EP1811230B1 - Method for controlling the air-fuel ratio of a fuel operated burner - Google Patents

Method for controlling the air-fuel ratio of a fuel operated burner Download PDF

Info

Publication number
EP1811230B1
EP1811230B1 EP07000643.2A EP07000643A EP1811230B1 EP 1811230 B1 EP1811230 B1 EP 1811230B1 EP 07000643 A EP07000643 A EP 07000643A EP 1811230 B1 EP1811230 B1 EP 1811230B1
Authority
EP
European Patent Office
Prior art keywords
burner
fuel
resistance
flame
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07000643.2A
Other languages
German (de)
French (fr)
Other versions
EP1811230A3 (en
EP1811230A2 (en
Inventor
Stefan Lehminger
Dietmar Manz
Heinz-Jörg Tomczak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT5902006A external-priority patent/AT503581B1/en
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP1811230A2 publication Critical patent/EP1811230A2/en
Publication of EP1811230A3 publication Critical patent/EP1811230A3/en
Application granted granted Critical
Publication of EP1811230B1 publication Critical patent/EP1811230B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/60Devices for simultaneous control of gas and combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/725Protection against flame failure by using flame detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/14Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermo-sensitive resistors
    • F23N5/143Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermo-sensitive resistors using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2208/00Control devices associated with burners
    • F23D2208/10Sensing devices

Definitions

  • the invention relates to a method for controlling the fuel-air ratio of a fuel-fired burner.
  • the flame of a fuel-fired burner is usually detected by measuring an ionization current in the flame.
  • an ionization current in the flame Here, the fact is exploited that represent the ions in a flame, an electrical conductor. In the presence of a flame, a current flow can thus be measured between two electrodes. To detect a flame, the electrodes must be within the effective range of the flame.
  • Modern heating systems have large modulation bandwidths. Accordingly, the flames sit at low power directly on the burner; a detection by means of ionization electrode is problematic. At high powers, the flames lift off the burner surface; a different position of the ionization electrode than at low powers is desirable.
  • Infrared sensors are particularly suitable for flame detection in yellow burners (oil firing), but provide for a regulation of the fuel-air ratio no sufficiently reproducible signal.
  • the temperature will increase causing an increase in nitrogen oxide concentration. Furthermore, then a complete burnout is not guaranteed. If the mixture is too lean, it may cause ignition problems during ignition. There is also the possibility that after ignition ignites the flame and no stable combustion takes place at the burner.
  • the DE 100 45 270 A1 discloses a method for controlling the fuel-air ratio of a fuel-fired burner, wherein the fuel-air ratio is controlled as a function of the temperature of a sensing element located in the flame. In such a sensor arrangement there is a risk of sensor corrosion, which is why the DE 100 45 270 A1 Sensor consists of ceramic material.
  • GB 2 270 748 A It is known that the temperature of a burner linearly increases when the flame is enriched. GB 2 270 748 A teaches to control to a predetermined setpoint temperature, which is detected by means of exactly one thermocouple on the cold side of the burner.
  • the invention has for its object to provide a method in which safe and little aging affected the temperature of the burner can be determined to hereby regulate the fuel-air mixture. At the same time, the process should monitor the presence of a flame.
  • this is according to a method for controlling the fuel-air ratio of a fuel-fired burner wherein the electrical resistance of the burner or a measuring element on the side facing away from the flame of the burner surface is measured and this signal is used for monitoring and control, according to claim 1 thereby ensures that the fuel-air ratio is first greased. This increases the temperature as well as the resistance of the measuring section. With stoichiometric combustion, the temperature or the resistance reaches its maximum. Further enrichment of the fuel-air mixture leads to a drop in the measured temperature or the measured resistance. If the maximum is reached, this is a sign of a stoichiometric combustion. Then the fuel-air mixture can be emptied in a predetermined manner, whereby the burner is operated with an ideal fuel-air mixture.
  • the presence of a flame and its extinction can be determined.
  • the Exceeding a predetermined temperature or a predetermined positive temperature gradient is in this case a sign for the detection of a lighted flame. Conversely, falling below a certain temperature or exceeding a certain negative temperature gradient is an indication of the extinction of a flame.
  • the electrical resistance can also serve as a signal directly without conversion into an associated temperature.
  • the fuel gas-air ratio can be adjusted depending on the determined resistance.
  • the thermal performance of the burner is determined.
  • each thermal output of the burner can be assigned a specific nominal temperature or a nominal resistance of the measuring element. Accordingly, knowing the resistance and thermal performance, the fuel-air ratio can be readjusted. If the measured resistance is greater than the target resistance, this is an indication that the flame is too hot. The fuel-air mixture must then be emaciated. In the opposite case, it is known that a small resistance results in too low a temperature, which means that the mixture must be greased.
  • the change of the fuel-air mixture can in principle be done by, on the one hand, the amount of fuel gas or on the other hand, the amount of air is changed. Since, as a rule, the thermal performance of the burner should remain unchanged, it should be striven to change the amount of air. However, it is also possible to change the amount of fuel gas at constant air flow.
  • the resistance is measured by the measurement of a voltage drop.
  • the burner is connected to a constant current source, so that a voltage drop can be measured at the measuring path.
  • the test section is connected in series with a reference resistor and then measured at the test section, a voltage drop.
  • FIG. 1 shows the temperature dependence of the resistance of a metal. It becomes clear that the resistance increases with increasing temperature. The resistance of other metals behaves in the same way.
  • FIG. 2 shows a cylindrical burner 12 with a burner surface 9, behind which a perforated plate cylinder 8 is located.
  • the burner 12 is connected via a blower 13 with an air supply 14.
  • In the air supply 14 projects a fuel gas nozzle 18, which is connected via a gas valve 15 with actuator 16 to a fuel gas line 17.
  • the actuator 16 is connected via a control line 20 to a controller 3.
  • the controller 3 is connected via a control line 19 to the motor 21 of the blower 13.
  • the control unit 3 is connected via two measuring lines 4 and connection points 11 to the burner surface 9 in such a way that a measuring path is created between the connection points 11.
  • FIG. 3 shows a detail of this.
  • a fuel-air mixture 7 first flows through the perforated plate 8 and through this the burner surface 9.
  • a flame 10 is formed on the outside of the burner 12.
  • the flame 10 heats the burner surface 9, so that a measuring path is formed between the connection points 11 on the burner surface 9.
  • the resistance between the two connection points 11 can be passed on to the control 3 via the measuring lines 4.
  • FIG. 4 shows the arrangement of the measuring element 6 on the side facing away from the flame 10 of the burner surface 9. Although the measuring element is not heated to flame temperature, but the temperature of the measuring element is linearly dependent on the flame temperature.
  • FIG. 5 shows the measuring circuit with constant voltage source 1 and the reference resistor R ref , which is connected in series with the burner resistor R B.
  • a voltage measuring device 2 detects the voltage drop across the measuring path R B. The signal is forwarded to the controller 3, which influences the motor 21 of the blower 13 and the actuator 16 of the gas valve 15 via the control lines 19, 20.
  • FIG. 8 shows the relationship between measured temperature T mess and the thermal performance of the burner P for three different fuel gas-air ratios ⁇ .
  • the flame moves away from the burner surface 9, so that the burner surface 9 becomes cooler with increasing thermal load. Accordingly, the measured temperature decreases with increasing load. If the excess air ⁇ is increased, the flame is thereby cooled, and it continues to lift away from the burner, as a result of which the measured temperature decreases. Conversely, the measured temperature increases with a Gemischanfettung, on the one hand, the flame is hotter and also burns earlier, ie closer to the burner.
  • the monitoring and control method according to the invention can first be started with any desired fuel gas / air ratio.
  • To ignite the fan 13 is first activated and shortly thereafter supplied an ignition electrode downstream of the burner with ignition pulses. Then, the actuator 16 releases a part of the flow cross-section of the gas valve 15. If a flame is ignited, the resistance of the measuring section between the connection points 11 changes. If the control 3 realizes a corresponding change in resistance, which indicates a hot flame, then the gas valve 15 remains open. If no resistance or resistance gradient characteristic of the presence of a flame is measured within a predetermined period of time, the gas valve is locked in order to prevent unburnt fuel gas from flowing out.
  • this is first enriched, in which the delivery rate of the blower 13 is reduced at a constant opening of the fuel gas valve 15.
  • the fuel gas volume flow can be changed at a constant air flow.
  • the flame temperature rises, moreover, the flame adheres closer to the burner surface 9.
  • the burner surface 9 heats up and the burner resistance R B increases. If it is determined that the measured temperature or the resistance drops again when the proportion of fuel gas is increased, this is a clear signal that the flame is now burning substoichiometrically.
  • the fuel gas-air ratio is reduced within defined limits, so that the flame can burn with optimum excess air.
  • the amount of air z. B. by increasing the fan speed to increase by 30%, on the other hand, it is also possible to accumulate by a target reading the fuel gas to air ratio accordingly.
  • the maximum burner resistance R B can be measured and the fuel gas-air mixture are so long emaciated until a calculated resistance.
  • the thermal performance of the burner may be detected in addition to the resistance of the burner 12. This can be done, for example, by detecting the opening degree of the gas valve 15 or detecting a measured value derived from the heating power requirement. As according to FIG. 8 For each predetermined thermal output of the burner 12, a target burner temperature is known, the fuel gas-air mixture can be adjusted accordingly. If it is determined that the resistance or the temperature is too high, the mixture is emaciated, greased in the other case.
  • the gas valve 15 is closed in order to prevent the unburnt fuel gas from escaping avoid.
  • the method according to the invention can also be applied to liquid fuels.

