EP0773846A1 - Dispositif de production de comprimes en metallurgie - Google Patents

Dispositif de production de comprimes en metallurgie

Info

Publication number
EP0773846A1
EP0773846A1 EP95925708A EP95925708A EP0773846A1 EP 0773846 A1 EP0773846 A1 EP 0773846A1 EP 95925708 A EP95925708 A EP 95925708A EP 95925708 A EP95925708 A EP 95925708A EP 0773846 A1 EP0773846 A1 EP 0773846A1
Authority
EP
European Patent Office
Prior art keywords
die
punches
punch
way
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95925708A
Other languages
German (de)
English (en)
Other versions
EP0773846B1 (fr
Inventor
Rainer Link
Klaus Vossen
Matthias Holthausen
Norbert Nies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0773846A1 publication Critical patent/EP0773846A1/fr
Application granted granted Critical
Publication of EP0773846B1 publication Critical patent/EP0773846B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/08Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
    • B22F5/085Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs with helical contours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/08Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/005Control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/04Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space co-operating with a fixed mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention relates to a device for the production of compacts with zylindför ige Hauptformieri ⁇ and helical Nebe ⁇ formeleme ⁇ ten according to the preamble of claim 1.
  • a device for the production of compacts with zylindför ige Hauptformieri ⁇ and helical Nebe ⁇ formeleme ⁇ ten according to the preamble of claim 1.
  • it is the manufacture of helical gears, in which the helical teeth are to be regarded as secondary form elements.
  • the freely rotatably mounted lower punch is constantly engaged with the profile of the molding space and therefore inevitably rotates when there are linear relative movements between the lower punch and the die plate in the pressing cycle.
  • a rotational movement corresponding to the helical teeth is forced on the upper punch from the outside during the pressing cycle in accordance with its depth of penetration, in order to reduce the friction between the outer surfaces of the upper punch and the mold space of the die.
  • a gear transmission is provided which is driven via a mechanical link control corresponding to the desired helical toothing of the pressing body.
  • the link control includes so-called link cores, which on the one hand are rigidly connected to a guide plate and on the other hand are positively and slidably guided in the coaxially arranged drive wheels of the gear transmission.
  • the guide plate is temporarily firmly coupled to the die plate and moved together with it.
  • the so-called pull-off method is used to mold the pressed body produced.
  • the object of the invention is therefore to improve a generic device in such a way that the mentioned problem of friction is also solved satisfactorily with regard to the bottom, the tool and retrofitting effort required for the production of different pressed bodies should remain as low as possible.
  • An essential feature of the invention is that the upper and lower punches directly involved in the shaping of the helical secondary form elements of the pressing body to be produced (for example, in the case of gearwheels with a plurality of toothings which lie axially one behind the other! Form space of the die are guided by an electronic control.
  • the rotary movement of the lower and upper punches depending on their immersion depth in the mold space is no longer carried out by a mechanical coupling of linear and rotary drive, i.e.
  • an embodiment of the invention provides that the axial and rotary movement of the stamp is position-controlled. To determine the respective axial and rotary position, appropriate sensors (e.g.
  • the electronic control for the sequence of movements of the upper punch or dies can be set up in such a way that only a purely linear movement takes place outside the mold space of the die and that the required rotational movement in the press cycle only begins immediately upon immersion in the mold space.
  • the position or torque control only comes into force when the upper punch has reached the stop. This prevents damage to the tool during immersion.
  • Position control of the movement sequences is not always necessary to implement the invention.
  • the rotary drives of the upper and lower punches are set in the pressing phase in such a way that the tooth flanks of the punches and the die jacket touch as far as possible only on the side which, in the absence of a rotary drive while the punches are retracted into the die cavity, would otherwise be a direct mutual would not be exposed to friction.
  • the torque applied from the outside thus acts in the direction of the rotational movement otherwise forced by the shape.
  • x ⁇ s. cot ß o where s is the tool play in the forehead cut. For example, for a 30 toothing and a tool play of 0.03 mm, this results in x ⁇ .0.05 mm.
  • the molding of the pressed body produced by the ejection process can in principle be carried out without the use of rotary drives. However, it is recommended to use the rotary actuators in (partially) in the opposite way to that for the compression process. This ensures the greatest possible protection of the tool and the compact.
  • Hydraulic drives should be used for the linear movement of the upper and lower punches (or the die, if applicable).
  • the rotary drives can also be operated hydraulically. In some cases, they can also be pneumatic.
  • Electromotive rotary drives are particularly recommended, in particular electric stepper or servo motors.
  • the invention can be carried out expediently in connection with a CNC-controlled powder press. It is particularly advantageous to design the essential mechanical parts of the device according to the invention (punch, die, rotary drives) as an exchangeable unit in the form of a tool adapter in order to enable particularly short changeover times.
  • the invention has the great advantage that it enables the production of, for example, helical toothed gears with extremely low tool wear, since the friction in the area of the tooth flanks during the pressing phase and also during the shaping is limited to a minimum can be.
