EP0924461B1 - Zweistufige Druckzerstäuberdüse - Google Patents

Zweistufige Druckzerstäuberdüse Download PDF

Info

Publication number
EP0924461B1
EP0924461B1 EP97811008A EP97811008A EP0924461B1 EP 0924461 B1 EP0924461 B1 EP 0924461B1 EP 97811008 A EP97811008 A EP 97811008A EP 97811008 A EP97811008 A EP 97811008A EP 0924461 B1 EP0924461 B1 EP 0924461B1
Authority
EP
European Patent Office
Prior art keywords
turbulence
swirl
nozzle
stage pressure
pressure atomizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97811008A
Other languages
English (en)
French (fr)
Other versions
EP0924461A1 (de
Inventor
Peter Dubach
Jonathan Lloyd
Thomas Prof. Dr. Sattelmayer
Christian Dr. Steinbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to DE59709868T priority Critical patent/DE59709868D1/de
Priority to EP97811008A priority patent/EP0924461B1/de
Priority to US09/213,430 priority patent/US6036479A/en
Priority to JP36351698A priority patent/JP4240617B2/ja
Publication of EP0924461A1 publication Critical patent/EP0924461A1/de
Application granted granted Critical
Publication of EP0924461B1 publication Critical patent/EP0924461B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3478Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet the liquid flowing at least two different courses before reaching the swirl chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0475Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the peripheral gas flow towards the central liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • F23D11/383Nozzles; Cleaning devices therefor with swirl means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2204/00Burners adapted for simultaneous or alternative combustion having more than one fuel supply

