof surface 2 is flush with the hypothenus of the side surface 13 protruding into the flow channel Angle of attack ⁇ to the wall 22.
  • a rear edge 6 of the partial roof surface 2 also lies in the plane perpendicular to the axis of symmetry 17 and is rotated by the negative angle ⁇ relative to the partition wall, so that the rear edge 6 comes to lie below the partition wall 22.
  • the second longitudinal edge of the partial roof surface 1 forms with the second longitudinal edge of the partial roof surface 2 a connecting edge 10 which lies in the plane of symmetry formed by the axis of symmetry 17 and the connecting edge 16.
  • the connecting edge 10 forms with the trailing edge 5 and with the trailing edge 6 a tip 7 located at the downstream end of the vortex generator 9.
  • the longitudinal edges 12, 14 together with the connecting edge 16 and the connecting edge 10 form a tip 18 located at the upstream end of the vortex generator 9.
  • the triangular partial floor surface 3 is defined by the rear edge 5 and the intersection 8
  • the triangular partial floor surface 4 is defined by the rear edge 6 and the intersection 8.
  • a connecting edge 30 of the partial floor surfaces 3, 4 extends thus from tip 7 to intersection 8.
  • the vortex generator can also be manufactured without floor surfaces, with the partition then taking over the function of the floor surfaces.
  • the partition wall must be jagged at its downstream end, corresponding to the partial floor areas.
  • the trailing edges of the vortex generator can also lie in different planes that are not perpendicular to the axis of symmetry.
  • a vortex generator 9 ' is arranged next to one another on the underside 20 of the partition wall 22 and a vortex generator 9 on the top side 21 of the partition wall.
  • the vortex generator 9 ' is identical in shape and size to the vortex generator 9, the designations already used above for the vortex generator 9 are therefore also used for the vortex generator 9', but are provided with an apostrophe.
  • the vortex generator 9 can be transferred into the vortex generator 9 'by a rotation of 180 ° about an axis of rotation 19.
  • the axis of rotation 19 lies in the partition wall 22, is parallel to the axis of symmetry 17 and passes through the intersection of the longitudinal edge 14 and the rear edge 6.
  • the connecting edge 16 of the two side surfaces 11, 13 always forms the upstream edge of the vortex generators 9, 9 '.
  • the sharp connecting edge 16 is the point which is first affected by the channel flow.
  • the trailing edges 5, 6, 5 ', 6' of the roof surfaces, which run transversely to the flow around the partition wall 22, are thus the edges last acted upon by the channel flow.
  • the vortex generators 9 can also be designed differently than the vortex generators 9, the vortex generators always being one of the basic configurations shown have similar geometry. This is advantageous, for example, for mixing physically different flows.
  • the vortex generator works as follows: When flowing around edges 12 and 14, the flow is converted into a pair of opposing vortices.
  • the vortex axes lie in the axis of the flow.
  • the geometry of the vortex generators is chosen so that no backflow zones arise during vortex generation.
  • the vortices of the vortex generator 9 rotate above the roof surfaces and strive towards the partition wall 22 on which the vortex generator is mounted.
  • the vortices of the vortex generator 9 'rotate below the roof surfaces and also strive towards the partition wall 22.
  • the swirl number of the vortex is determined by a corresponding choice of the angle of attack ⁇ and / or the arrow angle ⁇ .
  • the vortex strength or the number of swirls is increased and the location of the vortex breakdown (if desired at all) moves upstream into the area of the vortex generator itself.
  • these two angles are ⁇ and ⁇ determined by design and by the process itself. Only the height h of the connecting edge 16 then has to be adjusted.
  • the choice of the angle ⁇ influences the eddies in such a way that the larger the ⁇ is selected, the better the partial flows are mixed.
  • the angle ⁇ cannot be chosen to be arbitrarily large, since the pressure drop also increases with increasing ⁇ .
  • the shape of the flow around the partition wall 22 is not essential for the mode of operation of the invention is.
  • the straight shape of the partition wall 22 shown in the figures it could also be an annular or hexagonal or some other cross-sectional shape.
  • the above statement that the side surfaces are perpendicular to the wall must of course be relativized. It is important that the connecting edge 16 lying on the line of symmetry 17 is perpendicular to the corresponding wall. In the case of annular walls, the connecting edge 16 would thus be radially aligned.
  • FIG. 5 partially shows a channel with a built-in partition wall 22.
  • the cross section through which flow is divided is divided into two sub-channels with the channel heights H1 and H2 through this partition wall 22.
  • the upper side 21 of the partition wall 22 forms a channel wall of the upper channel 41
  • the lower side 20 of the partition wall 22 forms a channel wall of the lower channel 42.
  • the two channels could be flowed through by the same medium at different speeds; or it could be flowing fluids of different densities or chemical compositions that have to be mixed in the shortest possible way to a certain uniformly distributed concentration.
  • An equal number of vortex generators 9, 9 'with gaps are strung together on the two channel walls 20 and 21 of the partition.
  • the height h1 of the elements 9 and the height h2 of the elements 9 ' is, for example, approximately 90% of the associated channel heights H1 and H2.
  • the flow takes place perpendicularly out of the drawing plane in FIG. 5; the elements 9, 9 'are oriented such that the connecting edges 16 are directed against the flow.
  • the direction of rotation of the generated vortices in the region of the connecting edge is descending, ie it strives towards the respective channel wall 20, 21 on which the vortex generator is arranged.
  • the eddy currents generated on their two sides are forced into one another, resulting in the desired mixing.
  • the swirl-like vortices in the sub-channels 41, 42 combine to form a large vortex with a uniform direction of rotation.
  • the axis of rotation of this large vortex is essentially the axis of rotation 19.
  • the vortex generators 9, 9 ' can have different heights h1, h2 in the channels 41, 42 compared to the channel heights H1, H2.
  • the heights h1, h2 of the connecting edges 16, 16 'of the vortex generators 9, 9' are coordinated with the respective channel heights H1, H2 in such a way that the vortex generated immediately downstream of the vortex generator already reaches such a size that the full channel height H1 + H2 or the full height of the channel part assigned to the vortex generator is filled, which leads to a uniform distribution in the applied cross section.
  • Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It goes without saying that the pressure loss coefficient also increases with a larger ratio h / H.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

