EP0619134A1 - Mischkammer - Google Patents

Mischkammer Download PDF

Info

Publication number
EP0619134A1
EP0619134A1 EP94103386A EP94103386A EP0619134A1 EP 0619134 A1 EP0619134 A1 EP 0619134A1 EP 94103386 A EP94103386 A EP 94103386A EP 94103386 A EP94103386 A EP 94103386A EP 0619134 A1 EP0619134 A1 EP 0619134A1
Authority
EP
European Patent Office
Prior art keywords
flow
side surfaces
edge
vortex
roof surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94103386A
Other languages
English (en)
French (fr)
Other versions
EP0619134B1 (de
Inventor
Yau-Pin Dr. Chyou
Adnan Eroglu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of EP0619134A1 publication Critical patent/EP0619134A1/de
Application granted granted Critical
Publication of EP0619134B1 publication Critical patent/EP0619134B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • B01F25/43171Profiled blades, wings, wedges, i.e. plate-like element having one side or part thicker than the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431971Mounted on the wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • B01F25/43172Profiles, pillars, chevrons, i.e. long elements having a polygonal cross-section

Definitions

  • the invention relates to a mixing device for mixing two or more substances, which may have the same or different mass flow, the substances to be mixed flowing along a separating plate arranged upstream of the mixing zone, to which flow-influencing means are attached.
  • the invention seeks to remedy this.
  • the invention is therefore based on the object of providing a mixing device of the type mentioned at the outset, with which large-scale longitudinal vortices can be generated, which enable fast, controlled mixing of the flowing substances within a very short distance.
  • the advantage of such a vortex generator can be seen in its particular simplicity in every respect.
  • the element consisting of three walls with flow around it is completely problem-free.
  • the roof surface can be joined with the two side surfaces in a variety of ways.
  • the element can also be fixed to flat or curved channel walls in the case of weldable materials by simple weld seams. From a fluidic point of view, the element has a very low pressure drop when flowing around and it creates vortices without a dead water area.
  • the element can be cooled in a variety of ways and with various means.
  • a vortex generator essentially consists of three freely flowing triangular surfaces. These are a roof surface 10 and two side surfaces 11 and 13. In their longitudinal extent, these surfaces run at certain angles in the direction of flow.
  • the two side surfaces 11 and 13 are each perpendicular to the associated wall 21 of a partition plate 22, it being noted that this is not mandatory.
  • the side walls which consist of right-angled triangles, are with their long sides on this Wall 21 fixed, preferably gas-tight. They are oriented so that they form a joint on their narrow sides, including an arrow angle a.
  • the joint is designed as a sharp connecting edge 16 and is also perpendicular to that wall 21 with which the side surfaces are flush. Installed in a duct, the flow cross-section is hardly affected by blocking because of the sharp connecting edge.
  • the two side surfaces 11, 13 including the arrow angle a are symmetrical in shape, size and orientation and are arranged on both sides of an axis of symmetry 17. This axis of symmetry 17 is rectified like the channel axis.
  • the roof surface 10 lies with a very flat edge 15 running transversely to the flow around the separating plate on the same wall 21 as the side walls 11, 13. Its longitudinal edges 12, 14 are flush with the longitudinal edges of the side surfaces protruding into the flow channel.
  • the roof surface extends at an angle of incidence 0 to the wall 21. Its longitudinal edges 12, 14 form a tip 18 together with the connecting edge 16.
  • the vortex generator can also be provided with a bottom surface with which it is fastened to the wall 21 in a suitable manner.
  • a floor area is not related to the mode of operation of the element.
  • the connecting edge 16 of the two side surfaces 11, 13 forms the downstream edge of the vortex generator 9.
  • the edge 15 of the roof surface 10 which runs transversely to the flow around the separating plate 22 is thus the edge which is first acted upon by the channel flow.
  • the vortex generator works as follows: When flowing around edges 12 and 14, the flow is converted into a pair of opposing vortices. The vortex axes lie in the axis of the flow. The geometry of the vortex generators is chosen so that no backflow zones arise during vortex generation.
  • the swirl number of the vortex is determined by a corresponding choice of the angle of attack 0 and / or the arrow angle a. With increasing angles, the vortex strength or the number of swirls is increased and the location of the vortex breakdown (if desired at all) moves upstream into the area of the vortex generator itself. Depending on the application, these two angles are 0 and a is determined by the design and by the process itself. It is then only necessary to adjust the height h of the connecting edge 16 (FIG. 4).
  • the sharp connecting edge 16 in FIG. 2 is the point which is first acted upon by the channel flow.
  • the element is rotated by 180.
  • the two opposite vortices have changed their sense of rotation. They rotate along the roof surface and strive towards the wall on which the vortex generator is mounted.
  • the shape of the flow around the separating plate 22 is not essential for the mode of operation of the invention.
  • the partition plate 22 could also be a straight or hexagonal or other cross-sectional shape.
  • the partition plate 22 is curved.
  • the above statement that the side surfaces are perpendicular to the wall must of course be relativized.
  • the connecting edge 16 lying on the line of symmetry 17 is perpendicular to the corresponding wall. In the case of annular walls, the connecting edge 16 would thus be aligned radially, as is shown in FIG. 3.
  • FIG. 3 partially shows a cylindrical container with a built-in partition plate 22.
  • the outer wall of the partition plate forms the inner channel wall 21'b of the outer channel, while the inner wall of the partition plate forms the outer channel wall 21 "a of the inner channel.
  • the same channels could flow through the two channels at different speeds; or it could be flowing substances of different densities or chemical compositions that have to be mixed in the shortest possible way to a certain uniformly distributed concentration.
  • an equal number of vortex generators 9 are lined up with gaps in the circumferential direction.
  • the height h of the elements 9 is approximately 90% of the channel height H.
  • the annular elements are, as shown in FIG 4, provided in the same axial plane The flow takes place perpendicularly into the drawing plane in Fig. 3, the elements 9 are oriented such that the connecting edges 16 are directed against the flow The region of the connecting edge is descending, ie strives towards the wall on which the vortex generator is arranged.
  • the eddy currents generated on its two sides are forced into one another, resulting in the desired mixing.
  • a further increase in the mixing quality is achieved if, as shown in FIG. 3, the connecting edges 16 of the vortex generators in the case of the the subchannels are offset by half a division. If swirl-like vortices are used in the subchannels, it can be seen that the vortices rotating around a common radial on both sides of the separating plate combine to form a large vortex with a uniform direction of rotation.
  • the vortex generators in the two partial channels could have different heights compared to the channel height H.
  • the height h match the connecting edge 16 with the channel height H in such a way that the generated vortex immediately downstream of the vortex generator already has such a size that the full channel height H or the full height of the channel part assigned to the vortex generator is filled, which results in a uniform
  • Another criterion that can influence the ratio h / H to be selected is the pressure drop that occurs when the vortex generator flows around. It is understood that with a larger ratio h / H the Pressure loss coefficient increases.
  • FIG. 4 also illustrates how the cross section of the mixing zone d increases steeply downstream of the trailing edge of the partition plate. With this configuration, it can be seen that an intimate mixture is achieved after a short distance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

