EP2014985B1 - Method of adjusting the air/fuel ratio for a gas fired burner - Google Patents

Method of adjusting the air/fuel ratio for a gas fired burner Download PDF

Info

Publication number
EP2014985B1
EP2014985B1 EP08012196.5A EP08012196A EP2014985B1 EP 2014985 B1 EP2014985 B1 EP 2014985B1 EP 08012196 A EP08012196 A EP 08012196A EP 2014985 B1 EP2014985 B1 EP 2014985B1
Authority
EP
European Patent Office
Prior art keywords
signal
fuel gas
air
gas
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08012196.5A
Other languages
German (de)
French (fr)
Other versions
EP2014985A3 (en
EP2014985A2 (en
Inventor
Jean-François Rouxel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP2014985A2 publication Critical patent/EP2014985A2/en
Publication of EP2014985A3 publication Critical patent/EP2014985A3/en
Application granted granted Critical
Publication of EP2014985B1 publication Critical patent/EP2014985B1/en
Priority to HRP20170996TT priority Critical patent/HRP20170996T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means

Definitions

  • the invention relates to a method for fuel gas-air adjustment for a fuel gas burner.
  • the fuel gas to air ratio of a fuel gas burner can be adjusted by measuring the ionization voltage or the ionization current at a monitoring electrode.
  • the EP 770 824 B1 describes a method in which, starting from a superstoichiometric burner operation, the excess air is reduced until there is a slight substoichiometric combustion.
  • the ionization voltage is measured between an ionization electrode and the burner.
  • 1.0
  • the ionization voltage is maximal. Consequently, the ionization voltage, starting from superstoichiometric combustion, initially increases in the reduction of the excess air to reach a maximum under stoichiometric combustion.
  • Embodiments of this control method are also known from DE 40 27 090 C2 .
  • US 5,971,745 A discloses a method for adjusting the fuel gas-air mixture by means of ionization current monitoring. Characteristic of this method is that starting from an operating point with excess air, the fuel gas-air mixture is first enriched. As soon as an extreme value (maximum) is found, the enrichment is ended. This can be determined, for example, by measuring a drop again after an increase in the ionization current. Alternatively, this "peak", ie extreme value / maximum can be determined if the gradient of the signal is zero. When the maximum is found, the mixture is emaciated again.
  • DE 20 2004 017 850 U1 shows a gas burner, in which by means of a thermocouple, the flame temperature is measured.
  • the temperature behaves analogous to the ionization according to EP 770 824 B1 ,
  • the mixture is enriched and the flame temperature is measured. If a maximum is measured, then the mixture is defined as emaciated.
  • US 4 118 172 A discloses a calibration method that uses a temperature measurement to detect a maximum at stoichiometry.
  • a disadvantage of such a method is that always a stoichiometric or slightly substoichiometric combustion must be started. This results in substantial amounts of carbon monoxide and nitrogen oxide emissions.
  • EP 1 176 364 A1 It is known that processes with maximum at stoichiometry have the disadvantage that temporarily the burner is operated with high pollutant emissions.
  • the ionization signal is measured at startup, then changed the fuel gas quantity and again measured the ionization signal. From the evaluation of the signal difference, the composition of the fuel gas is inferred and the fuel gas throttle adjusted accordingly.
  • the invention has for its object to provide a method for controlling the fuel gas-air mixture in gas-powered burners by Ionisationsstromunk, which avoids polluting combustion conditions.
  • the object is achieved in that during the operation of the burner, the fuel gas-air mixture is emaciated and in this case the ionization signal is measured continuously. From the ionization signal a gradient is formed during the change. If the gradient exceeds a certain gradient or if the gradient rises disproportionately in comparison to the previous course, then the emaciation is terminated and the fuel gas-air mixture is enriched in a defined manner.
  • the measurement signal is highly dependent on deposits on the electrode as well as the position of the electrode. Therefore, it is not appropriate to use exceeding or falling below a certain absolute value as a relevant event.
  • the sharp increase in the gradient is a sure sign that the flame will soon lift off as the proportion of air increases further.
  • the gradient can be determined by dividing the difference signal of the ionization electrode with the differential speed of the fan motor.
  • a division of the difference signal of the ionization with the difference position of the actuator of a gas valve or a differential time unit can be done.
  • the signal of the ionization electrode can be detected by serially connecting a constant voltage source to the flame of the burner and a resistor, and measuring the voltage drop across the resistor.
  • FIG. 1 shows a burner 1 with blower 8 with blower motor 9 in an air inlet 12.
  • air inlet 12 opens a gas line 13, in which a gas valve 10 with actuator 11 is located.
  • the blower motor 9 and the actuator 11 are connected to a controller 7.
  • the burner 1 is a flame 2, in which an ionization electrode 3 protrudes.
  • the ionization electrode 3 is connected to a voltage source 4. This is connected to its second electrode with a resistor 5, which in turn is connected to the burner 1. Parallel to the resistor 5, a voltmeter 6 is connected, which is connected to the controller 7.
  • the fan 8 sucks in combustion air via the air inlet 12.
  • the speed n of the fan 8 can be adjusted continuously.
  • the gas valve 10 the amount of fuel gas supplied, which flows in via the gas line 13, can be changed continuously; In this case, the number of steps n s of the actuator 11 is detected.
  • fuel gas and air are mixed with each other and ignited at the outlet of the burner 1, so that a flame 2 is formed. Since the ions of the flame 2 are electrically conductive, a current can flow between the ionization electrode 3 and the burner 1. It follows that an electrical voltage U Flame is applied. The flow of ions through the flame 2 ensures that the electrical circuit (burner 1, ionization electrode 3, voltage source 4, resistor 5) is closed.
  • FIG. 2 shows the course of the measured at the resistor 5 voltage U on the air ratio ⁇ and the fan speed n.
  • the burner 1 first runs with a previously unknown excess of air.
  • the speed n of the blower 8 is increased.
  • the air ratio ⁇ increases.
  • the voltage drop U across the resistor 5 is measured continuously over the time t and passed on to the controller 7.
  • the gradient ⁇ U / ⁇ n is calculated, where n is the speed of the fan 8. If the gradient ⁇ U / ⁇ n increases excessively after a certain point, this is an indication that soon the flame will lift off and thus break off.
  • the air ratio ⁇ is then about 1.6. Starting from this point, the rotational speed n of the fan is now deliberately reduced in such a way that an air ratio ⁇ 1.25 is established.
  • a gradient of differential voltage ⁇ U to differential setting position of the actuator ⁇ n S can also be formed if a reduction in the fuel gas quantity is undertaken instead of an increase in the fan speed.
  • a gradient of the time can also be formed with constant emaciation ( ⁇ U ⁇ ) .
  • the operating state where liftoff is imminent may be determined by comparing the current gradient to at least one previous gradient, and in the event the current gradient exceeds the compare value (s) by a certain percentage, the expected state is present. For example, the lowest measured gradient can be used as comparison value. Alternatively, an absolute value can be specified.
  • the time difference or speed difference In order to eliminate the influence of signal noise (fluctuation of the measuring signal by a trend line), the time difference or speed difference must not be selected too small.
  • the voltage of the flame U flame can also be measured directly. In this case, however, the ionization voltage at stoichiometric combustion is maximum and the ionization voltage signal drops as the air ratio is increased.
  • a constant voltage U 0 and a constant current source with a constant current I 0 can be connected to the series circuit of the resistor 5 with the flame. 2 Depending on the flame resistance, a certain voltage sets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Brenngas-Luft-Einstellung für einen brenngasbetriebenen Brenner.The invention relates to a method for fuel gas-air adjustment for a fuel gas burner.