  • the retrofitting effort can also be significantly reduced compared to previously known pressing tools, since only program-technical precautions (no production of link cores) are required to effect the rotary drives.
  • the device according to the invention enables the production of compacts which have a significantly more uniform density distribution than was previously possible.
  • the device according to the invention is explained in more detail below on the basis of the exemplary embodiment of a metal powder press shown schematically in elevation in the single figure.
  • This hydraulic press has a press frame 16 which is equipped with an upper piston 14 and a lower piston 15. Approximately in the middle of the press frame 16, a die 1 is mounted in a stationary and rotationally fixed manner. An upper plunger 2 is rotatably mounted in the upper piston 14 and a lower plunger 3 in the lower piston 15.
  • the upper punch 2 is resiliently supported against the pressing direction by a prestressed spring 9, which presses the receiving device for the upper punch 2 in the pressing direction against a fixed stop.
  • the spring force of the spring is in any case significantly less than the maximum pressing force that occurs for the respective tool, so that the upper punch is in contact with the stop as early as possible at the start of the pressing process.
  • the jacket of the die 1 and the two punches 2, 3 have mutually corresponding helical teeth.
  • two measuring systems 10, 11 are provided, which can be designed, for example, as an incremental measuring rod or linear potentiometer.
  • a rotary drive 5 or 7 is attached to each of the two pistons 14, 15 (for example, an electric servo motor), the current angle of rotation position of which can be continuously recorded by means of a combined angle and torque measurement system 12 or 13.
  • the punches 2, 3 have measuring devices 12a, 13a for detecting the torsional moment that occurs.
  • the two rotary drives 5, 7 are each connected via a spur gear with one of the two punches 2 and 3 in terms of drive technology.
  • the press shown also has an electronic control 8 (framed in dashed lines), which is hierarchically structured and consists of a CNC main processor 21, a control unit 19 and 20 for the linear movement of the upper piston 14 and the lower piston 15 and there is one control unit 17 and 18 for the rotary movement of the two punches 2 and 3, respectively.
  • the input / output unit of the CNC main processor 21 for controlling and setting up the press by the operating personnel is designated by 22.
  • the information technology linkage of the electronic components and sensors is symbolically represented by corresponding arrows.
  • the two control units 19, 20 are each subordinate to the CNC main processor 21 and the control units 17, 18 for the rotary movement as slave to one of the two control units 19 and 20 for the linear piston movement.
  • the control unit 19 is subordinate to the control unit 20 (submaster), that is to say that the movement of the upper piston 14 and thus the movement of the upper plunger 2 was used as a reference variable for the movement sequence.
  • the combined angle and torque measuring system 12 forms, together with the rotary drive 5 and the control unit 17, a closed control loop, whereby. the control unit 17 receives its setpoint from the control unit 19 of the linear drive of the piston 14 in accordance with its current axial position detected by the displacement measuring system 10.
  • the CNC main processor 21 takes over higher-level regulation and control functions as well as the processing of the specification data for the part to be manufactured.
  • a dashed line indicates which main functional parts of the device according to the invention can be combined in the form of a tool adapter to form an easily replaceable structural unit which can be connected to upper and lower pistons 14, 15.
  • the illustrated press works as follows:
  • the lower punch 3 After shaping a press body, the lower punch 3 is moved position-controlled according to the helix angle of the helical gear to be manufactured using the rotary drive 7 on the basis of the actual values determined by the position measuring system 11 and the angle measuring system 12 into the filling position.
  • the lower punch 3 remains immersed in the mold space of the die 1.
  • the upper stamp 3 is located above the molding space.
  • the upper punch 2 is moved downwards in a position-controlled manner by means of the control unit 19 on the basis of the data from the displacement measuring system 10.
  • a coordinated rotary movement of the upper punch 2 is initiated via the control unit 17, the angle measuring system 12 and the rotary drive 5, so that the relative rotational position of the upper punch 2 to the toothing contour of the mold space of the die 1 permits the upper punch 2 to be immersed in the mold space without contact.
  • This begins the actual pressing phase in which the steel powder introduced is compacted.
  • the lower piston 3 and the upper piston 2 move in opposite directions into the mold space, the rotary drives 7 and 5, respectively, to minimize the friction between the stem 2, 3 and the die 1.
  • the two angle measuring systems 12, 13 are also set up as instrument clusters for detecting the drive torque, torque control can also take place in addition or as an alternative to the position control of the rotary drive 5, 7 as a function of the axial position of the punches 2, 3.
  • the drive system of the upper punch 2 is switched over to form the pressed body, ie the upper punch 2 is moved out of the molding space linearly and in a rotationally position-controlled manner according to the contour of the press body, with the lower piston 3 likewise being moved upward in a correspondingly position-controlled manner. until its upper end face is flush with the top of the die 1, so that the compact is exposed (ejection process).
  • the compact can be held under a desired load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Press Drives And Press Lines (AREA)
  • Control Of Presses (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
EP95925708A 1994-08-02 1995-07-13 Dispositif de production de comprimes en metallurgie Expired - Lifetime EP0773846B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4428842 1994-08-02
DE4428842A DE4428842C1 (de) 1994-08-02 1994-08-02 Vorrichtung zur Herstellung von Preßkörpern
PCT/DE1995/000954 WO1996004087A1 (fr) 1994-08-02 1995-07-13 Dispositif de production de comprimes en metallurgie