Definitions

  • the invention relates to a two-stage pressure atomizing nozzle according to the preamble of claim 1, which, for example, in the premix burners of a gas turbine plant is used.
  • EP 0 794 383 A2 has a two-stage pressure atomizing nozzle, which one Adjustment of the drop spray with regard to the atomization quality, the drop size and the spray angle to the respective load conditions.
  • the nozzle is characterized by a simple, little space requirement Type out.
  • the pressure atomizer nozzle has at least a first channel for the liquid to be atomized, through which the latter can be fed under pressure. Opens into the turbulence and / or swirl chamber at least one further channel for part of the liquid to be atomized or for a second liquid to be atomized, through which said part of the Liquid or the second liquid can be supplied under pressure and with swirl.
  • swirl nozzles In order to inject the fuel droplets into the outer areas of the To realize the burner, swirl nozzles with large jet angles are often used. Such a swirl nozzle injects in the right direction, but it does the small droplets it produces do not have sufficient momentum to the liquid fuel before it is vaporized or before it is influenced by to transport the air to the outer areas of the burner. Because of the large scatter in the initial distribution of droplet sizes on the other hand, large drops get into the outer areas. These drops However, they are not vaporized and can ultimately reach the burner walls hit, with the danger of the flame striking back in the wall Flow regions.
  • the invention tries to avoid all of these disadvantages. You have the task based on a two-stage pressure atomizing nozzle for at least one to be atomized To create fluid with which an improved fluid distribution in the outside of the pressure atomizer nozzle, in particular a better fuel distribution in a premix burner.
  • the pressure atomizing nozzle an the outside and the inner tube has a nozzle head connecting one another downstream and in Nozzle head arranged at least two separate turbulence and / or swirl chambers are.
  • Each of these turbulence and / or swirl chambers is over at least one Swirl duct with the second feed duct, via at least one turbulence generator duct with the first feed channel and via an outlet opening to the outside space of the nozzle body connected.
  • the Outlet openings each of which is only a part of the total liquid mass flow can be made smaller than that of a nozzle is possible with only one outlet opening.
  • smaller outlet openings in the swirl stage create a substantial one thinner liquid film, resulting in smaller droplets with less in the swirl stage Depth of entry are produced. That is why the range of uses of Pressure atomizer nozzle advantageously also shifted in the direction of part-load operation.
  • the nozzle body and the turbulence and / or swirl chambers each have one Central axis.
  • the central axes of the turbulence and / or swirl chambers are radial offset to the central axis of the nozzle body, preferably both radially and arranged obliquely to the central axis of the nozzle body in the tangential direction. In general, this can result in better liquid distribution over large areas Cross-sectional areas can be achieved.
  • the pressure atomizer nozzle the radial displacement and the inclination of the central axes of the turbulence and / or swirl chambers to the central axis of the nozzle body to the desired Adjusted spraying directions of the sprays being formed.
  • a sealing cover which receives the at least one turbulence generator channel arranged.
  • the first feed channel opens into a first, upstream of the cover trained plenum, while between the second feed channel and the a second, rotating plenum is formed.
  • all turbulence and / or swirl chambers can advantageously be used with only one first and only a second feed line can be provided, which is a very compact trained nozzle body allows.
  • the first one is particularly advantageous Plenum has a larger cross-section than the feed channel acting on it, whereby a more uniform fluid loading of the turbulence and / or Swirl chambers is reached.
  • the cross sections have the same advantage of the two plenums also larger than the sum of the cross sections of the Turbulence generator or swirl channels acted upon them.
  • the nozzle head is hemispherical in its downstream area educated. This can lead to the emergence of a so-called dead water area in the wake of the nozzle and thus possibly connected with droplet deposits Flow separations can be counteracted.
  • this hemispherical Recesses are made in the contour of the nozzle head, with each outlet opening opens into one of the recesses and each recess is rectangular is arranged to the outlet opening into it. Because of this design of the outlet area can be the liquid distribution in the exterior of the nozzle body can be further improved.
  • the nozzle body is with a premix burner connected that its exterior space is simultaneously an interior space of the Premix burner is.
  • the premix burner consists essentially of four in Hollow partial cone bodies positioned one on top of the other with a constant cone half angle ⁇ in the direction of flow.
  • the longitudinal symmetry axes the partial cone body are radially offset from one another, so that four flow opposite, tangential air inlet slots for a combustion air flow are trained.
  • the nozzle body is in through the tapered body formed, hollow cone-shaped interior of the premix burner. Downstream of each partial cone body is a trailing area of the partial cone body educated.
  • the fuel mass flow is over the turbulence and / or swirl chambers are divided into four equal partial flows. Since the Turbulence and / or swirl chambers each have a smaller outlet opening, than that with only one turbulence and / or swirl chamber with a single one Outlet opening can be realized, a thinner fuel spray can thus be generated become. This results in smaller droplets of fuel, which are smaller Penetration depth into the burner interior and much faster, i.e. Vaporize before hitting the inner wall of the partial cone body.
  • Such a pressure atomizing nozzle or the burner equipped with it can by simply regulating the fuel supply, i.e. by switching from turbulence operation to the swirl operation or mixed operation to the full load or part load requirements be adjusted. Because of the versatile switch options between swirl-enhanced and turbulence-enhanced spray mist is the solution applicable to most machine and performance conditions.
  • the pressure atomizer nozzle has a nozzle body 1, which consists of an outer tube 2 and an inner tube 3 and downstream of a nozzle head 4 is completed (Fig. 1, Fig. 2).
  • a nozzle body 1 In the inner tube 3 is a first feed channel 5 and between the outer tube 2 and the inner tube 3, a second feed channel 6 for formed at least one liquid fuel 7.
  • Is upstream of the nozzle head 4 between the inner tube 3 and the outer tube 2 is used for stabilization Spacer 8 arranged.
  • the nozzle head 4 takes four equally large turbulence and / or swirl chambers 9, 10, 11, 12.
  • the turbulence and / or Swirl chambers 9, 10, 11, 12 under appropriate operating conditions also have a different size (not shown), but on it It is important to ensure that there is always a symmetrical injection.
  • Both the turbulence and / or swirl chambers 9, 10, 11, 12 and the nozzle body 1 each have a central axis 9 ', 10', 11 ', 12', 13, the central axes 9 ', 10', 11 ', 12' of the turbulence and / or swirl chambers 9, 10, 11, 12 both in radial as well as in the tangential direction obliquely to the central axis 13 of the nozzle body 1 are arranged.
  • An imaginary plane cuts through the central axis 13 of the nozzle body 1, the imaginary planes through the central axes 9 ', 10 ', 11', 12 'of the turbulence and / or swirl chambers 9, 10, 11, 12 inside the Nozzle head 4 both in a radial and in a tangential angle (Fig. 3).
  • the location of the turbulence and / or swirl chambers 9, 10, 11, 12 inside of the nozzle head 4 is also in FIGS. 4 and 5 corresponding to that in FIG. 2 shown cuts shown.
  • the central axes 9 ', 10', 11 ', 12' of the turbulence and / or Swirl chambers 9, 10, 11, 12 therefore only offset parallel to the central axis 13 of the nozzle body 1 may be arranged.
  • Each of the turbulence and / or swirl chambers 9, 10, 11, 12 is by means of a sealing cover 14 to the first feed channel 5 completed.
  • two turbulence channels 15 are arranged, which the respective turbulence and / or swirl chamber 9, 10, 11, 12 with the first Connect feed channel 5.
  • the turbulence and / or swirl chambers 9, 10, 11, 12 each via a swirl duct 16 with the second feed duct 6 (FIG. 1, Fig. 2) and each connected to an outer space 18 via an outlet opening 17 (Fig. 3, Fig. 6).
  • the nozzle body 1 thus has four outlet openings 17, which each only let through a quarter of the total fuel mass flow. For this purpose, they are designed to be smaller than one that takes up the entire mass flow Single hole nozzle and produce at similar liquid fuel pressures smaller droplets.
  • the nozzle head 4 In its downstream area, the nozzle head 4 is hemispherical, each outlet opening 17 into a in the hemispherical contour of the nozzle head 4 introduced recess 19 opens and each recess 19th arranged at right angles to the outlet opening 17 each opening into it is.
  • any other streamlined design of the downstream is Area of the nozzle head 4 suitable, for example an elliptical shape.
  • a first plenum 20 is formed upstream of the closure cover 14, into which the first feed channel 5 opens.
  • the first plenum 20 has a larger one Cross-section than the feed channel 5 which acts on it second feed channel 6 and the swirl channels 16 connected to it is a second, circumferential plenum 21 is formed.
  • the cross sections of the two plenums 20, 21 are designed to be larger than the sum of the cross sections of those to which they are subjected Turbulence generator channels 15 or swirl channels 16. This is a more compact one Nozzle body 1 realized, which consists of four partial nozzles, each with a turbulence as well as a swirl stage, with a common geometry and with a uniform Diameter exists.
  • the liquid fuel 7 is supplied to the nozzle body 1 in a manner known per se Way over lines not shown, such as in EP 0 794 383 A2 shown and described.
  • the liquid fuel 7 passes through the first Feed channel 5 into the first plenum 20. From there it is through the turbulence channels 15 the cap 14 as a turbulent flow in the respective turbulence and / or swirl chamber 9, 10, 11, 12 initiated. Because of the compared to the first feed channel 5 enlarged cross section of the first plenum 20 a relatively uniform application of liquid to the turbulence and / or swirl chambers 9, 10, 11, 12 reached.
  • the injection is then carried out of liquid fuel 7 into the outside space 18, via the outlet openings 17 of the turbulence and / or swirl chambers 9, 10, 11, 12 Turbulence and / or swirl chambers 9, 10, 11, 12 four fuel sprays of the same size 37 with an improved droplet distribution. Because of the right angle injection of the liquid fuel 7 into the respective recess 19 the outside space 18 circular fuel sprays 37 are formed, what fuel distribution further improved.
  • the Arrangement of the turbulence channels 15 in the outer region of the cover 14, i.e. near the side walls of the turbulence and / or swirl chambers 9, 10, 11, 12 contribute to the fact that the liquid fuel full cone spray, not shown forms evenly and thus the distribution of the fuel droplets is further improved.
  • the nozzle body 1 is also included connected to a premix burner 22 that the outer space 18 of the nozzle body 1 is at the same time an interior 18 'of the premix burner 22 (FIG. 7).
  • the Premix burner 22 is a cone-shaped structure and essentially consists from four superimposed hollow partial cone bodies 23, 24, 25, 26 with one constant cone half angle ⁇ to the burner axis in the direction of flow 27. Im narrowest cross section of the hollow cone-shaped body formed by the partial cone bodies 23, 24, 25, 26 Interior 18 'of the premix burner 22 is the nozzle body 1 arranged.
  • the nozzle body 1 has four turbulence and / or Swirl chambers 9, 10, 11, 12 each with an outlet opening 17.
  • the partial cone bodies 23, 24, 25, 26 each have an axis of longitudinal symmetry 23 ', 24', 25 ', 26'. The latter run radially offset from one another, so that four flow opposite, tangential air inlet slots 28 for a combustion air mass flow 29 are formed (Fig. 8).
  • the Partial cone bodies 23, 24, 25, 26 along the air inlet slots 28 each have a feed line 30, which has longitudinal openings 31 for supplying a gaseous fuel 32 are provided in the interior 18 'of the premix burner 22 (FIG. 7). If necessary, this fuel 32 becomes through the tangential air inlet slots 28 admixed combustion air mass flow 29 introduced into the interior 18 '.
  • a mixed operation of the premix burner 22 via the pressure atomizing nozzle and the feed lines 30 is possible.
  • each of the four outlet openings 17 of the turbulence and / or swirl chambers 9, 10, 11, 12 is on one of the trailing areas 33, 34, 35, 36 of the partial cone bodies 23, 24, 25, 26 aligned.
  • the combustion air mass flow 29 and thus at partial load also reduces its momentum, which necessitates a lower fuel mass flow, a lower spray impulse and therefore smaller fuel droplets causes. Therefore, the respective swirl stage of the pressure atomizing nozzles in this operating state the gas turbine is subjected to a greater load than the turbulence stage.
  • An increasing swirl ratio gradually and automatically reduces the mass flow of liquid fuel 7. Because the swirl stage also has a lower Mass flow realized as the turbulence stage, the amount of fuel drops of liquid fuel 7 accordingly. About an increase in droplet size and thus the impact of the fuel droplets on the inner walls 38 of the burner to prevent the transition from the turbulence stage towards the swirl stage.
  • the gas turbine load decreases, i.e. with further decreasing Influence of the combustion air mass flow 29 through the transition to one full swirl operation, further reducing the droplet size of the Liquid fuel 7 reached.
  • the premix burner can also, according to EP 0 704 657 A2 consist of a swirl generator and a downstream mixing tube, the swirl generator being essentially the premix burner described above 22 corresponds or also a solution for double cone burners i.e. can be realized for a premix burner with two partial cone bodies (not shown).
  • the premix burner cannot be conical and / or consist of a number of circularly arranged blades (likewise not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Description