Aus dem Stand der Technik ist bekannt, dass das Brenngas-Luft-Verhältnis eines brenngasbetriebenen Brenners mittels Messung der Ionisationsspannung oder des Ionisationsstrom an einer Überwachungselektrode eingestellt werden kann. Die EP 770 824 B1 beschreibt ein Verfahren, bei dem, ausgehend von einem überstöchiometrischen Brennerbetrieb, der Luftüberschuss so lange reduziert wird, bis eine geringfügig unterstöchiometrische Verbrennung vorliegt. Hierbei wird die Ionisationsspannung zwischen einer Ionisationselektrode und dem Brenner gemessen. Bei stöchiometrischer Verbrennung (λ = 1,0) ist die Ionisationsspannung maximal. Demzufolge steigt die Ionisationsspannung, ausgehend von überstöchiometrischer Verbrennung, bei der Reduzierung des Luftüberschusses zunächst an, um bei stöchiometrischer Verbrennung ein Maximum zu erreichen. Fällt die Ionisationsspannung bei Weiterreduzierung des Luftanteils ab, so ist dies ein Indikator dafür, dass die Verbrennung unterstöchiometrisch ist. Das aus der EP 770 824 B1 bekannte Verfahren sieht nun vor, dass, ausgehend von der Luftmenge, welche bei maximaler Ionisationsspannung vorliegt, der Luftanteil um einen definierten Betrag erhöht wird, so dass die Soll-Luftzahl erreicht wird. Dies kann beispielsweise dadurch geschehen, dass die Drehzahl eines Verbrennungsluftgebläses, ausgehend von der stöchiometrischen Verbrennung, um 25% erhöht wird.From the prior art it is known that the fuel gas to air ratio of a fuel gas burner can be adjusted by measuring the ionization voltage or the ionization current at a monitoring electrode. The EP 770 824 B1 describes a method in which, starting from a superstoichiometric burner operation, the excess air is reduced until there is a slight substoichiometric combustion. Here, the ionization voltage is measured between an ionization electrode and the burner. At stoichiometric combustion (λ = 1.0) the ionization voltage is maximal. Consequently, the ionization voltage, starting from superstoichiometric combustion, initially increases in the reduction of the excess air to reach a maximum under stoichiometric combustion. If the ionization voltage drops on further reduction of the air content, this is an indicator that the combustion is substoichiometric. That from the EP 770 824 B1 known method now provides that, starting from the amount of air which is present at maximum ionization, the air fraction is increased by a defined amount, so that the desired air ratio is reached. This can be done, for example, by increasing the speed of a combustion air blower by 25%, based on the stoichiometric combustion.

