EP0770824B1 - Method and circuit for controlling a gas burner - Google Patents

Method and circuit for controlling a gas burner Download PDF

Info

Publication number
EP0770824B1
EP0770824B1 EP96115721A EP96115721A EP0770824B1 EP 0770824 B1 EP0770824 B1 EP 0770824B1 EP 96115721 A EP96115721 A EP 96115721A EP 96115721 A EP96115721 A EP 96115721A EP 0770824 B1 EP0770824 B1 EP 0770824B1
Authority
EP
European Patent Office
Prior art keywords
value
lambda
gas
electrical
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96115721A
Other languages
German (de)
French (fr)
Other versions
EP0770824A3 (en
EP0770824A2 (en
Inventor
Hubert Nolte
Martin Herrs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stiebel Eltron GmbH and Co KG
Original Assignee
Stiebel Eltron GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19539568A external-priority patent/DE19539568C1/en
Priority claimed from DE19618573A external-priority patent/DE19618573C1/en
Application filed by Stiebel Eltron GmbH and Co KG filed Critical Stiebel Eltron GmbH and Co KG
Publication of EP0770824A2 publication Critical patent/EP0770824A2/en
Publication of EP0770824A3 publication Critical patent/EP0770824A3/en
Application granted granted Critical
Publication of EP0770824B1 publication Critical patent/EP0770824B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/30Representation of working time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves

Definitions

  • the invention relates to a method for controlling a Gas burner, in particular gas fan burner, with a Measuring electrode, in particular ionization electrode, the one of the combustion temperature or the Lambda actual value derived electrical quantity to a Control circuit sets which this size with a compares the selected electrical setpoint and that Gas-air ratio (lambda) to a corresponding Set Lambda setpoint. Furthermore, the Invention a corresponding control circuit.
  • DE 44 33 425 A is one Control device for a gas fan burner described. Through an alternating voltage superimposition, the Evaluate ionization current safely. The respective Air excess (lambda value) of the respective The state of combustion is determined by the ionization electrode detected and in the control circuit with a set Setpoint compared. The composition of the gas-combustion air mixture will be accordingly adjusted so that the end result is always with a desired lambda setpoint is worked. Desired is an over-stoichiometric ratio of air to gas, the lambda setpoint is preferably between 1.15 and 1.3 lies. It is achieved in that at different gas qualities, for example natural gas and LPG, as well as changing Environmental conditions one in terms of emissions and of the firing efficiency Combustion takes place.
  • the thermal coupling between the Change the ionization electrode and the gas burner for example by bending, wear and tear Contamination of the ionization electrode or soot of the burner. It has been found that this leads to the fact that despite the lambda value remaining the same Ionization current and thus the derived Measured variable changes. So it changes Proportionality factor between the lambda value and the derived electrical quantity. This one changed measuring voltage at the comparator of the control circuit is present, to which the - unchanged - setpoint acts, the control circuit is the gas-air mixture, ie the lambda value, making it a Deviation of the actual lambda value from the desired lambda value comes what is undesirable.
  • the object of the invention is a method and Propose circuit of the type mentioned at the beginning, with the influence of a change in proportionality between the lambda value and the derived one electrical measurand on the scheme in such a way is balanced that the desired gas-air ratio (Lambda setpoint) is maintained.
  • the above object is in a method of type mentioned by the features of claim 1 and with regard to the circuit by the features of the Claim 6 solved.
  • the control switched off and on for a short time Run through the calibration cycle This is the gas-air mixture necessarily enriched, i.e. the lambda value reduced from> 1.
  • the invention is such Avoid adjustment, so that even then desired lambda setpoint is regulated when the between the combustion temperature and the electrical Measurand has changed the existing proportionality factor.
  • a gas burner (1) has a speed-adjustable fan (2) that promotes combustion air. He is with one Gas supply (3) in which a gas solenoid valve (3 ') is arranged, provided. In the flame area of the Gas burner (1) is an ionization electrode (4) Measuring electrode arranged. This measuring electrode (4) is at Gas burners common. Usually, however, it only serves the Flame monitoring. The measuring electrode (4) detects the at the respective combustion state Ionization current. This depends on Richardson's Equation from the electrode temperature and thus from the respective lambda value of the respective gas-air mixture from.
  • a capacitive Coupling element (5) On the measuring electrode (4) is a capacitive Coupling element (5) an AC voltage, in the example simply the mains AC voltage, switched on.
  • the Coupling element (5) is connected to earth via a resistor (6) placed so that the ionization path (flame area) is electrically connected in parallel to the resistor (6).
  • a voltage-impedance converter (7) is connected to the measuring electrode (4) a low pass (8) on the output side a control circuit (9) is connected.
  • the control circuit (9) of FIG. 1 has a comparator (10) to which a setpoint generator (11) is placed.
  • a desired lambda value for example 1.15 to 1.3, corresponding electrical Setpoint adjustable.
  • An automatic start (15) is in the control circuit (9) integrated, which controls the switch (13).
  • a setpoint generator (16) for one Starting speed.
  • the ionization electrode (4) detected ionization current leads to the fact that a direct voltage is superimposed on the alternating voltage. This is proportional to the ionization in the flame area. It is proportional to the respective one Excess air (lambda). In practice, it is between 0 V and 200 V. The voltage is used for further processing reduced and at the exit of the low pass (8) occurs in For example, a DC voltage between 0 V and 10 V on.
  • the excess air of the respective gas-air mixture embodied voltage (ionization voltage Ui) is in the Comparator (10) compared with a target value.
  • the Difference between the two values is in a stream changed the state of charge of the Storage capacitor (17), which is the instantaneous speed value corresponds as long as changes and thus the Controls the speed of the fan (2) accordingly until the respective excess air (actual lambda value) the target lambda value is equal to.
  • the speed is used to set the excess air of the blower (2) or the gas supply (3) regulated.
  • the control circuit (9) can also be used as a digital circuit be built with a microprocessor.
  • An activation circuit (21) is also provided. This counts those triggered by the automatic start (15) Start processes or records the operating hours of the Gas burner (1). With the activation circuit (21) is a Ramp generator (22) connected to a third Switch position of the switch (13) is connected.
  • Detection circuit (23) which is also connected to the Activation circuit (21) is connected and one Storage circuit (24) is connected downstream.
  • the Memory circuit (24) is connected to the setpoint device (11) connected.
  • the functionality of the additional circuit in one Calibration cycle is about the following:
  • the ramp generator (22) now controls the blower (2) or the gas solenoid valve (3 ') in such a way that the Gas-air mixture is "enriched", ie the Gas content increased.
  • the lambda value is one Value> 1, for example 1.3, continuously to one Value reduced below 1.
  • This results in one of the Ionization electrode (4) derived course of Measuring voltage (ionization voltage Ui) at the output of the Low pass (8), as in one of the curves I, II, III in Fig. 2 is shown as an example.
  • Which of the curves depends on the condition of the ionization electrode (4) or the gas burner (1); so it depends like the ionization electrode (4) in the connection area of the Burner flames. For example, bent, worn or sooty ionization electrode (4) a different voltage curve than in "good condition.
  • the detection circuit (23) detects the respective Voltage maximum A, B, C, for example by the Evaluates slope of curve I, II or III.
  • the respective Maximum voltage is in the memory circuit (24) filed.
  • the memory circuit (24) represents the basic value (100%) of the setpoint device (11) to this value.
  • the characteristic curve results in a calibration cycle (II) with the maximum value (B), which is the consequence of a Change in state of the ionization electrode (4), then is this voltage value (B) in the memory circuit (24) saved as the basic value for the setpoint generator (11).
  • the Setpoint generator (11) remains at 90% of a basic value set, which shows b in Fig.2. From Fig.2 is it can be seen that the voltage (b) (90% of the Maximum voltage B) across the comparator (10) if control after the calibration cycle using the Switch (13) is switched on again, a regulation to the Lambda setpoint of 1.2.
  • the calibration cycles are compared to the times in which the gas burner (1) in normal control operation works, very short, so that during the Calibration cycles with one of the Lambda setpoint deviating lambda value combustion occurring in purchase can be taken. In each case to one Calibration process subsequent regular operation the combustion improves.
  • the calibration is the one described Control function switched off.
  • the calibration is done preferably at a constant speed of the Blower (2) to the influence of the blower (2) on the To suppress combustion. It is cheap Perform calibration at medium speed, to avoid modulation limits during calibration of the control signal (J) which is sent to the gas solenoid valve (3 ') is laid to bump.
  • the calibration can also be done during switching the blower (2) from one Performance level to the other performance level because the speed change compared to the calibration process is slow so that the speed during the Calibration process is quasi constant.
  • the calibration process is carried out at time (t1) (see Fig. 3) from the event or operating hours counter during the transition from the full load level to the partial load level of the blower (2) started when the decreasing modulation current (J) reached a low value (Jk). It is then from the Control circuit (9) of the modulation current (J) and thus over the gas solenoid valve (3 ') increases the gas supply, causing the Ionization voltage (Ui) increases accordingly. To the At time (t2) the ionization voltage (Ui) reaches one predetermined value, for example 0.9 Uimax.
  • the Time period (t1 to t2) serves to start the preheating the ionization electrode (4). From the time (t2) until the time (t3) the modulation current (J) remains constant held. During this period (t2 to t3) it heats up the ionization electrode (4) to a stable temperature and thereby guarantees reproducible measured values.
  • the modulation current (J) is increased further until the Ionization voltage (Ui) again about 10% below that Uimax value is what in Figure 3 at time (t4) Case is.
  • the lambda value is in the period (t3 to t4) the incineration itself is unfavorable, but this does not ins Weight drops because this time span is at most a few Takes seconds.
  • the control circuit (9) switches back to the control process described above. This starts when the (t5) Ionization voltage (Ui), the modulation current (J) and the Have stabilized gas pressure (p).
  • the control circuit (9) conducts the measured values obtained. a correspondingly adjusted new setpoint for the Ionization voltage.
  • Control circuit (9) will also change in the period (t3 to t4) result in a series of measured values. Compared to the other measured values of the series strongly differing measured values are suppressed because they rely on external electrical Interference may be based.
  • the first transfer criterion covers a sudden one Change all components of the control loop. It is fulfilled if the deviation of the new calibration value is sufficiently small from the previous calibration values.
  • the second handover criterion records a "creeping Drift "of the system (burner control), which in the event of deviation sufficient from the values provided by the manufacturer is small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