Bei einer Mischvorrichtung zum Mischen von zwei oder mehreren Stoffen strömen die zu mischenden Stoffe längs einer stromaufwärts der Mischzone (d) angeordneten Trennplatte (22), an welcher strömungsbeeinflussende Mittel angebracht sind. Die Mittel sind Wirbel-Generatoren (9), von denen über der Breite oder dem Umfang der Trennplatte (22) quer zur Strömungsrichtung mehrere nebeneinander angeordnet sind. Ein Wirbel-Generator (9) weist drei frei umströmte Flächen auf, die sich in Strömungsrichtung erstrecken und von denen eine die Dachfläche (10) und die beiden andern die Seitenflächen (11, 13) bilden. Die Seitenflächen schliessen miteinander den Pfeilwinkel (α) ein. Die Dachfläche verläuft unter einem Anstellwinkel (Θ) zur Wand (21) Mit den Wirbel-Generatoren können gross-skalige Längswirbel erzeugt werden, die ein schnelles, kontrolliertes Mischen der strömenden Stoffe innert kürzester Strecke ermöglichen.

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine Mischvorrichtung zum Mischen von zwei oder mehreren Stoffen, welche den gleichen oder ungleichen Massenstrom aufweisen können, wobei die zu mischenden Stoffe längs einer stromaufwärts der Mischzone angeordneten Trennplatte strömen, an welcher strömungsbeeinflussende Mittel angebracht sind.
  • Stand der Technik
  • In vielen Sektoren wie beispielsweise in der Chemie, der Nahrungsmittel- oder Pharmaproduktion usw. wird verlangt, Stoffe auf kürzestem Weg innig zu vermischen. Die Qualität des ganzen Prozesses hängt meistens von der erzielten Mischqualität ab. Dabei sollte der Druckabfall anlässlich des Mischvorgangs in "vernünftigem" Rahmen bleiben, um die Prozesskosten durch niedrige Pumparbeit klein zu halten.
  • Anlässlich der Mischung zwei freier Scherschichten von Strömungen unterschiedlicher Geschwindigkeit, Dichte oder Konzentration am Ende einer Trennplatte werden bei Abwesenheit von zusätzlichen Mischelementen zweidimensionale (spanwise) Wirbel erzeugt, die für Mischzwecke zu langsam sind, weil die Wachsrate einer freien Scherschicht ungenügend ist.
  • Darstellung der Erfindung
  • Hier will die Erfindung Abhilfe schaffen. Die Erfindung liegt deshalb die Aufgabe zugrunde, eine Mischvorrichtung der eingangs genannten zu schaffen, mit der gross-skalige Längswirbel erzeugt werden können, die ein schnelles, kontrolliertes Mischen der strömenden Stoffe innert kürzester Strecke ermöglichen.
  • Erfindungsgemäss wird dies dadurch erreicht,
    • - dass die Mittel Wirbel-Generatoren sind, von denen über der Breite oder dem Umfang der Trennplatte quer zur Strömungsrichtung mehrere nebeneinander angeordnet sind,
    • - dass ein Wirbel-Generator drei frei umströmte Flächen aufweist, die sich in Strömungsrichtung erstrecken und von denen eine die Dachfläche und die beiden andern die Seitenflächen bilden,
    • - dass die Seitenflächen mit einer gleichen Wand bündig sind und miteinander den Pfeilwinkel a einschliessen,
    • - dass die Dachfläche mit einer quer zur umströmten Wand verlaufenden Kante an der gleichen Wand anliegt wie die Seitenwände,
    • - und dass die längsgerichteten Kanten der Dachfläche, die bündig sind mit den in den Strömungskanal hineinragenden längsgerichteten Kanten der Seitenflächen unter einem Anstellwinkel 0 zur Wand verlaufen
  • Mit dem neuen statischen Mischer, den die 3- dimensionalen Wirbel-Generatoren darstellen, ist es möglich, in der Mischzone ausserordentlich kurze Mischstrecken bei gleichzeitig geringem Druckverlust zu erzielen, ohne die Gesamtkonfiguration der Anlage ändern zu müssen.
  • Der Vorteil eines solchen Wirbel-Generators ist in seiner besonderen Einfachheit in jeder Hinsicht zu sehen. Fertigungstechnisch ist das aus drei umströmten Wänden bestehende Element völlig problemlos. Die Dachfläche kann mit den beiden Seitenflächen auf verschiedenste Arten zusammengefügt werden. Auch die Fixierung des Elementes an ebenen oder gekrümmten Kanalwänden kann im Falle von schweissbaren Materialien durch einfache Schweissnähte erfolgen. Vom strömungstechnischen Standpunkt her weist das Element beim Umströmen einen sehr geringen Druckverlust auf und es erzeugt Wirbel ohne Totwassergebiet.
  • Schliesslich kann das Element durch seinen in der Regel hohlen Innenraum auf die verschiedensten Arten und mit diversen Mitteln gekühlt werden.
  • Es ist sinnvoll, wenn die beiden den Pfeilwinkel α einschliessenden Seitenflächen symmetrisch um eine Symmetrieachse angeordnet sind. Damit werden drallgleiche Wirbel erzeugt.