Ausgestaltungen dieses Regelverfahrens sind ebenfalls aus der DE 40 27 090 C2 , DE 196 18 573 C1 und US 5 971 745 A bekannt.Embodiments of this control method are also known from DE 40 27 090 C2 . DE 196 18 573 C1 and US 5,971,745 A known.

US 5 971 745 A offenbart ein Verfahren zur Einstellung des Brenngas-Luft-Gemischs mittels Ionisationsstromüberwachung. Kennzeichnend für dieses Verfahren ist, dass ausgehend von einem Betriebspunkt mit Luftüberschuss das Brenngas-Luft-Gemisch zunächst angefettet wird. Sobald ein Extremwert (Maximum) gefunden ist, wird die Anfettung beendet. Dies kann beispielsweise dadurch festgestellt werden, dass nach einem Anstieg des Ionisationsstroms wieder ein Abfall gemessen wird. Alternativ kann dieser "peak", also Extremwert / Maximum festgestellt werden, wenn der Gradient des Signals Null beträgt. Wenn das Maximum gefunden ist, wird das Gemisch wieder abgemagert. US 5,971,745 A discloses a method for adjusting the fuel gas-air mixture by means of ionization current monitoring. Characteristic of this method is that starting from an operating point with excess air, the fuel gas-air mixture is first enriched. As soon as an extreme value (maximum) is found, the enrichment is ended. This can be determined, for example, by measuring a drop again after an increase in the ionization current. Alternatively, this "peak", ie extreme value / maximum can be determined if the gradient of the signal is zero. When the maximum is found, the mixture is emaciated again.

DE 20 2004 017 850 U1 zeigt einen Gasbrenner, bei dem mittels eines Thermoelements die Flammentemperatur gemessen wird. Die Temperatur verhält sich dabei analog dem Ionisationsstrom gemäß EP 770 824 B1 . Es wird zum Kalibrieren das Gemisch angefettet und die Flammentemperatur gemessen. Wird ein Maximum gemessen, so wird das Gemisch definiert abgemagert. DE 20 2004 017 850 U1 shows a gas burner, in which by means of a thermocouple, the flame temperature is measured. The temperature behaves analogous to the ionization according to EP 770 824 B1 , For calibration, the mixture is enriched and the flame temperature is measured. If a maximum is measured, then the mixture is defined as emaciated.

US 4 118 172 A offenbart ein Kalibrierungsverfahren, bei dem eine Temperaturmessung zur Erfassung eines Maximums bei Stöchiometrie eingesetzt wird. US 4 118 172 A discloses a calibration method that uses a temperature measurement to detect a maximum at stoichiometry.

Nachteilig bei einem derartigen Verfahren ist, dass stets eine stöchiometrische bzw. geringfügig unterstöchiometrische Verbrennung angefahren werden muss. Hierbei entstehen im wesentlichen Maße Kohlenmonoxyd- und Stickoxydemissionen.A disadvantage of such a method is that always a stoichiometric or slightly substoichiometric combustion must be started. This results in substantial amounts of carbon monoxide and nitrogen oxide emissions.

Aus DE 102 00 128 B4 und EP 833 106 B1 sind Verfahren zur Einstellung des Brenngas-Luft-Gemischs bekannt, bei denen ein Brenngas-Luft-Gemisch so lange abgemagert wird, bis die Flamme erlischt. Ausgehend von diesem Punkt wird der Brenner anschließend mit definiert fetterem Gemisch betrieben. Auch bei derartigen Verfahren ist nachteilig, dass durch das Erlöschen der Flamme und den anschließenden Neustart erhöhte Schadstoffemissionen entstehen. Ferner kann das Verfahren nicht in den normalen Betrieb integriert werden.Out DE 102 00 128 B4 and EP 833 106 B1 are known methods for adjusting the fuel gas-air mixture, in which a fuel gas-air mixture is emaciated until the flame goes out. Starting from this point, the burner is then with operated fatter mixture operated. Even with such methods is disadvantageous that arise by the extinguishment of the flame and the subsequent restart increased pollutant emissions. Furthermore, the method can not be integrated into normal operation.

