EP2405198B1 - Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner - Google Patents
Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner Download PDFInfo
- Publication number
- EP2405198B1 EP2405198B1 EP11005288A EP11005288A EP2405198B1 EP 2405198 B1 EP2405198 B1 EP 2405198B1 EP 11005288 A EP11005288 A EP 11005288A EP 11005288 A EP11005288 A EP 11005288A EP 2405198 B1 EP2405198 B1 EP 2405198B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel gas
- gas
- signal
- fuel
- ionisation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 20
- 239000000446 fuel Substances 0.000 title description 12
- 239000002737 fuel gas Substances 0.000 claims description 37
- 238000002485 combustion reaction Methods 0.000 claims description 25
- 239000007789 gas Substances 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 11
- 230000001419 dependent effect Effects 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims 7
- 230000004075 alteration Effects 0.000 claims 6
- 230000007423 decrease Effects 0.000 claims 1
- 230000003292 diminished effect Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 206010006895 Cachexia Diseases 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 208000026500 emaciation Diseases 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/12—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
- F23N5/123—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/18—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/26—Measuring humidity
- F23N2225/30—Measuring humidity measuring lambda
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2227/00—Ignition or checking
- F23N2227/20—Calibrating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/12—Fuel valves
- F23N2235/16—Fuel valves variable flow or proportional valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2900/00—Special features of, or arrangements for controlling combustion
- F23N2900/05181—Controlling air to fuel ratio by using a single differential pressure detector
Definitions
- the invention relates to a method for calibrating a device for controlling the fuel gas-air ratio of a combustion gas-powered burner.
- the air ratio is first increased until the flame lifts, which is detected by a flame sensor. Then the mixture is defined again enriched by reducing the air supply.
- the invention has for its object to provide a method for calibrating a device for controlling the fuel gas-air ratio of a gas-powered burner with differential pressure sensor between the fuel gas and combustion air line without oxygen - or carbon dioxide measurement of the exhaust gas.
- the object is achieved in that in a fuel gas burner with differential pressure, mass or flow sensor between fuel gas and combustion air line during operation of the burner, the fuel gas-air mixture is emaciated and in this case the ionization signal is measured continuously. From the ionization signal a gradient is formed during the change. If the gradient exceeds a certain value, or if the gradient rises disproportionately in comparison to the previous course, then the emaciation is ended and the fuel gas-air mixture is enriched in a defined manner. In this state, the signal of the differential pressure, mass or volume flow sensor is measured. In the case in which the sensor flows through or is subjected to a differential pressure, the control device must be readjusted. For this purpose, the fuel gas flow is changed by changing the diameter or any other change in the resistance of the throttle.
- the change in diameter or other change in the resistance of the throttle can be carried out step by step, with ionization calibration again after each step.
- the process is terminated as soon as after ionization calibration Measuring signal of the differential pressure sensor, flow sensor or mass flow sensor falls below a predetermined limit.
- the method is terminated only after a lonisationskalibrierung the measurement signal of the differential pressure sensor, flow sensor or mass flow sensor falls below a predetermined limit and then a change in diameter or other change in the resistance of the throttle continuously until the measurement signal of the differential pressure sensor, flow sensor or mass flow sensor balanced pressure , or no volume or mass flow indicates.
- the diameter change or other change in the resistance of the throttle takes place until the measuring signal of the differential pressure sensor, volume flow sensor or mass flow sensor indicates a balanced pressure or no volume or mass flow.
- the measurement signal of the ionization signal measurement is highly dependent on deposits on the electrode as well as the position of the electrode. Therefore, it is not appropriate to use exceeding or falling below a certain absolute value as a relevant event.
- the sharp increase in the gradient is a sure sign that the flame will soon lift off as the proportion of air increases further.
- the gradient can be determined by dividing the difference signal of the ionization electrode with the differential speed of the fan motor. Alternatively, a division of the difference signal of the ionization with the difference position of the actuator of a gas valve or a differential time unit can be done.
- the signal of the ionization electrode can be detected by serially connecting a constant voltage source to the flame of the burner and a resistor, and measuring the voltage drop across the resistor.
- FIG. 1 shows a burner 1 with blower 8 with blower motor 9 in an air inlet 12.
- air inlet 12 opens a gas line 13, in which a gas valve 10 with actuator 11 and a throttle 15 with actuator 16 is located.
- the blower motor 9 and the actuator 11 of the gas valve 10 and the actuator 16 of the throttle 15 are connected to a controller 7.