The regulation system uses an ionisation electrode (4) providing an ionisation signal dependent in the temp. or lambda value of the combustion, supplied to a regulation circuit (9) for comparison with a reference value, for adjustment of the air/fuel ratio for the burner (1). A calibration cycle is initiated at regular intervals or after a defined operating time, with the lambda value reduced and the corresponding ionisation signal measured. The max. values of the ionisation signal are stored for correction of the required value for the regulation.

Description

Die Erfindung betrifft ein Verfahren zur Regelung eines Gasbrenners, insbesondere Gasgebläsebrenners, mit einer Meßelektrode, insbesondere Ionisations-Elektrode, die eine von der Verbrennungstemperatur bzw. dem Lambda-Istwert abgeleitete elektrische Größe an eine Regelschaltung legt, welche diese Größe mit einem gewählten elektrischen Sollwert vergleicht und das Gas-Luft-Verhältnis (Lambda) auf einen entsprechenden Lambda-Sollwert einstellt. Weiterhin betrifft die Erfindung eine entsprechende Regelschaltung.The invention relates to a method for controlling a Gas burner, in particular gas fan burner, with a Measuring electrode, in particular ionization electrode, the one of the combustion temperature or the Lambda actual value derived electrical quantity to a Control circuit sets which this size with a compares the selected electrical setpoint and that Gas-air ratio (lambda) to a corresponding Set Lambda setpoint. Furthermore, the Invention a corresponding control circuit.

In der DE 39 37 290 A1 ist eine derartige Regelung beschrieben. Dort liegt die Ionisations-Elektrode in einem Gleichstromkreis. Die Auswertung des Ionisationsstromes ist in der Praxis problematisch, wenn ein proportionaler Zusammenhang zwischen dem Ionisationsstrom und dem Lambda-Wert ermittelt werden soll.Such a regulation is in DE 39 37 290 A1 described. The ionization electrode is located there a DC circuit. The evaluation of the Ionization current is problematic in practice, though a proportional relationship between the Ionization current and the lambda value can be determined should.

In der DE 44 33 425 A ist eine Regeleinrichtung für einen Gasgebläsebrenner beschrieben. Durch eine Wechselspannungsüberlagerung läßt sich der Ionisationsstrom sicher auswerten. Der jeweilige Luftüberschuß (Lambda-Wert) des jeweiligen Verbrennungszustandes wird über die Ionisations-Elektrode erfaßt und in der Regelschaltung mit einem eingestellten Sollwert verglichen. Die Zusammensetzung des Gas-Verbrennungsluft-Gemisches wird entsprechend nachgeregelt, so daß im Endergebnis immer mit einem gewünschten Lambda-Sollwert gearbeitet wird. Gewünscht ist ein überstöchiometrisches Verhältnis von Luft zu Gas, wobei der Lambda-Sollwert vorzugsweise zwischen 1,15 und 1,3 liegt. Es wird dadurch erreicht, daß bei unterschiedlichen Gasqualitäten, beispielsweise Erdgas und Flüssiggas, sowie bei wechselnden Umgebungsbedingungen eine hinsichtlich der Emissionen und des feuerungstechnischen Wirkungsgrades optimale Verbrennung erfolgt.DE 44 33 425 A is one Control device for a gas fan burner described. Through an alternating voltage superimposition, the Evaluate ionization current safely. The respective Air excess (lambda value) of the respective The state of combustion is determined by the ionization electrode detected and in the control circuit with a set Setpoint compared. The composition of the gas-combustion air mixture will be accordingly adjusted so that the end result is always with a desired lambda setpoint is worked. Desired is an over-stoichiometric ratio of air to gas, the lambda setpoint is preferably between 1.15 and 1.3 lies. It is achieved in that at different gas qualities, for example natural gas and LPG, as well as changing Environmental conditions one in terms of emissions and of the firing efficiency Combustion takes place.

Im Betrieb kann sich die thermische Kopplung zwischen der Ionisations-Elektrode und dem Gasbrenner ändern, beispielsweise durch Verbiegen, Verschleiß und Verschmutzung der Ionisations-Elektrode oder Verrußung des Brenners. Es wurde gefunden, daß dies dazu führt, daß sich trotz an sich gleichbleibenden Lambda-Wert der Ionisationsstrom und damit die daraus abgeleitete Meßgröße ändert. Es ändert sich also der Proportionalitätsfaktor zwischen dem Lambda-Wert und der daraus abgeleiteten elektrischen Größe. Da diese geänderte Meßspannung am Vergleicher der Regelschaltung anliegt, auf den auch der - unveränderte - Sollwert wirkt, wird die Regelschaltung das Gas-Luft-Gemisch, also den Lambda-Wert, verstellen, wodurch es zu einer Abweichung des Lambda-Istwertes vom Lambda-Sollwert kommt, was unerwünscht ist.During operation, the thermal coupling between the Change the ionization electrode and the gas burner, for example by bending, wear and tear Contamination of the ionization electrode or soot of the burner. It has been found that this leads to the fact that despite the lambda value remaining the same Ionization current and thus the derived Measured variable changes. So it changes Proportionality factor between the lambda value and the derived electrical quantity. This one changed measuring voltage at the comparator of the control circuit is present, to which the - unchanged - setpoint acts, the control circuit is the gas-air mixture, ie the lambda value, making it a Deviation of the actual lambda value from the desired lambda value comes what is undesirable.

Aufgabe der Erfindung ist es, ein Verfahren und eine Schaltung der eingangs genannten Art vorzuschlagen, mit dem/der der Einfluß einer Änderung der Proportionalität zwischen dem Lambda-Wert und der daraus abgeleiteten elektrischen Meßgröße auf die Regelung in der Weise ausgeglichen wird, daß das gewünschte Gas-Luft-Verhältnis (Lambda-Sollwert) aufrechterhalten bleibt.The object of the invention is a method and Propose circuit of the type mentioned at the beginning, with the influence of a change in proportionality between the lambda value and the derived one electrical measurand on the scheme in such a way is balanced that the desired gas-air ratio (Lambda setpoint) is maintained.

Erfindungsgemäß ist obige Aufgabe bei einem Verfahren der eingangs genannten Art durch die Merkmale des Anspruchs 1 und hinsichtlich der Schaltung durch die Merkmale des Anspruchs 6 gelöst.According to the invention, the above object is in a method of type mentioned by the features of claim 1 and with regard to the circuit by the features of the Claim 6 solved.

Nach einer gewissen Betriebszeit, die entweder durch einen Betriebsstundenzähler oder durch Zählen der Einschaltvorgänge des Brenners erfaßt werden kann, wird die Regelung für kurze Zeit abgeschaltet und ein Kalibrierungszyklus durchfahren. In diesem wird das Gas-Luft-Gemisch zwangsweise angefettet, also der Lambda-Wert von > 1 ausgehend reduziert. Die erfaßte elektrische Meßgröße durchläuft bei Lambda = 1 ein Maximum. Dieser Wert wird festgehalten. Weicht er vom eingestellten elektrischen Grund-Sollwert ab, dann wird dieser nachjustiert. Eine solche Abweichung stellt sich ein, wenn sich die Ionisations-Elektrode verbogen hat, abgenutzt ist oder verrußt ist, was an sich zu einer unerwünschten Verstellung des Gas-Luft-Verhältnisses führen würde. Durch die Erfindung ist eine solche Verstellung vermieden, so daß auch dann auf den gewünschten Lambda-Sollwert geregelt wird, wenn sich der zwischen der Verbrennungstemperatur und der elektrischen Meßgröße bestehende Proportionalitätsfaktor geändert hat.After a certain period of operation, either by an hour meter or by counting the Switch-on operations of the burner can be detected the control switched off and on for a short time Run through the calibration cycle. This is the gas-air mixture necessarily enriched, i.e. the lambda value reduced from> 1. The detected electrical Measured variable runs through a maximum at Lambda = 1. This Value is held. Does it differ from the set electrical base setpoint, then it will readjusted. Such a deviation arises if the ionization electrode is bent, is worn or sooty, which in itself becomes a undesirable adjustment of the gas-air ratio would lead. The invention is such Avoid adjustment, so that even then desired lambda setpoint is regulated when the between the combustion temperature and the electrical Measurand has changed the existing proportionality factor.

