EP1382379B1 - Verfahren zur Kontrolle der Nachlaufströmung eines Wirbelgenerators - Google Patents

Verfahren zur Kontrolle der Nachlaufströmung eines Wirbelgenerators Download PDF

Info

Publication number
EP1382379B1
EP1382379B1 EP03405505A EP03405505A EP1382379B1 EP 1382379 B1 EP1382379 B1 EP 1382379B1 EP 03405505 A EP03405505 A EP 03405505A EP 03405505 A EP03405505 A EP 03405505A EP 1382379 B1 EP1382379 B1 EP 1382379B1
Authority
EP
European Patent Office
Prior art keywords
flow
vortex
vortex generator
wake
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03405505A
Other languages
English (en)
French (fr)
Other versions
EP1382379A3 (de
EP1382379A2 (de
Inventor
Peter Dr. Flohr
Ephraim Prof. Dr. Gutmark
Bettina Paikert
Christian Oliver Prof. Dr. Paschereit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1382379A2 publication Critical patent/EP1382379A2/de
Publication of EP1382379A3 publication Critical patent/EP1382379A3/de
Application granted granted Critical
Publication of EP1382379B1 publication Critical patent/EP1382379B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • B01F25/43171Profiled blades, wings, wedges, i.e. plate-like element having one side or part thicker than the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431971Mounted on the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0436Operational information
    • B01F2215/044Numerical composition values of components or mixtures, e.g. percentage of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/221Improvement of heat transfer
    • F05B2260/222Improvement of heat transfer by creating turbulence