Description

Die Erfindung bezieht sich auf ein Verfahren zum Regeln des Brennstoff-Luft-Verhältnisses eines brennstoffbetriebenen Brenners.The invention relates to a method for controlling the fuel-air ratio of a fuel-fired burner.

Die Flamme eines brennstoffbetriebenen Brenners wird zumeist mittels Messung eines Ionisationsstroms in der Flamme erfasst. Hierbei wird die Tatsache ausgenutzt, dass die Ionen in einer Flamme einen elektrischen Leiter darstellen. Beim Vorhandensein einer Flamme kann somit zwischen zwei Elektroden ein Stromfluss gemessen werden. Zum Erkennen einer Flamme müssen sich die Elektroden im Wirkbereich der Flamme befinden.The flame of a fuel-fired burner is usually detected by measuring an ionization current in the flame. Here, the fact is exploited that represent the ions in a flame, an electrical conductor. In the presence of a flame, a current flow can thus be measured between two electrodes. To detect a flame, the electrodes must be within the effective range of the flame.

Moderne Heizungsanlagen verfügen über große Modulationsbandbreiten. Dementsprechend sitzen die Flammen bei kleinen Leistungen direkt auf dem Brenner auf; eine Erfassung mittels Ionisationselektrode ist problematisch. Bei großen Leistungen heben die Flammen von der Brenneroberfläche ab; eine andere Position der Ionisationselektrode als bei kleinen Leistungen ist wünschenswert.Modern heating systems have large modulation bandwidths. Accordingly, the flames sit at low power directly on the burner; a detection by means of ionization electrode is problematic. At high powers, the flames lift off the burner surface; a different position of the ionization electrode than at low powers is desirable.