Nach dem Kalibrierungszyklus wird, gegebenenfalls nach Auswertung eines oder mehrerer Übergabekriterien, wieder auf "Regelung" umgeschaltet. Wenn die Abweichung außerhalb eines "Fensters" liegt, wird ein Störsignal ausgelöst und/oder der Brenner zwangsweise abgeschaltet.After the calibration cycle, if necessary after Evaluation of one or more handover criteria, again switched to "regulation". If the deviation is outside a "window", an interference signal triggered and / or the burner forcibly switched off.

Weitere Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen und der folgenden Beschreibung eines Ausführungsbeispiels. In der Zeichnung zeigen:

  • Figur 1 ein Blockschaltbild einer Regelschaltung bei einem Gasgebläsebrenner,
  • Figur 2 ein Kennliniendiagramm und
  • Figur 3 ein Zeitdiagramm beim Start eines Kalibrierungsvorgangs.
  • Further refinements result from the dependent claims and the following description of an exemplary embodiment. The drawing shows:
  • FIG. 1 shows a block diagram of a control circuit in a gas fan burner,
  • Figure 2 is a characteristic diagram and
  • Figure 3 is a timing diagram at the start of a calibration process.
  • Ein Gasbrenner(1) weist ein drehzahlregelbares Gebläse(2) auf, das Verbrennungsluft fördert. Er ist mit einer Gaszuführung(3), in der ein Gasmagnetventil(3') angeordnet ist, versehen. Im Flammenbereich des Gasbrenners(1) ist eine Ionisations-Elektrode(4) als Meßelektrode angeordnet. Diese Meßelektrode(4) ist bei Gasbrennern üblich. Gewöhnlich dient sie jedoch nur der Flammenüberwachung. Die Meßelektrode(4) erfaßt den sich beim jeweiligen Verbrennungszustand einstellenden Ionisationsstrom. Dieser hängt nach der Richardson'schen Gleichung von der Elektrodentemperatur und damit auh vom jeweiligen Lambda-Wert des jeweiligen Gas-Luft-Gemisches ab.A gas burner (1) has a speed-adjustable fan (2) that promotes combustion air. He is with one Gas supply (3) in which a gas solenoid valve (3 ') is arranged, provided. In the flame area of the Gas burner (1) is an ionization electrode (4) Measuring electrode arranged. This measuring electrode (4) is at Gas burners common. Usually, however, it only serves the Flame monitoring. The measuring electrode (4) detects the at the respective combustion state Ionization current. This depends on Richardson's Equation from the electrode temperature and thus from the respective lambda value of the respective gas-air mixture from.

    Auf die Meßelektrode(4) ist über ein kapazitives Koppelglied(5) eine Wechselspannung, im Beispielsfalle einfach die Netzwechselspannung, aufgeschaltet. Das Koppelglied(5) ist über einen Widerstand(6) an Erde gelegt, so daß die Ionisationsstrecke (Flammenbereich) elektrisch parallel zum Widerstand(6) geschaltet ist.On the measuring electrode (4) is a capacitive Coupling element (5) an AC voltage, in the example simply the mains AC voltage, switched on. The Coupling element (5) is connected to earth via a resistor (6) placed so that the ionization path (flame area) is electrically connected in parallel to the resistor (6).

    An der Meßelektrode(4) liegt über einen Spannungs-Impedanzwandler(7) ein Tiefpaß(8), der ausgangsseitig an eine Regelschaltung(9) angeschlossen ist.A voltage-impedance converter (7) is connected to the measuring electrode (4) a low pass (8) on the output side a control circuit (9) is connected.

    Die Regelschaltung(9) nach Fig. 1 weist einen Vergleicher (10) auf, an den ein Sollwertgeber(11) gelegt ist. Am Sollwertgeber(11) ist eine dem gewünschten Lambda-Wert, beispielsweise 1,15 bis 1,3, entsprechender elektrischer Sollwert einstellbar. An den Vergleicher(10) ist die Ausgangs-Gleichspannung des Tiefpasses(8) gelegt, die dem jeweiligen Lambda-Wert proportional ist. Ausgangsseitig liegt am Vergleicher(10) ein Spannungs/Stromwandler(12), welcher über einen Umschalter(13) an einen Leistungstreiber(14) angeschlossen ist, der die Drehzahl des Gebläses(2) und/oder die Stellung des Gasmagnetventils(3') steuert.The control circuit (9) of FIG. 1 has a comparator (10) to which a setpoint generator (11) is placed. At the Setpoint generator (11) is a desired lambda value, for example 1.15 to 1.3, corresponding electrical Setpoint adjustable. To the comparator (10) Output DC voltage of the low-pass filter (8), which the respective lambda value is proportional. Output side there is a voltage / current converter (12) at the comparator (10), which via a switch (13) to one Power driver (14) is connected to the speed of the fan (2) and / or the position of the Gas solenoid valve (3 ') controls.

    In die Regelschaltung(9) ist eine Startautomatik(15) integriert, welche den Umschalter(13) steuert. Am Umschalter(13) liegt ein Sollwertgeber(16) für eine Startdrehzahl. Außerdem ist ein Speicher(17) für den momentanen Drehzahlwert und/oder den momentanen Einstellwert des Gasmagnetventils(3') vorgesehen.An automatic start (15) is in the control circuit (9) integrated, which controls the switch (13). At the Switch (13) is a setpoint generator (16) for one Starting speed. There is also a memory (17) for the current speed value and / or the current Setting value of the gas solenoid valve (3 ') provided.

    An den Ausgang des Tiefpasses(8) ist weiterhin ein Schmitt-Trigger(18) geschaltet, der der Flammenüberwachung dient.At the output of the low pass (8) is still a Schmitt trigger (18) switched which the Flame monitoring is used.

    Die Funktionsweise der soweit beschriebenen Regelschaltung ist etwa folgende:The functioning of the so far described Control circuit is about the following:

    Beim Start des Gasbrenners(1) schaltet die Startautomatik (15) auf den Sollwertgeber(16). Über den Leistungstreiber (14) läuft das Gebläse(2) dadurch mit einer Startdrehzahl, die ein sicher zündfähiges Gemisch ergibt.When the gas burner (1) starts, the automatic start switches (15) on the setpoint device (16). About the performance driver (14) the fan (2) runs with one Starting speed, which results in a mixture that can be ignited safely.

    Nach dem Zünden und erfolgreicher Flammenbildung schaltet die Startautomatik(15) den Umschalter(13) auf den Spannungs/Stromwandler(12). Der von der Ionisations-Elektrode(4) erfaßte Ionisationsstrom führt dazu, daß sich der Wechselspannung eine Gleichspannung überlagert. Diese ist proportional der Ionisation im Flammenbereich. Sie ist proportional dem jeweiligen Luftüberschuß(lambda). In der Praxis liegt sie zwischen 0 V und 200 V. Zur Weiterverarbeitung wird die Spannung herabgesetzt und am Ausgang des Tiefpasses(8) tritt im Beispielsfalle eine Gleichspannung zwischen 0 V und 10 V auf.After ignition and successful flame formation, switches the automatic start (15) the switch (13) on the Voltage / current converter (12). The ionization electrode (4) detected ionization current leads to the fact that a direct voltage is superimposed on the alternating voltage. This is proportional to the ionization in the flame area. It is proportional to the respective one Excess air (lambda). In practice, it is between 0 V and 200 V. The voltage is used for further processing reduced and at the exit of the low pass (8) occurs in For example, a DC voltage between 0 V and 10 V on.

    Die den Luftüberschuß des jeweiligen Gas-Luft-Gemisches verkörpernde Spannung (Ionisationsspannung Ui) wird im Vergleicher(10) mit einem Sollwert verglichen. Die Differenz zwischen den beiden Werten wird in einen Strom gewandelt, der den Ladezustand des Speicherkondensators(17), welcher dem Drehzahl-Momentanwert entspricht, solange ändert und damit die Drehzahl des Gebläses(2) entsprechend steuert, bis der jeweilige Luftüberschuß (Lambda-Istwert) dem Lambda-Sollwert gleich ist.The excess air of the respective gas-air mixture embodied voltage (ionization voltage Ui) is in the Comparator (10) compared with a target value. The Difference between the two values is in a stream changed the state of charge of the Storage capacitor (17), which is the instantaneous speed value corresponds as long as changes and thus the Controls the speed of the fan (2) accordingly until the respective excess air (actual lambda value) the target lambda value is equal to.