- a differential pressure sensor 14 Between the gas line 13 and the air inlet 12 is a differential pressure sensor 14, which is also connected to the controller 7.
- the burner 1 is a flame 2, in which an ionization electrode 3 protrudes.
- the ionization electrode 3 is connected to a voltage source 4. This is connected to its second electrode with a resistor 5, which in turn is connected to the burner 1. Parallel to the resistor 5, a voltmeter 6 is connected, which is connected to the controller 7.
- the fan 8 sucks in combustion air via the air inlet 12.
- the speed n of the fan 8 can be adjusted continuously.
- the actuator 16 of the throttle 15, preferably a stepper motor, remains in a constant position, so that the throttle has a constant cross-section.
- the gas valve 10 Via the gas valve 10, the amount of fuel gas supplied, which flows in via the gas line 13, can be changed continuously; In this case, the number of steps n s of the actuator 11 is detected.
- fuel gas and air are mixed with each other and ignited at the outlet of the burner 1, so that a flame 2 is formed.
- the controller 7 controls the blower motor 9. The controller 7 adjusts the actuator 11 of the gas valve 10 such that equal pressures are applied to both sides of the differential pressure sensor 14.
- FIG. 2 shows the course of the measured at the resistor 5 voltage U on the air ratio ⁇ and the fan speed n.
- a safety device e.g. the gas valve 10 locks the fuel gas supply.
- the burner 1 first runs with a previously unknown excess of air.
- the speed n of the blower 8 is increased.
- the air ratio ⁇ increases.
- the voltage drop U across the resistor 5 is measured continuously over the time t and passed on to the controller 7.
- the gradient ⁇ U / ⁇ n is calculated.
- the air ratio ⁇ is then about 1.6.
- the speed n of the blower is now deliberately reduced in such a way that an air ratio ⁇ ⁇ 1.25 is established.
- the air ratio is not measured in this case, but rather the speed is defined defined according blower characteristic, so that a corresponding reduction of the air mass flow is expected. This process is called ionization calibration.
- the cross section of the throttle 15 is increased by adjusting the actuator 16, so that more fuel gas flows upon activation of the constant pressure control. If the pressure on the fuel gas side is lower than on the combustion air side, the cross section of the throttle 15 is reduced by adjusting the actuator 16 so that less fuel gas flows upon activation of the constant pressure control.
- an ionization calibration is performed again.
- an adjustment of the cross-section of the throttle 15 is optionally carried out again. Ionization calibration and adaptation of the cross section of the throttle 15 are repeated until the signal of the differential pressure sensor 14 falls below a predetermined limit value.
- the cross-sectional change eg number of steps of the stepping motor of the actuator 16
- the throttle cross-section be changed until equal pressures applied to both sides of the differential pressure sensor.
- the throttle cross-section can be changed as long as the same pressures are present on both sides of the differential pressure sensor.
- a gradient of differential voltage .DELTA.U to differential setting position of the actuator .DELTA.n s may be formed alternatively to the gradient determination by means of quotient difference signal to the differential speed .DELTA.U / .DELTA.n s , if instead of increasing the fan speed, a reduction of the fuel gas quantity is made.
- a gradient of the time can also be formed with constant emaciation ( ⁇ U ⁇ ).
- the operating state in which liftoff is imminent may be determined by comparing the current gradient to at least one previous gradient, and in the event that the current gradient exceeds the compare value (s) by a certain percentage, the expected state is present. For example, the lowest measured gradient can be used as comparison value. Alternatively, an absolute value can be specified.
- the time difference or speed difference In order to eliminate the influence of signal noise (fluctuation of the measuring signal by a trend line), the time difference or speed difference must not be selected too small.
- the voltage of the flame U flame can also be measured directly. In this case, however, the ionization voltage at stoichiometric combustion is maximum and the ionization voltage signal drops as the air ratio is increased.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
- Control Of Combustion (AREA)
Description
Die Erfindung bezieht sich auf ein Verfahren zur Kalibrierung einer Einrichtung zum Regeln des Brenngas-Luft-Verhältnisses eines brenngasbetriebenen Brenners.The invention relates to a method for calibrating a device for controlling the fuel gas-air ratio of a combustion gas-powered burner.