Technisches Gebiet
Die Erfindung betrifft eine zweistufige Druckzerstäuberdüse gemäss dem Oberbegriff des Anspruchs 1, welche beispielsweise in den Vormischbrennem einer Gasturbinenanlage zum Einsatz kommt.
Stand der Technik
Mit den wachsenden Betriebsdrücken moderner Gasturbinen wird eine gute Verteilung des Flüssigbrennstoffs mehr und mehr zum Problem. Die Gründe dafür liegen hauptsächlich in der ansteigenden Luftdichte und in deren Impuls, die einen grösseren Einfluss auf Verteilung der Brennstofftröpfchen besitzen.
Die EP 0 794 383 A2 weist eine zweistufige Druckzerstäuberdüse auf, welche eine Anpassung des Tropfensprays hinsichtlich der Zerstäubungsgüte, der Tropfengrösse und des Spraywinkels an die jeweiligen Lastbedingungen ermöglicht. Weiterhin zeichnet sich die Düse durch eine einfache, nur wenig Platz benötigende Bauart aus. Dazu umfasst sie einen Düsenkörper mit einer im Inneren ausgebildeten und über eine Düsenbohrung mit einem Aussenraum in Verbindung stehenden Turbulenz- und/oder Drallkammer. Zudem besitzt die Druckzerstäuberdüse mindestens einen ersten Kanal für die zu zerstäubende Flüssigkeit, durch welchen letztere unter Druck zuführbar ist. In die Turbulenz- und/oder Drallkammer mündet mindestens ein weiterer Kanal für einen Teil der zu zerstäubende Flüssigkeit bzw. für eine zweite zu zerstäubende Flüssigkeit, durch welchen besagter Teil der Flüssigkeit bzw. die zweite Flüssigkeit unter Druck und mit Drall zuführbar ist.
Es hat sich jedoch gezeigt, dass die Sicherung einer gleichmässigen Brennstoffverteilung auch bei Verwendung einer solchen zweistufige Druckzerstäuberdüse mit zunehmender Grösse der Brenner, d.h. bei einer Entwicklung wie sie beispielsweise beim Vergleich der Figuren 12 und 17 der EP 0 794 383 A2 deutlich erkennbar ist, schwieriger wird. Dies ist sowohl auf den überragenden Einfluss zurückzuführen, den die Luft auf die Verteilung der Brennstofftröpfchen besitzt als auch auf den zunehmenden Durchmesser der Brenner bzw. auf den Öffnungswinkel ihrer Drallerzeuger.
Die Luft, welche um die zentrale Brennstoffdüse eines solchen grossen Brenners strömt, verbleibt vornehmlich im Bereich der Brennerachse. Kann fast die gesamte Brennstoffmenge von dieser Luft getragen werden, entsteht ein mit Brennstoff angereichertes Zentrum, wobei keine grossen Flüssigbrennstoffmengen in den äusseren Bereich gelangen. Daher findet die Hauptverdampfung des Brennstoffs häufig bereits statt, ehe die Brennstofftröpfchen die gewünschten Punkte des Brenners, d.h. dessen äussere Bereiche, erreichen. Somit können in diesem Fall grosse NOx-Emissionen und ein Rückschlagen der Flamme hervorgerufen werden.
Um eine Eindüsung der Brennstofftröpfchen auch in die äusseren Bereiche des Brenners zu realisieren, werden häufig Dralldüsen mit grossen Strahlwinkeln eingesetzt. Zwar düst eine solche Dralldüse in die richtige Richtung ein, jedoch besitzen die von ihr erzeugten kleinen Tröpfchen keinen ausreichenden Impuls, um den Flüssigbrennstoff vor dessen Verdampfung oder vor der Beeinflussung durch die Luft in die äusseren Bereiche des Brenners zu transportieren. Wegen der grossen Streuung bei der anfänglichen Verteilung der Tröpfchengrössen, können andererseits grosse Tropfen in die äusseren Bereiche gelangen. Diese Tropfen werden jedoch nicht verdampft und können schliesslich auf die Brennerwände auftreffen, mit der Gefahr des Zurückschlagens der Flamme in den wandnahen Strömungsbereichen.
Wird dagegen ein beispielsweise aus der EP 0 794 383 A2 bekannter, turbulenzverstärkter Brennstoffstrahl genutzt, so produziert dieser grosse Tropfen, mit einem ausreichend hohem Impuls, um durch das Luftfeld zu gelangen. Diese Strahlen besitzen jedoch einen kleinen Ausbreitungswinkel und veranlassen die Tropfen nicht, sich gleichmässig in alle Richtungen zu verteilen.
Darstellung der Erfindung
Die Erfindung versucht, alle diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, eine zweistufige Druckzerstäuberdüse für zumindest eine zu zerstäubende Flüssigkeit zu schaffen, mit welcher eine verbesserte Flüssigkeitsverteilung im Aussenraum der Druckzerstäuberdüse, insbesondere eine bessere Brennstoffverteilung in einem Vormischbrenner, erzielt werden kann.
Erfindungsgemäss wird dies dadurch erreicht, dass bei einer Vorrichtung gemäss dem Oberbegriff des Anspruchs 1, die Druckzerstäuberdüse einen das Aussenund das Innenrohr stromab miteinander verbindenden Düsenkopf aufweist und im Düsenkopf zumindest zwei separate Turbulenz- und/oder Drallkammem angeordnet sind. Jede dieser Turbulenz- und/oder Drallkammern ist über zumindest einen Drallkanal mit dem zweiten Zuführkanal, über zumindest einen Turbulenzerzeugerkanal mit dem ersten Zuführkanal und über eine Austrittsöffnung mit dem Aussenraum des Düsenkörpers verbunden.
Dadurch entsteht ein Mehrpunkt-Einspritzsystem mit zumindest zwei Austrittsöffnungen, welches eine Veränderung der Zerstäubungsqualität, der Geschwindigkeit sowie der Richtung der Flüssigkeit und somit eine Anpassung der Zerstäubung und der Verteilung der Flüssigkeit an den jeweiligen Lastzustand erlaubt. Die Austrittsöffnungen, welche jeweils nur einen Teil des gesamten Flüssigkeits-Massenstroms aufnehmen, können kleiner ausgebildet werden als das bei einer Düse mit nur einer Austrittsöffnung möglich ist. Bei gleichem Flüssigkeits-Massenstrom erzeugen kleinere Austrittsöffnungen in der Drallstufe jedoch einen wesentlich dünneren Flüssigkeitsfilm, wodurch in der Drallstufe kleinere Tröpfchen mit geringerer Eintrittstiefe produziert werden. Deshalb wird das Einsatzspektrum der Druckzerstäuberdüse vorteilhaft auch in Richtung Teillastbetrieb verschoben.
Der Düsenkörper sowie die Turbulenz- und/oder Drallkammem besitzen jeweils eine Mittelachse. Die Mittelachsen der Turbulenz- und/oder Drallkammern sind radial versetzt zur Mittelachse des Düsenkörpers, vorzugsweise sowohl in radialer als auch in tangentialer Richtung schräg zur Mittelachse des Düsenkörpers angeordnet. Generell kann dadurch eine bessere Flüssigkeitsverteilung über grosse Querschnittsflächen erzielt werden. Bei der Auslegung der Druckzerstäuberdüse werden die radiale Versetzung und die Schrägstellung der Mittelachsen der Turbulenz- und/oder Drallkammem zur Mittelachse des Düsenkörpers an die gewünschten Eindüsrichtungen der sich ausbildenden Sprays angepasst.