Bei der Verwendung moderner Porenbrenner brennt die Flamme nicht oberhalb der Brenneroberfläche, sondern im porösen Brennermaterial selbst. Eine Flammendetektierung und -Überwachung über eine herkömmliche Ionisationselektrode ist daher nicht möglich.When using modern pore burners, the flame does not burn above the burner surface, but in the porous burner material itself. Flame detection and monitoring via a conventional ionization electrode is therefore not possible.

Infrarot-Sensoren eignen sich insbesondere zur Flammenerkennung bei Gelbbrennern (Ölfeuerung), bieten jedoch für eine Regelung des Brennstoff-Luft-Verhältnisses kein ausreichend reproduzierbares Signal.Infrared sensors are particularly suitable for flame detection in yellow burners (oil firing), but provide for a regulation of the fuel-air ratio no sufficiently reproducible signal.

Um eine vollständige und schadstoffarme Verbrennung zu garantieren, ist ein bestimmtes Brennstoff-Luft-Verhältnis notwendig. Heizungsanlagen werden häufig mit einem Luftüberschuss zwischen 25% und 30% betrieben. Kommt es zu einer Schwankung der Brennstoffqualität, so ist dennoch in der Regel ein vollständiger Ausbrand garantiert.To guarantee complete and low-emission combustion, a certain fuel-air ratio is necessary. Heating systems are often operated with an excess of air between 25% and 30%. If there is a fluctuation in the fuel quality, however, a complete burnout is usually guaranteed.

Ist das Brennstoff-Luft-Verhältnis zu fett, so steigt die Temperatur, wodurch es zu einer erhöhten Stickoxydkonzentration kommt. Ferner ist dann ein vollständiger Ausbrand nicht gewährleistet. Ist das Gemisch zu mager, so kann es bei der Zündung zu Zündproblemen kommen. Ferner besteht die Möglichkeit, dass nach einem Zünden die Flamme abhebt und keine stabile Verbrennung am Brenner erfolgt.If the fuel-to-air ratio is too rich, the temperature will increase causing an increase in nitrogen oxide concentration. Furthermore, then a complete burnout is not guaranteed. If the mixture is too lean, it may cause ignition problems during ignition. There is also the possibility that after ignition ignites the flame and no stable combustion takes place at the burner.

Aus der EP 0 770 824 A2 ist ein Verfahren zur Brennerregelung gemäß dem Oberbegriff des Anspruchs 1 bekannt.From the EP 0 770 824 A2 a method for burner control according to the preamble of claim 1 is known.

Aus der DE 20 2004 017 850 U1 ist ein Verfahren zur Einstellung des Brenngas-Luft-Verhältnisses bei einem Gasbrenner bekannt, bei dem die Flammentemperatur erfasst wird. Hierzu ist es notwendig, mittels eines Thermoelementes die Flammentemperatur zu erfassen. Derartige Messelemente unterliegen bei der hohen Temperatur einer hohen Alterung, und somit unterliegt die Messung einem starken Drift.From the DE 20 2004 017 850 U1 is a method for adjusting the fuel gas-air ratio in a gas burner is known in which the flame temperature is detected. For this it is necessary to detect the flame temperature by means of a thermocouple. Such measuring elements are subject to high aging at the high temperature, and thus the measurement is subject to a strong drift.

Die DE 100 45 270 A1 offenbart ein Verfahren zum Regeln des Brennstoff-Luft-Verhältnisses eines brennstoffbetriebenen Brenners, bei dem das Brennstoff-Luft-Verhältnis in Abhängigkeit der Temperatur eines in der Flamme befindlichen Messelementes geregelt wird. Bei einer derartigen Sensoranordnung besteht die Gefahr der Sensorkorrosion, weshalb der aus DE 100 45 270 A1 Sensor aus Keramikmaterial besteht.The DE 100 45 270 A1 discloses a method for controlling the fuel-air ratio of a fuel-fired burner, wherein the fuel-air ratio is controlled as a function of the temperature of a sensing element located in the flame. In such a sensor arrangement there is a risk of sensor corrosion, which is why the DE 100 45 270 A1 Sensor consists of ceramic material.

Aus DE 44 37 510 C1 ist bekannt, die Temperatur eines Brenners über Widerstand zu messen und das Einschalten beziehungsweise Abschalten einer Flamme durch den Gradienten festzustellen.Out DE 44 37 510 C1 It is known to measure the temperature of a burner via resistance and to determine the switching on or off of a flame by the gradient.

Aus GB 2 270 748 A ist bekannt, dass die Temperatur eines Brenners beim Anfetten der Flamme linear steigt. GB 2 270 748 A lehrt, auf eine vorgegebene Solltemperatur, die mittels genau eines Thermoelements an der kalten Seite des Brenners erfasst wird, zu regeln.Out GB 2 270 748 A It is known that the temperature of a burner linearly increases when the flame is enriched. GB 2 270 748 A teaches to control to a predetermined setpoint temperature, which is detected by means of exactly one thermocouple on the cold side of the burner.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu schaffen, bei welchem sicher und wenig alterungsbehaftet die Temperatur des Brenners ermittelt werden kann, um hiermit das Brennstoff-Luft-Gemisch zu regeln. Gleichzeitig soll das Verfahren das Vorhandensein einer Flamme überwachen.The invention has for its object to provide a method in which safe and little aging affected the temperature of the burner can be determined to hereby regulate the fuel-air mixture. At the same time, the process should monitor the presence of a flame.