  • Kurze Beschreibung der Zeichnung
  • In der Zeichnung ist ein Ausführungsbeispiel der Erfindung schematisch dargestellt. Es zeigen:
    • Fig. 1 eine perspektivische Darstellung eines Wirbel-Generators;
    • Fig. 2 eine Anordnungsvariante des Wirbel-Generators;
    • Fig. 3 einen teilweisen Schnitt durch ein doppelkanalig durchströmtes Behältnis mit eingebauten Wirbel-Generatoren;
    • Fig. 4 einen teilweisen Längsschnitt durch das Behältnis nach Linie 4-4 in Fig. 3.
    Weg zur Ausführung der Erfindung
  • In den Figuren 1 und 2 besteht ein Wirbel-Generator im wesentlichen aus drei frei umströmten dreieckigen Flächen. Es sind dies eine Dachfläche 10 und zwei Seitenflächen 11 und 13. In ihrer Längserstreckung verlaufen diese Flächen unter bestimmten Winkeln in Strömungsrichtung.
  • In den gezeigten Beispielen stehen die beiden Seitenflächen 11 und 13 jeweils senkrecht auf der zugehörigen Wand 21 einer Trennplatte 22, wobei angemerkt wird, dass dies nicht zwingend ist. Die Seitenwände, welche aus rechtwinkligen Dreiecken bestehen, sind mit ihren Längsseiten auf dieser Wand 21 fixiert, vorzugsweise gasdicht. Sie sind so orientiert, dass sie an ihren Schmalseiten einen Stoss bilden unter Einschluss eines Pfeilwinkels a. Der Stoss ist als scharfe Verbindungskante 16 ausgeführt und steht ebenfalls senkrecht zu jener Wand 21, mit welcher die Seitenflächen bündig sind. In einem Kanal eingebaut, wird wegen der scharfen Verbindungskante der Durchströmquerschnitt kaum durch Sperrung beeinträchtigt. Die beiden den Pfeilwinkel a einschliessenden Seitenflächen 11, 13 sind symmetrisch in Form, Grösse und Orientierung und sind beidseitig einer Symmetrieachse 17 angeordnet. Diese Symmetrieachse 17 ist gleichgerichtet wie die Kanalachse.
  • Die Dachfläche 10 liegt mit einer quer zur umströmten Trennplatte verlaufenden und sehr flach ausgebildeten Kante 15 an der gleichen Wand 21 an wie die Seitenwände 11, 13. Ihre längsgerichteten Kanten 12, 14 sind bündig mit den in den Strömungskanal hineinragenden längsgerichteten Kanten der Seitenflächen. Die Dachfläche verläuft unter einem Anstellwinkel 0 zur Wand 21. Ihre Längskanten 12, 14 bilden zusammen mit der Verbindungskante 16 eine Spitze 18.
  • Selbstverständlich kann der Wirbel-Generator auch mit einer Bodenfläche versehen sein, mit welcher er auf geeignete Art an der Wand 21 befestigt ist. Eine derartige Bodenfläche steht indes in keinem Zusammenhang mit der Wirkungsweise des Elementes.
  • In Fig. 1 bildet die Verbindungskante 16 der beiden Seitenflächen 11, 13 die stromabwärtige Kante des Wirbel-Generators 9. Die quer zur umströmten Trennplatte 22 verlaufende Kante 15 der Dachfläche 10 ist somit die von der Kanalströmung zuerst beaufschlagte Kante.
  • Die Wirkungsweise des Wirbel-Generators ist folgende: Beim Umströmen der Kanten 12 und 14 wird die Strömung in ein Paar gegenläufiger Wirbel umgewandelt. Die Wirbelachsen liegen in der Achse der Strömung. Die Geometrie der Wirbel-Generatoren ist so gewählt, dass bei der Wirbelerzeugung keine Rückströmzonen entstehen.
  • Die Drallzahl des Wirbels wird bestimmt durch entsprechende Wahl des Anstellwinkels 0 und/oder des Pfeilwinkels a. Mit steigenden Winkeln wird die Wirbelstärke bzw. die Drallzahl erhöht und der Ort des Wirbelaufplatzens (vortex break down) - sofern dies überhaupt gewünscht ist - wandert stromaufwärts bis hin in den Bereich des Wirbel-Generators selbst. Je nach Anwendung sind diese beiden Winkel 0 und a durch konstruktive Gegebenheiten und durch den Prozess selbst vorgegeben. Angepasst werden muss dann nur noch die Höhe h der Verbindungskante 16 (Fig. 4).
  • Im Gegensatz zu Fig. 1 ist in Fig. 2 die scharfe Verbindungskante 16 jene Stelle, die von der Kanalströmung zuerst beaufschlagt wird. Das Element ist um 180 gedreht. Wie aus der Darstellung erkennbar, haben die beiden gegenläufigen Wirbel ihren Drehsinn geändert. Sie rotieren oberhalb der Dachfläche entlang und streben der Wand zu, auf welcher der Wirbel-Generator montiert ist.
  • Es wird darauf hingewiesen, dass die Form der umströmten Trennplatte 22 für die Wirkungsweise der Erfindung nicht wesentlich ist. Statt der in Fig. 3 gezeigten Ringform der Trennplatte 22 könnte es sich auch um eine gerade oder hexagonale oder eine sonstige Querschnittsform handeln. Im Beispielsfall der Fig. 3 ist die Trennplatte 22 gekrümmt. Die obige Aussage, dass die Seitenflächen senkrecht auf der Wand stehen, muss in einem solchen Fall selbstverständlich relativiert werden. Massgebend ist, dass die auf der Symmetrielinie 17 liegende Verbindungskante 16 senkrecht auf der entsprechenden Wand steht. Im Fall von ringförmigen Wänden würde die Verbindungskante 16 somit radial ausgerichtet sein, wie dies in Fig. 3 dargestellt ist.