Bei einer Mischvorrichtung zum Mischen von zwei oder mehreren Fluiden, welche den gleichen oder ungleichen Massenstrom aufweisen können, strömen die zu mischenden Fluide längs einer Trennwand (22), an deren stromabwärtigem Ende mehrere frei umströmte Flächen aufweisende Wirbel-Generatoren (9) angeordnet sind. Eine Verbindungskante (16) verläuft vorzugsweise senkrecht zur Wand (22) und ist die von der Strömung zuerst beaufschlagte Kante. Eine Dachfläche besteht aus zwei Teildachflächen (1, 2), die über eine Verbindungskante (10) miteinander verbunden sind. Die stromabwärts liegenden Hinterkanten (5, 6) der Teildachflächen (1, 2) schliessen mit der Trennwand (22) einen Winkel (γ) ein, wodurch die Hinterkanten (5, 6) in Bezug auf die Seitenflächen (11, 13) im wesentlichen auf die andere Seite der Trennwand (22) zu liegen kommen. Eine Bodenfläche besteht aus zwei Teilbodenflächen, die über eine Verbindungskante miteinander und über die Hinterkanten (5, 6) mit den Teildachflächen verbunden sind. <IMAGE>

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine Mischvorrichtung zum Mischen von zwei oder mehreren Fluiden, welche den gleichen oder ungleichen Massenstrom aufweisen können, wobei die zu mischenden Fluide längs einer Trennwand strömen, an deren stromabwärtigem Ende mehrere frei umströmte Flächen aufweisende Wirbel-Generatoren angeordnet sind, von denen mehrere nebeneinander angeordnet sind, wobei die Seitenflächen des Wirbel-Generators mit einer Seite der Trennwand bündig sind und miteinander den Pfeilwinkel einschliessen, die längsgerichteten Kanten der Seitenflächen unter einem Anstellwinkel zur Wand verlaufen und die beiden Seitenflächen eine Verbindungskante miteinander umfassen, die vorzugsweise senkrecht zur Wand verläuft und die von der Strömung zuerst beaufschlagte Kante ist.
  • Stand der Technik
  • Derartige Mischvorrichtungen sind beispielsweise bekannt aus EP-A1-0 619 134. In vielen Sektoren wie beispielsweise in der Chemie, der Nahrungsmittel- oder Pharmaproduktion usw. wird verlangt, Fluide auf kürzestem Weg innig zu vermischen. Die Qualität des ganzen Prozesses hängt meistens von der erzielten Mischqualität ab. Dabei sollte der Druckabfall anlässlich des Mischvorgangs in "vernünftigem" Rahmen bleiben, um die Prozesskosten durch niedrige Pumparbeit klein zu halten.
  • Darstellung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, bei einer Mischvorrichtung der eingangs genannten Art die Durchmischung zu verbessern.
  • Erfindungsgemäss wird dies dadurch erreicht,
    • dass eine Dachfläche aus zwei Teildachflächen besteht, wobei die längsgerichteten Kanten der Teildachflächen bündig sind mit den Kanten der Seitenflächen und die Teildachflächen über eine Verbindungskante miteinander verbunden sind,
    • dass die stromabwärts liegenden Hinterkanten der Teildachflächen mit der Trennwand einen Winkel einschliessen, wodurch die Hinterkanten in Bezug auf die Seitenflächen im wesentlichen auf die andere Seite der Trennwand zu liegen kommen,
    • und dass eine Bodenfläche aus zwei Teilbodenflächen besteht, die über eine Verbindungskante miteinander und über die Hinterkanten mit den Teildachflächen verbunden sind.
  • Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass durch die Einführung der gegenüber der Trennwand verdrehten Hinterkanten die stromabwärtige Kante der Trennwand verlängert wird. Dadurch wird zum einen die Kontaktfläche der zu mischenden Ströme erhöht, zum anderen werden durch die in der Strömung angestellten Hinterkanten weitere Wirbel erzeugt. Diese Wirbel unterstützen und verstärken die an den längsgerichteten Kanten erzeugten Wirbel des Wirbelgenerators. Zudem wird die Durchmischung der zu mischenden Ströme erhöht, da die Wirbel in Richtung des jeweils gegenüberliegenden Stromes propagieren, wodurch ein verwobenes Strömungsmuster entsteht.
  • Vom strömungstechnischen Standpunkt her weist das Wirbelgenerator-Element beim Umströmen einen sehr geringen Druckverlust auf und es erzeugt Wirbel ohne Totwassergebiet. Schliesslich kann das Element durch seinen in der Regel hohlen Innenraum auf die verschiedensten Arten und mit diversen Mitteln gekühlt werden.