    Erfolgt danach eine Veränderung der Verbrennungsbedingungen, beispielsweise Änderung der Gasart, Änderung des Gasdrucks, Änderung der Umgebungstemperaturen o.ä., und weicht dadurch der Lambda-Istwert vom Lambda-Sollwert ab, dann werden diese Störungen in der beschriebenen Weise ausgeregelt.If there is a change after that Combustion conditions, for example changing the Gas type, change in gas pressure, change in Ambient temperatures or the like, and thereby gives way to the Lambda actual value from the Lambda setpoint, then these Faults corrected in the manner described.

    Wenn die Flamme erlischt, wird über den Schmitt-Trigger (18) die Gaszufuhr(3) mittels des Gasmagnetventils(3') gesperrt.When the flame goes out, the Schmitt trigger (18) the gas supply (3) by means of the gas solenoid valve (3 ') blocked.

    Zur Einstellung des Luftüberschusses wird die Drehzahl des Gebläses(2) oder die Gaszufuhr(3) geregelt.The speed is used to set the excess air of the blower (2) or the gas supply (3) regulated.

    Die Regelschaltung(9) kann auch als digitale Schaltung mit einem Mikroprozessor aufgebaut sein.The control circuit (9) can also be used as a digital circuit be built with a microprocessor.

    Weiterhin ist eine Aktivierungsschaltung(21) vorgesehen. Diese zählt die von der Startautomatik(15) ausgelösten Startvorgänge oder erfaßt die Betriebsstunden des Gasbrenners(1). Mit der Aktivierungsschaltung(21) ist ein Rampengenerator(22) verbunden, der an eine dritte Schaltposition des Umschalters(13) angeschlossen ist.An activation circuit (21) is also provided. This counts those triggered by the automatic start (15) Start processes or records the operating hours of the Gas burner (1). With the activation circuit (21) is a Ramp generator (22) connected to a third Switch position of the switch (13) is connected.

    Am Ausgang des Tiefpasses(8) liegt eine Erkennungsschaltung(23), die ebenfalls an die Aktivierungsschaltung(21) angeschlossen ist und der eine Speicherschaltung(24) nachgeschaltet ist. Die Speicherschaltung(24) ist mit dem Sollwertgeber(11) verbunden.At the exit of the low pass (8) there is one Detection circuit (23), which is also connected to the Activation circuit (21) is connected and one Storage circuit (24) is connected downstream. The Memory circuit (24) is connected to the setpoint device (11) connected.

    Die Funktionsweise der zusätzlichen Schaltung in einem Kalibrierungszyklus ist etwa folgende:The functionality of the additional circuit in one Calibration cycle is about the following:

    Nach einer bestimmten Anzahl von Startvorgängen oder Betriebsstunden, beispielsweise 100 Startvorgängen oder 10 Betriebsstunden, bringt die Aktivierungsschaltung(21) den Umschalter(13) in seine dritte Schaltposition und aktiviert den Rampengenerator(22). Die oben beschriebene Regelung ist dadurch abgeschaltet.After a certain number of starts or Operating hours, for example 100 starts or 10 operating hours, brings the activation circuit (21) the switch (13) in its third switching position and activates the ramp generator (22). The one described above The control is switched off.

    Der Rampengenerator (22) steuert nun das Gebläse(2) oder das Gasmagnetventil(3') in der Weise, daß das Gas-Luft-Gemisch "angefettet" wird, sich also der Gasanteil erhöht. Der Lambda-Wert wird dabei von einem Wert > 1, beispielsweise 1,3, kontinuierlich auf einen Wert unter 1 reduziert. Dabei ergibt sich ein von der Ionisations-Elektrode(4) abgeleiteter Verlauf der Meßspannung (Ionisationsspannung Ui) am Ausgang des Tiefpasses(8), wie er in einer der Kurven I,II,III in Fig. 2 beispielshaft dargestellt ist. Welche der Kurven sich einstellt, hängt vom Zustand der Ionisations-Elektrode(4) bzw. des Gasbrenners(1) ab; also davon ab, wie die Ionisations-Elektrode(4) im Anschlußbereich der Brennerflammen liegt. Beispielsweise stellt sich bei verbogener, verschlissener oder verrußter Ionisations-Elektrode(4) ein anderer Spannungsverlauf ein als im "guten" Zustand.The ramp generator (22) now controls the blower (2) or the gas solenoid valve (3 ') in such a way that the Gas-air mixture is "enriched", ie the Gas content increased. The lambda value is one Value> 1, for example 1.3, continuously to one Value reduced below 1. This results in one of the Ionization electrode (4) derived course of Measuring voltage (ionization voltage Ui) at the output of the Low pass (8), as in one of the curves I, II, III in Fig. 2 is shown as an example. Which of the curves depends on the condition of the ionization electrode (4) or the gas burner (1); so it depends like the ionization electrode (4) in the connection area of the Burner flames. For example, bent, worn or sooty ionization electrode (4) a different voltage curve than in "good condition.

    Alle Kurven I,II,III durchlaufen bei Lambda = 1 ein Maximum. Die Maxima der Kurven I,II,III sind in Fig. 2 mit A,B,C bezeichnet.All curves I, II, III run through at lambda = 1 Maximum. The maxima of curves I, II, III are in FIG. 2 designated A, B, C.

    Die Erkennungsschaltung(23) erfaßt das jeweilige Spannungsmaximum A,B,C, beispielsweise indem sie die Steigung der Kurve I,II bzw. III auswertet. Die jeweilige Maximalspannung wird in der Speicherschaltung(24) abgelegt. Die Speicherschaltung(24) stellt den Grundwert (100%) des Sollwertgebers(11) auf diesen Wert ein.The detection circuit (23) detects the respective Voltage maximum A, B, C, for example by the Evaluates slope of curve I, II or III. The respective Maximum voltage is in the memory circuit (24) filed. The memory circuit (24) represents the basic value (100%) of the setpoint device (11) to this value.

    Geht man beispielsweise davon aus, daß I die Kennlinie eines "guten" Zustandes der Ionisations-Elektrode(4) ist und geht man davon aus, daß der Lambda-Sollwert 1,2 sein soll, dann ist der Sollwertgeber(11) so eingestellt worden, daß er auf 90% seines Grundwertes (100%) gestellt wurde (vgl. a in Fig.2, wobei Fig.2 nicht maßstabsgerecht ist).Assuming, for example, that I is the characteristic a "good" condition of the ionization electrode (4) and assuming that the Lambda setpoint is 1.2 the setpoint generator (11) is set in this way been placed on 90% of its base value (100%) (see a in Fig. 2, where Fig. 2 is not to scale is).

    Solange sich am Zustand der Ionisations-Elektrode(4) bzw. des Gasbrenners(1) nichts ändert, wird auch in den Kalibrierungszyklen an dem Grundwert (100%) des Sollwertgebers(11) nichts geändert.As long as the state of the ionization electrode (4) or the gas burner (1) does not change, is also in the Calibration cycles on the basic value (100%) of the Setpoint generator (11) nothing changed.

    Ergibt sich in einem Kalibrierungszyklus die Kennlinie (II) mit dem Maximalwert(B), was die Folge einer Zustandsänderung der Ionisations-Elektrode(4) ist, dann wird in der Speicherschaltung(24) dieser Spannungswert(B) als Grundwert für den Sollwertgeber(11) gespeichert. Der Sollwertgeber(11) bleibt weiter auf 90% eines Grundwertes eingestellt, was b in Fig.2 zeigt. Aus Fig.2 ist ersichtlich, daß bei der Spannung(b) (90% der Maximalspannung B) über den Vergleicher(10) dann, wenn die Regelung nach dem Kalibrierungszyklus mittels des Umschalters(13) wieder eingeschaltet wird, eine Regelung auf den Lambda-Sollwert von 1,2 erfolgt.The characteristic curve results in a calibration cycle (II) with the maximum value (B), which is the consequence of a Change in state of the ionization electrode (4), then is this voltage value (B) in the memory circuit (24) saved as the basic value for the setpoint generator (11). The Setpoint generator (11) remains at 90% of a basic value set, which shows b in Fig.2. From Fig.2 is it can be seen that the voltage (b) (90% of the Maximum voltage B) across the comparator (10) if control after the calibration cycle using the Switch (13) is switched on again, a regulation to the Lambda setpoint of 1.2.

    Es ist also erreicht, daß abhängig vom jeweiligen Zustand der Ionisations-Elektrode(4) die Regelschaltung(9) immer so nachgeregelt wird, daß die Regelschaltung(9) im Regelbetrieb den Lambda-Istwert auf den gewünschten Lambda-Sollwert regelt. Betriebsbedingte Zustandsänderungen der Ionisations-Elektrode(4) bzw. des Gasbrenners(1) sind also ausgeglichen.It is achieved that depending on the respective state the ionization electrode (4) the control circuit (9) always is adjusted so that the control circuit (9) in Control operation the actual lambda value to the desired Lambda setpoint controls. Operational Changes in state of the ionization electrode (4) or Gas burner (1) are therefore balanced.