  • Die Figur 3 zeigt teilweise ein zylindrisches Behältnis mit eingebauter Trennplatte 22. Der durchströmte Querschnitt ist durch diese Trennplatte 22 in zwei koaxiale, kreisringförmige Kanäle 20' und 20" gleicher Kanalhöhe H, unterteilt. Die äussere Wandung der Trennplatte bildet die innere Kanalwand 21'b des äusseren Kanals, während die innere Wandung der Trennplatte die äussere Kanalwand 21 "a des inneren Kanals bildet. Die beiden Kanäle könnten von einem gleichen Medium mit unterschiedlichen Geschwindigkeit durchströmt sein; oder es könnte sich um strömende Stoffe unterschiedlicher Dichte oder chemischer Zusammensetzung handeln, die auf kürzestem Wege zu einer bestimmten gleichmässig verteilter Konzentration vermischt werden müssen.
  • An diesen beiden Kanalwänden 21'b und 21 "a ist jeweils eine gleiche Anzahl von Wirbel-Generatoren 9 in Umfangsrichtung mit Zwischenräumen aneinandergereiht. Die Höhe h der Elemente 9 beträgt ca. 90% der Kanalhöhe H. Die ringförmig verlaufenden Elemente sind, wie Fig. 4 gezeigt, in der gleichen Axialebene vorgesehen. Die Strömung erfolgt in Fig. 3 senkrecht in die Zeichenebene hinein; die Elemente 9 sind so orientiert, dass die Verbindungskanten 16 gegen die Strömung gerichtet sind. Erkennbar ist, dass der Drehsinn der erzeugten Wirbel im Bereich der Verbindungskante absteigend ist, d.h. zu jener Wand hinstrebt, auf der der Wirbel-Generator angeordnet ist. Am Ende der Trennplatte 22 werden die auf deren beiden Seiten erzeugten Wirbelströme ineinandergezwängt, wobei es zu der gewünschten Durchmischung kommt.
  • Eine weitere Erhöhung der Mischqualität wird erreicht, wenn wie in Fig. 3 gezeigt, die Verbindungskanten 16 der Wirbel-Generatoren in den beiden Teilkanälen um eine halbe Teilung gegeneinander versetzt sind. Werden drallgleiche Wirbel in den Teilkanälen zugrundegelegt, so ist erkennbar, dass die um eine gemeinsame Radiale rotierenden Wirbel beider Trennplattenseiten sich zu einem grossen Wirbel mit einheitlichem Drehsinn kombinieren.
  • Aus Fig 4, in welcher die durchströmten Teilkanäle mit 20' und 20" bezeichnet sind, ist erkennbar (aber nicht dargestellt), dass die Wirbel-Generatoren in beiden Teilkanälen unterschiedliche Höhen gegenüber der Kanalhöhe H aufweisen könnten. In der Regel wird man die Höhe h der Verbindungskante 16 so mit der Kanalhöhe H abstimmen, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators bereits eine solche Grösse erreicht, dass die volle Kanalhöhe H oder die volle Höhe des dem Wirbel-Generators zugeordneten Kanalteils ausgefüllt wird, was zu einer gleichmässigen Verteilung in dem beaufschlagten Querschnitt führt. Ein weiteres Kriterium, welches Einfluss auf das zu wählende Verhältnis h/H nehmen kann, ist der Druckabfall, der beim Umströmen des Wirbel-Generators auftritt. Es versteht sich, dass mit grösserem Verhältnis h/H auch der Druckverlustbeiwert ansteigt.
  • In Fig. 4 ist ebenfalls illustriert, wie der Querschnitt der Mischzone d stromabwärts der Trennplattenhinterkante steil ansteigt. Bei dieser Konfiguration ist erkennbar, dass eine innige Mischung bereits nach einer kurzen Strecke vollzogen ist.
  • Selbstverständlich ist die Erfindung nicht nur auf die gezeigten und beschriebenen Ausführungs-und Anwendungsbeispiele beschränkt. Durch gezielte Auslegung und Dimensionierung der Wirbel-Generatoren hat man bei gegebenen Strömungen ein einfaches Mittel an der Hand, je nach Bedarf den Mischvorgang zu steuern. In Abweichung zu den in Fig. 3 und 4 gezeigten Anordnungen - bei welchen selbstverständlich auch die äussern Kanalwände 21'a und 21 "b entfallen könnten - besteht die Möglichkeit, Wirbel-Generatoren nach den Fig. 1 und 2 zu kombinieren, um beispielsweise das Wachstum der Mischzone d nach einer Seite hin zu vergrössern.
  • Bezugszeichenliste
    • 9 Wirbel-Generator
    • 10 Dachfläche
    • 11 Seitenfläche
    • 12 Längskante
    • 13 Seitenfläche
    • 14 Längskante
    • 15 quer verlaufenden Kante von 10
    • 16 Verbindungskante
    • 17 Symmetrielinie
    • 18 Spitze
    • 20', 20" Teilkanal
    • 21, a,b Wand
    • 22 Trennplatte
    • 0 Anstellwinkel
    • a Pfeilwinkel
    • h Höhe von 16
    • H Kanalhöhe
    • L Länge des Wirbel-Generators
    • d Mischzone