Definitions

  • the invention relates to a vortex generator in a fluid channel acted upon by a fluid medium and to a method for controlling the wake flow of such a vortex generator.
  • a particular field of application of the invention is the turbulence and mixing of fuel / air mixtures in premix burners.
  • Static mixers for shortening the mixing section of flowing fluid media are known in a variety of designs.
  • a design of such mixers, which permits intensive mixing of flowing fluid media with comparatively low pressure loss, is the subject of EP 0 623 786 or of CH-A-688 868.
  • the static mixers discussed in these documents, hereinafter called vortex generators represent tetrahedron-like bodies which on at least one lateral surface of one of the fluid medium acted upon flow channel are arranged. They comprise three freely flowing, in the flow direction extending active surfaces, a pointing into the flow channel roof surface and two side surfaces. The side surfaces connected to the wall of the flow channel enclose with one another a sweep angle ⁇ , whereas the roof surface extends at an angle of incidence ⁇ to the channel wall.
  • Size and strength of the trailing vortices are functions of the element height h, the element length l, the angle of attack ⁇ and the arrow angle ⁇ . By varying these parameters, this provides a simple means of aerodynamically stabilizing a flow at hand. At relatively large angles of incidence ⁇ and / or arrow angles ⁇ , the vorticity of the trailing vortices increases to such an extent that an area of low flow velocity is formed in the core of which, under varying flow conditions, entails the risk of a collapse of the vortex to form a backflow ,
  • the design of the vortex generators is therefore always a compromise, on the one hand to form the vortex so that in the shortest possible maximum mixing of the components involved, but on the other hand turn the vortex not so strong form that in the core area of low flow velocity or even a return flow. Since the incorporation of these vortex generators into the flow path is an instrumental measure, once installed, these are invariable. This means that an active influence on permanently or temporarily changed flow conditions is not readily possible. Especially when using these vortex generators in modern gas turbine plants for mixing and turbulence of a fuel / air mixture, this behavior can have negative effects on the flame stability and lead to an undesirable shift in the flame position.
  • the invention has for its object to avoid the disadvantages mentioned and safely exclude the formation of a sudströmzone in the core of the wake, even under changing flow conditions in the flow channel and expand the scope and variability of these vortex generators. Furthermore, the invention has for its object to provide a method for controlling the wake flow of such vortex generators.
  • the basic idea of the invention is to increase the axial velocity in the vortex core by deliberately introducing an axial impulse into the core flow of the wake vortex.
  • this axial pulse is introduced by introducing an at least approximately aligned in the flow direction secondary flow in the immediate region of the core flow.
  • one of the components to be mixed is introduced as secondary flow into the flow channel. It has proved to be advantageous in this case to introduce the secondary flow via outlet openings on the vortex generator into the core flow of the wake vortex.
  • the outlet openings of the secondary medium in the region of the side surfaces of the vortex generator or at the downstream edge are arranged.
  • the outlet opening is arranged in half chord length of the side surface below the trailing edge.
  • the secondary flow can be introduced from a single opening on the vortex generator in the core flow or from a number of outlet openings, which are aligned with the vortex core.
  • the cooling bores arranged at or near the vortex generators in a targeted manner for introducing an additional axial momentum. This can be achieved be such that a part of the cooling holes is modified so that an increased axial momentum is introduced into the core flow of the trailing vortices.
  • the outlet openings are configured according to their geometry, for example with regard to their orientation and / or their throughput.
  • the inventive measures are readily suitable as a retrofit measure for retrofitting already installed vortex generators according to the prior art by introducing appropriate outlet openings and means are provided for supplying a secondary fluid in the hollow interior of the vortex generators.
  • Vortex generators which are already equipped for cooling or admixing purposes with means for supplying a secondary fluid and with outlet openings, can be retrofitted by a modified design of the geometry of the outlet openings (Fig.4b, 5b).
  • the invention allows to react actively to temporarily or permanently changed flow conditions.
  • the mass flow of the secondary flow is very low. It is in the range between 0.1% and 5%, in particular between 0.5% and 1.5%, based on the total mass flow.
  • FIGS. 1 and 2 show in principle the mode of operation of a vortex generator (2) acted upon by a flow (1) according to the prior art.
  • a vortex generator (2) has three freely flowing, in the flow direction surfaces, two side surfaces (3) and (4) and perpendicular to a roof surface (5), wherein the side surfaces (3) and (4) has a right triangle and the roof surface (5) form an isosceles triangle.
  • the side surfaces (3) and (4) are substantially perpendicular to the channel wall (6), without this being a mandatory requirement, and are preferably fixed gas-tight with one of its sides Kathetencount to the channel wall (6).
  • the symmetry axis of the vortex generators (2) is aligned parallel to the flow direction.
  • the vortex generator (2) may also be provided with a bottom surface by means of which it is fixed in a suitable manner to the channel wall (6).
  • a floor surface is not related to the operation of the vortex generator.
  • the operation of the vortex generator (2) is substantially as set forth below.
  • a channel flow (1) flows to the vortex generator (2) and is deflected by the roof surface (5). Due to the sudden cross-sectional widening when overflowing the trailing edges (9) and (10) forms a pair of counter-rotating trailing vortices (11) whose axes are in the axis of the main flow.
  • Vorticity and swirl number are significantly determined by the angle of attack ⁇ and the arrow angle ⁇ . With increasing angles, the vorticity and swirl number are increased and in the core of the trailing vortices an area of lower axial velocity forms immediately behind the vortex generator (2) (dark areas in Figure 2), which can lead to a "vortex breakdown".
  • FIG. 3 illustrates in a highly schematic way the basic principle of the solution described.
  • an axial pulse for influencing the core flow is introduced into the trailing vortex (11).
  • an additional pulse is generated by a secondary flow (13) in the vicinity of the vortex core, which is drawn by the inductive effect of the swirl flow in the region of the vortex core.
  • the vortex (11) stabilizes and the wake flow is accelerated.
  • the vortex breakdown slows down and shifts downstream.
  • the vortex generator (2) is equipped with at least one outlet opening (12) for a fluid medium in the area of the side face (3).
  • the outlet opening (12) is arranged and aligned, for example at half chord length below the outflow edge (9), so that the exiting fluid jet (13) penetrates into the core flow of the wake vortex (11) and reinforces the axial velocity in this area.
  • the location of vortex breakdown is shifted downstream.
  • FIG 5 an alternative possibility for introducing a secondary flow is shown schematically. Thereafter, the at least one outlet opening (12) for introducing the secondary flow in the region of the downstream butt edge (7) of the vortex generator (2) is arranged. This may be a circular outlet opening (12) at half the height of the vortex generator (2), a number of such Openings in this area or a slot-shaped outlet opening (12).
  • FIG. 7 shows that, despite acceleration of the vortex core, the vortex strength is not weakened.
  • the mass-average vorticity strength downstream of the vortex generator actually increases by up to 50%.
  • the Varinate A represents the reference case of a vortex generator, which is set so strong that forms an area of low flow velocity in the wake.
  • Variations B and C represent the conditions in a vortex generator according to the invention, in which a secondary current in half chord length of a side surface (variant B) or at the downstream butt edge (variant C) is applied.
  • the vortex generators (2) shown here symmetrically and parallel to the flow direction.
  • This spin-like vortex (11) are generated.
  • the vortex generator (2) instead of a pair of opposing vortices (11), only one trailing vortex is used (11) generated on the swept side. As a result, the main flow (1) is forced to spin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Gas Burners (AREA)
  • Percussion Or Vibration Massage (AREA)