Zwischen dem ersten Zuführkanal und jeder der Turbulenz- und/oder Drallkammern ist ein den zumindest einen Turbulenzerzeugerkanal aufnehmender Verschlussdeckel angeordnet. Dadurch wird eine relativ einfache Fertigung der Turbulenz- und/oder Drallkammern gewährleistet, welche beispielsweise durch Fräsen oder Bohren in den Düsenkopf eingebracht und mittels der anschliessend zu montierenden Verschlussdeckel stromauf abgedeckt werden. Durch die Anordnung des Turbulenzerzeugerkanals im äusseren Bereich des jeweiligen Verschlussdeckels, kann eine erhöhte Turbulenz der verwendeten Flüssigkeit und damit ein feineres Spray erreicht werden.
Zudem mündet der erste Zuführkanal in ein erstes, stromauf der Verschlussdeckel ausgebildetes Plenum, während zwischen dem zweiten Zuführkanal sowie den mit ihm verbundenen Drallkanälen ein zweites, umlaufendes Plenum ausgebildet ist. Dadurch können alle Turbulenz- und/oder Drallkammern vorteilhaft mit nur einer ersten und nur einer zweiten Zuführleitung versehen werden, was einen sehr kompakt ausgebildeten Düsenkörper ermöglicht. Besonders vorteilhaft besitzt das erste Plenum einen grösseren Querschnitt als der dieses beaufschlagende Zuführkanal, wodurch eine gleichmässigere Flüssigkeitsbeaufschlagung der Turbulenzund/oder Drallkammern erreicht wird. Mit dem gleichen Vorteil sind die Querschnitte der beiden Plenen auch grösser als die Summe der Querschnitte der von ihnen beaufschlagten Turbulenzerzeuger- bzw. Drallkanäle ausgebildet.
Es ist besonders zweckmässig, wenn alle Turbulenz- und/oder Drallkammern gleich gross ausgebildet sind. Auf diese Weise kann eine gleichmässige Flüssigkeitsverteilung im Aussenraum des Düsenkörpers gewährleistet werden.
Zudem ist der Düsenkopf in seinem stromabwärtigen Bereich halbkugelförmig ausgebildet. Dadurch kann dem Entstehen eines sogenannten Totwassergebietes im Nachlauf der Düse und somit eventuellen, mit Tröpfchenablagerungen verbunden Strömungsablösungen entgegengewirkt werden. In diese halbkugelförmige Kontur des Düsenkopfes sind Ausnehmungen eingebracht, wobei jede Austrittsöffnung in eine der Ausnehmungen mündet und jede Ausnehmung rechtwinklig zur in sie einmündenden Austrittsöffnung angeordnet ist. Aufgrund dieser Gestaltung des Austrittsbereiches kann die Flüssigkeitsverteilung im Aussenraum des Düsenkörpers weiter verbessert werden.
In einer Ausführungsform der Erfindung ist der Düsenkörper so mit einem Vormischbrenner verbunden, dass sein Aussenraum gleichzeitig ein Innenraum des Vormischbrenners ist. Der Vormischbrenner besteht im wesentlichen aus vier in Strömungsrichtung aufeinander positionierten, hohlen Teilkegelkörpern mit einem in Strömungsrichtung konstanten Kegelhalbwinkel β. Die Längssymmetrieachsen der Teilkegelkörper verlaufen radial versetzt zueinander, so dass vier strömungsmässig entgegengesetzte, tangentiale Lufteintrittsschlitze für einen Verbrennungsluftstrom ausgebildet sind. Dabei ist der Düsenkörper im durch die kegeligen Teilkörper gebildeten, hohlkegelförmigen Innenraum des Vormischbrenners angeordnet. Stromab jedes Teilkegelkörpers ist ein Nachlaufgebiet des Teilkegelkörpers ausgebildet. Im Düsenkopf der Druckzerstäuberdüse sind vier Turbulenzund/oder Drallkammern angeordnet, deren Austrittsöffnungen auf das Nachlaufgebiet des jeweils benachbarten Teilkegelkörpers ausgerichtet sind.
Bei dieser Ausführungsform der Erfindung wird der Brennstoff-Massenstrom über die Turbulenz- und/oder Drallkammern in vier gleiche Teilströme aufgeteilt. Da die Turbulenz- und/oder Drallkammern jeweils eine kleinere Austrittsöffnung aufweisen, als das bei nur einer Turbulenz- und/oder Drallkammer mit einer einzigen Austrittsöffnung realisierbar ist, kann somit ein dünnerer Brennstoffspray erzeugt werden. In der Folge entstehen kleinere Brennstofftröpfchen, welche eine geringere Eindringtiefe in den Brennerinnenraum aufweisen und wesentlich schneller, d.h. vor Auftreffen auf die Innenwand der Teilkegelkörper verdampfen. Infolge der Ausrichtung der Austrittsöffnungen der Turbulenz- und/oder Drallkammern auf die Nachlaufgebiete der Teilkegelkörper, sind die Brennstofftröpfchen geringeren aerodynamischen Kräften ausgesetzt und können somit besser in radialer Richtung in die Verbrennungsluft eindringen. Letztlich wird dadurch am Ausgang des Brenners eine gleichmässige Flüssigbrennstoffdampfverteilung und somit eine verbesserte Verbrennung ermöglicht.
Eine solche Druckzerstäuberdüse bzw. der mit ihr ausgestattete Brenner kann durch einfaches Regeln der Brennstoffzufuhr, d.h. durch Umschalten vom Turbulenzbetrieb auf den Drallbetrieb oder Mischbetrieb an den Vollast- oder Teillastbedarf angepasst werden. Wegen der vielseitigen Wechselmöglichkeiten zwischen drallverstärkten und turbulenzverstärkten Sprühnebeln ist die Lösung bei den meisten Maschinen- und Leistungsbedingungen anwendbar.
Kurze Beschreibung der Zeichnung
In der Zeichnung sind zwei Ausführungsbeispiele der Erfindung anhand einer zweistufigen Druckzerstäuberdüse dargestellt.
Es zeigen:
Fig. 1
die Druckzerstäuberdüse in perspektivischer Darstellung;
Fig. 2
eine Draufsicht auf die Druckzerstäuberdüse, gemäss Fig. 1;
Fig. 3
einen Schnitt durch die Druckzerstäuberdüse, entlang der Linie III-III in Fig. 2, verkleinert dargestellt;
Fig. 4
einen Schnitt durch die Druckzerstäuberdüse, entlang der Linie IV-IV in Fig. 2, verkleinert dargestellt;
Fig. 5
einen Schnitt durch die Druckzerstäuberdüse, entlang der Linie V-V in Fig. 2, verkleinert dargestellt;
Fig. 6
eine Ansicht der Druckzerstäuberdüse, gemäss Fig. 1, jedoch von unten;
Fig. 7
einen Vormischbrenner mit integrierter Druckzerstäuberdüse;
Fig. 8
einen Schnitt VIII-VIII durch den Vormischbrenner, gemäss Fig. 7.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Nicht dargestellt ist beispielsweise die die Vormischbrenner aufnehmende Brennkammer und die mit dieser verbundene Gasturbine. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.
Weg zur Ausführung der Erfindung