Claims (9)

1. Mischvorrichtung zum Mischen von zwei oder mehreren Stoffen, welche den gleichen oder ungleichen Massenstrom aufweisen können, wobei die zu mischenden Stoffe längs einer stromaufwärts der Mischzone (d) angeordneten Trennplatte (22) strömen, an welcher strömungsbeeinflussende Mittel angebracht sind, dadurch gekennzeichnet,
dass die Mittel Wirbel-Generatoren (9) sind, von denen über der Breite oder dem Umfang der Trennplatte (22) quer zur Strömungsrichtung mehrere nebeneinander angeordnet sind,
- dass ein Wirbel-Generator (9) drei frei umströmte Flächen aufweist, die sich in Strömungsrichtung erstrecken und von denen eine die Dachfläche (10) und die beiden andern die Seitenflächen (11, 13) bilden,
- dass die Seitenflächen (11, 13) mit einer gleichen Wand (21) bündig sind und miteinander den Pfeilwinkel (a) einschliessen,
- dass die Dachfläche (10) mit einer quer zur umströmten Wand (21) verlaufenden Kante (15) an der gleichen Wand anliegt wie die Seitenwände,
- und dass die längsgerichteten Kanten (12, 14) der Dachfläche, die bündig sind mit den in den Strömungskanal hineinragenden längsgerichteten Kanten der Seitenflächen unter einem Anstellwinkel (6) zur Wand (21) verlaufen
2. Mischvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die beiden den Pfeilwinkel (a) einschliessenden Seitenflächen (11, 13) des Wirbel-Generators (9) symmetrisch um eine Symmetrieachse (17) angeordnet sind.
3. Mischvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die beiden den Pfeilwinkel (a) einschliessenden Seitenflächen (11, 13) eine Verbindungskante (16) miteinander umfassen, welche zusammen mit den längsgerichteten Kanten (12, 14) der Dachfläche (10) eine Spitze (18) bilden, und dass die Verbindungskante vorzugsweise senkrecht zu jener Wand (21) verläuft, mit welcher die Seitenflächen bündig sind.
4. Mischvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Verbindungskante (16) und/oder die längsgerichteten Kanten (12, 14) der Dachfläche zumindest annähernd scharf ausgebildet sind.
5. Mischvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Symmetrieachse (17) des Wirbel-Generators (9) in Strömungsrichtung verläuft, wobei die Verbindungskante (16) der beiden Seitenflächen (11, 13) die stromabwärtige Kante des Wirbel-Generators bildet und wobei die quer zur umströmten Wand verlaufende Kante (15) der Dachfläche (10) die von der Strömung zuerst beaufschlagte Kante ist.
6. Mischvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Symmetrieachse (17) in Strömungsrichtung verläuft, wobei die Verbindungskante (16) der beiden Seitenflächen (11, 13) die von der Strömung zuerst beaufschlagte Kante ist, während die quer quer zur umströmten Wand verlaufende Kante (15) der Dachfläche (10) stromabwärts angeordnet ist.
7. Mischvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Trennplatte (22) in einem doppelkanaligen Behältnis angeordnet ist unter Bildung von zwei ringförmigen Teilkanälen (20', 20"), und dass in jedem Teilkanal die gleiche Anzahl von Wirbel-Generatoren (9) im Umfangsrichtung angeordnet ist, und dass die Wirbel-Generatoren beidseitig an der Trennplatte (22) in einer gleichen Axialebene befestigt sind.
8. Mischvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass das Verhältnis Höhe (h) des Wirbel-Generators zur Höhe (H) des Teilkanals (20', 20") so gewählt ist, dass der erzeugte Wirbel unmittelbar stromabwärts des Wirbel-Generators die volle Teilkanalhöhe oder die volle Höhe des dem Wirbel-Generators zugeordneten Kanalteils ausfüllt.
9. Mischvorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die an der Trennplatte (22) angeordneten Wirbel-Generatoren (9) von zwei benachbarten Teilkanälen um eine halbe Teilung gegeneinander versetzt sind.
EP94103386A 1993-04-08 1994-03-07 Mischkammer Expired - Lifetime EP0619134B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1084/93 1993-04-08
CH108493 1993-04-08