Description

    TECHNISCHES GEBIET
  • Die Erfindung betrifft einen Wirbelgenerator in einem von einem fluiden Medium beaufschlagten Strömungskanal sowie ein Verfahren zur Kontrolle der Nachlaufströmung eines solchen Wirbelgenerators. Ein besonderes Anwendungsgebiet der Erfindung ist die Verwirbelung und Durchmischung von Brennstoff-/Luft-Gemischen in Vormischbrennern.
  • STAND DER TECHNIK
  • Statische Mischer zur Verkürzung der Mischstrecke strömender fluider Medien sind in vielfältiger Gestaltung bekannt.
    Eine Gestaltungsform derartiger Mischer, die eine intensive Vermischung strömender fluider Medien bei vergleichsweise geringem Druckverlust erlaubt, ist Gegenstand von EP 0 623 786 oder von CH-A-688 868. Die in diesen Druckschriften diskutierten statischen Mischer, nachfolgend Wirbelgeneratoren genannt, stellen tetraederähnliche Körper dar, welche an mindestens einer Mantelfläche eines von dem fluiden Medium beaufschlagten Strömungskanals angeordnet sind. Sie umfassen drei frei umströmte, sich in Strömungsrichtung erstreckende Wirkflächen, eine in den Strömungskanal weisende Dachfläche und zwei Seitenflächen. Die mit der Wand des Strömungskanals verbundenen Seitenflächen schliessen untereinander einen Pfeilwinkel α ein, wohingegen die Dachfläche unter einem Anstellwinkel θ zur Kanalwand verläuft.
    Durch die Erzeugung von Längswirbeln ohne Rezirkulationsgebiet wird bereits nach einer äusserst kurzen Mischstrecke von einer Wirbelumdrehung eine Grobdurchmischung erzielt, während nach einer Strecke von wenigen Kanalhöhen infolge der turbulenten Strömung eine Feinmischung vorliegt.
    Diese Wirbelgeneratoren zeichnen sich durch eine besondere Einfachheit sowohl im Hinblick auf ihre Herstellung wie auch ihre technische Wirksamkeit aus. Die Fertigung und Zusammenfügung der drei Wirkflächen sowie die Verbindung mit einer ebenen oder gekrümmten Kanalwand kann ohne weiteres durch einfache Fügemethoden, in aller Regel Schweissen, erfolgen. Vom strömungstechnischen Standpunkt her weisen diese Generatoren einen sehr geringen Druckverlust auf und erzeugen bei entsprechender Auslegung Nachlaufwirbel ohne Totwassergebiet. Grösse und Stärke der Nachlaufwirbel sind Funktionen der Elementhöhe h, der Elementlänge l, des Anstellwinkels θ sowie des Pfeilwinkels α.
    Durch Variation dieser Parameter ist damit ein einfaches Mittel zur aerodynamischen Stabilisierung einer Strömung an die Hand gegeben.
    Bei relativ grossen Anstellwinkeln θ und/oder Pfeilwinkeln α steigt die Wirbelstärke der Nachlaufwirbel in einem solchen Masse an, dass sich in deren Kern ein Gebiet mit niedriger Strömungsgeschwindigkeit ausbildet, welches unter wechselnden Strömungsbedingungen die Gefahr eines Zusammenbruchs des Wirbels unter Ausbildung einer Rückströmung in sich birgt.
  • Die Auslegung der Wirbelgeneratoren stellt daher stets einen Kompromiss dar, einerseits die Wirbel so stark auszubilden, dass in möglichst kurzem Nachlauf eine maximale Durchmischung der beteiligten Komponenten erfolgt, andererseits aber wiederum die Wirbel nicht so stark auszubilden, dass sich im Kern ein Gebiet niedriger Strömungsgeschwindigkeit oder sogar eine Rückströmung ausprägt.
    Da es sich bei der Einbindung dieser Wirbelgeneratoren in den Strömungsweg um apparative Massnahmen handelt, sind diese, einmal installiert, unveränderlich. Das heisst, eine aktive Einflussnahme auf dauerhaft oder vorübergehend veränderte Strömungsbedingungen ist nicht ohne weiteres möglich. Gerade bei einem Einsatz dieser Wirbelgeneratoren in modernen Gasturbinenanlagen zur Durchmischung und Verwirbelung eines Brennstoff-/Luftgemisches kann dieses Verhalten negative Auswirkungen auf die Flammenstabilität haben und zu einer unerwünschten Verschiebung der Flammenlage führen.
  • DARSTELLUNG DER ERFINDUNG
  • In Weiterentwicklung des genannten Standes der Technik liegt der Erfindung die Aufgabe zugrunde, die genannten Nachteile zu vermeiden und die Ausbildung einer Rückströmzone im Kern des Nachlaufwirbels auch unter wechselnden Strömungsverhältnissen im Strömungskanal sicher auszuschliessen und die Einsatzbereich und Variabilität dieser Wirbelgeneratoren zu erweitern. Des weiteren liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Kontrolle der Nachlaufströmung solcher Wirbelgeneratoren bereitzustellen.
  • Erfindungsgemäss werden diese Aufgaben durch ein Verfahren gemäss Anspruch 1 gelöst.
    Vorteilhafte Ausführungsformen des Verfahrens geben die abhängigen Ansprüche wieder.
  • Der Grundgedanke der Erfindung besteht darin, durch gezieltes Einbringen eines Axialimpulses in die Kernströmung des Nachlaufwirbels die Axialgeschwindigkeit im Wirbelkern zu erhöhen.
    Nach einer bevorzugten Ausführungsform der Erfindung wird dieser Axialimpuls mittels Einleitung einer zumindest annähernd in Strömungsrichtung ausgerichteten Sekundärströmung im unmittelbaren Bereich der Kernströmung eingebracht.