Erfindungsgemäß wird dies gemäß eines Verfahrens zum Regeln des Brennstoff-Luft-Verhältnisses eines brennstoffbetriebenen Brenners wobei der elektrische Widerstand des Brenners oder eines Messelements auf der der Flamme abgewandten Seite der Brenneroberfläche gemessen wird und dieses Signal zur Überwachung und Regelung verwendet wird, gemäß Anspruch 1 dadurch erreicht, dass das Brennstoff-Luft-Verhältnis zunächst angefettet wird. Hierdurch steigt die Temperatur als auch der Widerstand der Messstrecke. Bei stöchiometrischer Verbrennung erreicht die Temperatur bzw. der Widerstand sein Maximum. Eine weitere Anfettung des Brennstoff-Luft-Gemisches führt zu einem Abfall der gemessenen Temperatur bzw. des gemessenen Widerstandes. Wird das Maximum erreicht, so ist dies ein Zeichen für eine stöchiometrische Verbrennung. Alsdann kann das Brennstoff-Luft-Gemisch in vorgegebener Weise abgemagert werden, wodurch der Brenner mit idealem Brennstoff-Luft-Gemisch betrieben wird.According to the invention this is according to a method for controlling the fuel-air ratio of a fuel-fired burner wherein the electrical resistance of the burner or a measuring element on the side facing away from the flame of the burner surface is measured and this signal is used for monitoring and control, according to claim 1 thereby ensures that the fuel-air ratio is first greased. This increases the temperature as well as the resistance of the measuring section. With stoichiometric combustion, the temperature or the resistance reaches its maximum. Further enrichment of the fuel-air mixture leads to a drop in the measured temperature or the measured resistance. If the maximum is reached, this is a sign of a stoichiometric combustion. Then the fuel-air mixture can be emptied in a predetermined manner, whereby the burner is operated with an ideal fuel-air mixture.

Anhand des ermittelten Widerstandes beziehungsweise der daraus abgeleiteten Temperatur kann das Vorhandensein einer Flamme und deren Erlöschen festgestellt werden. Das Überschreiten eines vorbestimmten Temperatur oder eines vorbestimmten positiven Temperaturgradienten ist hierbei ein Zeichen für das Erkennen einer gezündeten Flamme. Umgekehrt ist das Unterschreiten einer bestimmten Temperatur oder das Überschreiten eines bestimmten negativen Temperaturgradienten ein Zeichen für das Erlöschen einer Flamme. Der elektrische Widerstand kann auch unmittelbar ohne Umrechung in eine dazugehörige Temperatur als Signal dienen.On the basis of the determined resistance or the temperature derived therefrom, the presence of a flame and its extinction can be determined. The Exceeding a predetermined temperature or a predetermined positive temperature gradient is in this case a sign for the detection of a lighted flame. Conversely, falling below a certain temperature or exceeding a certain negative temperature gradient is an indication of the extinction of a flame. The electrical resistance can also serve as a signal directly without conversion into an associated temperature.

Das Brenngas-Luft-Verhältnis kann in Abhängigkeit des ermittelten Widerstandes eingestellt werden. Neben dem Widerstand des Brenners oder des in der Flamme des Brenners befindlichen Messelementes wird die thermische Leistung des Brenners bestimmt. In vorangegangenen Versuchen kann jeder thermischen Leistung des Brenners eine bestimmte Soll-Temperatur bzw. ein Soll-Widerstand des Messelementes zugewiesen werden. Dementsprechend kann in Kenntnis des Widerstandes und der thermischen Leistung das Brennstoff-Luft-Verhältnis nachgeregelt werden. Ist der gemessene Widerstand größer als der Soll-Widerstand, so ist dies ein Zeichen dafür, dass die Flamme zu heiß ist. Das Brennstoff-Luft-Gemisch muss dann abgemagert werden. Im umgekehrten Fall ist bekannt, dass aus einem kleinen Widerstand eine zu geringe Temperatur resultiert, was bedeutet, dass das Gemisch angefettet werden muss. Die Veränderung des Brennstoff-Luft-Gemisches kann prinzipiell dadurch geschehen, dass einerseits die Brenngasmenge oder andererseits die Luftmenge verändert wird. Da in der Regel die thermische Leistung des Brenners unverändert bleiben soll, ist anzustreben, dass die Luftmenge verändert wird. Es ist jedoch auch eine Veränderung der Brenngasmenge bei konstantem Luftstrom möglich.The fuel gas-air ratio can be adjusted depending on the determined resistance. In addition to the resistance of the burner or located in the flame of the burner measuring element, the thermal performance of the burner is determined. In previous tests, each thermal output of the burner can be assigned a specific nominal temperature or a nominal resistance of the measuring element. Accordingly, knowing the resistance and thermal performance, the fuel-air ratio can be readjusted. If the measured resistance is greater than the target resistance, this is an indication that the flame is too hot. The fuel-air mixture must then be emaciated. In the opposite case, it is known that a small resistance results in too low a temperature, which means that the mixture must be greased. The change of the fuel-air mixture can in principle be done by, on the one hand, the amount of fuel gas or on the other hand, the amount of air is changed. Since, as a rule, the thermal performance of the burner should remain unchanged, it should be striven to change the amount of air. However, it is also possible to change the amount of fuel gas at constant air flow.

Gemäß den Merkmalen des abhängigen Anspruchs 2 wird der Widerstand durch die Messung eines Spannungsabfalls gemessen.According to the features of dependent claim 2, the resistance is measured by the measurement of a voltage drop.