Derartige Einrichtungen zum Regeln des Brenngas-Luft-Verhältnisses sind zum Beispiel aus
Diese Systeme regeln bei bekannter, konstanter Brenngasqualität zuverlässig das Brenngas-Luft-Verhältnis. Bei der Installation eines Gerätes mit einer derartigen Regelung ist jedoch eine Erstkalibrierung auf das Brenngas notwendig. Verändert sich die Brenngaszusammensetzung, zum Beispiel durch Schwankungen der Erdgasqualität oder Flüssiggas-Luft-Zumischung, so verändert sich auch das Brenngas-Luft-Verhältnis, was die bekannten Einrichtungen weder feststellen, noch ausgleichen können. Daher wird gemäß dem Stand der Technik bei der Inbetriebnahme das Brenngas-Luft-Verhältnis durch Messung des Sauerstoff- oder Kohlendioxidanteils im Abgas gemessen und durch Änderung des Drosselquerschnitts kalibriert.These systems reliably control the fuel gas / air ratio with a known, constant fuel gas quality. When installing a device with such a regulation, however, a Erstkalibrierung on the fuel gas is necessary. If the fuel gas composition changes, for example as a result of variations in the quality of natural gas or liquefied petroleum gas, the fuel gas / air ratio also changes, which the known devices can neither detect nor compensate for. Therefore, according to the prior art at startup, the fuel gas-air ratio by Measurement of the oxygen or carbon dioxide content in the exhaust gas measured and calibrated by changing the throttle cross-section.
Aus
Aus der Patentanmeldung
Bei dem aus
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Kalibrierung einer Einrichtung zum Regeln des Brenngas-Luft-Verhältnisses eines brenngasbetriebenen Brenners mit Differenzdrucksensor zwischen Brenngas- und Verbrennungsluftleitung ohne Sauerstoff - oder Kohlendioxidmessung des Abgases zu schaffen.The invention has for its object to provide a method for calibrating a device for controlling the fuel gas-air ratio of a gas-powered burner with differential pressure sensor between the fuel gas and combustion air line without oxygen - or carbon dioxide measurement of the exhaust gas.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass bei einem brenngasbetriebenen Brenner mit Differenzdruck-, Massen- oder Volumenstromsensor zwischen Brenngas- und Verbrennungsluftleitung während des Betriebs des Brenners das Brenngas-Luft-Gemisch abgemagert wird und hierbei das Ionisationssignal kontinuierlich gemessen wird. Aus dem Ionisationssignal wird bei der Veränderung ein Gradient gebildet. Überschreitet der Gradient einen bestimmten Wert, bzw. steigt der Gradient im Vergleich zum bisherigen Verlauf überproportional an, so wird die Abmagerung beendet und das Brenngas-Luft-Gemisch definiert angefettet. In diesem Zustand wird das Signal des Differenzdruck-, Massen- oder Volumenstromsensors gemessen. In dem Fall, in dem der Sensor durchströmt oder mit einem Differenzdruck beaufschlagt wird, muss die Regeleinrichtung nachjustiert werden. Hierzu wird der Brenngasstrom durch Veränderung des Durchmessers oder einer sonstigen Veränderung des Widerstandes der Drossel verändert.The object is achieved in that in a fuel gas burner with differential pressure, mass or flow sensor between fuel gas and combustion air line during operation of the burner, the fuel gas-air mixture is emaciated and in this case the ionization signal is measured continuously. From the ionization signal a gradient is formed during the change. If the gradient exceeds a certain value, or if the gradient rises disproportionately in comparison to the previous course, then the emaciation is ended and the fuel gas-air mixture is enriched in a defined manner. In this state, the signal of the differential pressure, mass or volume flow sensor is measured. In the case in which the sensor flows through or is subjected to a differential pressure, the control device must be readjusted. For this purpose, the fuel gas flow is changed by changing the diameter or any other change in the resistance of the throttle.
Vorteilhafte Ausgestaltungen ergeben sich gemäß den Merkmalen der abhängigen Ansprüche.Advantageous embodiments will become apparent according to the features of the dependent claims.