  • Es ist besonders zweckmässig, wenn die beiden den Pfeilwinkel α einschliessenden Seitenflächen sowie die Teildachflächen des Wirbel-Generators symmetrisch zu einer Symmetrieebene, gebildet durch eine Symmetrieachse und die Verbindungskante der Seitenflächen angeordnet sind. Damit werden drallgleiche Wirbel erzeugt.
  • Kurze Beschreibung der Zeichnung
  • In den Zeichnungen ist ein Ausführungsbeispiel der Erfindung schematisch dargestellt.
  • Es zeigen:
  • Fig. 1
    eine perspektivische Darstellung eines Wirbelgenerators, Sicht von oben;
    Fig. 2
    eine perspektivische Darstellung des Wirbelgenerators, Sicht von unten;
    Fig. 3
    eine perspektivische Darstellung mehrerer Wirbelgeneratoren;
    Fig. 4
    Draufsicht auf die Wirbelgeneratoren von Fig.3;
    Fig. 5
    Teilquerschnitt durch einen Kanal mit darin angeordneten Wirbelgeneratoren.
  • Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt.
  • Weg zur Ausführung der Erfindung
  • Nach Fig. 1 besteht ein Wirbel-Generator 9 im wesentlichen aus mehreren frei umströmten dreieckigen Flächen. Es sind dies zwei Teil-Dachflächen 1, 2, zwei Seitenflächen 11, 13 und zwei in der Figur 1 nicht sichtbare Teil-Bodenflächen. In ihrer Längserstreckung verlaufen diese Flächen unter bestimmten Winkeln in Strömungsrichtung.
  • Die beiden Seitenflächen 11 und 13 stehen jeweils senkrecht auf der zugehörigen Oberseite 21 einer Trennwand 22, wobei angemerkt wird, dass dies nicht zwingend ist. Die Seitenflächen 11, 13, welche aus rechtwinkligen Dreiecken bestehen, sind hier mit ihrer längeren Kathete auf der Trennwand 22 fixiert. Sie sind so orientiert, dass sie mit ihrer kürzeren Kathete einen Stoss bilden unter Einschluss eines Pfeilwinkels α. Der Stoss ist als scharfe Verbindungskante 16 ausgeführt und steht ebenfalls senkrecht zur Trennwand 22. In einem Kanal eingebaut, wird wegen der scharfen Verbindungskante der Durchströmquerschnitt kaum durch Sperrung beeinträchtigt. Durch die längeren Katheten der Seitenflächen 11, 13 und durch die Verbindungskante 16 wird ein Schnittpunkt 8 gebildet, der in der Trennwand liegt. Die beiden den Pfeilwinkel α einschliessenden Seitenflächen 11, 13 sind symmetrisch in Form, Grösse und Orientierung und sind beidseitig einer Symmetrieebene angeordnet, welche durch eine Symmetrieachse 17 und die Verbindungskante 16 gebildet wird. Die Symmetrieachse 17 ist üblicherweise gleichgerichtet wie die Kanalachse und damit wie die Kanalströmung.
  • Eine im wesentlichen längsgerichtete Kante 12 der Teil-Dachfläche 1 ist bündig mit der in den Strömungskanal hineinragenden Hypothenuse der Seitenfläche 11. Diese Längskante 12 verläuft unter einem Anstellwinkel θ zur Wand 22. Eine stromabwärts liegende Hinterkante 5 der Teildachfläche 1 liegt in einer Ebene senkrecht zur Symmetrieachse 17 und ist um einen Winkel γ gegenüber der Trennwand 22 verdreht, so dass die Hinterkante 5 unterhalb der Trennwand zu liegen kommt. Zur Montage des Wirbelgenerators 9 müssen deshalb Schlitze in der Trennwand 22 angebracht werden, oder die Trennwand muss entsprechend angepasst werden.
    Die Teildachfläche 2 ist symmetrisch zur Teildachfläche bezüglich der Symmetriebene, gebildet durch die Symmetrieachse 17 und die Verbindungskante 16. Somit ist eine längsgerichtete Kanten 14 der Teil-Dachfläche 2 bündig mit der in den Strömungskanal hineinragenden Hypothenuse der Seitenfläche 13. Die Längskante 14 verläuft unter dem Anstellwinkel θ zur Wand 22. Eine Hinterkante 6 der Teildachfläche 2 liegt ebenfalls in der Ebene senkrecht zur Symmetrieachse 17 und ist um den negativen Winkel γ gegenüber der Trennwand verdreht, so dass die Hinterkante 6 unterhalb der Trennwand 22 zu liegen kommt.
    Die zweite längsgerichtete Kante der Teil-Dachfläche 1 bildet mit der zweiten längsgerichteten Kante der Teil-Dachfläche 2 eine Verbindungskante 10, die in der durch die Symmetrieachse 17 und die Verbindungskante 16 gebildeten Symmetrieebene liegt. Die Verbindungskante 10 bildet mit der Hinterkante 5 sowie mit der Hinterkante 6 eine am stromabwärtigen Ende des Wirbelgenerators 9 liegende Spitze 7. Die Längskanten 12, 14 bilden zusammen mit der Verbindungskante 16 sowie der Verbindungskante 10 eine am stromaufwärtigen Ende des Wirbelgenerators 9 liegende Spitze 18.