Publications (2)

Publication Number Publication Date
EP0619134A1 true EP0619134A1 (de) 1994-10-12
EP0619134B1 EP0619134B1 (de) 1996-12-18

Family

ID=4202086

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94103386A Expired - Lifetime EP0619134B1 (de) 1993-04-08 1994-03-07 Mischkammer

Country Status (4)

Country Link
US (1) US5423608A (de)
EP (1) EP0619134B1 (de)
JP (1) JP3578355B2 (de)
DE (1) DE59401295D1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19510744A1 (de) * 1995-03-24 1996-09-26 Abb Management Ag Brennkammer mit Zweistufenverbrennung
EP0776689A1 (de) 1995-12-01 1997-06-04 Abb Research Ltd. Mischvorrichtung
US6135629A (en) * 1998-05-11 2000-10-24 Deutsche Babcock Anlagen Gmbh Device for stirring up gas flowing through a duct having a structural insert positioned at an acute angle to a main gas stream
US6189320B1 (en) 1996-12-20 2001-02-20 Siemens Aktiengesellschaft Burner for fluidic fuels having multiple groups of vortex generating elements
WO2009155625A1 (de) * 2008-06-26 2009-12-30 Gruber & Co Group Gmbh Statische mischvorrichtung und verfahren zum herstellen
CN110488853A (zh) * 2019-08-29 2019-11-22 北京航空航天大学 一种降低转轴涡动影响的混合式惯导系统稳定控制指令的计算方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59402803D1 (de) * 1993-04-08 1997-06-26 Asea Brown Boveri Brennkammer
CH687832A5 (de) * 1993-04-08 1997-02-28 Asea Brown Boveri Brennstoffzufuehreinrichtung fuer Brennkammer.
EP0620403B1 (de) * 1993-04-08 1996-12-04 ABB Management AG Misch- und Flammenstabilisierungseinrichtung in einer Brennkammer mit Vormischverbrennung
DK0751820T3 (da) * 1994-03-25 1999-04-26 Siemens Ag Kombineret tilførsels- og blandeindretning
US5638682A (en) * 1994-09-23 1997-06-17 General Electric Company Air fuel mixer for gas turbine combustor having slots at downstream end of mixing duct
US5797726A (en) * 1997-01-03 1998-08-25 General Electric Company Turbulator configuration for cooling passages or rotor blade in a gas turbine engine
US5738493A (en) * 1997-01-03 1998-04-14 General Electric Company Turbulator configuration for cooling passages of an airfoil in a gas turbine engine
US6015229A (en) * 1997-09-19 2000-01-18 Calgon Carbon Corporation Method and apparatus for improved mixing in fluids
USRE40407E1 (en) 1999-05-24 2008-07-01 Vortex Flow, Inc. Method and apparatus for mixing fluids
US6637668B2 (en) * 2001-10-24 2003-10-28 Magarl, Llc Thermostatic control valve with fluid mixing
DE10330023A1 (de) * 2002-07-20 2004-02-05 Alstom (Switzerland) Ltd. Wirbelgenerator mit kontrollierter Nachlaufströmung
CN1204945C (zh) * 2003-09-05 2005-06-08 刘兆彦 一种管、筒或塔内构件立交盘
US7300242B2 (en) * 2005-12-02 2007-11-27 Siemens Power Generation, Inc. Turbine airfoil with integral cooling system
US7708453B2 (en) * 2006-03-03 2010-05-04 Cavitech Holdings, Llc Device for creating hydrodynamic cavitation in fluids
US7637720B1 (en) 2006-11-16 2009-12-29 Florida Turbine Technologies, Inc. Turbulator for a turbine airfoil cooling passage
AU2009319794B2 (en) * 2008-11-26 2013-12-05 De Nora Water Technologies, LLC Method and apparatus for use of mixing elements in wastewater/ recycle water UV disinfection system