    Für die beschriebene Nachstellung des Sollwertgebers(11) bestehen Grenzen. Diese sind in Fig. 2 durch das Fenster(F) angedeutet. Solange in den Kalibrierungszyklen die Maxima der Spannungsverläufe, wie A,B, innerhalb des Fensters(F) liegen, erfolgt die beschriebene Nachstellung des Sollwertgebers(11). Ergibt sich ein Spannungsmaximum, wie C, das außerhalb des Fensters(F) liegt, dann erkennt dies die Erkennungsschaltung(23) und löst ein Störsignal und/oder eine zwangsweise Abschaltung des Gasbrenners(1) aus.For the described adjustment of the setpoint device (11) there are limits. These are shown in Fig. 2 by the Window (F) indicated. As long as in the calibration cycles the maxima of the voltage profiles, such as A, B, within the Window (F) lie, the described adjustment takes place of the setpoint device (11). If there is a voltage maximum, like C, which is outside the window (F), then recognizes this is the detection circuit (23) and triggers an interference signal and / or a forced shutdown of the gas burner (1) out.

    Die Kalibrierungszyklen sind im Vergleich zu den Zeiten, in denen der Gasbrenner(1) im normalen Regelbetrieb arbeitet, sehr kurz, so daß die während den Kalibrierungszyklen mit einem vom Lambda-Sollwert abweichenden Lambda-Wert erfolgende Verbrennung in Kauf genommen werden kann. Im jeweils an einen Kalibrierungsvorgang anschließenden Regelbetrieb verbessert sich die Verbrennung.The calibration cycles are compared to the times in which the gas burner (1) in normal control operation works, very short, so that during the Calibration cycles with one of the Lambda setpoint deviating lambda value combustion occurring in purchase can be taken. In each case to one Calibration process subsequent regular operation the combustion improves.

    Weiterbildungen der oben beschriebenen Kalibrierungsvorgänge sind im folgenden erläutert.Developments of those described above Calibration procedures are explained below.

    Während der Kalibrierung ist die beschriebene Regelfunktion abgeschaltet. Die Kalibrierung erfolgt vorzugsweise bei sich nicht ändernder Drehzahl des Gebläses(2), um den Einfluß des Gebläses(2) auf die Verbrennung zu unterdrücken. Günstig ist es, die Kalibrierung bei einer mittleren Drehzahl durchzuführen, um während der Kalibrierung nicht an Modulationsgrenzen des Steuersignals(J), das an das Gasmagnetventil(3') gelegt ist, zu stoßen. Die Kalibrierung kann auch während des Umschaltens des Gebläses(2) von der einen Leistungsstufe auf die andere Leistungsstufe erfolgen, da die Drehzahländerung im Vergleich zum Kalibriervorgang langsam ist, so daß die Drehzahl während des Kalibriervorgangs quasi konstant ist.During the calibration is the one described Control function switched off. The calibration is done preferably at a constant speed of the Blower (2) to the influence of the blower (2) on the To suppress combustion. It is cheap Perform calibration at medium speed, to avoid modulation limits during calibration of the control signal (J) which is sent to the gas solenoid valve (3 ') is laid to bump. The calibration can also be done during switching the blower (2) from one Performance level to the other performance level because the speed change compared to the calibration process is slow so that the speed during the Calibration process is quasi constant.

    Der Kalibriervorgang wird zum Zeitpunkt(t1) (vgl. Fig.3) vom Ereignis- oder Betriebsstundenzähler beim Übergang von der Vollaststufe auf die Teillaststufe des Gebläses (2) gestartet, wenn der abnehmende Modulationsstrom(J) einen niedrigen Wert(Jk) erreicht. Es wird dann von der Regelschaltung(9) der Modulationsstrom(J) und damit über das Gasmagnetventil(3') die Gaszufuhr erhöht, wodurch die Ionisationsspannung(Ui) entsprechend ansteigt. Zum Zeitpunkt(t2) erreicht die Ionisationsspannung(Ui) einen vorbestimmten Wert, beispielsweise 0,9 Uimax. Die Zeitspanne(t1 bis t2) dient dem Anfahren der Vorerwärmung der Ionisationselektrode(4). Ab dem Zeitpunkt(t2) wird bis zum Zeitpunkt(t3) der Modulationsstrom(J) konstant gehalten. In dieser Zeitspanne(t2 bis t3) erhitzt sich die Ionisationselektrode(4) auf eine stabile Temperatur und gewährleistet dadurch reproduzierbare Meßwerte.The calibration process is carried out at time (t1) (see Fig. 3) from the event or operating hours counter during the transition from the full load level to the partial load level of the blower (2) started when the decreasing modulation current (J) reached a low value (Jk). It is then from the Control circuit (9) of the modulation current (J) and thus over the gas solenoid valve (3 ') increases the gas supply, causing the Ionization voltage (Ui) increases accordingly. To the At time (t2) the ionization voltage (Ui) reaches one predetermined value, for example 0.9 Uimax. The Time period (t1 to t2) serves to start the preheating the ionization electrode (4). From the time (t2) until the time (t3) the modulation current (J) remains constant held. During this period (t2 to t3) it heats up the ionization electrode (4) to a stable temperature and thereby guarantees reproducible measured values.

    Nach dem Zeitpunkt(t3) wird der Modulationsstrom(J) von der Regelschaltung(9) so weiter erhöht, daß der Maximalwert(Uimax) der Ionisationsspannung(Ui) überfahren wird. Dieser - neue - Maximalwert(Uimax) und/oder die sich in der Zeitspanne(t3 bis t4) ergebenden Meßwerte wird/werden zur Weiterverarbeitung im Kalibriervorgang gespeichert.After the time (t3) the modulation current (J) of the control circuit (9) increased so that the Drive over the maximum value (Uimax) of the ionization voltage (Ui) becomes. This - new - maximum value (Uimax) and / or the measured values resulting in the time period (t3 to t4) will be used for further processing in the calibration process saved.

    Der Modulationsstrom(J) wird weiter erhöht bis die Ionisationsspannung(Ui) wieder um etwa 10% unter dem Uimax-Wert liegt, was in Figur 3 zum Zeitpunkt(t4) der Fall ist. In der Zeitspanne(t3 bis t4) ist der Lambdawert der Verbrennung an sich ungünstig, was jedoch nicht ins Gewicht fällt, da diese Zeitspanne höchstens wenige Sekunden dauert. The modulation current (J) is increased further until the Ionization voltage (Ui) again about 10% below that Uimax value is what in Figure 3 at time (t4) Case is. The lambda value is in the period (t3 to t4) the incineration itself is unfavorable, but this does not ins Weight drops because this time span is at most a few Takes seconds.

    Nach dem Zeitpunkt(t4) schaltet die Regelschaltung(9) wieder auf den oben beschriebenen Regelvorgang zurück. Dieser setzt ein, wenn sich beim Zeitpunkt(t5) die Ionisationsspannung(Ui), der Modulationsstrom(J) und der Gasdruck(p) stabilisiert haben.After the time (t4), the control circuit (9) switches back to the control process described above. This starts when the (t5) Ionization voltage (Ui), the modulation current (J) and the Have stabilized gas pressure (p).

    Aus dem gespeicherten - neuen - Maximalwert der Ionisationsspannung bzw. aus den in der Zeitspanne(t3 bis t4) gewonnenen Meßwerten leitet die Regelschaltung(9) einen entsprechend angepaßten neuen Sollwert für die Ionisationsspannung ab.From the stored - new - maximum value of Ionization voltage or from the in the period (t3 to The control circuit (9) conducts the measured values obtained. a correspondingly adjusted new setpoint for the Ionization voltage.

    Aufgrund der genannten kurzen Abtastperiode der Regelschaltung(9) wird sich auch in der Zeitspanne(t3 bis t4) eine Serie von Meßwerten ergeben. Gegenüber den übrigen Meßwerten der Serie stark abweichende Meßwerte werden unterdrückt, weil sie auf externen elektrischen Störimpulsen beruhen können.Because of the short sampling period mentioned Control circuit (9) will also change in the period (t3 to t4) result in a series of measured values. Compared to the other measured values of the series strongly differing measured values are suppressed because they rely on external electrical Interference may be based.

    Um den Einfluß von nur vorübergehend auftretenden, zwar ungewöhnlichen, aber noch tolerierbaren Kalibrier-Meßwertserien zu vermindern, kann eine Mittelwertbildung zwischen der neuen Meßwertserie und den Meßwertserien vorhergehender Kalibriervorgänge vorgenommen werden.To the influence of only temporarily occurring, though unusual, but still tolerable calibration measurement series can decrease, averaging between the new measurement series and the measurement series previous calibration operations.

    Bevor mit dem neuen Kalibrierwert, der aus dem neuen Maximalwert der Ionisationsspannung oder aus der Meßwertserie abgeleitet sein kann, tatsächlich eine Neukalibrierung des Sollwertes der Ionisationsspannung vorgenommen wird, werden zwei Übergabekriterien von der Regelschaltung(9) geprüft.Before with the new calibration value, which from the new Maximum value of the ionization voltage or from the Series of measurements can actually be derived Recalibration of the setpoint of the ionization voltage is made, two handover criteria from the Control circuit (9) checked.

    Das erste Übergabekriterium erfaßt eine plötzliche Veränderung aller Komponenten des Regelkreises. Es ist erfüllt, wenn die Abweichung des neuen Kalibrierwertes von den früheren Kalibrierwerten ausreichend klein ist. The first transfer criterion covers a sudden one Change all components of the control loop. It is fulfilled if the deviation of the new calibration value is sufficiently small from the previous calibration values.