  • Nach Fig. 2 wird die dreieckige Teil-Bodenflächen 3 definiert durch die Hinterkante 5 und den Schnittpunkt 8, die dreieckige Teil-Bodenflächen 4 wird definiert durch die Hinterkante 6 und den Schnittpunkt 8. Eine Verbindungskante 30 der Teil-Bodenflächen 3, 4 erstreckt sich somit von der Spitze 7 bis zum Schnittpunkt 8.
  • Selbstverständlich kann der Wirbel-Generator auch ohne Bodenflächen hergestellt werden, wobei dann die Trennwand die Funktion der Bodenflächen übernimmt. Dazu muss die Trennwand an ihrem stromabwärtigen Ende gezackt ausgeformt werden, entsprechend den Teil-Bodenflächen. Um die Kontaktfläche am stromabwärtigen Ende der Trennwand weiter zu erhöhen, können die Hinterkanten des Wirbelgenerators auch in verschiedenen Ebenen liegen, die nicht senkrecht zur Symmetrieachse verlaufen.
  • In Fig. 3 und Fig. 4 ist ein Wirbelgenerator 9' auf der Unterseite 20 der Trennwand 22 und ein Wirbelgenerator 9 auf der Oberseite 21 der Trennwand nebeneinander angeordnet. Der Wirbelgenerator 9' ist in Form und Grösse identisch mit dem Wirbelgenerator 9, die bereits oben verwendeten Bezeichnungen für den Wirbelgenerator 9 werden deshalb auch für den Wirbel-generator 9' verwendet, sind jedoch mit einem Apostroph versehen. Der Wirbelgenerator 9 kann durch eine Drehung von 180° um eine Drehachse 19 in den Wirbelgenerator 9' überführt werden. Die Drehachse 19 liegt in der Trennwand 22, ist parallel zur Symmetrieachse 17 und geht durch den Schnittpunkt von Längskante 14 und Hinterkante 6.
  • Die Verbindungskante 16 der beiden Seitenflächen 11, 13 bildet immer die stromaufwärtige Kante der Wirbel-Generatoren 9, 9'. Die scharfe Verbindungskante 16 ist jene Stelle, die von der Kanalströmung zuerst beaufschlagt wird. Die quer zur umströmten Trennwand 22 verlaufenden Hinterkanten 5, 6, 5', 6' der Dachflächen sind somit die von der Kanalströmung zuletzt beaufschlagten Kanten.
  • Selbstverständlich können die Wirbelgeneratoren 9' auch anders als die Wirbelgeneratoren 9 ausgestaltet werden, wobei die Wirbelgeneratoren immer eine der gezeigten Grundkonfiguration ähnliche Geometrie aufweisen. Dies ist beispielsweise vorteilhaft zur Mischung physikalisch unterschiedlicher Strömungen.
  • Die Wirkungsweise des Wirbel-Generators ist folgende: Beim Umströmen der Kanten 12 und 14 wird die Strömung in ein Paar gegenläufiger Wirbel umgewandelt. Die Wirbelachsen liegen in der Achse der Strömung. Die Geometrie der Wirbel-Generatoren ist so gewählt, dass bei der Wirbelerzeugung keine Rückströmzonen entstehen. Die Wirbel des Wirbelgenerators 9 rotieren oberhalb der Dachflächen entlang und streben der Trennwand 22 zu, auf welcher der Wirbel-Generator montiert ist. Die Wirbel des Wirbelgenerators 9' rotieren unterhalb der Dachflächen entlang und streben ebenfalls der Trennwand 22 zu.
  • Die Drallzahl des Wirbels wird bestimmt durch entsprechende Wahl des Anstellwinkels θ und/oder des Pfeilwinkels α. Mit steigenden Winkeln wird die Wirbelstärke bzw. die Drallzahl erhöht und der Ort des Wirbelaufplatzens (vortex break down) - sofern dies überhaupt gewünscht ist - wandert stromaufwärts bis hin in den Bereich des Wirbel-Generators selbst. Je nach Anwendung sind diese beiden Winkel θ und α durch konstruktive Gegebenheiten und durch den Prozess selbst vorgegeben. Angepasst werden muss dann nur noch die Höhe h der Verbindungskante 16. Durch die Wahl des Winkels γ werden die Wirbel so beeinflusst, dass je grösser γ gewählt wird, desto besser die Durchmischung der Teilströme erfolgt. Der Winkel γ kann jedoch nicht beliebig gross gewählt werden, da mit grösser werdendem γ auch der Druckabfall ansteigt.