Die Druckzerstäuberdüse besitzt einen Düsenkörper 1, welcher aus einem Aussenrohr 2 sowie einem Innenrohr 3 besteht und stromab von einem Düsenkopf 4 abgeschlossen wird (Fig. 1, Fig. 2). Im Innenrohr 3 ist ein erster Zuführkanal 5 und zwischen dem Aussenrohr 2 sowie dem Innenrohr 3 ein zweiter Zuführkanal 6 für zumindest einen Flüssigbrennstoff 7 ausgebildet. Stromauf des Düsenkopfes 4 ist zwischen dem Innenrohr 3 und dem Aussenrohr 2 ein zur Stabilisierung dienender Abstandhalter 8 angeordnet. Der Düsenkopf 4 nimmt vier gleich grosse Turbulenz- und/oder Drallkammern 9, 10, 11, 12 auf. Natürlich können die Turbulenzund/oder Drallkammern 9, 10, 11, 12 bei entsprechenden Einsatzbedingungen auch eine unterschiedliche Grösse aufweisen (nicht dargestellt), wobei jedoch darauf zu achten ist, dass stets eine symmetrische Eindüsung erfolgt.
Sowohl die Turbulenz- und/oder Drallkammern 9, 10, 11, 12 als auch der Düsenkörper 1 besitzen jeweils eine Mittelachse 9', 10', 11', 12', 13, wobei die Mittelachsen 9', 10', 11', 12' der Turbulenz- und/oder Drallkammem 9, 10, 11, 12 sowohl in radialer als auch in tangentialer Richtung schräg zur Mittelachse 13 des Düsenkörpers 1 angeordnet sind. Dabei schneidet eine gedachte Ebene durch die Mittelachse 13 des Düsenkörpers 1 die gedachten Ebenen durch die Mittelachsen 9', 10', 11', 12' der Turbulenz- und/oder Drallkammern 9, 10, 11, 12 im Inneren des Düsenkopfes 4 sowohl in einem radialen als auch in einem tangentialen Winkel (Fig. 3). Die Lage der Turbulenz- und/oder Drallkammem 9, 10, 11, 12 im Inneren des Düsenkopfs 4 wird auch in den Figuren 4 und 5 entsprechend den in Figur 2 bezeichneten Schnitten dargestellt. Bei einer konkreten Druckzerstäuberdüse richtet sich die Schrägstellung der Mittelachsen 9', 10', 11', 12' zur Mittelachse 13 des Düsenkörpers 1 nach den gewünschten Eindüsrichtungen der sich ausbildenden Brennstoffsprays 37. Entsprechend den konkreten Einsatzbedingungen der Druckzerstäuberdüse können die Mittelachsen 9', 10', 11', 12' der Turbulenzund/oder Drallkammern 9, 10, 11, 12 daher auch lediglich parallel versetzt zur Mittelachse 13 des Düsenkörpers 1 angeordnet sein.
Jede der Turbulenz- und/oder Drallkammern 9, 10, 11, 12 ist mittels eines Verschlussdeckels 14 zum ersten Zuführkanal 5 abgeschlossen. Im äusseren Bereich jedes Verschlussdeckels 14 sind zwei Turbulenzerzeugerkanäle 15 angeordnet, welche die jeweilige Turbulenz- und/oder Drallkammer 9, 10, 11, 12 mit dem ersten Zuführkanal 5 verbinden. Zudem sind die Turbulenz- und/oder Drallkammern 9, 10, 11, 12 über jeweils einen Drallkanal 16 mit dem zweiten Zuführkanal 6 (Fig. 1, Fig. 2) und über jeweils eine Austrittsöffnung 17 mit einem Aussenraum 18 verbunden (Fig. 3, Fig. 6). Der Düsenkörper 1 besitzt somit vier Austrittsöffnungen 17, die jeweils nur ein Viertel des gesamten Brennstoff-Massenstroms durchlassen. Sie sind dazu kleiner ausgebildet, als eine den gesamten Massenstrom aufnehmende Einzellochdüse und produzieren bei ähnlichen Flüssigbrennstoffdrücken kleinere Tröpfchen.
In seinem stromabwärtigen Bereich ist der Düsenkopf 4 halbkugelförmig ausgebildet, wobei jede Austrittsöffnung 17 in eine in die halbkugelförmige Kontur des Düsenkopfes 4 eingebrachte Ausnehmung 19 mündet und jede Ausnehmung 19 rechtwinklig zu der jeweils in sie einmündenden Austrittsöffnung 17 angeordnet ist. Natürlich ist auch jede andere strömungsgünstige Ausbildung des stromabwärtigen Bereichs des Düsenkopfes 4 geeignet, beispielsweise eine elliptische Form.
Stromauf der Verschlussdeckel 14 ist ein erstes Plenum 20 ausgebildet, in welches der erste Zuführkanal 5 mündet. Das erste Plenum 20 besitzt einen grösseren Querschnitt als der dieses beaufschlagende Zuführkanal 5. Zwischen dem zweiten Zuführkanal 6 und den mit ihm verbundenen Drallkanälen 16 ist ein zweites, umlaufendes Plenum 21 ausgebildet. Die Querschnitte der beiden Plenen 20, 21 sind grösser ausgebildet als die Summe der Querschnitte der von ihnen beaufschlagten Turbulenzerzeugerkanäle 15 bzw. Drallkanäle 16. Somit ist ein kompakter Düsenkörper 1 realisiert, welcher aus vier Teildüsen mit jeweils einer Turbulenz- sowie einer Drallstufe, mit einer gemeinsamen Geometrie und mit einem einheitlichen Durchmesser besteht.
Die Zufuhr des Flüssigbrennstoffs 7 zum Düsenkörper 1 erfolgt auf an sich bekannte Weise über nicht gezeigte Leitungen, wie beispielsweise in der EP 0 794 383 A2 dargestellt und beschrieben.
Beim Betrieb der Turbulenzstufe gelangt der Flüssigbrennstoff 7 über den ersten Zuführkanal 5 in das erste Plenum 20. Von dort aus wird er durch die Turbulenzerzeugerkanäle 15 der Verschlussdeckel 14 als eine turbulente Strömung in die jeweilige Turbulenz- und/oder Drallkammer 9, 10, 11, 12 eingeleitet. Aufgrund des gegenüber dem ersten Zuführkanal 5 vergrösserten Querschnittes des ersten Plenums 20 wird eine relativ gleichmässige Flüssigkeitsbeaufschlagung der Turbulenz- und/oder Drallkammern 9, 10, 11, 12 erreicht. Anschliessend erfolgt das Eindüsen des Flüssigbrennstoffs 7 in den Aussenraum 18, über die Austrittsöffnungen 17 der Turbulenz- und/oder Drallkammern 9, 10, 11, 12. Dabei erzeugen die Turbulenz- und/oder Drallkammern 9, 10, 11, 12 vier gleich grosse Brennstoffsprays 37 mit einer verbesserten Tröpfchenverteilung. Aufgrund der rechtwinklig zur jeweiligen Ausnehmung 19 erfolgenden Eindüsung des Flüssigbrennstoffs 7 in den Aussenraum 18 werden kreisförmige Brennstoffsprays 37 ausgebildet, was die Brennstoffverteilung weiter verbessert.
Demgegenüber wird die Drallstufe über den zweiten Zuführkanal 6 mit Flüssigbrennstoff 7 beaufschlagt. Letzterer gelangt zunächst in das zweite Plenum 21 und wird schliesslich von dort aus gleichmässig über die tangentialen Drallkanäle 16 auf die Turbulenz- und/oder Drallkammern 9, 10, 11, 12 aufgeteilt.
Natürlich ist im Teillastbereich auch eine Kombination von teilweise turbulenzverstärktem Betrieb und teilweisem Drallbetrieb möglich. In diesem Fall trägt die Anordnung der Turbulenzerzeugerkanäle 15 im äusseren Bereich der Verschlussdeckel 14, d.h. nahe der Seitenwände der Turbulenz- und/oder Drallkammern 9, 10, 11, 12 dazu bei, dass sich das nicht dargestellte Flüssigbrennstoff-Vollkegelspray gleichmässig ausbildet und somit die Verteilung der Brennstofftröpfchen weiter verbessert wird.