Publications (2)

Publication Number Publication Date
EP0773846A1 true EP0773846A1 (fr) 1997-05-21
EP0773846B1 EP0773846B1 (fr) 1998-08-26

Family

ID=6525700

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95925708A Expired - Lifetime EP0773846B1 (fr) 1994-08-02 1995-07-13 Dispositif de production de comprimes en metallurgie

Country Status (9)

Country Link
US (1) US5906837A (fr)
EP (1) EP0773846B1 (fr)
JP (1) JP4331793B2 (fr)
CN (1) CN1074699C (fr)
AT (1) ATE170115T1 (fr)
DE (3) DE4428842C1 (fr)
ES (1) ES2120218T3 (fr)
RU (1) RU2113940C1 (fr)
WO (1) WO1996004087A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105077545A (zh) * 2015-08-27 2015-11-25 安徽宏锦包装设备有限公司 一种半球形锅巴成型机的压料装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406240B (de) * 1996-06-20 2000-03-27 Miba Sintermetall Ag Formwerkzeug zum pressen eines formkörpers aus einem sinterpulver
US5865239A (en) * 1997-02-05 1999-02-02 Micropump, Inc. Method for making herringbone gears
US6338289B1 (en) 1998-06-02 2002-01-15 New Bright Industrial Co., Ltd. Gear box having plastic helical gears and L-shaped axles
JP2002539951A (ja) * 1999-03-18 2002-11-26 コルシュ プレッセン アーゲー 互換式インサートポンチを備えたロータリープレス
US8211359B2 (en) * 1999-07-29 2012-07-03 Beane Glenn L Method, system, and computer program for controlling a hydraulic press
DE19940701C2 (de) * 1999-08-27 2002-02-07 Fette Wilhelm Gmbh Rundlaufpresse
KR20010086905A (ko) * 2000-03-04 2001-09-15 김영정 양압 성형시스템
DE10142772C2 (de) * 2001-08-31 2003-09-25 Fette Wilhelm Gmbh Verfahren zur Herstellung von Pressteilen in einer Pulverpresse
DE10212315B4 (de) * 2002-03-20 2004-04-29 Wilhelm Fette Gmbh Wegmeßsystem für eine Pulverpresse
US7367791B2 (en) * 2004-11-19 2008-05-06 Aichi Steel Corporation Device for producing annular or arcuate magnet
DE102006015022B4 (de) * 2006-03-31 2008-03-27 Dieffenbacher Gmbh + Co. Kg Hydraulischen Presse für die Kunststoff- und Metallverarbeitung
EP1849590B1 (fr) * 2006-04-29 2013-05-15 Fette GmbH Presse
DE102008027567A1 (de) * 2008-06-10 2009-12-17 Schaeffler Kg Prägeeinheit einer Montagevorrichtung für Gelenke
DE102008054922A1 (de) * 2008-12-18 2010-06-24 Robert Bosch Gmbh Vorrichtung zum Abfüllen und Verdichten rieselfähiger Produkte
FR2951989B1 (fr) * 2009-10-30 2012-02-03 Medelpharm Installation pour la realisation d'un produit solide a partir d'un ou de plusieurs materiaux pulverulents
US8246415B2 (en) 2009-11-18 2012-08-21 New Bright Industrial Co., Ltd. Gear box for use in toy vehicles