Aus EP 1 176 364 A1 ist bekannt, dass Verfahren mit Maximum bei Stöchiometrie den Nachteil haben, dass vorübergehend der Brenner mit hohen Schadstoffemissionen betrieben wird. Bei dem aus EP 1 176 364 A1 bekannten Verfahren wird bei Inbetriebnahme das Ionisationssignal gemessen, dann die Brenngasmenge verändert und wieder das Ionisationssignal gemessen. Aus der Auswertung der Signaldifferenz wird auf die Zusammensetzung des Brenngases geschlussfolgert und die Brenngasdrossel entsprechend eingestellt.Out EP 1 176 364 A1 It is known that processes with maximum at stoichiometry have the disadvantage that temporarily the burner is operated with high pollutant emissions. At the EP 1 176 364 A1 known method, the ionization signal is measured at startup, then changed the fuel gas quantity and again measured the ionization signal. From the evaluation of the signal difference, the composition of the fuel gas is inferred and the fuel gas throttle adjusted accordingly.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Regelung des Brenngas-LuftGemisches bei brenngasbetriebenen Brennern mittels Ionisationsstrommessung zu schaffen, welches umweltbelastende Verbrennungszustände vermeidet.The invention has for its object to provide a method for controlling the fuel gas-air mixture in gas-powered burners by Ionisationsstrommessung, which avoids polluting combustion conditions.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass während des Betriebs des Brenners das Brenngas-Luft-Gemisch abgemagert wird und hierbei das Ionisationssignal kontinuierlich gemessen wird. Aus dem Ionisationssignal wird bei der Veränderung ein Gradient gebildet. Überschreitet der Gradient einen bestimmten Gradienten bzw. steigt der Gradient im Vergleich zum bisherigen Verlauf überproportional an, so wird die Abmagerung beendet und das Brenngas-Luft-Gemisch definiert angefettet.The object is achieved in that during the operation of the burner, the fuel gas-air mixture is emaciated and in this case the ionization signal is measured continuously. From the ionization signal a gradient is formed during the change. If the gradient exceeds a certain gradient or if the gradient rises disproportionately in comparison to the previous course, then the emaciation is terminated and the fuel gas-air mixture is enriched in a defined manner.

Das Messsignal ist stark von Ablagerungen an der Elektrode sowie der Position der Elektrode abhängig. Daher ist es nicht zielführend, das Über- oder Unterschreiten eines bestimmten Absolutwertes als relevantes Ereignis zu verwenden. Der starke Anstieg des Gradienten hingegen ist ein sicheres Indiz für das baldige Abheben der Flamme bei weiterem Anstieg des Luftanteils.The measurement signal is highly dependent on deposits on the electrode as well as the position of the electrode. Therefore, it is not appropriate to use exceeding or falling below a certain absolute value as a relevant event. The sharp increase in the gradient, on the other hand, is a sure sign that the flame will soon lift off as the proportion of air increases further.

Vorteilhafte Ausgestaltungen ergeben sich gemäß den Merkmalen der abhängigen Ansprüche. So kann der Gradient durch die Division des Differenzsignals der Ionisationselektrode mit der Differenzdrehzahl des Gebläsemotors ermittelt werden. Alternativ hierzu kann eine Division des Differenzsignals der Ionisationselektrode mit der Differenzstellposition des Stellantriebs eines Gasventils oder einer Differenzzeiteinheit erfolgen.Advantageous embodiments will become apparent according to the features of the dependent claims. Thus, the gradient can be determined by dividing the difference signal of the ionization electrode with the differential speed of the fan motor. Alternatively, a division of the difference signal of the ionization with the difference position of the actuator of a gas valve or a differential time unit can be done.

Das Signal der Ionisationselektrode kann dadurch ermittelt werden, dass eine Konstantspannungsquelle mit der Flamme des Brenners und einem Widerstand seriell verschaltet ist und der Spannungsabfall am Widerstand gemessen wird.The signal of the ionization electrode can be detected by serially connecting a constant voltage source to the flame of the burner and a resistor, and measuring the voltage drop across the resistor.

Die Erfindung wird nun anhand der Figuren detailliert erläutert. Hierbei zeigen

  • Figur 1 einen Aufbau zur Durchführung des erfindungsgemäßen Verfahrens und
  • Figur 2 den Verlauf des Ionisationssignals beim erfindungsgemäßen Verfahren.
The invention will now be explained in detail with reference to FIGS. Show here
  • FIG. 1 a structure for carrying out the method according to the invention and
  • FIG. 2 the course of the ionization signal in the inventive method.

Figur 1 zeigt einen Brenner 1 mit Gebläse 8 mit Gebläsemotor 9 in einem Lufteintritt 12. In den Lufteintritt 12 mündet eine Gasleitung 13, in der sich ein Gasventil 10 mit Stellantrieb 11 befindet. Der Gebläsemotor 9 und der Stellantrieb 11 sind mit einer Regelung 7 verbunden. Am Brenner 1 befindet sich eine Flamme 2, in welche eine Ionisationselektrode 3 hineinragt. Die Ionisationselektrode 3 ist mit einer Spannungsquelle 4 verbunden. Diese ist mit ihrer zweiten Elektrode mit einem Widerstand 5 verbunden, der wiederum an den Brenner 1 angeschlossen ist. Parallel zum Widerstand 5 ist ein Spannungsmesser 6 angeschlossen, welcher mit der Regelung 7 verbunden ist. FIG. 1 shows a burner 1 with blower 8 with blower motor 9 in an air inlet 12. In the air inlet 12 opens a gas line 13, in which a gas valve 10 with actuator 11 is located. The blower motor 9 and the actuator 11 are connected to a controller 7. The burner 1 is a flame 2, in which an ionization electrode 3 protrudes. The ionization electrode 3 is connected to a voltage source 4. This is connected to its second electrode with a resistor 5, which in turn is connected to the burner 1. Parallel to the resistor 5, a voltmeter 6 is connected, which is connected to the controller 7.