    In vorzugsweiser Ausgestaltung wird eine der zu mischenden Komponenten als Sekundärströmung in den Strömungskanal eingeleitet.
    Als vorteilhaft hat es sich dabei erwiesen, die Sekundärströmung über Austrittsöffnungen am Wirbelgenerator in die Kernströmung des Nachlaufwirbels einzuleiten. In zweckmässiger Weise werden die Austrittsöffnungen des Sekundärmediums im Bereich der Seitenflächen des Wirbelgenerators oder an dessen stromabwärtiger Kante angeordnet.
    Nach einer besonders günstigen Ausführungsart ist die Austrittsöffnung in halber Sehnenlänge der Seitenfläche unterhalb der Abströmkante angeordnet.
    Dabei kann die Sekundärströmung aus einer Einzelöffnung am Wirbelgenerator in die Kernströmung eingeleitet werden oder aus einer Anzahl von Austrittsöffnungen, welche auf den Wirbelkern ausgerichtet sind.
    Nach einer zweckmässigen Ergänzung der Erfindung wird ferner vorgeschlagen, die an oder nahe den Wirbelgeneratoren angeordneten Kühlbohrungen gezielt zur Einbringung eines zusätzlichen Axialimpulses heranzuziehen. Dies kann dadurch erreicht werden, dass ein Teil der Kühlbohrungen derart modifiziert wird, dass ein erhöhter Axialimpuls in die Kernströmung der Nachlaufwirbel eingebracht wird. Zu diesem Zweck werden die Austrittsöffnungen in ihrer Geometrie entsprechend konfiguriert, beispielsweise hinsichtlich ihrer Ausrichtung und/oder ihres Durchsatzes.
    Die erfindungsgemässen Massnahmen eignen sich ohne weiteres auch als Retrofit-Massnahme zum Nachrüsten bereits installierter Wirbelgeneratoren nach dem Stand der Technik, indem entsprechende Austrittsöffnungen eingebracht sowie Mittel zur Zufuhr eines Sekundärfluids in den hohlen Innenraum der Wirbelgeneratoren vorgesehen werden. Wirbelgeneratoren, die zu Kühl- oder Zumischzwecken bereits mit Mitteln zur Zuleitung eines Sekundärfluids sowie mit Austrittsöffnungen ausgerüstet sind, können durch eine modifizierte Gestaltung der Geometrie der Austrittsöffnungen nachgerüstet werden (Fig.4b; 5b).
    Indem die Menge an einspeisbarem Sekundärfluid variabel einstellbar ist, erlaubt es die Erfindung, aktiv auf vorübergehend oder dauerhaft veränderte Strömungsverhältnisse zu reagieren.
    Der Massenstrom der Sekundärströmung ist dabei sehr gering. Er liegt in einer Grössenordnung zwischen 0,1% und 5%, insbesondere zwischen 0,5% und 1,5%, bezogen auf den Gesamtmassenstrom.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Weitere Merkmale, Vorteile und Einzelheiten der Erfindung seien nachfolgend anhand der Zeichnungen erläutert. Es werden nur die für die Erfindung wesentlichen Elemente dargestellt. Gleiche oder einander entsprechende Elemente figurieren unter demselben Bezugszeichen.
  • Hierbei zeigen
  • Fig.1
    Wirbelgenerator nach dem Stand der Technik
    Fig.2
    Geschwindigkeitsfeld (normierte axiale Geschwindigkeit) einer Kanalströmung im Nachlauf eines Wirbelgenerators nach dem Stand der Technik
    Fig.3
    Prinzipskizze der Wirkungsweise der Erfindung
    Fig.4a,b
    eine erste Ausführungsvariante eines erfindungsgemässen Wirbelgenerators
    Fig.5a,b
    eine weitere Ausführungsvariante eins erfindungsgemässen Wirbelgenerators
    Fig.6
    Geschwindigkeitsfeld (normierte axiale Geschwindigkeit) einer Kanalströmung im Nachlauf eines Wirbelgenerators nach der Erfindung
    Fig.7
    Massengemittelte Wirbelstärke stromab des Wirbelgenerators
    WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
  • Die Fig.1 und 2 geben in prinzipieller Weise die Wirkungsweise eines von einer Strömung (1) beaufschlagten Wirbelgenerators (2) nach dem Stand der Technik wieder.
    Ein solcher Wirbelgenerator (2) besitzt drei frei umströmte, in Strömungsrichtung verlaufende Flächen, zwei Seitenflächen (3) und (4) sowie dazu senkrecht eine Dachfläche (5), wobei die Seitenflächen (3) und (4) ein rechtwinkliges Dreieck und die Dachfläche (5) ein gleichschenkliges Dreieck bilden. Die Seitenflächen (3) und (4) stehen im wesentlichen senkrecht zur Kanalwand (6), ohne dass dies eine zwingende Voraussetzung darstellt, und sind mit einer ihrer Kathetenseiten an der Kanalwand (6) vorzugsweise gasdicht fixiert. Sie sind so orientiert, dass sie mit den zweiten Kathetenseiten an einer Stosskante (7) unter Einschluss eines vorzugsweise spitzen Pfeilwinkels α zusammentreffen, welche Stosskante (7) gleichzeitig das stromabwärtige Ende des Wirbelgenerators (2) darstellt und senkrecht zur Kanalwand (6) ausgerichtet ist. Die Seitenflächen (3) und (4) sind im wesentlichen dekkungsgleich dimensioniert. Auf deren Hypotenusenseiten, die sich in Strömungsrichtung zunehmend von der Kanalwand (6) entfernen, stützt sich die Dachfläche (5) ab, welche gegenüber der Kanalwand (6) einen spitzen Anstellwinkel θ einnimmt. Mit einer quer zur Strömungsrichtung verlaufenden Stosskante (8) liegt sie an der Kanalwandung (6) an. Die bündigen Stosskanten zwischen den beiden Seitenflächen (3) und (4) und der Dachfläche (5) bilden Abströmkanten (9) und (10).