Gemäß den Merkmalen des abhängigen Anspruchs 3 wird der Brenner an einer Konstantstromquelle angeschlossen, so dass an der Messstrecke ein Spannungsabfall gemessen werden kann. Alternativ hierzu wird die Messstrecke in Reihe mit einem Referenzwiderstand geschaltet und sodann an der Messstrecke ein Spannungsabfall gemessen.According to the features of dependent claim 3, the burner is connected to a constant current source, so that a voltage drop can be measured at the measuring path. Alternatively, the test section is connected in series with a reference resistor and then measured at the test section, a voltage drop.

Die Erfindung wird nun anhand der Figuren detailliert erläutert. Hierbei zeigt

  • Figur 1 den Zusammenhang zwischen Widerstand R und Temperatur T bei einem metallischen Element,
  • Figur 2 einen Brenner mit Vorrichtungen zur Durchführung des erfindungsgemäßen Verfahrens,
  • Figur 3 einen Ausschnitt aus dem Brenner mit Auswertevorrichtung,
  • Figur 4 ein Detail hieraus,
  • Figur 5 eine Auswerteschaltung,
  • Figur 6 eine weitere Auswerteschaltung,
  • Figur 7 den Zusammenhang zwischen Luftüberschuss und Temperatur sowie
  • Figur 8 den Zusammenhang zwischen thermischer Leistung und Messtemperatur für mehrere Luftzahlen.
The invention will now be explained in detail with reference to FIGS. This shows
  • FIG. 1 the relationship between resistance R and temperature T for a metallic element,
  • FIG. 2 a burner with devices for carrying out the method according to the invention,
  • FIG. 3 a section of the burner with evaluation device,
  • FIG. 4 a detail of this
  • FIG. 5 an evaluation circuit,
  • FIG. 6 another evaluation circuit,
  • FIG. 7 the relationship between excess air and temperature as well
  • FIG. 8 the relationship between thermal performance and measurement temperature for several air counts.

Figur 1 zeigt die Temperaturabhängigkeit des Widerstandes eines Metalls. Es wird deutlich, dass mit zunehmender Temperatur der Widerstand ansteigt. Der Widerstand anderer Metalle verhält sich in gleicher Weise. FIG. 1 shows the temperature dependence of the resistance of a metal. It becomes clear that the resistance increases with increasing temperature. The resistance of other metals behaves in the same way.

Figur 2 zeigt einen zylindrischen Brenner 12 mit einer Brenneroberfläche 9, hinter der sich ein Lochblechzylinder 8 befindet. Der Brenner 12 ist über ein Gebläse 13 mit einer Luftzuführung 14 verbunden. In die Luftzuführung 14 ragt eine Brenngasdüse 18, welche über ein Gasventil 15 mit Stellantrieb 16 mit einer Brenngasleitung 17 verbunden ist. Der Stellantrieb 16 ist über eine Steuerleitung 20 mit einer Regelung 3 verbunden. Die Regelung 3 ist über eine Steuerleitung 19 mit dem Motor 21 des Gebläses 13 verbunden. Letztendlich ist die Regelung 3 über zwei Messleitungen 4 und Anschlusspunkten 11 mit der Brenneroberfläche 9 derartig verbunden, dass zwischen den Anschlusspunkten 11 eine Messstrecke entsteht. FIG. 2 shows a cylindrical burner 12 with a burner surface 9, behind which a perforated plate cylinder 8 is located. The burner 12 is connected via a blower 13 with an air supply 14. In the air supply 14 projects a fuel gas nozzle 18, which is connected via a gas valve 15 with actuator 16 to a fuel gas line 17. The actuator 16 is connected via a control line 20 to a controller 3. The controller 3 is connected via a control line 19 to the motor 21 of the blower 13. Finally, the control unit 3 is connected via two measuring lines 4 and connection points 11 to the burner surface 9 in such a way that a measuring path is created between the connection points 11.

Figur 3 zeigt ein Detail hieraus. Im Brenner 12 strömt ein Brennstoff-Luft-Gemisch 7 zunächst das Lochblech 8 und durch dieses die Brennerfläche 9 an. Auf der Außenseite des Brenners 12 bildet sich eine Flamme 10. Die Flamme 10 erwärmt die Brenneroberfläche 9, sodass zwischen den Anschlusspunkten 11 auf der Brenneroberfläche 9 eine Messstrecke entsteht. Der Widerstand zwischen den beiden Anschlusspunkten 11 kann über die Messleitungen 4 an die Regelung 3 weitergegeben werden. FIG. 3 shows a detail of this. In the burner 12, a fuel-air mixture 7 first flows through the perforated plate 8 and through this the burner surface 9. On the outside of the burner 12, a flame 10 is formed. The flame 10 heats the burner surface 9, so that a measuring path is formed between the connection points 11 on the burner surface 9. The resistance between the two connection points 11 can be passed on to the control 3 via the measuring lines 4.

Figur 4 zeigt die Anordnung des Messelements 6 auf der der Flamme 10 abgewandten Seite der Brenneroberfläche 9. Das Messelement wird zwar nicht auf Flammentemperatur erhitzt, doch ist die Temperatur des Messelements linear von der Flammentemperatur abhängig. FIG. 4 shows the arrangement of the measuring element 6 on the side facing away from the flame 10 of the burner surface 9. Although the measuring element is not heated to flame temperature, but the temperature of the measuring element is linearly dependent on the flame temperature.