  • Es wird darauf hingewiesen, dass die Form der umströmten Trennwand 22 für die Wirkungsweise der Erfindung nicht wesentlich ist. Statt der in den Figuren gezeigten geraden Form der Trennwand 22 könnte es sich auch um eine ringförmige oder hexagonale oder eine sonstige Querschnittsform handeln. Bei einer gekrümmten Trennwand muss die obige Aussage, dass die Seitenflächen senkrecht auf der Wand stehen, selbstverständlich relativiert werden. Massgebend ist, dass die auf der Symmetrielinie 17 liegende Verbindungskante 16 senkrecht auf der entsprechenden Wand steht. Im Fall von ringförmigen Wänden würde die Verbindungskante 16 somit radial ausgerichtet sein.
  • Die Fig. 5 zeigt teilweise einen Kanal mit eingebauter Trennwand 22. Der durchströmte Querschnitt ist durch diese Trennwand 22 in zwei Teilkanäle mit den Kanalhöhen H1 und H2 unterteilt. Die Oberseite 21 der Trennwand 22 bildet eine Kanalwand des oberen Kanals 41, die Unterseite 20 der Trennwand 22 bildet eine Kanalwand des unteren Kanals 42. Die beiden Kanäle könnten von einem gleichen Medium mit unterschiedlichen Geschwindigkeit durchströmt sein; oder es könnte sich um strömende Fluide unterschiedlicher Dichte oder chemischer Zusammensetzung handeln, die auf kürzestem Wege zu einer bestimmten gleichmässig verteilter Konzentration vermischt werden müssen.
  • An den beiden Kanalwänden 20 und 21 der Trennwand ist jeweils eine gleiche Anzahl von Wirbel-Generatoren 9, 9' mit Zwischenräumen aneinandergereiht. Die Höhe h1 der Elemente 9 sowie dei Höhe h2 der Elemente 9' beträgt beispielsweise ca. 90% der zugehörigen Kanalhöhen H1 und H2. Die Strömung erfolgt in Fig. 5 senkrecht aus der Zeichenebene heraus; die Elemente 9, 9' sind so orientiert, dass die Verbindungskanten 16 gegen die Strömung gerichtet sind. Der Drehsinn der erzeugten Wirbel im Bereich der Verbindungskante ist absteigend, d.h. er strebt der jeweiligen Kanal-Wand 20, 21 zu, auf der der Wirbel-Generator angeordnet ist. Am Ende der Trennwand 22, d.h. an den Hinterkanten 5, 6, 5', 6', werden die auf deren beiden Seiten erzeugten Wirbelströme ineinandergezwängt, wobei es zu der gewünschten Durchmischung kommt.
  • Die drallgleichen Wirbel in den Teilkanälen 41, 42 kombinieren sich zu einem grossen Wirbel mit einheitlichem Drehsinn. Die Drehachse dieses grossen Wirbels ist im wesentlichen die Drehachse 19.
  • Die Wirbel-Generatoren 9, 9' können in den Kanälen 41, 42 unterschiedliche Höhen h1, h2 gegenüber den Kanalhöhen H1, H2 aufweisen. In der Regel wird man die Höhen h1, h2 der Verbindungskanten 16, 16' der Wirbelgeneratoren 9, 9' so mit den jeweiligen Kanalhöhen H1, H2 abstimmen, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators bereits eine solche Grösse erreicht, dass die volle Kanalhöhe H1+H2 oder die volle Höhe des dem Wirbel-Generators zugeordneten Kanalteils ausgefüllt wird, was zu einer gleichmässigen Verteilung in dem beaufschlagten Querschnitt führt. Ein weiteres Kriterium, welches Einfluss auf das zu wählende Verhältnis h/H nehmen kann, ist der Druckabfall, der beim Umströmen des Wirbel-Generators auftritt. Es versteht sich, dass mit grösserem Verhältnis h/H auch der DrucKverlustbeiwert ansteigt.
  • Selbstverständlich ist die Erfindung nicht nur auf die gezeigten und beschriebenen Ausführungs- und Anwendungsbeispiele beschränkt. Durch gezielte Auslegung und Dimensionierung der Wirbel-Generatoren hat man bei gegebenen Strömungen ein einfaches Mittel an der Hand, je nach Bedarf den Mischvorgang zu steuern.
  • Bezugszeichenliste
  • 1
    Teil-Dachfläche
    2
    Teil-Dachfläche
    3
    Teil-Bodenfläche
    4
    Teil-Bodenfläche
    5
    Hinterkante von 1 und 3
    6
    Hinterkante von 2 und 4
    7
    Spitze
    8
    Schnittpunkt
    9
    Wirbelgenerator
    9'
    Wirbelgenerator an der Unterseite von 22
    10
    Verbindungskante
    11
    Seitenfläche
    12
    Längskante
    13
    Seitenfläche
    14
    Längskante
    16
    Verbindungskante
    17
    Symmetrieachse
    18
    Spitze
    19
    Drehachse
    20
    Oberseite von 22
    21
    Unterseite von 22
    22
    Trennwand
    30
    Verbindungskante
    41
    oberer Kanal
    42
    unterer Kanal
    α
    Pfeilwinkel
    γ
    Winkel von 4 und 5 zu 22
    θ
    Anstellwinkel
    h1
    Höhe Verbindungskante 16
    h2
    Höhe Verbindungskante 16'
    H1
    Höhe Kanal 41
    H2
    Höhe Kanal 42