    Das zweite Übergabekriterium erfaßt eine "schleichende Drift" des Systems (Brenner-Regelung), das bei Abweichung von den herstellerseitig vorgesehenen Werten ausreichend klein ist.The second handover criterion records a "creeping Drift "of the system (burner control), which in the event of deviation sufficient from the values provided by the manufacturer is small.

    Nur wenn beide Übergabekriterien erfüllt sind, wird der Brennerbetrieb mit der Neukalibrierung fortgesetzt. Ist eines der Übergabekriterien nicht erfüllt, dann wird der Brennerbetrieb zunächst durch eine Regelabschaltung und nach mehrmaliger Wiederholung durch eine Störabschaltung unterbrochen.Only if both handover criteria are met will the Burner operation continued with recalibration. Is If one of the handover criteria is not met, then the Burner operation first through a control shutdown and after repeated repetition by a lockout interrupted.

    Claims (7)

    1. Method of controlling a gas burner, in particular a gas blower burner, having a measuring electrode, in particular ionisation electrode which sends an electrical variable, which is derived from the combustion temperature or the lambda value, to a control switch, which compares this variable to a selected electrical sct-point value and sets the gas-air ratio to a corresponding lambda set-point value, characterised in that after a certain operation time or at regular intervals, a calibration cycle is compulsorily run through, in which the lambda value is reduced from a value > 1 and in which the electrical variable (ionisation signal) produced is measured and its maximum value (A, B, C) is stored, and in that with this maximum value the electrical set-point value is reset in order that the control circuit is set to the same lambda set-point value.
    2. Method according to claim 1, characterised in that a calibration cycle is introduced respectively after a certain number of hours' operation or number of times that the gas burner is switched on.
    3. Method according to claim 1 or 2, characterised in that when the maximum value (A, B, C) lies outside a predetermined window (F), an alarm signal is given out.
    4. Method according to one of the preceding claims, characterised in that in the calibration cycle the lambda value passes from a value > 1 to a value below 1.
    5. Method according to one of the preceding claims, characterised in that in the calibration cycle the lambda value > 1 is at least as high as the lambda set-point value capable of being set.
    6. Method according to one of the preceding claims, characterised in that in each calibration cycle the control signal (J) for a gas magnet valve (3') is first brought to a value suitable for pre-heating of the ionisation electrode (4) and thereafter the control signal (J) is increased until the maximum value of the ionisation signal (Ui) has been passed through and the resulting value is evaluated for calibration.
    7. Circuit for controlling a gas burner, in particular gas blower burner, having a measuring electrode, in particular ionisation electrode, which sends an electrical measured variable corresponding to the combustion temperature or lambda value to the control circuit, in which case in the control circuit a comparator (10) compares the respective electrical measured variable to a set-point value generator (11) and sets the gas-air ratio to a lambda set-point value, characterised in that a changeover switch (13) interrupts the control and a slope generator (22) reduces the gas-air ratio on the basis of a lambda value > 1, in which case the electrical measured variable (U) passes through a curve (I, II, III) and in that a recognition and storage circuit (23, 24) detects and stores the value of the measured variable at the maximum (A, B, C) of the curve (I, II, III) and adjusts the set-point value generator (11) to this value as a base value.
    EP96115721A 1995-10-25 1996-10-01 Method and circuit for controlling a gas burner Expired - Lifetime EP0770824B1 (en)

    Applications Claiming Priority (4)

    Application Number Priority Date Filing Date Title
    DE19539568 1995-10-25
    DE19539568A DE19539568C1 (en) 1995-10-25 1995-10-25 Gas burner regulation system
    DE19618573 1996-05-09
    DE19618573A DE19618573C1 (en) 1996-05-09 1996-05-09 Gas burner regulating method controlled by ionisation electrode signal

    Publications (3)

    Publication Number Publication Date
    EP0770824A2 EP0770824A2 (en) 1997-05-02
    EP0770824A3 EP0770824A3 (en) 1998-04-15
    EP0770824B1 true EP0770824B1 (en) 2000-01-26

    Family

    ID=26019737

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96115721A Expired - Lifetime EP0770824B1 (en) 1995-10-25 1996-10-01 Method and circuit for controlling a gas burner

    Country Status (5)

    Country Link
    US (1) US5924859A (en)
    EP (1) EP0770824B1 (en)
    AT (1) ATE189301T1 (en)
    CA (1) CA2188616C (en)
    DE (1) DE59604283D1 (en)

    Cited By (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1002997A2 (en) * 1998-11-20 2000-05-24 G. Kromschröder Aktiengesellschaft Method for controlling a fuel/air ratio of full premix gas burner
    EP1331444A2 (en) 2002-01-17 2003-07-30 Vaillant GmbH Method for regulating a gas burner
    EP1522790A2 (en) 2003-10-08 2005-04-13 Vaillant GmbH Method for Controlling a Gas Burner, in particular in Heating Installations with Blower
    DE102004055716A1 (en) * 2004-06-23 2006-01-12 Ebm-Papst Landshut Gmbh Firing equipment for gas burners has means for determining value dependent on measured temperature and means for regulating generated temperature using characteristic line representing value range corresponding to ideal temperature
    EP2014985A2 (en) 2007-07-13 2009-01-14 Vaillant GmbH Method of adjusting the air/fuel ratio for a gas fired burner
    DE102010008908A1 (en) * 2010-02-23 2011-08-25 Robert Bosch GmbH, 70469 A method of operating a burner and the air-frequency controlled modulating a burner power
    DE10300602B4 (en) * 2002-01-17 2012-01-05 Vaillant Gmbh Method for controlling a gas burner
    EP2405198A1 (en) 2010-07-08 2012-01-11 Vaillant GmbH Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner
    DE102010055567A1 (en) * 2010-12-21 2012-06-21 Robert Bosch Gmbh Method for stabilizing a performance of a gas-fired burner
    DE102013214610A1 (en) * 2013-07-26 2015-01-29 E.On New Build & Technology Gmbh Method and device for determining characteristic values of fuel gases
    DE102019119186A1 (en) 2019-01-29 2020-07-30 Vaillant Gmbh Method and device for controlling a fuel gas-air mixture in a heater
    EP3690318A2 (en) 2019-01-29 2020-08-05 Vaillant GmbH Method and device for regulating a fuel-air mixture in a heating device
    EP3712501A1 (en) 2019-03-22 2020-09-23 Vaillant GmbH Method and device for regenerating an electrode for ionization measurement in a flame area of a burner
    DE102019110977A1 (en) * 2019-04-29 2020-10-29 Ebm-Papst Landshut Gmbh Method for checking a gas mixture sensor in a fuel gas operated heater
    WO2020228979A1 (en) 2019-05-16 2020-11-19 Truma Gerätetechnik GmbH & Co. KG Method for monitoring a burner and/or a burner behavior, and burner unit
    EP3767174A1 (en) 2019-07-16 2021-01-20 Vaillant GmbH Method and device for recalibrating a measuring system for regulating a fuel-air mixture in a heating device
    DE102020104210A1 (en) 2020-02-18 2021-08-19 Vaillant Gmbh Method and device for regulating a fuel gas-air mixture in a heating device with variable power
    DE102020127558A1 (en) 2020-10-20 2022-04-21 Viessmann Climate Solutions Se Heating system and method for operating a heating system
    DE102020129816A1 (en) 2020-11-12 2022-05-12 Vaillant Gmbh Arrangements and methods for measuring ionization in a combustion chamber of a premix burner