    Die Symmetrieachse der Wirbelgeneratoren (2) ist parallel zur Strömungsrichtung ausgerichtet.
    Selbstverständlich kann der Wirbelgenerator (2) auch mit einer Bodenfläche versehen sein, mit deren Hilfe er auf geeignete Weise an der Kanalwand (6) fixiert ist. Eine derartige Bodenfläche steht indes in keinem Zusammenhang mit der Wirkungsweise des Wirbelgenerators.
    Die Wirkungsweise des Wirbelgenerators (2) ist im wesentlichen die nachfolgend dargelegte. Eine Kanalströmung (1) strömt den Wirbelgenerator (2) an und wird durch dessen Dachfläche (5) abgelenkt. Durch die plötzliche Querschnittserweiterung beim Überströmen der Abströmkanten (9) und (10) bildet sich ein Paar gegenläufiger Nachlaufwirbel (11) aus, deren Achsen in der Achse der Hauptströmung liegen. Wirbelstärke und Drallzahl werden massgeblich von dem Anstellwinkel θ und dem Pfeilwinkel α bestimmt. Mit steigenden Winkeln werden Wirbelstärke und Drallzahl erhöht und im Kern der Nachlaufwirbel bildet sich unmittelbar hinter dem Wirbelgenerator (2) zunehmend ein Gebiet niedrigerer Axialgeschwindigkeit (dunkle Flächen in Fig.2), das bis zu einem "vortex breakdown" führen kann.
  • Fig.3 stellt stark schematisiert das grundlegende Prinzip der beschriebenen Lösung dar. Ausgehend von einer geeigneten Stelle am Wirbelgenerator (2) wird in den Nachlaufwirbel (11) ein Axialimpuls zur Beeinflussung der Kernströmung eingebracht. Dabei wird durch eine Sekundärströmung (13) in der Nähe des Wirbelkerns ein zusätzlicher Impuls generiert, welcher durch die induktive Wirkung der Drallströmung in den Bereich des Wirbelkerns eingezogen wird. Richtet sich der Impuls parallel zur Hauptströmung, so stabilisiert sich der Wirbel (11) und die Nachlaufströmung wird beschleunigt. Der Vortex-Breakdown verzögert sich und wird stromabwärts verschoben.
    Nach einer bevorzugten Ausführungsform gemäss Fig. 4 ist zu diesem Zweck der Wirbelgenerator (2) mit mindestens einer Austrittsöffnung (12) für ein fluides Medium im Bereich der Seitenfläche (3) ausgerüstet. Die Austrittsöffnung (12) ist dabei derart angeordnet und ausgerichtet, beispielsweise in halber Sehnenlänge unterhalb der Abströmkante (9), dass der austretende Fluidstrahl (13) in die Kernströmung des Nachlaufwirbels (11) eindringt und die Axialgeschwindigkeit in diesem Bereich verstärkt. Durch Erhöhung der Strömungsgeschwindigkeit im Kernbereich des Nachlaufwirbels (11) wird der Ort des Wirbelaufplatzens stromabwärts verschoben.
  • In Fig.5 ist eine alternative Möglichkeit zur Einbringung einer Sekundärströmung schematisch wiedergegeben. Danach ist die mindestens eine Austrittsöffnung (12) zur Einbringung der Sekundärströmung im Bereich der stromabwärtigen Stosskante (7) des Wirbelgenerators (2) angeordnet. Hierbei kann es sich um eine kreisförmige Austrittsöffnung (12) in halber Höhe des Wirbelerzeugers (2) handeln, eine Anzahl solcher Öffnungen in diesem Bereich oder eine schlitzförmige Austrittsöffnung (12).
  • Wie aus Fig.6 zu erkennen ist, ist die Folge der gezielten Eindüsung eines Sekundärfluids in die Wirbelkernströmung ein deutlich ausgeglicheneres Geschwindigkeitsfeld im Nachlauf des Wirbelgenerators (2).
  • In Fig.7 ist dargestellt, dass trotz Beschleunigung des Wirbelkerns die Wirbelstärke nicht geschwächt wird. Im ausgeführten Beispiel erhöht sich die massengemittelte Wirbelstärke stromab des Wirbelgenerators sogar um bis zu 50%. Die Varinate A stellt dabei den Referenzfall eines Wirbelgenerators dar, der so stark angestellt ist, dass sich im Nachlauf ein Gebiet niedriger Strömungsgeschwindigkeit ausbildet. Die Varianten B und C geben die Verhältnisse bei einem Wirbelgenerator gemäss der Erfindung wieder, bei dem ein Sekundärstrom in halber Sehnenlänge einer Seitenfläche (Variante B) oder an der stromabwärtigen Stosskante (Variante C) aufgebracht wird.
  • Es ist vorteilhaft, die hier dargestellten Wirbelgeneratoren (2) symmetrisch und parallel zur Strömungsrichtung anzuordnen. Damit werden drallgleiche Wirbel (11) erzeugt. Ungeachtet dessen liegt es selbstverständlich auch im Rahmen der Erfindung, die Wirbelgeneratoren (2) asymmetrisch zu gestalten, beispielsweise in Form eines halben Wirbelgenerators, bei welchem nur eine der beiden Seitenflächen (3) oder (4) mit einem Pfeilwinkel α/2 an der Kanalwand (6) fixiert ist, wohingegen die andere Seitenfläche (3) oder (4) parallel zur Strömungsrichtung ausgerichtet ist. Im Gegensatz zum symmetrischen Wirbelgenerator (2) wird hierbei anstelle eines Paares gegenäufiger Wirbel (11) nur ein Nachlaufwirbel (11) an der gepfeilten Seite erzeugt. Im Ergebnis wird der Hauptströmung (1) ein Drall aufgezwungen.
  • BEZUGSZEICHENLISTE
  • 1
    Hauptströmung
    2
    Wirbelgenerator
    3
    Seitenfläche
    4
    Seitenfläche
    5
    Dachfläche
    6
    Kanalwand
    7
    Stosskante
    8
    Stosskante
    9
    Abströmkante
    10
    Abströmkante
    11
    Nachlaufwirbel
    12
    Austrittsöffnung
    13
    Sekundärströmung