Claims (7)

  1. Mischvorrichtung zum Mischen von zwei oder mehreren Fluiden, welche den gleichen oder ungleichen Massenstrom aufweisen können, wobei die zu mischenden Fluide längs einer Trennwand (22) strömen, an deren stromabwärtigem Ende mehrere frei umströmte Flächen aufweisende Wirbel-Generatoren (9, 9') angeordnet sind, von denen mehrere nebeneinander angeordnet sind, wobei die Seitenflächen (11, 13) des Wirbel-Generators mit einer Seite der Trennwand (22) bündig sind und miteinander den Pfeilwinkel (α) einschliessen, die längsgerichteten Kanten (12, 14) der Seitenflächen unter einem Anstellwinkel (θ) zur Wand (22) verlaufen und die beiden Seitenflächen (11, 13) eine Verbindungskante (16) miteinander umfassen, die vorzugsweise senkrecht zur Wand (22) verläuft und die von der Strömung zuerst beaufschlagte Kante (16) ist,
    dadurch gekennzeichnet,
    dass eine Dachfläche aus zwei Teildachflächen (1, 2) besteht, wobei die längsgerichteten Kanten der Teildachflächen (1, 2) bündig sind mit den Kanten (12, 14) der Seitenflächen (11, 13) und die Teildachflächen über eine Verbindungskante (10) miteinander verbunden sind,
    dass die stromabwärts liegenden Hinterkanten (5, 6) der Teildachflächen (1, 2) mit der Trennwand (22) einen Winkel (γ) einschliessen, wodurch die Hinterkanten (5, 6) in Bezug auf die Seitenflächen (11, 13) im wesentlichen auf die andere Seite der Trennwand (22) zu liegen kommen,
    und dass eine Bodenfläche aus zwei Teilbodenflächen (3, 4) besteht, die über eine Verbindungskante (30) miteinander und über die Hinterkanten (5, 6) mit den Teildachflächen verbunden sind.
  2. Mischvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Bodenfläche (3, 4) die Trennwand (22) ist und dass der Wirbelgenerator (9, 9') bestehend aus zwei Seitenflächen (11, 13) und zwei Teildachflächen (1, 2) auf der Trennwand angeordnet ist.
  3. Mischvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Hinterkanten (5, 6) der Teildachflächen (1, 2) in einer Ebene senkrecht zu einer Symmetrieachse (17) angeordnet sind.
  4. Mischvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die beiden den Pfeilwinkel (α) einschliessenden Seitenflächen (11, 13) sowie die Teildachflächen (1, 2) des Wirbel-Generators (9) symmetrisch zu einer Symmetrieebene, gebildet durch eine Symmetrieachse (17) und die Verbindungskante (16), angeordnet sind.
  5. Mischvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Verbindungskante (16) und/oder die längsgerichteten Kanten (12, 14) der Dachfläche zumindest annähernd scharf ausgebildet sind.
  6. Mischvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Trennwand (22) in einem doppelkanaligen Behältnis angeordnet ist unter Bildung von zwei Teilkanälen (41,42), und dass in jedem Teilkanal die gleiche Anzahl von Wirbel-Generatoren (9, 9') angeordnet ist, und dass die Wirbel-Generatoren beidseitig an der Trennwand (22) befestigt sind.
  7. Mischvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass das Verhältnis Höhe (h1, h2) des Wirbel-Generators (9, 9') zur Höhe (H1, H2) des Teilkanals (41, 42) so gewählt ist, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators die volle Teilkanalhöhe (H1, H2) oder die volle Höhe des Kanals (H1+H2) ausfüllt.
EP96810767A 1995-12-01 1996-11-11 Mischvorrichtung Expired - Lifetime EP0776689B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19544816 1995-12-01
DE19544816A DE19544816A1 (de) 1995-12-01 1995-12-01 Mischvorrichtung