WO2011054766A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Reheat burner injection system
EP2496885B1 (de) 2009-11-07 2019-05-29 Ansaldo Energia Switzerland AG Brenner mit einem kühlsystem für erhöhte gasturbineneffizienz
EP2496880B1 (de) 2009-11-07 2018-12-05 Ansaldo Energia Switzerland AG Injektionssystem für einen nachbrenner
WO2011054771A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Premixed burner for a gas turbine combustor
WO2011054757A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Reheat burner injection system with fuel lances
RU2455056C2 (ru) * 2010-06-07 2012-07-10 Открытое акционерное общество "Научно-производственная корпорация "Иркут" (ОАО "Корпорация "Иркут") Способ диспергирования жидкости и устройство для его осуществления
DE102012008732A1 (de) * 2012-05-04 2013-11-07 Xylem Water Solutions Herford GmbH Mischvorrichtung für UV-Wasserbehandlungsanlagen mit offenem Kanal
EP2725302A1 (de) 2012-10-25 2014-04-30 Alstom Technology Ltd Nachbrenneranordnung
US20140123653A1 (en) * 2012-11-08 2014-05-08 General Electric Company Enhancement for fuel injector
EP2948715B1 (de) * 2013-01-24 2019-04-17 Siemens Aktiengesellschaft Brennersystem mit turbulenzelementen
RU193887U1 (ru) * 2019-05-17 2019-11-19 Публичное акционерное общество "Научно-производственная корпорация "Иркут" (ПАО "Корпорация "Иркут") Устройство для аэрации жидкости
US11898755B2 (en) 2022-06-08 2024-02-13 General Electric Company Combustor with a variable volume primary zone combustion chamber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2404458A1 (fr) * 1977-09-28 1979-04-27 Mahler Arnold Dispositif d'homogeneisation d'un courant fluidique charge de particules
DE3520772A1 (de) * 1985-06-10 1986-12-11 INTERATOM GmbH, 5060 Bergisch Gladbach Mischvorrichtung
DE8700259U1 (de) * 1986-01-31 1987-03-19 Gebrüder Sulzer AG, Winterthur Vorrichtung für eine Extraktionskolonne oder eine Mischeinrichtung
JPS63294494A (ja) * 1987-05-27 1988-12-01 Nippon Denso Co Ltd 熱交換器
WO1990000929A1 (en) * 1988-07-27 1990-02-08 Vortab Corporation Static fluid flow mixing apparatus
WO1992011642A2 (de) * 1990-12-21 1992-07-09 Siemens Aktiengesellschaft Kernrückhaltevorrichtung für kernreaktoranlage und notkühlung bei kernschmelze

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1022493A (en) * 1910-08-31 1912-04-09 Curtis C Meigs Apparatus for making sulfuric acid.
US1454196A (en) * 1921-07-16 1923-05-08 Trood Samuel Device for producing and utilizing combustible mixture
US1466006A (en) * 1922-09-14 1923-08-28 Trood Samuel Apparatus for producing and utilizing combustible mixture
US3051452A (en) * 1957-11-29 1962-08-28 American Enka Corp Process and apparatus for mixing
US3404869A (en) * 1966-07-18 1968-10-08 Dow Chemical Co Interfacial surface generator
US4164375A (en) * 1976-05-21 1979-08-14 E. T. Oakes Limited In-line mixer
CA1129303A (en) * 1978-07-19 1982-08-10 Figgie International Inc. Pressure-demand breathing apparatus with automatic air shut-off