Claims (6)

  1. Verfahren zur Kontrolle der Nachlaufströmung eines Wirbelgenerators in einem von einem fluiden Medium beaufschlagten Strömungskanal, welcher Wirbelgenerator im wesentlichen drei frei umströmte, sich in Strömungsrichtung erstreckende Flächen umfasst, von denen wenigstens zwei Flächen sich auf der Kanalwand abstützende Seitenflächen (3;4) bilden, welche sich in Strömungsrichtung annähern und unter einem spitzen Winkel α in einer gemeinsamen Kante (7) zusammentreffen und von denen wenigstens eine Fläche eine Dachfläche (5) bildet, die sich in Strömungsrichtung in einem spitzen Winkel θ von der Kanalwand entfernt und mit den Seitenflächen (3;4) Abströmkanten (9;10) bildet, wobei das strömende Fluid stromab der Abströmkanten (9;10) ein Paar gegenläufiger Wirbel (11) ausbildet, deren Wirbelachsen in der Achse der Hauptströmung (1) liegen, dadurch gekennzeichnet, dass in den Bereich der Kernströmung der sich ausbildenden Nachlaufwirbel (11) ein Axialimpuls in Richtung der Hauptströmung (1) eingebracht wird, indem eine Sekundärströmung (13) gezielt in die Kernströmung des Nachlaufwirbels (11) eingebracht wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass über Austrittsöffnungen (12) am Wirbelgenerator (2) ein Sekundärfluid in die Wirbelkernströmung eingebracht wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Durchsatz des Sekundärmediums (13) variabel einstellbar ist.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Sekundärfluid eine in die Hauptströmung (1) einzumischende Komponente ist.
  5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Massenanteil der Sekundärströmung (13) gegenüber der Hauptströmung (1) 0,1% bis 5%, beträgt.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Massenanteil der Sekundärströmung (13) gegenüber der Hauptströmung (1) 0,5% bis 1,5% beträgt.
EP03405505A 2002-07-20 2003-07-07 Verfahren zur Kontrolle der Nachlaufströmung eines Wirbelgenerators Expired - Lifetime EP1382379B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10233111 2002-07-20
DE10233111 2002-07-20

Publications (3)

Publication Number Publication Date
EP1382379A2 EP1382379A2 (de) 2004-01-21
EP1382379A3 EP1382379A3 (de) 2004-05-12
EP1382379B1 true EP1382379B1 (de) 2007-05-30

Family

ID=29762099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03405505A Expired - Lifetime EP1382379B1 (de) 2002-07-20 2003-07-07 Verfahren zur Kontrolle der Nachlaufströmung eines Wirbelgenerators

Country Status (4)

Country Link
US (1) US20040037162A1 (de)
EP (1) EP1382379B1 (de)
JP (1) JP2004069061A (de)
DE (2) DE10330023A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8186942B2 (en) 2007-12-14 2012-05-29 United Technologies Corporation Nacelle assembly with turbulators
US8192147B2 (en) 2007-12-14 2012-06-05 United Technologies Corporation Nacelle assembly having inlet bleed
US8282037B2 (en) 2007-11-13 2012-10-09 United Technologies Corporation Nacelle flow assembly