Beim Betrieb des Brenners saugt das Gebläse 8 über den Lufteintritt 12 Verbrennungsluft an. Die Drehzahl n des Gebläses 8 kann hierbei kontinuierlich verstellt werden. Über das Gasventil 10 kann die zugeführte Brenngasmenge, welche über die Gasleitung 13 einströmt, kontinuierlich verändert werden; hierbei wird die Schrittzahl ns des Stellantriebs 11 erfasst. Im Gebläse 8 werden Brenngas und Luft miteinander vermischt und am Austritt des Brenners 1 gezündet, so dass sich eine Flamme 2 bildet. Da die Ionen der Flamme 2 elektrisch leitend sind, kann zwischen der Ionisationselektrode 3 und dem Brenner 1 ein Strom fließen. Hieraus folgt, dass eine elektrische Spannung UFlamme anliegt. Der Ionenfluss durch die Flamme 2 sorgt dafür, dass der elektrische Kreislauf (Brenner 1, Ionisationselektrode 3, Spannungsquelle 4, Widerstand 5) geschlossen ist. Figur 2 zeigt den Verlauf der am Widerstand 5 gemessenen Spannung U über die Luftzahl λ und die Gebläsedrehzahl n. U0 ist die Spannung der Spannungsquelle 4. Es gilt: U = U 0 U Flamme

Figure imgb0001
During operation of the burner, the fan 8 sucks in combustion air via the air inlet 12. The speed n of the fan 8 can be adjusted continuously. Via the gas valve 10, the amount of fuel gas supplied, which flows in via the gas line 13, can be changed continuously; In this case, the number of steps n s of the actuator 11 is detected. In the fan 8, fuel gas and air are mixed with each other and ignited at the outlet of the burner 1, so that a flame 2 is formed. Since the ions of the flame 2 are electrically conductive, a current can flow between the ionization electrode 3 and the burner 1. It follows that an electrical voltage U Flame is applied. The flow of ions through the flame 2 ensures that the electrical circuit (burner 1, ionization electrode 3, voltage source 4, resistor 5) is closed. FIG. 2 shows the course of the measured at the resistor 5 voltage U on the air ratio λ and the fan speed n. U 0 is the voltage of the voltage source 4. It holds: U = U 0 - U flame
Figure imgb0001

Es ist zu erkennen, dass die am Widerstand 5 gemessene Spannung U bei stöchiometrischer Verbrennung (λ = 1,0) minimal ist. Mit Erhöhen des Luftüberschusses steigt die Spannung U kontinuierlich an. Bei einer Luftzahl von etwa 1,6 steigt die Spannung U deutlich stärker als bisher an. Bei einem Luftüberschuss von etwa λ = 1,7 hebt die Flamme ab. Es kann kein Ionisationssignal mehr gemessen werden; ein nicht dargestelltes Sicherheitsventil verriegelt die Brenngaszufuhr.It can be seen that the voltage U measured at the resistor 5 is minimal at stoichiometric combustion (λ = 1.0). As the excess air increases, the voltage U increases continuously. With an air ratio of about 1.6, the voltage U increases significantly more than before. With an excess of air of about λ = 1.7 lifts the Flame off. It is no longer possible to measure an ionization signal; an unillustrated safety valve locks the fuel gas supply.

Beim erfindungsgemäßen Regelverfahren läuft zunächst der Brenner 1 mit einem bisher nicht bekannten Luftüberschuss. Bei konstant geöffnetem Gasventil 10 wird die Drehzahl n des Gebläses 8 erhöht. Hierdurch steigt die Luftzahl λ an. Der Spannungsabfall U am Widerstand 5 wird kontinuierlich über der Zeit t gemessen und an die Regelung 7 weitergegeben. In der Regelung 7 wird der Gradient ΔU/Δn berechnet, wobei n die Drehzahl des Gebläses 8 ist. Steigt der Gradient ΔU/Δn ab einem bestimmten Punkt übermäßig an, so ist dies ein Indiz dafür, dass demnächst die Flamme abhebt und somit abreißt. Die Luftzahl λ beträgt dann etwa 1,6. Ausgehend von diesem Punkt wird nun die Drehzahl n des Gebläses gezielt derartig reduziert, dass sich eine Luftzahl λ ≈ 1,25) einstellt. Alternativ zur Gradientenermittlung mittels Quotient aus Differenzsignal zur Differenzdrehzahl ΔU/Δn kann auch ein Gradient aus Differenzspannung ΔU zu Differenzstellposition des Stellantriebs ΔnS gebildet werden, wenn anstelle einer Erhöhung der Gebläsedrehzahl eine Reduzierung der Brenngasmenge vorgenommen wird. Als weitere Variante kann bei konstanter Abmagerung auch ein Gradient aus der Zeit gebildet werden (Δ). In the control method according to the invention, the burner 1 first runs with a previously unknown excess of air. At constantly open gas valve 10, the speed n of the blower 8 is increased. As a result, the air ratio λ increases. The voltage drop U across the resistor 5 is measured continuously over the time t and passed on to the controller 7. In the control 7, the gradient ΔU / Δn is calculated, where n is the speed of the fan 8. If the gradient ΔU / Δn increases excessively after a certain point, this is an indication that soon the flame will lift off and thus break off. The air ratio λ is then about 1.6. Starting from this point, the rotational speed n of the fan is now deliberately reduced in such a way that an air ratio λ≈1.25 is established. As an alternative to determining the gradient by means of the quotient of the difference signal to the differential speed ΔU / Δn, a gradient of differential voltage ΔU to differential setting position of the actuator Δn S can also be formed if a reduction in the fuel gas quantity is undertaken instead of an increase in the fan speed. As a further variant, a gradient of the time can also be formed with constant emaciation ( ΔU̇ ) .