Figur 5 zeigt die Messschaltung mit Konstantspannungsquelle 1 und dem Referenzwiderstand Rref, welcher in Serie mit dem Brennerwiderstand RB geschaltet ist. Ein Spannungsmessgerät 2 erfasst den Spannungsabfall an der Messstrecke RB. Das Signal wird an die Regelung 3 weitergeleitet, welche über die Steuerleitungen 19, 20 den Motor 21 des Gebläses 13 sowie den Stellantrieb 16 des Gasventils 15 beeinflusst. FIG. 5 shows the measuring circuit with constant voltage source 1 and the reference resistor R ref , which is connected in series with the burner resistor R B. A voltage measuring device 2 detects the voltage drop across the measuring path R B. The signal is forwarded to the controller 3, which influences the motor 21 of the blower 13 and the actuator 16 of the gas valve 15 via the control lines 19, 20.

Alternativ hierzu ist bei der Messschaltung gemäß Figur 6 der Brennerwiderstand RB an eine Konstantstromquelle 5 angeschlossen. Figur 7 zeigt den Zusammenhang zwischen Brenngas-Luft-Verhältnis λ und Flammentemperatur T. Bei stöchiometrischer Verbrennung (λ=1) ist die Verbrennungstemperatur maximal.Alternatively, in the measurement circuit according to FIG. 6 the torch resistor R B is connected to a constant current source 5. FIG. 7 shows the relationship between fuel gas-air ratio λ and flame temperature T. In stoichiometric combustion (λ = 1), the combustion temperature is maximum.

Figur 8 zeigt den Zusammenhang zwischen gemessener Temperatur Tmess und der thermischen Leistung des Brenners P für drei verschiedenen Brenngas-Luft-Verhältnisse λ. Mit zunehmender thermischer Belastung entfernt sich die Flamme von der Brenneroberfläche 9, so dass die Brenneroberfläche 9 mit zunehmender thermischer Belastung kühler wird. Dementsprechend fällt mit zunehmender Belastung die gemessene Temperatur. Wird der Luftüberschuss λ erhöht, so wird hierdurch die Flamme gekühlt, ferner hebt sie weiter vom Brenner ab, wodurch die gemessene Temperatur abnimmt. Umgekehrt erhöht sich die gemessene Temperatur mit einer Gemischanfettung, da einerseits die Flamme heißer wird und zudem auch früher, d. h. näher am Brenner verbrennt. FIG. 8 shows the relationship between measured temperature T mess and the thermal performance of the burner P for three different fuel gas-air ratios λ. With increasing thermal stress, the flame moves away from the burner surface 9, so that the burner surface 9 becomes cooler with increasing thermal load. Accordingly, the measured temperature decreases with increasing load. If the excess air λ is increased, the flame is thereby cooled, and it continues to lift away from the burner, as a result of which the measured temperature decreases. Conversely, the measured temperature increases with a Gemischanfettung, on the one hand, the flame is hotter and also burns earlier, ie closer to the burner.

Beim erfindungsgemäßen Überwachungs- und Regelungsverfahren kann einerseits zunächst mit einem beliebigen Brenngas-Luft-Verhältnis begonnen werden. Zum Zünden wird zunächst das Gebläse 13 aktiviert und kurz danach eine Zündelektrode stromab des Brenners mit Zündimpulsen versorgt. Dann gibt der Stellantrieb 16 einen Teil des Strömungsquerschnitts des Gasventils 15 frei. Wird eine Flamme gezündet, so verändert sich der Widerstand der Messstrecke zwischen den Anschlusspunkten 11. Realisiert die Regelung 3 eine entsprechende Widerstandsänderung, welche auf eine heiße Flamme schließen lässt, so bleibt das Gasventil 15 geöffnet. Wird binnen einer vorgegebenen Zeitspanne kein für das Vorhandensein einer Flamme typischer Widerstand beziehungsweise Widerstandsgradient gemessen, so wird das Gasventil verriegelt, um das Ausströmen unverbrannten Brenngases zu vermeiden.The monitoring and control method according to the invention, on the one hand, can first be started with any desired fuel gas / air ratio. To ignite the fan 13 is first activated and shortly thereafter supplied an ignition electrode downstream of the burner with ignition pulses. Then, the actuator 16 releases a part of the flow cross-section of the gas valve 15. If a flame is ignited, the resistance of the measuring section between the connection points 11 changes. If the control 3 realizes a corresponding change in resistance, which indicates a hot flame, then the gas valve 15 remains open. If no resistance or resistance gradient characteristic of the presence of a flame is measured within a predetermined period of time, the gas valve is locked in order to prevent unburnt fuel gas from flowing out.

Zum Einstellen eines für eine schadstoffarme optimalen Brenngas-Luft-Verhältnisses wird dieses zunächst angefettet, in dem die Förderleistung des Gebläses 13 bei konstanter Öffnung des Brenngasventils 15 reduziert wird. Alternativ kann der Brenngasvolumenstrom bei konstantem Luftstrom verändert werden. Die Flammentemperatur steigt, zudem haftet die Flamme näher an der Brenneroberfläche 9. Hierdurch erhitzt sich die Brenneroberfläche 9 und der Brennerwiderstand RB steigt. Wird nun bei Erhöhung des Brenngasanteils festgestellt, dass die gemessene Temperatur bzw. der Widerstand wieder abfällt, so ist dies ein eindeutiges Signal dafür, dass die Flamme nun unterstöchiometrisch brennt. Ausgehend vom Temperatur- bzw. Widerstandsmaximum wird das Brenngas-Luft-Verhältnis in definierten Grenzen abgemagert, so dass die Flamme mit optimalem Luftüberschuss brennen kann. Hierzu ist es einerseits möglich, die Luftmenge z. B. durch eine Erhöhung der Gebläsedrehzahl um 30% zu erhöhen, andererseits ist es auch möglich, durch einen Zielmesswert das Brenngas-Luft-Verhältnis entsprechend abzumagern. So kann der maximale Brennerwiderstand RB gemessen werden und das Brenngas-Luft-Gemisch derart lange abgemagert werden, bis sich ein errechneter Widerstand einstellt.To set one for a low-emission optimum fuel gas-air ratio, this is first enriched, in which the delivery rate of the blower 13 is reduced at a constant opening of the fuel gas valve 15. Alternatively, the fuel gas volume flow can be changed at a constant air flow. The flame temperature rises, moreover, the flame adheres closer to the burner surface 9. As a result, the burner surface 9 heats up and the burner resistance R B increases. If it is determined that the measured temperature or the resistance drops again when the proportion of fuel gas is increased, this is a clear signal that the flame is now burning substoichiometrically. Starting from the temperature or resistance maximum, the fuel gas-air ratio is reduced within defined limits, so that the flame can burn with optimum excess air. For this purpose, it is possible on the one hand, the amount of air z. B. by increasing the fan speed to increase by 30%, on the other hand, it is also possible to accumulate by a target reading the fuel gas to air ratio accordingly. Thus, the maximum burner resistance R B can be measured and the fuel gas-air mixture are so long emaciated until a calculated resistance.