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7383850B2 (en) * 2005-01-18 2008-06-10 Peerless Mfg. Co. Reagent injection grid
US7350963B2 (en) * 2005-02-04 2008-04-01 Hamilton Beach Brands, Inc. Blender jar
US7797944B2 (en) * 2006-10-20 2010-09-21 United Technologies Corporation Gas turbine engine having slim-line nacelle
US7870721B2 (en) * 2006-11-10 2011-01-18 United Technologies Corporation Gas turbine engine providing simulated boundary layer thickness increase
US8727267B2 (en) * 2007-05-18 2014-05-20 United Technologies Corporation Variable contraction ratio nacelle assembly for a gas turbine engine
US8402739B2 (en) * 2007-06-28 2013-03-26 United Technologies Corporation Variable shape inlet section for a nacelle assembly of a gas turbine engine
US9228534B2 (en) 2007-07-02 2016-01-05 United Technologies Corporation Variable contour nacelle assembly for a gas turbine engine
US7900871B2 (en) * 2007-07-20 2011-03-08 Textron Innovations, Inc. Wing leading edge having vortex generators
ATE554346T1 (de) * 2009-03-16 2012-05-15 Alstom Technology Ltd BRENNER FÜR EINE GASTURBINE UND VERFAHREN ZUR LOKALEN KÜHLUNG VON HEIßEN GASSTRÖMEN, DIE EINEN BRENNER DURCHLAUFEN
US8528601B2 (en) * 2009-03-30 2013-09-10 The Regents Of The University Of Michigan Passive boundary layer control elements
US20110006165A1 (en) * 2009-07-10 2011-01-13 Peter Ireland Application of conformal sub boundary layer vortex generators to a foil or aero/ hydrodynamic surface
KR101005661B1 (ko) * 2009-09-08 2011-01-05 김낙회 유체 흐름을 이용한 추진기구
US8434723B2 (en) * 2010-06-01 2013-05-07 Applied University Research, Inc. Low drag asymmetric tetrahedral vortex generators
US8881500B2 (en) * 2010-08-31 2014-11-11 General Electric Company Duplex tab obstacles for enhancement of deflagration-to-detonation transition
US8746053B2 (en) 2010-12-16 2014-06-10 Inventus Holdings, Llc Method for determining optimum vortex generator placement for maximum efficiency on a retrofitted wind turbine generator of unknown aerodynamic design
RU2561956C2 (ru) 2012-07-09 2015-09-10 Альстом Текнолоджи Лтд Газотурбинная система сгорания
KR20140018036A (ko) * 2012-08-03 2014-02-12 김낙회 유체흐름을 이용한 추진기구
US10988923B2 (en) 2012-11-30 2021-04-27 Rensselaer Polytechnic Institute Methods and systems of modifying air flow at building structures
RU2596077C2 (ru) * 2014-12-15 2016-08-27 Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Щелевой инжектор-генератор вихрей и способ его работы
EP3081862B1 (de) 2015-04-13 2020-08-19 Ansaldo Energia Switzerland AG Anordnung zur erzeugung eines wirbels für einen vorvermischenden brenner einer gasturbine und gasturbine mit solch einer wirbelerzeugenden anordnung
JP6377569B2 (ja) * 2015-04-28 2018-08-22 住友金属鉱山株式会社 流体吹込装置及びこれを用いた化学反応装置
US9982915B2 (en) 2016-02-23 2018-05-29 Gilles Savard Air heating unit using solar energy
CN108121864B (zh) * 2017-12-15 2021-05-25 北京理工大学 一种基于涡流发生器的端壁横向二次流控制方法
CN108536907B (zh) * 2018-03-01 2021-11-30 华北电力大学 一种基于简化动量定理的风电机组远场尾流解析建模方法
CN108629461B (zh) * 2018-05-14 2021-11-12 华北电力大学 一种基于简化动量定理的近场尾流预测模型
US12050012B2 (en) 2020-03-31 2024-07-30 Siemens Energy Global GmbH & Co. KG Burner component of a burner, and burner of a gas turbine having a burner component of this type
JP7063973B1 (ja) 2020-11-27 2022-05-09 三菱重工業株式会社 風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1454196A (en) * 1921-07-16 1923-05-08 Trood Samuel Device for producing and utilizing combustible mixture
US1466006A (en) * 1922-09-14 1923-08-28 Trood Samuel Apparatus for producing and utilizing combustible mixture
SE320225B (de) * 1968-06-17 1970-02-02 Svenska Flygmotorer Ab
US3671208A (en) * 1970-10-09 1972-06-20 Wayne G Medsker Fluid mixing apparatus
US4026527A (en) * 1976-05-03 1977-05-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Vortex generator for controlling the dispersion of effluents in a flowing liquid
US4164375A (en) * 1976-05-21 1979-08-14 E. T. Oakes Limited In-line mixer
DE3043239C2 (de) * 1980-11-15 1985-11-28 Balcke-Dürr AG, 4030 Ratingen Verfahren und Vorrichtung zum Vermischen mindestens zweier fluider Teilströme
US4899772A (en) * 1988-10-20 1990-02-13 Rockwell International Corporation Mixing aids for supersonic flows
US5422443A (en) * 1991-10-18 1995-06-06 Hughes Missile Systems Company Rocket exhaust disrupter shapes
US5361828A (en) * 1993-02-17 1994-11-08 General Electric Company Scaled heat transfer surface with protruding ramp surface turbulators
CH687831A5 (de) * 1993-04-08 1997-02-28 Asea Brown Boveri Vormischbrenner.
DE59401295D1 (de) * 1993-04-08 1997-01-30 Abb Management Ag Mischkammer
EP0623786B1 (de) * 1993-04-08 1997-05-21 Asea Brown Boveri Ag Brennkammer
DE59401177D1 (de) * 1993-04-08 1997-01-16 Abb Management Ag Misch- und Flammenstabilisierungseinrichtung in einer Brennkammer mit Vormischverbrennung
EP0619133B1 (de) * 1993-04-08 1996-11-13 ABB Management AG Mischkammer
CH687832A5 (de) * 1993-04-08 1997-02-28 Asea Brown Boveri Brennstoffzufuehreinrichtung fuer Brennkammer.
CH688868A5 (de) * 1993-04-08 1998-04-30 Asea Brown Boveri Durchstroemter Kanal mit einem Wirbelgenerator
DE4411622A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Vormischbrenner
DE4417538A1 (de) * 1994-05-19 1995-11-23 Abb Management Ag Brennkammer mit Selbstzündung
DE4426351B4 (de) * 1994-07-25 2006-04-06 Alstom Brennkammer für eine Gasturbine
DE19510744A1 (de) * 1995-03-24 1996-09-26 Abb Management Ag Brennkammer mit Zweistufenverbrennung
DE19520291A1 (de) * 1995-06-02 1996-12-05 Abb Management Ag Brennkammer
DE19544816A1 (de) * 1995-12-01 1997-06-05 Abb Research Ltd Mischvorrichtung
DE19820992C2 (de) * 1998-05-11 2003-01-09 Bbp Environment Gmbh Vorrichtung zur Durchmischung eines einen Kanal durchströmenden Gasstromes und Verfahren unter Verwendung der Vorrichtung
DE19905996A1 (de) * 1999-02-15 2000-08-17 Abb Alstom Power Ch Ag Brennstofflanze zum Eindüsen von flüssigen und/oder gasförmigen Brennstoffen in eine Brennkammer
ES2244441T3 (es) * 1999-04-19 2005-12-16 Sulzer Chemtech Ag Torbellinos mezcladores estaticos y metodo de empleo para los mismos.
US6886973B2 (en) * 2001-01-03 2005-05-03 Basic Resources, Inc. Gas stream vortex mixing system
FI116147B (fi) * 2001-02-21 2005-09-30 Metso Paper Inc Järjestely paperinvalmistusprosessin virtausten sekoittamiseksi
EP1439349A1 (de) * 2003-01-14 2004-07-21 Alstom Technology Ltd Verbrennungsverfahren sowie Brenner zur Durchführung des Verfahrens
US6907919B2 (en) * 2003-07-11 2005-06-21 Visteon Global Technologies, Inc. Heat exchanger louver fin
ES2343067T3 (es) * 2004-02-27 2010-07-22 Haldor Topsoe A/S Aparato para mezclar corrientes de fluidos.
DE502005000780D1 (de) * 2005-01-17 2007-07-12 Balcke Duerr Gmbh Vorrichtung und Verfahren zum Mischen eines Fluidstroms in einem Strömungskanal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8282037B2 (en) 2007-11-13 2012-10-09 United Technologies Corporation Nacelle flow assembly
US8596573B2 (en) 2007-11-13 2013-12-03 United Technologies Corporation Nacelle flow assembly
US9004399B2 (en) 2007-11-13 2015-04-14 United Technologies Corporation Nacelle flow assembly
US8186942B2 (en) 2007-12-14 2012-05-29 United Technologies Corporation Nacelle assembly with turbulators
US8192147B2 (en) 2007-12-14 2012-06-05 United Technologies Corporation Nacelle assembly having inlet bleed