Die Durchmesserveränderung oder sonstige Veränderung des Widerstandes der Drossel kann schrittweise erfolgt, wobei nach jedem Schritt wieder eine lonisationskalibrierung erfolgt. Das Verfahren wird beendet, sobald nach einer lonisationskalibrierung das Messsignal des Differenzdrucksensors, Volumenstromsensors oder Massenstromsensors einen vorgegebenen Grenzwert unterschreitet. Alternativ wird das Verfahren erst dann beendet, wenn nach einer lonisationskalibrierung das Messsignal des Differenzdrucksensors, Volumenstromsensors oder Massenstromsensors einen vorgegebenen Grenzwert unterschreitet und dann eine Durchmesserveränderung oder sonstige Veränderung des Widerstandes der Drossel kontinuierlich erfolgt, bis das Messsignal des Differenzdrucksensors, Volumenstromsensors oder Massenstromsensors einen ausgeglichen Druck, beziehungsweise keinen Volumen- oder Massenstrom, anzeigt.The change in diameter or other change in the resistance of the throttle can be carried out step by step, with ionization calibration again after each step. The process is terminated as soon as after ionization calibration Measuring signal of the differential pressure sensor, flow sensor or mass flow sensor falls below a predetermined limit. Alternatively, the method is terminated only after a lonisationskalibrierung the measurement signal of the differential pressure sensor, flow sensor or mass flow sensor falls below a predetermined limit and then a change in diameter or other change in the resistance of the throttle continuously until the measurement signal of the differential pressure sensor, flow sensor or mass flow sensor balanced pressure , or no volume or mass flow indicates.
Gemäß einer anderen Option erfolgt die Durchmesserveränderung oder sonstige Veränderung des Widerstandes der Drossel, bis das Messsignal des Differenzdrucksensors, Volumenstromsensors oder Massenstromsensors einen ausgeglichen Druck beziehungsweise keinen Volumen- oder Massenstrom anzeigt.According to another option, the diameter change or other change in the resistance of the throttle takes place until the measuring signal of the differential pressure sensor, volume flow sensor or mass flow sensor indicates a balanced pressure or no volume or mass flow.
Das Messsignal der Ionisationssignalmessung ist stark von Ablagerungen an der Elektrode sowie der Position der Elektrode abhängig. Daher ist es nicht zielführend, das Über- oder Unterschreiten eines bestimmten Absolutwertes als relevantes Ereignis zu verwenden. Der starke Anstieg des Gradienten hingegen ist ein sicheres Indiz für das baldige Abheben der Flamme bei weiterem Anstieg des Luftanteils.The measurement signal of the ionization signal measurement is highly dependent on deposits on the electrode as well as the position of the electrode. Therefore, it is not appropriate to use exceeding or falling below a certain absolute value as a relevant event. The sharp increase in the gradient, on the other hand, is a sure sign that the flame will soon lift off as the proportion of air increases further.
Der Gradient kann durch die Division des Differenzsignals der Ionisationselektrode mit der Differenzdrehzahl des Gebläsemotors ermittelt werden. Alternativ hierzu kann eine Division des Differenzsignals der Ionisationselektrode mit der Differenzstellposition des Stellantriebs eines Gasventils oder einer Differenzzeiteinheit erfolgen.The gradient can be determined by dividing the difference signal of the ionization electrode with the differential speed of the fan motor. Alternatively, a division of the difference signal of the ionization with the difference position of the actuator of a gas valve or a differential time unit can be done.
Das Signal der Ionisationselektrode kann dadurch ermittelt werden, dass eine Konstantspannungsquelle mit der Flamme des Brenners und einem Widerstand seriell verschaltet ist und der Spannungsabfall am Widerstand gemessen wird.The signal of the ionization electrode can be detected by serially connecting a constant voltage source to the flame of the burner and a resistor, and measuring the voltage drop across the resistor.
Die Erfindung wird nun anhand der Figuren detailliert erläutert. Hierbei zeigen
-
Figur 1 einen Aufbau zur Durchführung des erfindungsgemäßen Verfahrens und -
den Verlauf des Ionisationssignals als Funktion des Luftüberschusses beziehungsweise der Gebläsedrehzahl.Figur 2
-
FIG. 1 a structure for carrying out the method according to the invention and -
FIG. 2 the course of the ionization signal as a function of the excess air or the fan speed.