Alternativ hierzu kann die thermische Leistung des Brenners zusätzlich zum Widerstand des Brenners 12 erfasst werden. Dies kann beispielsweise hierdurch geschehen, dass der Öffnungsgrad des Gasventils 15 erfasst wird oder ein aus der Heizleistungsanforderung abgeleiteter Messwert erfasst werden. Da gemäß Figur 8 zu jeder vorgegebenen thermischen Leistung des Brenners 12 eine Soll-Brennertemperatur bekannt ist, kann entsprechend das Brenngas-Luft-Gemisch angepasst werden. Wird festgestellt, dass der Widerstand bzw. die Temperatur zu hoch ist, so wird das Gemisch abgemagert, im anderen Fall angefettet.Alternatively, the thermal performance of the burner may be detected in addition to the resistance of the burner 12. This can be done, for example, by detecting the opening degree of the gas valve 15 or detecting a measured value derived from the heating power requirement. As according to FIG. 8 For each predetermined thermal output of the burner 12, a target burner temperature is known, the fuel gas-air mixture can be adjusted accordingly. If it is determined that the resistance or the temperature is too high, the mixture is emaciated, greased in the other case.

Wird während des mutmaßlichen Brennerbetriebs von der Regelung 3 eine entsprechende Widerstandsänderung, welche auf das Erlöschen der Flamme schließen lässt, realisiert, so wird das Gasventil 15 geschlossen, um das Ausströmen unverbrannten Brenngases zu vermeiden. In der Regel schließt sich ein neuer Zündversuch an. Bleiben mehrere Zündversuche erfolglos, so verriegelt die Regelung 3 den Brenner derartig, dass ein Neustart nur durch einen Fachhandwerker initiiert werden kann.If, during the presumed burner operation, a corresponding change in resistance, which is indicative of the extinguishment of the flame, is realized by the controller 3, the gas valve 15 is closed in order to prevent the unburnt fuel gas from escaping avoid. In general, joins a new ignition attempt. If several ignition attempts are unsuccessful, regulation 3 locks the burner in such a way that a restart can only be initiated by a specialist tradesman.

Das erfindungsgemäße Verfahren lässt sich auch auf flüssige Brennstoffe anwenden.The method according to the invention can also be applied to liquid fuels.

Claims (5)

  1. Method to control the fuel-air ratio of a fuel-operated burner (12) having a burner surface (9), wherein an electrical measurand is detected and serves to control, and wherein the fuel-air mixture is enriched until the measured temperature or the measured resistance falls again after initial increase and the fuel-air mixture is then emaciated in a predetermined ratio or up to a determined measured value which is dependent on the maximum measured value, characterised in that the electrical measurand is the electrical resistance of the burner (12) or of a measurement element (6) on the side of the burner surface (9) which faces away from the flame (10), and that, besides the resistance of the burner (12) or of the measurement element (6) on the side of the burner surface (9) facing away from the flame (10), the thermal power of the burner (12) is determined, and the fuel-air ratio is changed depending on predetermined resistance target values for the thermal power of the burner (12), .
  2. Method to control the fuel-air ratio according to claim 1, characterised in that the resistance of the burner (12) or of the measurement element (6) on the side of the burner surface (9) facing away from the flame (10) is measured by the measurement of the voltage drop.
  3. Method to control the fuel-air ratio according to claim 2, characterised in that the burner (12) or the measurement element (6) on the side of the burner surface (9) facing away from the flame (10) is connected to a constant current source (5).
  4. Method to control the fuel-air ratio according to claim 2, characterised in that the burner (12) or the measurement element (6) on the side of the burner surface (9) facing away from the flame (10) is connected in series to a constant voltage source (5), with a reference resistance Rref.
  5. Method to control the fuel-air ratio according to one of claims 1 to 4, characterised in that if the measured resistance is greater than the resistance target value, the fuel-air mixture is emaciated and if the measured resistance is smaller than the resistance target value, the fuel-air mixture is enriched, wherein preferably the fuel quantity is kept constant and the air quantity is changed.
EP07000643.2A 2006-01-19 2007-01-13 Method for controlling the air-fuel ratio of a fuel operated burner Active EP1811230B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006002857 2006-01-19
AT5902006A AT503581B1 (en) 2006-04-06 2006-04-06 Flame monitoring method for fuel operated burner, involves detecting electrical resistance of burner or measuring unit on side of burner surface for monitoring flame and controlling fuel air ratio of burner
DE102006037475 2006-08-10

Publications (3)