Also Published As

Publication number Publication date
DE50307355D1 (de) 2007-07-12
US20040037162A1 (en) 2004-02-26
EP1382379A3 (de) 2004-05-12
JP2004069061A (ja) 2004-03-04
EP1382379A2 (de) 2004-01-21
DE10330023A1 (de) 2004-02-05

Similar Documents

Publication Publication Date Title
EP1382379B1 (de) Verfahren zur Kontrolle der Nachlaufströmung eines Wirbelgenerators
EP0619457B1 (de) Vormischbrenner
EP0620403B1 (de) Misch- und Flammenstabilisierungseinrichtung in einer Brennkammer mit Vormischverbrennung
EP0794383B1 (de) Verfahren zum Betreiben einer Druckzerstäuberdüse
EP0619133B1 (de) Mischkammer
DE10303858B4 (de) Kraftstoff-Einspritzdüsenbaugruppe mit induzierten Turbulenzen
EP0623786B1 (de) Brennkammer
EP0604741B1 (de) Dralldüse zum Zerstäuben einer Flüssigkeit
EP0619456B1 (de) Brennstoffzufuhrsystem für Brennkammer
EP1986788B1 (de) Zweistoffdüse mit kreisförmig angeordneten sekundärluftdüsen
DE4214088C2 (de) Treibstoffeinspritzvorrichtung zum Einspritzen von Treibstoff in einen Überschall-Luftstrom
DE19730617A1 (de) Druckzerstäuberdüse
EP0924460B1 (de) Zweistufige Druckzerstäuberdüse
DE19543701A1 (de) Vormischbrenner
EP0807213B1 (de) Strömungsleitkörper für eine gasturbinen-brennkammer
EP0924461B1 (de) Zweistufige Druckzerstäuberdüse
EP0742411B1 (de) Luftzuströmung zu einer Vormischbrennkammer
CH702598A1 (de) Einspritzdüse sowie Verfahren zum Betrieb einer solchen Einspritzdüse.
DE19708218C2 (de) Gasbrenner
EP2478211B1 (de) Düsenbaugruppe für ein einspritzventil und einspritzventil
DE19639301A1 (de) Brenner zum Betrieb einer Brennkammer
WO2017102145A1 (de) Spritzlochscheibe und ventil
DE1451351B2 (de) Zerstaeubungsdrallduese mit nur einem brennstoffzufuhrkanal
CH687827A5 (de) Gasturbinenanlage mit einer Druckwellenmaschine.
CH688868A5 (de) Durchstroemter Kanal mit einem Wirbelgenerator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20041030

AKX Designation fees paid

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20050503

RTI1 Title (correction)

Free format text: PROCESS FOR CONTROLLING THE DOWNSTREAM FLOWPATTERN OF A VORTEX GENERATOR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50307355

Country of ref document: DE

Date of ref document: 20070712

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50307355

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50307355

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50307355

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50307355

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50307355

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170719

Year of fee payment: 15

Ref country code: DE

Payment date: 20170724

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50307355

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180707

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201