DE102012010767A1 (de) * 2012-05-31 2013-12-05 Fette Compacting Gmbh Presse
EP2853322A1 (fr) 2013-09-30 2015-04-01 Seco Tools AB Presse pour la fabrication d'un corps vert d'outil ayant une cannelure hélicoïdale, procédé de fabrication d'un corps vert d'outil ayant une cannelure hélicoïdale et corps vert d'outil ayant une cannelure hélicoïdale
DE102013114693A1 (de) * 2013-12-20 2015-06-25 Fette Engineering GmbH Stopfstempelstation und Verfahren zum Füllen von Kapseln in einer Stopfstempelstation
CN103706786B (zh) * 2013-12-24 2016-01-13 北京国药龙立自动化技术有限公司 等密度压机的压制脱模方法
JP5821111B1 (ja) * 2015-01-16 2015-11-24 小林工業株式会社 金型装置
CN104708000A (zh) * 2015-03-18 2015-06-17 上海瑞伯德智能系统科技有限公司 一种金属粉末电动压机的压制动作控制方法
CN105533785A (zh) * 2016-01-12 2016-05-04 安徽宏锦包装设备有限公司 一种半球锅巴成型机的成型压料装置
DE102016120195A1 (de) * 2016-10-24 2018-04-26 Dorst Technologies Gmbh & Co. Kg Presseneinrichtung
DE102017004803A1 (de) * 2017-05-18 2018-11-22 Cosateq Gmbh Verfahren zum Betrieb einer Pulverpresse mit Lagenregelung und Pulverpresse zur Ausführung des Verfahrens
DE102017130885B4 (de) * 2017-12-21 2020-01-23 Fette Compacting Gmbh Verfahren zum Regeln der Rotordrehzahl eines Rotors einer Rundläufertablettenpresse sowie Rundläufertablettenpresse
CN111136262A (zh) * 2020-01-16 2020-05-12 宁波臻鼎机电科技有限公司 一种用于磁性材料的成型模具及其压制方法
JP7044407B2 (ja) 2020-07-22 2022-03-30 小林工業株式会社 粉末成形体の製造装置、粉末成形体の製造方法、粉末成形体由来の工具の製造方法、及び粉末成形体由来の工具

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759661A (fr) * 1969-12-01 1971-04-30 Hitachi Powdered Metals Cy Ltd Dispositif de compression de poudre pour former un engrenage helicoidalcomprime
US3677672A (en) * 1970-03-12 1972-07-18 Chrysler Corp Apparatus for the manufacture of powder metal helical gears
IT958783B (it) * 1972-05-04 1973-10-30 Olivetti & Co Spa Dispositivo per la formatura di ruo te dentate elicoidali mediante com pressione di polveri
IT976216B (it) * 1972-12-29 1974-08-20 Olivetti & Co Spa Dispositivo di formatura di pezzi elicoidali mediante compattazione di materiali in polvere
US3891367A (en) * 1973-05-08 1975-06-24 Olivetti & Co Spa Apparatus for moulding helical gears by compression of powders
DE2508065A1 (de) * 1975-02-25 1976-09-02 Metal Compacting Tools Ltd Presswerkzeug fuer pulvermassen
JPH04136107A (ja) * 1990-09-25 1992-05-11 Sumitomo Electric Ind Ltd 焼結斜歯歯車の成形装置
JPH05195011A (ja) * 1991-08-17 1993-08-03 Werkzeugbau Alvier Ag 螺旋形状の輪郭を有する工作物をプレス成形するモジュラー装置
DE4209767C1 (fr) * 1992-03-23 1993-05-06 Mannesmann Ag, 4000 Duesseldorf, De