Beim Betrieb des Brenners saugt das Gebläse 8 über den Lufteintritt 12 Verbrennungsluft an. Die Drehzahl n des Gebläses 8 kann hierbei kontinuierlich verstellt werden. Der Stellantrieb 16 der Drossel 15, vorzugsweise ein Schrittmotor, verharrt in einer konstanten Position, so dass die Drossel einen konstanten Querschnitt aufweist. Über das Gasventil 10 kann die zugeführte Brenngasmenge, welche über die Gasleitung 13 einströmt, kontinuierlich verändert werden; hierbei wird die Schrittzahl ns des Stellantriebs 11 erfasst. Im Gebläse 8 werden Brenngas und Luft miteinander vermischt und am Austritt des Brenners 1 gezündet, so dass sich eine Flamme 2 bildet.During operation of the burner, the
Während des normalen Brennerbetriebs soll auf beiden Seiten des Differenzdrucksensors 14 gleiche Drücke anliegen. Je nach Leistungsanforderung steuert die Regelung 7 den Gebläsemotor 9 an. Die Regelung 7 stellt den Stellantrieb 11 des Gasventils 10 derartig ein, dass an beiden Seiten des Differenzdrucksensors 14 gleiche Drücke anliegen.During normal burner operation, equal pressures should be present on both sides of the
Da die Ionen der Flamme 2 elektrisch leitend sind, kann zwischen der Ionisationselektrode 3 und dem Brenner 1 ein Strom fließen. Hieraus folgt, dass eine elektrische Spannung UFlamme anliegt. Der Ionenfluss durch die Flamme 2 sorgt dafür, dass der elektrische Kreislauf (Brenner 1, Ionisationselektrode 3, Spannungsquelle 4, Widerstand 5) geschlossen ist.Since the ions of the
Es ist zu erkennen, dass die am Widerstand 5 gemessene Spannung U bei stöchiometrischer Verbrennung (λ = 1,0) minimal ist. Mit Erhöhen des Luftüberschusses steigt die Spannung U kontinuierlich an. Bei einer Luftzahl von etwa 1,6 steigt die Spannung U deutlich stärker als bisher an. Bei einem Luftüberschuss von etwa λ = 1,7 hebt die Flamme ab. Es kann kein Ionisationssignal mehr gemessen werden; über eine Sicherheitseinrichtung, z.B. das Gasventil 10 wird die Brenngaszufuhr verriegelt.It can be seen that the voltage U measured at the resistor 5 is minimal at stoichiometric combustion (λ = 1.0). As the excess air increases, the voltage U increases continuously. With an air ratio of about 1.6, the voltage U increases significantly more than before. At an air excess of about λ = 1.7, the flame rises. It is no longer possible to measure an ionization signal; via a safety device, e.g. the
Beim erfindungsgemäßen Kalibrierverfahren läuft zunächst der Brenner 1 mit einem bisher nicht bekannten Luftüberschuss. Bei konstant geöffnetem Gasventil 10 wird die Drehzahl n des Gebläses 8 erhöht. Hierdurch steigt die Luftzahl λ an. Der Spannungsabfall U am Widerstand 5 wird kontinuierlich über der Zeit t gemessen und an die Regelung 7 weitergegeben. In der Regelung 7 wird der Gradient ΔU/Δn berechnet. Steigt der Gradient ΔU/Δn ab einem bestimmten Punkt übermäßig an, so ist dies ein Indiz dafür, dass demnächst die Flamme abhebt und somit abreißt. Die Luftzahl λ beträgt dann etwa 1,6. Ausgehend von diesem Punkt wird nun die Drehzahl n des Gebläses gezielt derartig reduziert, dass sich eine Luftzahl λ ≈1,25 einstellt. Die Luftzahl wird hierbei nicht gemessen, sondern vielmehr wird die Drehzahl gemäß Gebläsekennlinie definiert reduziert, so dass eine entsprechende Reduzierung des Luftmassenstroms zu erwarten ist. Dieser Vorgang wird als lonisationskalibrierung bezeichnet. Bei der so reduzierten Luftmenge wird nun das Signal des Differenzdrucksensors 14 in der Regelung 7 ausgewertet. Zeigt das Sensorsignal, dass der Differenzdrucksensor 14 auf beiden Seiten einen gleichen Druck vorfindet, so ist die Drossel 15 optimal eingestellt. Zeigt sich jedoch, dass der Druck auf der Brenngasseite höher ist als auf der Verbrennungsluftseite, so bedeutet dies, dass dem Brenner zur Einstellung der gewünschten Soll-Luftzahl von λ=1,25 mehr Gas zugeführt werden muss, als dies bei Aktivierung der Gleichdruckregelung über den Differenzdrucksensor der Fall ist. Daher wird der Querschnitt der Drossel 15 durch Verstellen des Stellantriebs 16 vergrößert, so dass bei Aktivierung der Gleichdruckregelung mehr Brenngas strömt. Ist der Druck auf der Brenngasseite niedriger ist als auf der Verbrennungsluftseite, so wird der Querschnitt der Drossel 15 durch Verstellen des Stellantriebs 16 reduziert, so dass bei Aktivierung der Gleichdruckregelung weniger Brenngas strömt.In the calibration method according to the invention, the burner 1 first runs with a previously unknown excess of air. At constantly