    Families Citing this family (57)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19750870C2 (en) * 1997-11-17 2001-04-26 Bosch Gmbh Robert Method for monitoring the flame position on a controllable atmospheric gas burner for heating devices, in particular water heaters
    DE19839160B4 (en) * 1998-08-28 2004-12-23 Stiebel Eltron Gmbh & Co. Kg Method and circuit for regulating a gas burner
    DE19854824C1 (en) * 1998-11-27 2000-06-29 Stiebel Eltron Gmbh & Co Kg Process and circuit for control of a gas burner uses a lambda sensor to control gas supply
    US20100024244A1 (en) * 1999-05-20 2010-02-04 Potter Gary J Heater and controls for extraction of moisture and biological organisms from structures
    US7568908B2 (en) * 1999-05-20 2009-08-04 Cambridge Engineering, Inc. Low fire start control
    DE10003819C1 (en) * 2000-01-28 2001-05-17 Honeywell Bv Gas burner operating process, involving use of ionization signal and comparing differences in its readings
    DE10025769A1 (en) * 2000-05-12 2001-11-15 Siemens Building Tech Ag Control device for a burner
    DE10030063C2 (en) * 2000-06-19 2003-03-20 Honeywell Bv Control procedures for gas burners
    DE10040358B4 (en) * 2000-08-16 2006-03-30 Honeywell B.V. Control method for gas burners
    DE10113468A1 (en) * 2000-09-05 2002-03-14 Siemens Building Tech Ag Burner control unit employs sensor for comparative measurement during control interval and produces alarm signal as function of difference
    DE10054840A1 (en) * 2000-11-04 2002-08-08 Xcellsis Gmbh Method and device for starting a reactor in a gas generation system
    DE10057224C2 (en) * 2000-11-18 2003-04-17 Buderus Heiztechnik Gmbh Procedure for automatic function check in a gas / air compound control
    DE10057234C2 (en) * 2000-11-18 2003-04-10 Buderus Heiztechnik Gmbh Method of controlling a gas burner for a heater
    DE10057225C2 (en) * 2000-11-18 2003-04-17 Buderus Heiztechnik Gmbh Method of operating a gas burner for a heater
    DE10058417C2 (en) * 2000-11-24 2003-04-24 Buderus Heiztechnik Gmbh Method of operating a gas burner for a heater
    DE10111077C2 (en) * 2001-03-08 2003-11-06 Bosch Gmbh Robert Method for regulating a burner of a gas combustion device
    DE50108177D1 (en) * 2001-09-13 2005-12-29 Siemens Schweiz Ag Zuerich Control device for a burner and setting method
    EP1304527B1 (en) * 2001-10-18 2004-12-15 Honeywell B.V. Method for controlling a boiler
    ITAN20020038A1 (en) * 2002-08-05 2004-02-06 Merloni Termosanitari Spa Ora Ariston Thermo Spa LAMBDA VIRTUAL SENSOR COMBUSTION CONTROL SYSTEM.
    EP1396681B1 (en) * 2002-09-04 2005-12-07 Siemens Schweiz AG Burner controller and method of setting a burner controller
    DE10341543A1 (en) * 2003-09-09 2005-04-28 Honeywell Bv Control method for gas burners
    KR101157652B1 (en) 2004-06-23 2012-06-18 에베엠-파프스트 란드스후트 게엠베하 Method for adjusting the excess air coefficient on a firing apparatus, and firing apparatus
    DE102004055715C5 (en) * 2004-06-23 2014-02-06 Ebm-Papst Landshut Gmbh Method for setting operating parameters on a firing device and firing device
    DE102004059494C5 (en) * 2004-12-10 2008-07-24 Baxi Innotech Gmbh Method for determining an air ratio in a burner for a fuel cell heater and fuel cell heater
    ITMO20050204A1 (en) 2005-08-02 2007-02-03 Merloni Termosanitari Spa METHOD OF CONTROL OF COMBUSTION WITH GUIDED SEARCH OF THE SET POINT
    EP1811230B1 (en) * 2006-01-19 2016-01-06 Vaillant GmbH Method for controlling the air-fuel ratio of a fuel operated burner
    AT505244B1 (en) * 2007-06-11 2009-08-15 Vaillant Austria Gmbh METHOD FOR CHECKING IONIZATION ELECTRODE SIGNAL IN BURNERS
    CN102239364A (en) * 2008-11-25 2011-11-09 Utc消防及保安公司 Automated setup process for metered combustion control systems
    IT1399076B1 (en) * 2010-03-23 2013-04-05 Idea S R L Ora Idea S P A DEVICE AND METHOD OF CONTROL OF THE COMBUSTIBLE AIR FLOW OF A BURNER IN GENERAL
    DE102010046954B4 (en) * 2010-09-29 2012-04-12 Robert Bosch Gmbh Method for calibration, validation and adjustment of a lambda probe
    US8821154B2 (en) * 2010-11-09 2014-09-02 Purpose Company Limited Combustion apparatus and method for combustion control thereof
    EP2466204B1 (en) * 2010-12-16 2013-11-13 Siemens Aktiengesellschaft Regulating device for a burner assembly
    ITMI20110411A1 (en) * 2011-03-15 2012-09-16 Bertelli & Partners Srl PERFECTED METHOD OF CONTROL OF A GAS APPLIANCE OR BOILER
    ITMI20120427A1 (en) * 2012-03-19 2013-09-20 Bertelli & Partners Srl PERFECTED METHOD FOR THE ELECTRONIC ADJUSTMENT OF A FUEL MIXTURE, FOR EXAMPLE GAS, SENT TO A BURNER
    EP2685168B1 (en) * 2012-07-13 2015-10-14 Honeywell Technologies Sarl Method for operating a gas burner
    EP2685167B1 (en) * 2012-07-13 2015-12-16 Honeywell Technologies Sarl Method for operating a gas burner
    US8726539B2 (en) 2012-09-18 2014-05-20 Cambridge Engineering, Inc. Heater and controls for extraction of moisture and biological organisms from structures
    ITPD20120281A1 (en) * 2012-09-27 2014-03-28 Sit La Precisa S P A Con Socio Uni Co METHOD FOR THE MONITORING AND CONTROL OF COMBUSTION IN COMBUSTIBLE GAS BURNERS AND COMBUSTION CONTROL SYSTEM OPERATING ACCORDING TO THIS METHOD
    DE102012023606B4 (en) * 2012-12-04 2019-02-21 Robert Bosch Gmbh Method for controlling combustion in a gas or oil burner
    EP2971964B1 (en) 2013-03-11 2017-11-29 Idea S.p.A. Burner combustion control method and device
    EP3073195B1 (en) * 2015-03-23 2019-05-08 Honeywell Technologies Sarl Method for calibrating a gas burner
    EP3156730B1 (en) * 2015-10-12 2019-03-20 MHG Heiztechnik GmbH Method of calibrating a burner device for liquid fuels and control device for a burner device
    DE102015225886A1 (en) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Heater system and method with a heater system
    EP3290798B1 (en) * 2016-09-02 2020-12-23 Robert Bosch GmbH Method for controlling a fuel/air ratio in a heating system and a control unit and a heating system
    ES2910172T3 (en) * 2016-09-02 2022-05-11 Bosch Gmbh Robert Procedure to define an inspection instant in a heating system, as well as a control unit and a heating system
    EP3290796B1 (en) * 2016-09-02 2021-01-27 Robert Bosch GmbH Method for controlling a fuel/air ratio in a heating system and a control unit and a heating system
    DE102016123041B4 (en) * 2016-11-29 2023-08-10 Webasto SE Fuel-powered vehicle heater and method of operating a fuel-powered vehicle heater
    ES2902010T3 (en) 2017-03-27 2022-03-24 Siemens Ag Detection of a blockage
    DE102017126137A1 (en) * 2017-11-08 2019-05-09 Ebm-Papst Landshut Gmbh Method for controlling a fuel gas operated heater
    US10718518B2 (en) 2017-11-30 2020-07-21 Brunswick Corporation Systems and methods for avoiding harmonic modes of gas burners
    JP6950564B2 (en) * 2018-02-19 2021-10-13 株式会社ノーリツ Combustion device
    US11441772B2 (en) 2018-07-19 2022-09-13 Brunswick Corporation Forced-draft pre-mix burner device
    DE102019100467A1 (en) * 2019-01-10 2020-07-16 Vaillant Gmbh Process for controlling the combustion air ratio on the burner of a heater
    US11608983B2 (en) * 2020-12-02 2023-03-21 Brunswick Corporation Gas burner systems and methods for calibrating gas burner systems
    DE102021006182A1 (en) * 2021-12-14 2023-06-15 Truma Gerätetechnik GmbH & Co. KG Method for controlling a burner and burner arrangement with a burner
    IT202100032360A1 (en) 2021-12-23 2023-06-23 Sit Spa METHOD AND APPARATUS FOR MONITORING AND CONTROL OF COMBUSTION IN FUEL GAS BURNERS
    US11940147B2 (en) 2022-06-09 2024-03-26 Brunswick Corporation Blown air heating system

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS56157725A (en) * 1980-05-07 1981-12-05 Hitachi Ltd Proportional combustion device
    US4588372A (en) * 1982-09-23 1986-05-13 Honeywell Inc. Flame ionization control of a partially premixed gas burner with regulated secondary air
    NL8403840A (en) * 1984-12-18 1986-07-16 Tno Control for gas-fired boiler - uses ionisation detector and programmed logic for highest fuel economy
    JPS6349623A (en) * 1986-08-18 1988-03-02 Matsushita Electric Ind Co Ltd Combustion device
    FR2638819A1 (en) * 1988-11-10 1990-05-11 Vaillant Sarl METHOD AND DEVICE FOR PREPARING A COMBUSTIBLE-AIR MIXTURE FOR COMBUSTION
    US5037291A (en) * 1990-07-25 1991-08-06 Carrier Corporation Method and apparatus for optimizing fuel-to-air ratio in the combustible gas supply of a radiant burner
    DE4433425C2 (en) * 1994-09-20 1998-04-30 Stiebel Eltron Gmbh & Co Kg Control device for setting a gas-combustion air mixture in a gas burner