In einem zweiten Ausführungsbeispiel der Erfindung ist der Düsenkörper 1 so mit einem Vormischbrenner 22 verbunden, dass der Aussenraum 18 des Düsenkörpers 1 gleichzeitig ein Innenraum 18' des Vormischbrenners 22 ist (Fig. 7). Der Vormischbrenner 22 ist ein kegelförmiges Gebilde und besteht im wesentlichen aus vier aufeinander positionierten, hohlen Teilkegelkörpem 23, 24, 25, 26 mit einem in Strömungsrichtung konstanten Kegelhalbwinkel β zur Brennerachse 27. Im engsten Querschnitt des durch die Teilkegelkörper 23, 24, 25, 26 gebildeten, hohlkegelförmigen Innenraumes 18' des Vormischbrenners 22 ist der Düsenkörper 1 angeordnet. Analog der Figuren 1 bis 6 weist der Düsenkörper 1 vier Turbulenzund/oder Drallkammern 9, 10, 11, 12 mit jeweils einer Austrittsöffnung 17 auf.
Die Teilkegelkörper 23, 24, 25, 26 besitzen jeweils eine Längssymmetrieachse 23', 24', 25', 26'. Letztere verlaufen radial versetzt zueinander, so dass vier strömungsmässig entgegengesetzte, tangentiale Lufteintrittsschlitze 28 für einen Verbrennungsluftmassenstrom 29 ausgebildet werden (Fig. 8). Zudem weisen die Teilkegelkörper 23, 24, 25, 26 längs der Lufteintrittsschlitze 28 je eine Zuleitung 30 auf, welche längsseitig mit Öffnungen 31 zur Zufuhr eines gasförmigen Brennstoffs 32 in den Innenraum 18' des Vormischbrenners 22 versehen sind (Fig. 7). Dieser Brennstoff 32 wird bei Bedarf dem durch die tangentialen Lufteintrittsschlitze 28 in den Innenraum 18' eingeführten Verbrennungsluftmassenstrom 29 zugemischt. Ein Mischbetrieb des Vormischbrenners 22 über die Druckzerstäuberdüse und die Zuleitungen 30 ist möglich.
Beim Betrieb des Vormischbrenners 22 über die Druckzerstäuberdüse wird, in Abhängigkeit sowohl von der Materialdicke seiner Teilkegelkörper 23, 24, 25, 26 als auch von der Strömungsgeschwindigkeit der Verbrennungsluftmassenströme 29, stromab jedes Teilkegelkörpers 23, 24, 25, 26 zwangsläufig ein Nachlaufgebiet 33, 34, 35, 36 ausgebildet, in dem deutlich geringere aerodynamische Kräfte herrschen als in den benachbarten Bereichen des Innenraums 18'. Jede der vier Austrittsöffnungen 17 der Turbulenz- und/oder Drallkammern 9, 10, 11, 12 ist auf eines der Nachlaufgebiete 33, 34, 35, 36 der Teilkegelkörper 23, 24, 25, 26 ausgerichtet. Dadurch wird der Flüssigbrennstoff 7 in Form von vier separaten Brennstoffsprays 37 über die Austrittsöffnungen 17 in den Innenraum 18' des Vormischbrenners 22, genauer in die Nachlaufgebiete 33, 34, 35, 36 der Teilkegelkörper 23, 24, 25, 26 des Vormischbrenners 22, eingedüst. Infolge dieser Ausrichtung der Brennstoffsprays 37 sind die Brennstofftröpfchen geringeren aerodynamischen Kräften ausgesetzt und werden dementsprechend besser radial in die Verbrennungsluftmassenströme 29 eingemischt. Die verbesserte Vormischung führt zu einem gleichmässig aufbereiteten Brenngemisch am Brennerende und damit zu einer verbesserten Verbrennung mit deutlich geringeren NOx-Werten.
Bei Vollast einer nicht dargestellten, mit einer Brennkammer verbundenen Gasturbine werden die Druckzerstäuberdüsen jedes die Brennkammer beaufschlagenden Vormischbrenners 22 nahezu vollständig über ihre Turbulenzstufe betrieben. Dadurch werden Brennstoffsprays 37 mit kleinen, zu den Brennerinnenwänden 38 ausgerichtete Winkeln und mit grossen Tröpfchen-Impulsen erzeugt. Diese Brennstofftröpfchen dringen in das sie umgebende, vom Verbrennungsluftmassenstrom 29 gebildete Luftfeld ein und erreichen so in grosser Anzahl die äusseren Bereiche des Innenraums 18' des Vormischbrenners 22. Auf diese Weise kann schliesslich am Brennerausgang ein gleichmässiges Brennstoff-Dampfprofil ausgebildet werden.
Im allgemeinen wird bei Teillast der Verbrennungsluftmassenstrom 29 und damit auch dessen Impuls verringert, was die Notwendigkeit eines geringeren Brennstoff-Massenstroms, eines geringeren Spray-Impulses und daher kleinere Brennstofftröpfchen hervorruft. Daher wird die jeweilige Drallstufe der Druckzerstäuberdüsen in diesem Betriebszustand der Gasturbine stärker beaufschlagt als die Turbulenzstufe. Ein steigendes Drallverhältnis reduziert allmählich und automatisch den Massenstrom des Flüssigbrennstoffs 7. Weil zudem die Drallstufe einen geringeren Massenstrom als die Turbulenzstufe realisiert, sinkt die Brennstoffmenge des Flüssigbrennstoffs 7 entsprechend. Um ein Anwachsen der Tröpfchengrösse und damit das Auftreffen der Brennstofftröpfchen auf die Brennerinnenwände 38 zu verhindern wird von der Turbulenzstufe in Richtung Drallstufe übergegangen. Dagegen wird bei sinkender Last der Gasturbine, d.h. bei weiter abnehmendem Einfluss des Verbrennungsluftmassenstroms 29, durch den Übergang auf einen vollständigen Drallbetrieb, eine weitere Verringerung der Tröpfchengrösse des Flüssigbrennstoffs 7 erreicht.
Natürlich kann der Vormischbrenner, entsprechend der EP 0 704 657 A2, auch aus einem Drallerzeuger und einem stromab anschliessenden Mischrohr bestehen, wobei der Drallerzeuger im wesentlichen dem oben beschriebenen Vormischbrenner 22 entspricht oder auch eine Lösung für Doppelkegelbrenner d.h. für einen Vormischbrenner mit zwei Teilkegelkörpern realisiert werden (nicht dargestellt). Ebenso kann der Vormischbrenner nicht kegelig ausgebildet sein und/oder aus einer Anzahl kreisförmig angeordneter Schaufeln bestehen (ebenfalls nicht dargestellt).
Bezugszeichenliste
1
Düsenkörper
2
Aussenrohr
3
Innenrohr
4
Düsenkopf
5
Zuführkanal, erster
6
Zuführkanal, zweiter
7
Flüssigbrennstoff
8
Abstandhalter
9
Turbulenz- und/oder Drallkammer
10
Turbulenz- und/oder Drallkammer
11
Turbulenz- und/oder Drallkammer
12
Turbulenz- und/oder Drallkammer
13
Mittelachse, von 1
14
Verschlussdeckel
15
Turbulenzerzeugerkanal
16
Drallkanal
17
Austrittsöffnung
18
Aussenraum von 1
19
Ausnehmung
20
Plenum, erstes
21
Plenum, zweites
22
Vormischbrenner
23
Teilkegelkörper
24
Teilkegelkörper
25
Teilkegelkörper
26
Teilkegelkörper
27
Brennerachse
28
Lufteintrittsschlitz
29
Verbrennungstuftmassenstrom
30
Zuleitung
31
Öffnung
32
Brennstoff, gasförmiger
33
Nachlaufgebiet, von 23
34
Nachlaufgebiet, von 24
35
Nachlaufgebiet, von 25
36
Nachlaufgebiet, von 26
37
Brennstoffspray, Spray
38
Brennerinnenwand
9'
Mittelachse, von 9
10'
Mittelachse, von 10
11'
Mittelachse, von 11
12'
Mittelachse, von 12
18'
Innenraum von 22
23'
Längssymmetrieachse, von 23
24'
Längssymmetrieachse, von 24
25'
Längssymmetrieachse, von 25
26'
Längssymmetrieachse, von 26
β
Kegelhalbwinkel