Der Betriebszustand, bei dem ein Abheben bevorsteht kann dadurch bestimmt werden, dass der aktuelle Gradient mit mindestens einem früheren Gradienten verglichen wird und in dem Fall, dass der aktuelle Gradient den oder die Vergleichswerte um einen bestimmten Prozentsatz überschreitet, der erwartete Zustand vorliegt. Als Vergleichswert kann zum Beispiel der geringste gemessene Gradient verwendet werden. Alternativ kann ein Absolutwert vorgegeben werden.The operating state where liftoff is imminent may be determined by comparing the current gradient to at least one previous gradient, and in the event the current gradient exceeds the compare value (s) by a certain percentage, the expected state is present. For example, the lowest measured gradient can be used as comparison value. Alternatively, an absolute value can be specified.

Um den Einfluss von Signalrauschen (Schwanken des Messsignals um eine Trendlinie) zu eliminieren, darf die Zeitdifferenz beziehungsweise Drehzahldifferenz nicht zu klein gewählt werden.In order to eliminate the influence of signal noise (fluctuation of the measuring signal by a trend line), the time difference or speed difference must not be selected too small.

Anstelle des Spannungsabfalls U am Widerstand 5 kann auch direkt die Spannung der Flamme UFlamme gemessen werden. In diesem Fall ist jedoch die Ionisationsspannung bei stöchiometrischer Verbrennung maximal und das Ionisationsspannungssignal fällt bei Erhöhung der Luftzahl ab.Instead of the voltage drop U at the resistor 5, the voltage of the flame U flame can also be measured directly. In this case, however, the ionization voltage at stoichiometric combustion is maximum and the ionization voltage signal drops as the air ratio is increased.

Anstelle einer konstanten Spannung U0 kann auch eine Konstantstromquelle mit einem konstanten Strom I0 an die Serienschaltung des Widerstandes 5 mit der Flamme 2 geschaltet werden. In Abhängigkeit des Flammenwiderstandes stellt sich eine bestimmte Spannung ein.Instead of a constant voltage U 0 and a constant current source with a constant current I 0 can be connected to the series circuit of the resistor 5 with the flame. 2 Depending on the flame resistance, a certain voltage sets.

Claims (5)

  1. Method for adjusting the fuel gas-air ratio for a gas-fired burner (1), which is monitored by means of an ionisation electrode (3), wherein the signal of the ionisation electrode (3) is measured directly or indirectly, characterised in that during the operation of the burner (1) the fuel gas-air mixture is thinned out and the signal of the ionisation electrode (3) is measured continually, the gradient of the signal of the ionisation electrode (3) being formed in this way, when exceeding a specific gradient or with an over-proportional increase in the gradient the thinning out of the fuel gas-air mixture is stopped and the fuel gas-air mixture is enriched in a defined manner.
  2. Method for adjusting the fuel gas-air ratio for a gas-fired burner according to claim 1, characterised in that the air is conveyed by a fan (8) with a fan motor (9) and the gradient of the signal of the ionisation electrode (3) is determined from the division of the differential signal of the ionisation electrode (3) by the differential speed of the fan motor (9).
  3. Method for adjusting the fuel gas-air ratio for a gas-fired burner according to claim 1, characterised in that the fuel gas is directed via a gas valve (10) with an actuator (11) and the gradient of the signal of the ionisation electrode (3) is determined from the division of the differential signal of the ionisation electrode (3) by the differential adjusting position of the actuator (11).
  4. Method for adjusting the fuel gas-air ratio for a gas-fired burner according to claim 1, characterised in that the gradient of the signal of the ionisation electrode (3) is determined from the division of the differential signal of the ionisation electrode (3) by the time differential.
  5. Method for adjusting the fuel gas-air ratio for a gas-fired burner according to any one of claims 1 to 4, characterised in that a constant voltage source (4) or constant current source is connected in series with the flame (2) of the burner (1) and a resistor (5) and the voltage drop at the resistor (5) is measured as a signal of the ionisation electrode (3).
EP08012196.5A 2007-07-13 2008-07-07 Method of adjusting the air/fuel ratio for a gas fired burner Active EP2014985B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP20170996TT HRP20170996T1 (en) 2007-07-13 2017-06-30 Method of adjusting the air/fuel ratio for a gas fired burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0109907A AT505442B1 (en) 2007-07-13 2007-07-13 METHOD FOR FUEL GAS AIR ADJUSTMENT FOR A FUEL-DRIVEN BURNER

Publications (3)

Publication Number Publication Date
EP2014985A2 EP2014985A2 (en) 2009-01-14
EP2014985A3 EP2014985A3 (en) 2014-02-26
EP2014985B1 true EP2014985B1 (en) 2017-05-24