    Cited By (35)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1002997A2 (en) * 1998-11-20 2000-05-24 G. Kromschröder Aktiengesellschaft Method for controlling a fuel/air ratio of full premix gas burner
    DE10300602B4 (en) * 2002-01-17 2012-01-05 Vaillant Gmbh Method for controlling a gas burner
    EP1331444A2 (en) 2002-01-17 2003-07-30 Vaillant GmbH Method for regulating a gas burner
    AT411189B (en) * 2002-01-17 2003-10-27 Vaillant Gmbh METHOD FOR CONTROLLING A GAS BURNER
    EP1522790A2 (en) 2003-10-08 2005-04-13 Vaillant GmbH Method for Controlling a Gas Burner, in particular in Heating Installations with Blower
    US8636501B2 (en) 2004-06-23 2014-01-28 Landshut GmbH Method for regulating and controlling a firing device and firing device
    EP2594848A1 (en) 2004-06-23 2013-05-22 ebm-papst Landshut GmbH Method for controlling a firing device and firing device
    DE102004055716C5 (en) * 2004-06-23 2010-02-11 Ebm-Papst Landshut Gmbh Method for controlling a firing device and firing device (electronic composite I)
    DE102004055716B4 (en) * 2004-06-23 2007-09-13 Ebm-Papst Landshut Gmbh Method for controlling a firing device and firing device (electronic composite I)
    DE102004055716A1 (en) * 2004-06-23 2006-01-12 Ebm-Papst Landshut Gmbh Firing equipment for gas burners has means for determining value dependent on measured temperature and means for regulating generated temperature using characteristic line representing value range corresponding to ideal temperature
    US8500441B2 (en) 2004-06-23 2013-08-06 Ebm-Papst Landshut Gmbh Method for regulating and controlling a firing device and a firing device
    DE102008031979A1 (en) 2007-07-13 2009-01-15 Vaillant Gmbh Method for fuel gas-air adjustment for a fuel gas powered burner
    EP2014985A2 (en) 2007-07-13 2009-01-14 Vaillant GmbH Method of adjusting the air/fuel ratio for a gas fired burner
    DE102010008908A1 (en) * 2010-02-23 2011-08-25 Robert Bosch GmbH, 70469 A method of operating a burner and the air-frequency controlled modulating a burner power
    DE102010008908B4 (en) 2010-02-23 2018-12-20 Robert Bosch Gmbh A method of operating a burner and the air-frequency controlled modulating a burner power
    EP2405198A1 (en) 2010-07-08 2012-01-11 Vaillant GmbH Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner
    DE102010055567B4 (en) * 2010-12-21 2012-08-02 Robert Bosch Gmbh Method for stabilizing a performance of a gas-fired burner
    DE102010055567A1 (en) * 2010-12-21 2012-06-21 Robert Bosch Gmbh Method for stabilizing a performance of a gas-fired burner
    DE102013214610A1 (en) * 2013-07-26 2015-01-29 E.On New Build & Technology Gmbh Method and device for determining characteristic values of fuel gases
    EP3690318A2 (en) 2019-01-29 2020-08-05 Vaillant GmbH Method and device for regulating a fuel-air mixture in a heating device
    DE102019119186A1 (en) 2019-01-29 2020-07-30 Vaillant Gmbh Method and device for controlling a fuel gas-air mixture in a heater
    EP3712501A1 (en) 2019-03-22 2020-09-23 Vaillant GmbH Method and device for regenerating an electrode for ionization measurement in a flame area of a burner
    DE102019107367A1 (en) * 2019-03-22 2020-09-24 Vaillant Gmbh Procedure for checking the presence of a non-return valve in a heating system
    DE102019110977A1 (en) * 2019-04-29 2020-10-29 Ebm-Papst Landshut Gmbh Method for checking a gas mixture sensor in a fuel gas operated heater
    WO2020228979A1 (en) 2019-05-16 2020-11-19 Truma Gerätetechnik GmbH & Co. KG Method for monitoring a burner and/or a burner behavior, and burner unit
    DE102019003451A1 (en) * 2019-05-16 2020-11-19 Truma Gerätetechnik GmbH & Co. KG Method for monitoring a burner and / or a burning behavior of a burner and burner arrangement
    EP3767174A1 (en) 2019-07-16 2021-01-20 Vaillant GmbH Method and device for recalibrating a measuring system for regulating a fuel-air mixture in a heating device
    DE102019119214A1 (en) * 2019-07-16 2021-01-21 Vaillant Gmbh Method and device for recalibrating a measuring system for regulating a fuel gas-air mixture in a heating device
    DE102020104210A1 (en) 2020-02-18 2021-08-19 Vaillant Gmbh Method and device for regulating a fuel gas-air mixture in a heating device with variable power
    EP3869099A1 (en) 2020-02-18 2021-08-25 Vaillant GmbH Method, device, and computer program product for regulating a fuel-air mixture in a heating device
    DE102020127558A1 (en) 2020-10-20 2022-04-21 Viessmann Climate Solutions Se Heating system and method for operating a heating system
    EP3988844A1 (en) 2020-10-20 2022-04-27 Viessmann Climate Solutions SE Heating system and method for operating a heating system
    DE102020127558B4 (en) 2020-10-20 2023-06-29 Viessmann Climate Solutions Se Heating system and method for operating a heating system
    DE102020129816A1 (en) 2020-11-12 2022-05-12 Vaillant Gmbh Arrangements and methods for measuring ionization in a combustion chamber of a premix burner
    EP4023941A2 (en) 2020-11-12 2022-07-06 Vaillant GmbH Assemblies and method for measuring ionization in a combustion chamber of a premix burner

    Also Published As

    Publication number Publication date
    CA2188616C (en) 2001-01-09
    DE59604283D1 (en) 2000-03-02
    ATE189301T1 (en) 2000-02-15
    US5924859A (en) 1999-07-20
    EP0770824A3 (en) 1998-04-15
    CA2188616A1 (en) 1997-04-26
    EP0770824A2 (en) 1997-05-02

    Similar Documents

    Publication Publication Date Title
    EP0770824B1 (en) Method and circuit for controlling a gas burner
    DE19539568C1 (en) Gas burner regulation system
    EP0806610B1 (en) Method for operating a gas burner
    DE19618573C1 (en) Gas burner regulating method controlled by ionisation electrode signal
    DE4121924C2 (en) Method and device for optimizing the fuel-air ratio in the fuel gas supply of a radiant burner
    DE4433425A1 (en) Control appts. for adjusting gas to air mixture in gas burner esp. gas torch burner
    EP1154202B1 (en) Control device for a burner
    EP2014985B1 (en) Method of adjusting the air/fuel ratio for a gas fired burner
    EP3690318B1 (en) Method for regulating a fuel-air mixture in a heating device
    EP0030736A2 (en) Device for controlling the combustion mixture of a burner
    WO2003023283A1 (en) Control device for a burner and adjusting method
    DE202019100263U1 (en) Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor
    EP3824366B1 (en) Method for the closed-loop control of a gas mixture using a gas sensor, a combustion-gas sensor and a gas-mixture sensor
    EP0833106B1 (en) Method and device for operation optimisation of a gas burner
    DE102019119186A1 (en) Method and device for controlling a fuel gas-air mixture in a heater
    EP3841326A1 (en) Heating device and method for regulating a fan-operated gas burner
    EP1002997B1 (en) Method for controlling a fuel/air ratio of full premix gas burner
    EP1186831A1 (en) Apparatus controlling the air/fuel ratio of a burner
    DE19839160B4 (en) Method and circuit for regulating a gas burner
    DE19627857C2 (en) Process for operating a gas fan burner
    DE19854824C1 (en) Process and circuit for control of a gas burner uses a lambda sensor to control gas supply
    EP0615095B1 (en) Burner controller
    DE19632983A1 (en) Control system especially for forced draught gas fired burner
    EP3767174B1 (en) Method and device for recalibrating a measuring system for regulating a fuel-air mixture in a heating device
    EP0614051B1 (en) Burner automat

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

    AX Request for extension of the european patent

    Free format text: LT PAYMENT 961001;LV PAYMENT 961001;SI PAYMENT 961001

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

    AX Request for extension of the european patent

    Free format text: LT PAYMENT 961001;LV PAYMENT 961001;SI PAYMENT 961001

    17P Request for examination filed

    Effective date: 19980429

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19990316

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

    AX Request for extension of the european patent

    Free format text: LT PAYMENT 19961001;LV PAYMENT 19961001;SI PAYMENT 19961001

    LTIE Lt: invalidation of european patent or patent extension
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 20000126

    Ref country code: ES

    Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

    Effective date: 20000126

    REF Corresponds to:

    Ref document number: 189301

    Country of ref document: AT

    Date of ref document: 20000215

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59604283

    Country of ref document: DE

    Date of ref document: 20000302

    ET Fr: translation filed
    ITF It: translation for a ep patent filed

    Owner name: MODIANO & ASSOCIATI S.R.L.

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000426

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001001

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: AEN

    Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 15.06.2001 REAKTIVIERT WORDEN

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: KIRKER & CIE SA

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 746

    Effective date: 20140731

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R084

    Ref document number: 59604283

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20151021

    Year of fee payment: 20

    Ref country code: IT

    Payment date: 20151028

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20151021

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20151022

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20151023

    Year of fee payment: 20

    Ref country code: AT

    Payment date: 20151022

    Year of fee payment: 20

    Ref country code: BE

    Payment date: 20151019

    Year of fee payment: 20

    Ref country code: NL

    Payment date: 20151021

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59604283

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20160930

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20160930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20160930

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 189301

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20161001