Claims (11)

  1. Zweistufige Druckzerstäuberdüse für zumindest eine zu zerstäubende Flüssigkeit, mit einem aus einem Aussenrohr (2) und einem Innenrohr (3) bestehenden Düsenkörpeper (1), wobei im Innenrohr ein erster Zuführkanal (5) und zwischen dem Aussenrohr sowie dem Innenrohr ein zweiter Zuführkanal (6) ausgebildet ist, beide Zuführkanäle in eine Turbulenz- und/oder Drallkammer (9, 10, 11, 12) münden und letztere über eine Austrittsöffnung (17) mit einem Aussenraum (18) verbunden ist, dadurch gekennzeichnet, dass
    a) der Düsenkörper (1) einen das Aussen- und das Innenrohr (2, 3) stromab miteinander verbindenden Düsenkopf (4) aufweist,
    b) im Düsenkopf (4) zumindest zwei separate Turbulenz- und/oder Drallkammern (9, 10, 11, 12) angeordnet sind,
    c) jede der Turbulenz- und/oder Drallkammern (9, 10, 11, 12) über zumindest einen Drallkanal (16) mit dem zweiten Zuführkanal (6), über zumindest einen Turbulenzerzeugerkanal (15) mit dem ersten Zuführkanal (5) und über eine Austrittsöffnung (17) mit dem Aussenraum (18) verbunden ist.
  2. Zweistufige Druckzerstäuberdüse nach Anspruch 1, dadurch gekennzeichnet, dass der Düsenkörper (1) sowie die Turbulenz- und/oder Drallkammern (9, 10, 11, 12) jeweils eine Mittelachse (13, 9', 10', 11', 12') besitzen, die Mittelachsen (9', 10', 11', 12') der Turbulenz- und/oder Drallkammern (9, 10, 11, 12) radial versetzt zur Mittelachse (13) des Düsenkörpers (1), vorzugsweise sowohl in radialer als auch in tangentialer Richtung schräg zur Mittelachse (13) des Düsenkörpers (1) angeordnet sind.
  3. Zweistufige Druckzerstäuberdüse nach Anspruch 2, dadurch gekennzeichnet, dass zwischen jeder Turbulenz- und/oder Drallkammer (9, 10, 11, 12) und dem ersten Zuführkanal (5) ein den zumindest einen Turbulenzerzeugerkanal (15) aufnehmender Verschlussdeckel (14) angeordnet ist.
  4. Zweistufige Druckzerstäuberdüse nach Anspruch 3, dadurch gekennzeichnet, dass der zumindest eine Turbulenzerzeugerkanal (15) im äusseren Bereich des jeweiligen Verschlussdeckels (14) angeordnet ist.
  5. Zweistufige Druckzerstäuberdüse nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der erste Zuführkanal (5) in ein stromauf der Verschlussdeckel (14) ausgebildetes, erstes Plenum (20) mündet und zwischen dem zweiten Zuführkanal (6) sowie den mit ihm verbundenen Drallkanälen (16) ein zweites, umlaufendes Plenum (21) ausgebildet ist.
  6. Zweistufige Druckzerstäuberdüse nach Anspruch 5, dadurch gekennzeichnet, dass das erste Plenum (20) einen grösseren Querschnitt als der dieses beaufschlagende Zuführkanal (5) besitzt.
  7. Zweistufige Druckzerstäuberdüse nach Anspruch 5, dadurch gekennzeichnet, dass der Querschnitt des ersten Plenums (20) grösser ist als die Summe der Querschnitte der Turbulenzerzeugerkanäle (15) und der Querschnitt des zweiten Plenums (21) grösser ist als die Summe der Querschnitte der Drallkanäle (16).
  8. Zweistufige Druckzerstäuberdüse nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass alle Turbulenz- und/oder Drallkammern (9, 10, 11, 12) gleich gross ausgebildet sind.
  9. Zweistufige Druckzerstäuberdüse nach Anspruch 8, dadurch gekennzeichnet, dass der Düsenkopf (4) in seinem stromabwärtigen Bereich halbkugelförmig ausgebildet und in die halbkugelförmige Kontur des Düsenkopfes (4) eine der Anzahl der Austrittsöffnungen (17) entsprechende Anzahl von Ausnehmungen (19) eingebracht ist, wobei jede Austrittsöffnung (17) in eine der Ausnehmungen (19) mündet und jede Ausnehmung (19) rechtwinklig zu der jeweils in sie einmündenden Austrittsöffnung (17) angeordnet ist.
  10. Zweistufige Druckzerstäuberdüse nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Düsenkörper (1) mit einem Vormischbrenner (22) verbunden und der Aussenraum (18) des Düsenkörpers (1) gleichzeitig ein Innenraum (18') des Vormischbrenners (22) ist.
  11. Zweistufige Druckzerstäuberdüse nach Anspruch 10, dadurch gekennzeichnet, dass
    a) im Düsenkopf (4) vier Turbulenz- und/oder Drallkammern (9, 10, 11, 12) angeordnet sind,
    b) der Vormischbrenner (22) im wesentlichen aus vier in Strömungsrichtung aufeinander positionierten, hohlen Teilkegelkörpern (23, 24, 25, 26) mit einem in Strömungsrichtung konstanten Kegelhalbwinkel β besteht, deren Längssymmetrieachsen (23', 24', 25', 26') radial versetzt zueinander verlaufen, so dass vier strömungsmässig entgegengesetzte, tangentiale Lufteintrittsschlitze (28) für einen Verbrennungsluftmassenstrom (29) ausgebildet sind,
    c) der Düsenkörper (1) im durch die Teilkegelkörper (23, 24, 25, 26) gebildeten, hohlkegelförmigen Innenraum (18') des Vormischbrenners (22) angeordnet ist,
    d) stromab jedes Teilkegelkörpers (23, 24, 25, 26) ein Nachlaufgebiet (33, 34, 35, 36) ausgebildet ist, und
    e) jede Austrittsöffnung (17) der Turbulenz- und/oder Drallkammern (9, 10, 11, 12) auf das Nachlaufgebiet (33, 34, 35, 36) des ihr benachbarte Teilkegelkörpers (23, 24, 25, 26) ausgerichtet ist.
EP97811008A 1997-12-22 1997-12-22 Zweistufige Druckzerstäuberdüse Expired - Lifetime EP0924461B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59709868T DE59709868D1 (de) 1997-12-22 1997-12-22 Zweistufige Druckzerstäuberdüse
EP97811008A EP0924461B1 (de) 1997-12-22 1997-12-22 Zweistufige Druckzerstäuberdüse
US09/213,430 US6036479A (en) 1997-12-22 1998-12-17 Two-stage pressure atomizer nozzle
JP36351698A JP4240617B2 (ja) 1997-12-22 1998-12-21 2段式圧力噴霧ノズル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97811008A EP0924461B1 (de) 1997-12-22 1997-12-22 Zweistufige Druckzerstäuberdüse