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2404458A1 (fr) * 1977-09-28 1979-04-27 Mahler Arnold Dispositif d'homogeneisation d'un courant fluidique charge de particules
DE3520772A1 (de) * 1985-06-10 1986-12-11 INTERATOM GmbH, 5060 Bergisch Gladbach Mischvorrichtung
DE8700259U1 (de) * 1986-01-31 1987-03-19 Gebrüder Sulzer AG, Winterthur Vorrichtung für eine Extraktionskolonne oder eine Mischeinrichtung
JPS63294494A (ja) * 1987-05-27 1988-12-01 Nippon Denso Co Ltd 熱交換器
WO1990000929A1 (en) * 1988-07-27 1990-02-08 Vortab Corporation Static fluid flow mixing apparatus
WO1992011642A2 (de) * 1990-12-21 1992-07-09 Siemens Aktiengesellschaft Kernrückhaltevorrichtung für kernreaktoranlage und notkühlung bei kernschmelze

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 118 (M - 806) 23 March 1989 (1989-03-23) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19510744A1 (de) * 1995-03-24 1996-09-26 Abb Management Ag Brennkammer mit Zweistufenverbrennung
US5829967A (en) * 1995-03-24 1998-11-03 Asea Brown Boveri Ag Combustion chamber with two-stage combustion
EP0776689A1 (de) 1995-12-01 1997-06-04 Abb Research Ltd. Mischvorrichtung
US5803602A (en) * 1995-12-01 1998-09-08 Abb Research Ltd. Fluid mixing device with vortex generators
US6189320B1 (en) 1996-12-20 2001-02-20 Siemens Aktiengesellschaft Burner for fluidic fuels having multiple groups of vortex generating elements
US6135629A (en) * 1998-05-11 2000-10-24 Deutsche Babcock Anlagen Gmbh Device for stirring up gas flowing through a duct having a structural insert positioned at an acute angle to a main gas stream
WO2009155625A1 (de) * 2008-06-26 2009-12-30 Gruber & Co Group Gmbh Statische mischvorrichtung und verfahren zum herstellen
CN101932377A (zh) * 2008-06-26 2010-12-29 格鲁伯集团公司 静态混合装置和制造方法
RU2464075C2 (ru) * 2008-06-26 2012-10-20 Грубер Унд Ко Гроуп Гмбх Статическое смесительное устройство и способ его изготовления
CN110488853A (zh) * 2019-08-29 2019-11-22 北京航空航天大学 一种降低转轴涡动影响的混合式惯导系统稳定控制指令的计算方法
CN110488853B (zh) * 2019-08-29 2021-06-08 北京航空航天大学 一种降低转轴涡动影响的混合式惯导系统稳定控制指令的计算方法

Also Published As

Publication number Publication date
US5423608A (en) 1995-06-13
JPH07784A (ja) 1995-01-06
DE59401295D1 (de) 1997-01-30
EP0619134B1 (de) 1996-12-18
JP3578355B2 (ja) 2004-10-20

Similar Documents

Publication Publication Date Title
EP0619134B1 (de) Mischkammer
EP0619133B1 (de) Mischkammer
EP0619457B1 (de) Vormischbrenner
EP0619456B1 (de) Brennstoffzufuhrsystem für Brennkammer
DE19501241C2 (de) Statisches Mischmodul und Mischapparat zur Verwendung desselben
DE60021263T2 (de) Statischer wirbelmischer und methode zur verwendung desselben
EP0620403B1 (de) Misch- und Flammenstabilisierungseinrichtung in einer Brennkammer mit Vormischverbrennung
EP0776689B1 (de) Mischvorrichtung
DE1236479B (de) Vorrichtung zum Mischen stroemender Medien, mit stillstehenden Leitelementen
DE4223434C1 (de) Scheibenförmiges Mischwerkzeug
EP1278594B1 (de) Zweiwellen-zwangsmischer, verwendung des zweiwellen-zwangsmischers und verfahren zum betrieb eines zweiwellen-zwangsmischers
EP0063729B1 (de) Vorrichtung zur Invertierung und Mischung von strömenden Stoffen
DE10019759C2 (de) Statisches Mischsystem
DE3422339C2 (de)
DE2739998C3 (de) Strangpreßvorrichtung zur Herstellung von geschäumtem Kunststoff
DE1753643B2 (de) Strangpresse fuer kunststoff
DE1457270B2 (de) Fluessigkeitsmischer
DE3239109C2 (de)
DE3427928C1 (de) Vorrichtung zum Verteilen von Schuettgut in einem Behaelter
DE2811489A1 (de) Rohrmischer
DE3618062A1 (de) Vorrichtung zum vermischen von pastoesen oder gelartigen komponenten
DE3021606C2 (de)
DE1704886B1 (de) Vorrichtung zum strangpressen von rohren aus plastischem material
DE2629293A1 (de) Statischer mischer
DE1532695C (de) Misch- und Trennzentrifuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

K1C1 Correction of patent application (title page) published

Effective date: 19941012

17P Request for examination filed

Effective date: 19950307

17Q First examination report despatched

Effective date: 19951124

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ASEA BROWN BOVERI AG

REF Corresponds to:

Ref document number: 59401295

Country of ref document: DE

Date of ref document: 19970130

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59401295

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120621

Ref country code: DE

Ref legal event code: R081

Ref document number: 59401295

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20120621

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20120918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130225

Year of fee payment: 20

Ref country code: FR

Payment date: 20130315

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130328

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59401295

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140308

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140306