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9604087A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105077545A (zh) * 2015-08-27 2015-11-25 安徽宏锦包装设备有限公司 一种半球形锅巴成型机的压料装置

Also Published As

Publication number Publication date
DE59503369D1 (de) 1998-10-01
JP4331793B2 (ja) 2009-09-16
JP2002500701A (ja) 2002-01-08
ES2120218T3 (es) 1998-10-16
CN1074699C (zh) 2001-11-14
CN1154082A (zh) 1997-07-09
DE4428842C1 (de) 1996-01-18
WO1996004087A1 (fr) 1996-02-15
RU2113940C1 (ru) 1998-06-27
DE29509762U1 (de) 1995-09-21
EP0773846B1 (fr) 1998-08-26
ATE170115T1 (de) 1998-09-15
US5906837A (en) 1999-05-25

Similar Documents

Publication Publication Date Title
DE4428842C1 (de) Vorrichtung zur Herstellung von Preßkörpern
EP0873855B1 (fr) Procédé et dispositif pour la fabrication pièces moulées en métal dur, céramique, métal fritté ou similaire
EP1934006B1 (fr) Procede et dispositif de compression d'un article moule au moyen d'un poinçon transversal
DE69833396T2 (de) Hydraulische Presse zur Herstellung von Metallplatten
DE60024070T2 (de) Verfahren zum walzen von zahnrädern
EP0679503B1 (fr) Procédé pour fabriquer des pièces moulées à partir de matières pulvérulentes et presse correspondante
DE102006020213B4 (de) Presse zur Herstellung von Preßlingen aus Pulvermaterial
WO2011045303A2 (fr) Presse à poudre
WO2016203394A1 (fr) Procédé et dispositif de fabrication de moules de matière de moulage pour la coulée de métaux
EP2441573B1 (fr) Presse et procédé de fabrication d'un objet moulé en matériau poudreux
DE102005030312A1 (de) Rundläufer-Tablettiermaschine und Verfahren zur Herstellung einer Mehrschichttablette
EP0289638B1 (fr) Presse, notamment pour fabriquer des articles pressés à dimensions exactes à partir de matières pulvérulentes, et procédé pour l'opération d'une telle presse
DE19947689C2 (de) Presse mit Exzenterkurbeltrieb für Oberstempeleinheit und Betriebsverfahren
DE3425221C2 (fr)
DE102015101586B4 (de) Pulverpresse zur Herstellung von Presslingen aus pulverförmigem Pressmaterial
WO2000020192A1 (fr) Presse pour produire des corps moules
DE2002684A1 (de) Verfahren und Vorrichtung zur Herstellung von Zahnradkoerpern mit Schraub- oder Schneckenverzahnung
DE2906858A1 (de) Pressgussvorrichtung
DE102010033997A1 (de) Metall- oder Keramikpulver-Elektropresse und Steuerverfahren dafür
DD268195A1 (de) Presse
CA2196560C (fr) Dispositif de production de comprimes en metallurgie
WO2011038921A1 (fr) Procédé pour déplacer une unité de façonnage d'une machine
DE2402190A1 (de) Verfahren und vorrichtung zum biegen von stahlblechen bzw. -platten
EP3530446B1 (fr) Presse à poudre dotée de levier à genouillère et d'entraînement électrique
WO1992002361A1 (fr) Machine-outil travaillant des metaux par formage et par coupage ayant un dispositif d'ajustage situe dans une partie mobile de la machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19970121

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971209

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 170115

Country of ref document: AT

Date of ref document: 19980915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980827

REF Corresponds to:

Ref document number: 59503369

Country of ref document: DE

Date of ref document: 19981001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2120218

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: MANNESMANN AKTIENGESELLSCHAFT

Free format text: MANNESMANN AKTIENGESELLSCHAFT#MANNESMANNUFER 2#40213 DUESSELDORF (DE) -TRANSFER TO- MANNESMANN AKTIENGESELLSCHAFT#MANNESMANNUFER 2#40213 DUESSELDORF (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090716

Year of fee payment: 15

Ref country code: ES

Payment date: 20090724

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090720

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090818

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090723

Year of fee payment: 15

BERE Be: lapsed

Owner name: *MANNESMANN A.G.

Effective date: 20100731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100713

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100713

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100713

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110725

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100714

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120720

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120711

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 170115

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59503369

Country of ref document: DE

Effective date: 20140201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130713