Publications (2)

Publication Number Publication Date
EP0924461A1 EP0924461A1 (de) 1999-06-23
EP0924461B1 true EP0924461B1 (de) 2003-04-16

Family

ID=8230539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97811008A Expired - Lifetime EP0924461B1 (de) 1997-12-22 1997-12-22 Zweistufige Druckzerstäuberdüse

Country Status (4)

Country Link
US (1) US6036479A (de)
EP (1) EP0924461B1 (de)
JP (1) JP4240617B2 (de)
DE (1) DE59709868D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460755C (zh) * 2006-12-04 2009-02-11 潍坊中传拉链配件有限公司 一种燃烧器喷油嘴总成

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6755024B1 (en) * 2001-08-23 2004-06-29 Delavan Inc. Multiplex injector
KR101113836B1 (ko) 2004-08-19 2012-02-29 삼성테크윈 주식회사 연료 노즐과 이를 구비한 가스터빈 압축기
EP1802915B1 (de) * 2004-10-18 2016-11-30 General Electric Technology GmbH Brenner für gasturbine
US7451602B2 (en) * 2005-11-07 2008-11-18 General Electric Company Methods and apparatus for injecting fluids into turbine engines
WO2007110298A1 (de) 2006-03-27 2007-10-04 Alstom Technology Ltd Brenner für den betrieb eines wärmeerzeugers
US8967498B2 (en) 2010-10-28 2015-03-03 Neoperl International AG Device for spraying a liquid under pressure
JP5678598B2 (ja) * 2010-11-17 2015-03-04 株式会社Ihi バーナ及び油噴霧チップの製造方法
WO2014120237A1 (en) 2013-02-01 2014-08-07 Cody Trace Wayne Aimable well test burner system
US9857078B2 (en) 2013-02-01 2018-01-02 Halliburton Energy Services, Inc. Signal responsive well test burner
US9366434B2 (en) 2013-02-01 2016-06-14 Halliburton Energy Services, Inc. Variable air to product ratio well burner nozzle
US10928060B2 (en) * 2015-05-13 2021-02-23 Halliburton Energy Services, Inc. Burner nozzels for well test burner systems
CN114017772B (zh) * 2021-10-27 2023-06-13 神华准格尔能源有限责任公司 多气道辐射型三级雾化的纳米碳氢燃料喷嘴及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE324589C (de) * 1916-11-19 1920-09-01 Rudolf Wagner Dr Schleuderzerstaeuberkopf
DE4435266A1 (de) 1994-10-01 1996-04-04 Abb Management Ag Brenner
DE19608349A1 (de) 1996-03-05 1997-09-11 Abb Research Ltd Druckzerstäuberdüse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460755C (zh) * 2006-12-04 2009-02-11 潍坊中传拉链配件有限公司 一种燃烧器喷油嘴总成

Also Published As

Publication number Publication date
DE59709868D1 (de) 2003-05-22
EP0924461A1 (de) 1999-06-23
JP4240617B2 (ja) 2009-03-18
US6036479A (en) 2000-03-14
JPH11257662A (ja) 1999-09-21

Similar Documents

Publication Publication Date Title
EP0892212B1 (de) Druckzerstäuberdüse
EP0794383B1 (de) Verfahren zum Betreiben einer Druckzerstäuberdüse
DE3029095C2 (de) Doppelbrennstoffinjektor für ein Gasturbinentriebwerk
EP0902233B1 (de) Kombinierte Druckzerstäuberdüse
EP1802915B1 (de) Brenner für gasturbine
EP0619457B1 (de) Vormischbrenner
EP0911583B1 (de) Verfahren zum Betrieb eines Vormischbrenners
CH680467A5 (de)
EP0924460B1 (de) Zweistufige Druckzerstäuberdüse
DE69529879T2 (de) Brennstoff-Luft Mischvorrichtung
DE2345282A1 (de) Verbrennungseinrichtung fuer gasturbinentriebwerke
DE3830185A1 (de) Verwirbelungs- und brennstoffeinspritzvorrichtung fuer eine gasturbinenbrennkammer
EP0276696A2 (de) Hybridbrenner für Vormischbetrieb mit Gas und/oder Öl, insbesondere für Gasturbinenanlagen
DE2143012A1 (de) Brennersysteme
CH682002A5 (de)
EP0924461B1 (de) Zweistufige Druckzerstäuberdüse
EP1030109B1 (de) Brennstofflanze zum Eindüsen von flüssigen und/oder gasförmigen Brennstoffen in eine Brennkammer
EP2513562A1 (de) Brenner für eine turbine
EP0711953B1 (de) Vormischbrenner
EP0394800B1 (de) Vormischbrenner für die Heissgaserzeugung
EP1359376B1 (de) Gasturbinenbrennkammer mit gezielter Kraftstoffeinbringung zur Verbesserung der Homogenität des Kraftstoff-Luft-Gemisches
EP0762057B1 (de) Einrichtung zur Vermischung von Brennstoff und Luft für Brennkammern von Gasturbinentriebwerken
EP0742411B1 (de) Luftzuströmung zu einer Vormischbrennkammer
EP0911582B1 (de) Verfahren zum Betrieb eines Vormischbrenners und Vormischbrenner
EP0496016B1 (de) Hochdruckzerstäubungsdüse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991216

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59709868

Country of ref document: DE

Date of ref document: 20030522

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030716

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081219

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081216

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222