Family

ID=39790204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08012196.5A Active EP2014985B1 (en) 2007-07-13 2008-07-07 Method of adjusting the air/fuel ratio for a gas fired burner

Country Status (8)

Country Link
EP (1) EP2014985B1 (en)
AT (1) AT505442B1 (en)
DE (1) DE102008031979A1 (en)
DK (1) DK2014985T3 (en)
ES (1) ES2629770T3 (en)
HR (1) HRP20170996T1 (en)
PL (1) PL2014985T3 (en)
PT (1) PT2014985T (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019119186A1 (en) 2019-01-29 2020-07-30 Vaillant Gmbh Method and device for controlling a fuel gas-air mixture in a heater
EP3690318A2 (en) 2019-01-29 2020-08-05 Vaillant GmbH Method and device for regulating a fuel-air mixture in a heating device
EP3767174A1 (en) 2019-07-16 2021-01-20 Vaillant GmbH Method and device for recalibrating a measuring system for regulating a fuel-air mixture in a heating device
DE102020129816A1 (en) 2020-11-12 2022-05-12 Vaillant Gmbh Arrangements and methods for measuring ionization in a combustion chamber of a premix burner

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010026389B4 (en) * 2010-07-07 2012-08-09 Robert Bosch Gmbh Method for controlling combustion in a gas or oil burner
AT510075B1 (en) 2010-07-08 2012-05-15 Vaillant Group Austria Gmbh METHOD FOR CALIBRATING A DEVICE FOR CONTROLLING THE COMBUSTION AIR-AIR CONDITION OF A FUEL-DRIVEN BURNER
DE102010046954B4 (en) * 2010-09-29 2012-04-12 Robert Bosch Gmbh Method for calibration, validation and adjustment of a lambda probe
EP2667097B1 (en) 2012-05-24 2018-03-07 Honeywell Technologies Sarl Method for operating a gas burner
EP3290801B1 (en) * 2016-09-02 2020-08-12 Robert Bosch GmbH Method for controlling a fuel/air ratio in a heating system and a control unit and a heating system
EP3477201B1 (en) 2017-10-26 2020-05-06 Honeywell Technologies Sarl Method for operating a gas burner appliance
DE102018120377A1 (en) * 2018-08-21 2020-02-27 Truma Gerätetechnik GmbH & Co. KG Heater and method for controlling a blower gas burner
DE102019003451A1 (en) * 2019-05-16 2020-11-19 Truma Gerätetechnik GmbH & Co. KG Method for monitoring a burner and / or a burning behavior of a burner and burner arrangement
DE102019131310A1 (en) * 2019-11-20 2021-05-20 Vaillant Gmbh Heater with emergency control
IT202100032360A1 (en) * 2021-12-23 2023-06-23 Sit Spa METHOD AND APPARATUS FOR MONITORING AND CONTROL OF COMBUSTION IN FUEL GAS BURNERS

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4118172A (en) * 1976-10-20 1978-10-03 Battelle Development Corporation Method and apparatus for controlling burner stoichiometry
DE4027090C2 (en) 1990-08-28 1998-07-23 Kromschroeder Ag G Arrangement for monitoring a burner flame
DE19618573C1 (en) 1996-05-09 1997-06-26 Stiebel Eltron Gmbh & Co Kg Gas burner regulating method controlled by ionisation electrode signal
DE59604283D1 (en) 1995-10-25 2000-03-02 Stiebel Eltron Gmbh & Co Kg Method and circuit for regulating a gas burner
WO1997018417A1 (en) 1995-11-13 1997-05-22 Gas Research Institute, Inc. Flame ionization control apparatus and method
DE19639487A1 (en) 1996-09-26 1998-04-09 Honeywell Bv Method and device for optimizing the operation of a gas burner
DE19839160B4 (en) * 1998-08-28 2004-12-23 Stiebel Eltron Gmbh & Co. Kg Method and circuit for regulating a gas burner
NL1015797C2 (en) * 2000-07-25 2002-01-28 Nefit Buderus B V Combustion device and method for controlling a combustion device.
DE10200128B4 (en) 2002-01-04 2005-12-29 Fa.Josef Reichenbruch Method for detecting gas types and method for operating a firing device and firing device for carrying out these methods
AT411189B (en) * 2002-01-17 2003-10-27 Vaillant Gmbh METHOD FOR CONTROLLING A GAS BURNER
DE202004017850U1 (en) * 2004-06-23 2005-07-21 Ebm-Papst Landshut Gmbh Firing equipment as gas burner has means to set a desired target parameter value after determining the parameter value corresponding to the temperature maximum for optimum air-gas ratio
US8066508B2 (en) * 2005-05-12 2011-11-29 Honeywell International Inc. Adaptive spark ignition and flame sensing signal generation system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019119186A1 (en) 2019-01-29 2020-07-30 Vaillant Gmbh Method and device for controlling a fuel gas-air mixture in a heater
EP3690318A2 (en) 2019-01-29 2020-08-05 Vaillant GmbH Method and device for regulating a fuel-air mixture in a heating device
EP3767174A1 (en) 2019-07-16 2021-01-20 Vaillant GmbH Method and device for recalibrating a measuring system for regulating a fuel-air mixture in a heating device
DE102019119214A1 (en) * 2019-07-16 2021-01-21 Vaillant Gmbh Method and device for recalibrating a measuring system for regulating a fuel gas-air mixture in a heating device
DE102020129816A1 (en) 2020-11-12 2022-05-12 Vaillant Gmbh Arrangements and methods for measuring ionization in a combustion chamber of a premix burner
EP4023941A2 (en) 2020-11-12 2022-07-06 Vaillant GmbH Assemblies and method for measuring ionization in a combustion chamber of a premix burner