Publication Number Publication Date
EP1811230A2 EP1811230A2 (en) 2007-07-25
EP1811230A3 EP1811230A3 (en) 2012-12-05
EP1811230B1 true EP1811230B1 (en) 2016-01-06

Family

ID=37909323

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07000643.2A Active EP1811230B1 (en) 2006-01-19 2007-01-13 Method for controlling the air-fuel ratio of a fuel operated burner

Country Status (1)

Country Link
EP (1) EP1811230B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011079325B4 (en) 2011-07-18 2017-01-26 Viessmann Werke Gmbh & Co Kg Method for controlling the air number of a burner
ITBO20120568A1 (en) * 2012-10-17 2014-04-18 Gas Point S R L ADJUSTMENT AND CONTROL EQUIPMENT FOR COMBUSTION IN A FUEL GAS BURNER
CN111396869B (en) * 2020-03-16 2022-08-30 济南红烛科技有限公司 Low-calorific-value gas burner and combustion technology

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770824A2 (en) * 1995-10-25 1997-05-02 STIEBEL ELTRON GmbH & Co. KG Method and circuit for controlling a gas burner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157821A (en) * 1985-12-28 1987-07-13 Isuzu Motors Ltd Heat insulating storage for vehicle
GB2270748B (en) * 1992-09-17 1995-12-06 Caradon Heating Ltd Burner control system
DE4437510C1 (en) * 1994-10-20 1996-04-04 Schott Glaswerke Safety device for gas radiation burners
US20020160325A1 (en) * 2001-04-26 2002-10-31 David Deng Gas pilot system and method having improved oxygen level detection capability and gas fueled device including the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0770824A2 (en) * 1995-10-25 1997-05-02 STIEBEL ELTRON GmbH & Co. KG Method and circuit for controlling a gas burner

Also Published As

Publication number Publication date
EP1811230A3 (en) 2012-12-05
EP1811230A2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
EP0392162B1 (en) Gas hob comprising at least one radiant gas burner beneath a glass ceramic plate and method for reducing the heating time of such a gas hob
EP2014985B1 (en) Method of adjusting the air/fuel ratio for a gas fired burner
EP0833106B1 (en) Method and device for operation optimisation of a gas burner
WO2012004211A2 (en) Method for controlling combustion in a gas or oil burner
EP2682679B1 (en) Method for monitoring a gas fuelled burner
EP3779280A1 (en) Heating device for a building
DE102008005110B4 (en) Method and control for operating and adjusting a lambda probe
EP1811230B1 (en) Method for controlling the air-fuel ratio of a fuel operated burner
EP3992529A1 (en) Method and device for igniting a burner
DE3807388A1 (en) METHOD FOR OPERATING A HEATING DEVICE AND HEATING DEVICE
EP4043793A1 (en) Method and arrangement for detecting flashback in a premix burner
DE19734574B4 (en) Method and device for controlling a burner, in particular a fully premixing gas burner
DE10001251B4 (en) Method for controlling or regulating a gas burner
DE102007001904A1 (en) Flame monitoring method for fuel operated burner, involves detecting electrical resistance of burner or measuring unit on side of burner surface for monitoring flame and controlling fuel air ratio of burner
DE10045270A1 (en) Gas burner for heating and/or hot water boiler incorporates flame temperature sensor for feedback regulation of air/fuel ratio and/or volumetric flow
EP1293728B1 (en) Method for controlling the power of a gas cooking appliance as well as a cooking appliance using this method
AT503581B1 (en) Flame monitoring method for fuel operated burner, involves detecting electrical resistance of burner or measuring unit on side of burner surface for monitoring flame and controlling fuel air ratio of burner
EP1923634B1 (en) Adjustment of fuel gas/air mixture via the burner or flame temperature of a heating device
EP3969812B1 (en) Method for monitoring a burner and/or a burner behavior, and burner unit
DE10045272A1 (en) Firing device with flame length monitoring has temperature sensor connected to control device, heated less by flame at first service point than at second one
EP4060233B1 (en) Power detection and air/fuel ratio control by means of sensors in the combustion chamber
DE10233049B4 (en) Heater with a glow plug / flame detector
DE10153643A1 (en) Process for monitoring of a combustion system having a burner supplied with fuel comprises simultaneous monitoring of the flame, the oxidizable components of the exhaust gas, and its temperature using a sensor
EP1701096A1 (en) Method for adapting the heater power of a blower-supported heater to the individual pressure losses of a fresh air/exhaust gas pipe
DE2609701C3 (en) Control device for a gas burner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F23N 1/02 20060101ALI20121030BHEP

Ipc: F23D 14/72 20060101ALI20121030BHEP

Ipc: F23N 5/14 20060101AFI20121030BHEP

Ipc: F23N 5/12 20060101ALI20121030BHEP

Ipc: F23N 5/24 20060101ALI20121030BHEP

17P Request for examination filed

Effective date: 20130513

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20130808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007014482

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F23N0005140000

Ipc: F23D0014600000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F23N 5/14 20060101ALI20151008BHEP

Ipc: F23N 1/02 20060101ALI20151008BHEP

Ipc: F23N 5/24 20060101ALI20151008BHEP

Ipc: F23N 5/12 20060101ALI20151008BHEP

Ipc: F23D 14/60 20060101AFI20151008BHEP

Ipc: F23D 14/72 20060101ALI20151008BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20151026

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 769170

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014482

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160407

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007014482

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

26N No opposition filed

Effective date: 20161007

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160406

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 769170

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070113

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160113

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230125

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230131

Year of fee payment: 17

Ref country code: DE

Payment date: 20230103

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231218

Year of fee payment: 18