Publications (2)

Publication Number Publication Date
EP0776689A1 true EP0776689A1 (de) 1997-06-04
EP0776689B1 EP0776689B1 (de) 2001-09-05

Family

ID=7778915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810767A Expired - Lifetime EP0776689B1 (de) 1995-12-01 1996-11-11 Mischvorrichtung

Country Status (4)

Country Link
US (1) US5803602A (de)
EP (1) EP0776689B1 (de)
JP (1) JPH09173808A (de)
DE (2) DE19544816A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015229A (en) * 1997-09-19 2000-01-18 Calgon Carbon Corporation Method and apparatus for improved mixing in fluids
DE19820992C2 (de) * 1998-05-11 2003-01-09 Bbp Environment Gmbh Vorrichtung zur Durchmischung eines einen Kanal durchströmenden Gasstromes und Verfahren unter Verwendung der Vorrichtung
DE59807195D1 (de) * 1998-11-06 2003-03-20 Alstom Switzerland Ltd Strömungskanal mit Querschnittssprung
FR2813062B1 (fr) 2000-08-17 2002-11-15 Intertechnique Sa Boite a masques respiratoires pour installation de secours
TWI222423B (en) * 2001-12-27 2004-10-21 Orbotech Ltd System and methods for conveying and transporting levitated articles
DE10330023A1 (de) * 2002-07-20 2004-02-05 Alstom (Switzerland) Ltd. Wirbelgenerator mit kontrollierter Nachlaufströmung
CN1204945C (zh) * 2003-09-05 2005-06-08 刘兆彦 一种管、筒或塔内构件立交盘
DE102009052142B3 (de) * 2009-11-06 2011-07-14 MTU Aero Engines GmbH, 80995 Axialverdichter
WO2011054739A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Reheat burner injection system
WO2011054771A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Premixed burner for a gas turbine combustor
WO2011054757A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Reheat burner injection system with fuel lances
WO2011054760A1 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd A cooling scheme for an increased gas turbine efficiency
US8434723B2 (en) * 2010-06-01 2013-05-07 Applied University Research, Inc. Low drag asymmetric tetrahedral vortex generators
US8881500B2 (en) * 2010-08-31 2014-11-11 General Electric Company Duplex tab obstacles for enhancement of deflagration-to-detonation transition
US8770649B2 (en) 2011-10-29 2014-07-08 Alexander Praskovsky Device, assembly, and system for reducing aerodynamic drag
US9340281B2 (en) * 2014-07-31 2016-05-17 The Boeing Company Submerged vortex generator
US10252792B2 (en) * 2015-04-21 2019-04-09 The United States Of America As Represented By The Administrator Of Nasa Flow disruption devices for the reduction of high lift system noise
DE102016012454B4 (de) * 2016-10-19 2018-06-28 Harry Riege Körperform zur Verringerung des Formwiderstandes bei der Bewegung durch ein Medium.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164375A (en) * 1976-05-21 1979-08-14 E. T. Oakes Limited In-line mixer
EP0619134A1 (de) 1993-04-08 1994-10-12 ABB Management AG Mischkammer
EP0620403A1 (de) * 1993-04-08 1994-10-19 ABB Management AG Misch- und Flammenstabilisierungseinrichtung in einer Brennkammer mit Vormischverbrennung
EP0623786A1 (de) * 1993-04-08 1994-11-09 ABB Management AG Brennkammer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1022493A (en) * 1910-08-31 1912-04-09 Curtis C Meigs Apparatus for making sulfuric acid.
US1454196A (en) * 1921-07-16 1923-05-08 Trood Samuel Device for producing and utilizing combustible mixture
US1466006A (en) * 1922-09-14 1923-08-28 Trood Samuel Apparatus for producing and utilizing combustible mixture
US3051452A (en) * 1957-11-29 1962-08-28 American Enka Corp Process and apparatus for mixing
US3239197A (en) * 1960-05-31 1966-03-08 Dow Chemical Co Interfacial surface generator
US3404869A (en) * 1966-07-18 1968-10-08 Dow Chemical Co Interfacial surface generator
SE320225B (de) * 1968-06-17 1970-02-02 Svenska Flygmotorer Ab
US3671208A (en) * 1970-10-09 1972-06-20 Wayne G Medsker Fluid mixing apparatus
JPS5233822B2 (de) * 1972-03-18 1977-08-31
GB1599895A (en) * 1977-09-28 1981-10-07 Mahler A L Device for homogenization of a particle filled fluid stream
DE3116557A1 (de) * 1981-04-25 1982-11-11 Basf Ag, 6700 Ludwigshafen Vorrichtung zur invertierung und mischung von stroemenden stoffen
US4461579A (en) * 1981-07-31 1984-07-24 Statiflo, Inc. Motionless mixer combination
EP0619133B1 (de) * 1993-04-08 1996-11-13 ABB Management AG Mischkammer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164375A (en) * 1976-05-21 1979-08-14 E. T. Oakes Limited In-line mixer
EP0619134A1 (de) 1993-04-08 1994-10-12 ABB Management AG Mischkammer
EP0620403A1 (de) * 1993-04-08 1994-10-19 ABB Management AG Misch- und Flammenstabilisierungseinrichtung in einer Brennkammer mit Vormischverbrennung
EP0623786A1 (de) * 1993-04-08 1994-11-09 ABB Management AG Brennkammer