Also Published As

Publication number Publication date
ES2629770T3 (en) 2017-08-14
AT505442B1 (en) 2009-07-15
EP2014985A3 (en) 2014-02-26
PL2014985T3 (en) 2017-09-29
DE102008031979A1 (en) 2009-01-15
DK2014985T3 (en) 2017-07-24
HRP20170996T1 (en) 2017-12-15
AT505442A1 (en) 2009-01-15
PT2014985T (en) 2017-07-13
EP2014985A2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
EP2014985B1 (en) Method of adjusting the air/fuel ratio for a gas fired burner
EP0770824B1 (en) Method and circuit for controlling a gas burner
EP2405198B1 (en) Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner
DE19539568C1 (en) Gas burner regulation system
EP1331444B1 (en) Method for regulating a gas burner
DE202019100263U1 (en) Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor
EP2682679B1 (en) Method for monitoring a gas fuelled burner
EP3825623A1 (en) Heater with emergency control system
EP3690318A2 (en) Method and device for regulating a fuel-air mixture in a heating device
AT505244B1 (en) METHOD FOR CHECKING IONIZATION ELECTRODE SIGNAL IN BURNERS
DE102019119186A1 (en) Method and device for controlling a fuel gas-air mixture in a heater
DE102019101190A1 (en) Method for regulating a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor
DE3807388A1 (en) METHOD FOR OPERATING A HEATING DEVICE AND HEATING DEVICE
EP3029375B1 (en) Heater appliance and method for operating a heater appliance
DE202019100261U1 (en) Heater with regulation of a gas mixture
DE19839160B4 (en) Method and circuit for regulating a gas burner
EP3870899B1 (en) Method for checking a gas mixture sensor and ionization sensor in a fuel-gas-powered heating device
DE102005011021A1 (en) Fresh air-exhaust gas-pipeline system testing method for blower-supported heating device, involves issuing warning instruction and/or disconnecting blower-supported heating device during lower-deviation of preset threshold value
EP1923634B1 (en) Adjustment of fuel gas/air mixture via the burner or flame temperature of a heating device
EP1519113A2 (en) Method for adapting the heating power of a blower-supported heater to the individual pressure losses of a fresh air/exhaust gas pipe system
DE102019101189A1 (en) Process for regulating a gas mixture
EP4060235A1 (en) Method for operating a heater with an electronic gas / air connection
EP2354657B1 (en) Method for operating a gas burner
DE102019100467A1 (en) Process for controlling the combustion air ratio on the burner of a heater
DE202019100264U1 (en) Heater with control of a gas mixture using a gas sensor and a gas mixture sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F23N 5/12 20060101AFI20140121BHEP

17P Request for examination filed

Effective date: 20140804

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): AT BE BG CH CY LI

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20141029

Ref country code: DE

Ref legal event code: R108

Ref document number: 502008015323

Country of ref document: DE

Effective date: 20141029

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 896203

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20170996

Country of ref document: HR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008015323

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2014985

Country of ref document: PT

Date of ref document: 20170713

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20170704

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170712

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2629770

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170824

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170825

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 24578

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170824

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170924

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20170996

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008015323

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170707

26N No opposition filed

Effective date: 20180227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170707

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170524

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080707

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170996

Country of ref document: HR

Payment date: 20190627

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170524

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170996

Country of ref document: HR

Payment date: 20200629

Year of fee payment: 13

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170996

Country of ref document: HR

Payment date: 20210623

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20220629

Year of fee payment: 15

Ref country code: PT

Payment date: 20220629

Year of fee payment: 15

Ref country code: DK

Payment date: 20220629

Year of fee payment: 15

Ref country code: CZ

Payment date: 20220629

Year of fee payment: 15

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170996

Country of ref document: HR

Payment date: 20220630

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HR

Payment date: 20220707

Year of fee payment: 15

Ref country code: AT

Payment date: 20220629

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220801

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230627

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230630

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230704

Year of fee payment: 16

Ref country code: IT

Payment date: 20230727

Year of fee payment: 16

Ref country code: GB

Payment date: 20230627

Year of fee payment: 16

Ref country code: ES

Payment date: 20230801

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230721

Year of fee payment: 16

Ref country code: DE

Payment date: 20230627

Year of fee payment: 16

Ref country code: BE

Payment date: 20230627

Year of fee payment: 16

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20170996

Country of ref document: HR

Effective date: 20230707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230707

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20230731

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 24578

Country of ref document: SK

Effective date: 20230707

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 896203

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230707

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230707

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230707