Also Published As

Publication number Publication date
DE19544816A1 (de) 1997-06-05
EP0776689B1 (de) 2001-09-05
US5803602A (en) 1998-09-08
DE59607626D1 (de) 2001-10-11
JPH09173808A (ja) 1997-07-08

Similar Documents

Publication Publication Date Title
EP0619134B1 (de) Mischkammer
EP0776689B1 (de) Mischvorrichtung
EP0619133B1 (de) Mischkammer
EP0526393B1 (de) Einmischvorrichtung
EP1681090B1 (de) Vorrichtung und Verfahren zum Mischen eines Fluidstroms in einem Strömungskanal
DE69825475T2 (de) Injektionsmischer
EP1382379B1 (de) Verfahren zur Kontrolle der Nachlaufströmung eines Wirbelgenerators
EP0546989A1 (de) Statisches Mischelement mit Leitflächen
DE10019759C2 (de) Statisches Mischsystem
DE2723056A1 (de) Rohrmischer
EP0956897A2 (de) Vorrichtung zur Durchmischung eines einen Kanal Durchströmenden Gases
DE3239109C2 (de)
DE3427928C1 (de) Vorrichtung zum Verteilen von Schuettgut in einem Behaelter
DE3688127T2 (de) Atomisierungsvorrichtung.
EP0310830B1 (de) Venturikühler für eine Rauchgasentschwefelungsvorrichtung
DE3642612C2 (de)
DE3229486C2 (de) Statischer Rohrmischer
DE3327931C2 (de) Vorrichtung in Kühltürmen
DE19718064B4 (de) Turbulenzeinlage
DE4110596C2 (de)
EP1238698B1 (de) Statikmischer
DE3321456A1 (de) Durchwirbeleinrichtung fuer einen ein rohrbuendel aufweisenden waermetauscher und waermetauscher mit solchen durchwirbeleinrichtungen
DE19748383C2 (de) Statischer Mischer
DE1604221C (de) Düse mit schlitzförmiger Austritts öffnung
DE2359192C3 (de) Mischerreaktor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19971107

17Q First examination report despatched

Effective date: 19991221

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010905

REF Corresponds to:

Ref document number: 59607626

Country of ref document: DE

Date of ref document: 20011011

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM (SCHWEIZ) AG

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ALSTOM (SCHWEIZ) AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011206

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20031107

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607626

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120809 AND 20120815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607626

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59607626

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SCHWEIZ) AG, BADEN, AARGAU, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59607626

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SCHWEIZ) AG, BADEN, AARGAU, CH

Effective date: 20120713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151118

Year of fee payment: 20

Ref country code: DE

Payment date: 20151119

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607626

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59607626

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59607626

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20161110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20161110