Nach einer definierten Querschnittsveränderung (z.B. 10 Schritte des Schrittmotors des Stellantriebs 16 oder Anzahl der Schritte als Funktion der Druckdifferenz) wird wieder eine lonisationskalibrierung durchgeführt. Nach dieser lonisationskalibrierung erfolgt gegebenenfalls wieder eine Anpassung des Querschnitts der Drossel 15. lonisationskalibrierung und Anpassung des Querschnitts der Drossel 15 werden solange wiederholt, bis das Signal des Differenzdrucksensors 14 einen vorgegebenen Grenzwert unterschreitet. Hierbei kann optional die Querschnittsveränderung (z.B. Anzahl der Schritte des Schrittmotors des Stellantriebs 16) immer kleiner werden, damit die Anpassung erst grob und dann immer exakter erfolgt. Ebenfalls optional kann in dem Fall, in dem das Signal des Differenzdrucksensors 14 einen vorgegebenen Grenzwert unterschreitet, der Drosselquerschnitt solange verändert werden, bis auf beiden Seiten des Differenzdrucksensors gleiche Drücke anliegen.After a defined change in cross section (
Alternativ kann nach der ersten lonisationskalibrierung gleich der Drosselquerschnitt solange verändert werden, bis auf beiden Seiten des Differenzdrucksensors gleiche Drücke anliegen.Alternatively, after the first ionization calibration, the throttle cross-section can be changed as long as the same pressures are present on both sides of the differential pressure sensor.
Bei der ionisationskalibrierung kann alternativ zur Gradientenermittlung mittels Quotienten aus Differenzsignal zur Differenzdrehzahl ΔU/Δn auch ein Gradient aus Differenzspannung ΔU zu Differenzstellposition des Stellantriebs Δns gebildet werden, wenn anstelle einer Erhöhung der Gebläsedrehzahl eine Reduzierung der Brenngasmenge vorgenommen wird. Als weitere Variante kann bei konstanter Abmagerung auch ein Gradient aus der Zeit gebildet werden (ΔU̇).In the ionization calibration, a gradient of differential voltage .DELTA.U to differential setting position of the actuator .DELTA.n s may be formed alternatively to the gradient determination by means of quotient difference signal to the differential speed .DELTA.U / .DELTA.n s , if instead of increasing the fan speed, a reduction of the fuel gas quantity is made. As a further variant, a gradient of the time can also be formed with constant emaciation ( ΔU̇ ).
Der Betriebszustand, bei dem ein Abheben bevorsteht, kann dadurch bestimmt werden, dass der aktuelle Gradient mit mindestens einem früheren Gradienten verglichen wird und in dem Fall, dass der aktuelle Gradient den oder die Vergleichswerte um einen bestimmten Prozentsatz überschreitet, der erwartete Zustand vorliegt. Als Vergleichswert kann zum Beispiel der geringste gemessene Gradient verwendet werden. Alternativ kann ein Absolutwert vorgegeben werden.The operating state in which liftoff is imminent may be determined by comparing the current gradient to at least one previous gradient, and in the event that the current gradient exceeds the compare value (s) by a certain percentage, the expected state is present. For example, the lowest measured gradient can be used as comparison value. Alternatively, an absolute value can be specified.
Um den Einfluss von Signalrauschen (Schwanken des Messsignals um eine Trendlinie) zu eliminieren, darf die Zeitdifferenz beziehungsweise Drehzahldifferenz nicht zu klein gewählt werden.In order to eliminate the influence of signal noise (fluctuation of the measuring signal by a trend line), the time difference or speed difference must not be selected too small.
Anstelle des Spannungsabfalls U am Widerstand 5 kann auch direkt die Spannung der Flamme UFlamme gemessen werden. In diesem Fall ist jedoch die Ionisationsspannung bei stöchiometrischer Verbrennung maximal und das Ionisationsspannungssignal fällt bei Erhöhung der Luftzahl ab.Instead of the voltage drop U at the resistor 5, the voltage of the flame U flame can also be measured directly. In this case, however, the ionization voltage at stoichiometric combustion is maximum and the ionization voltage signal drops as the air ratio is increased.
Anstelle einer konstanten Spannung U0 kann auch eine Konstantstromquelle mit einem konstanten Strom I0 an die Serienschaltung des Widerstandes 5 mit der Flamme 2 geschaltet werden. In Abhängigkeit des Flammenwiderstandes stellt sich eine bestimmte Spannung ein.
- Brenner (1)
- Flamme (2)
- Ionisationselektrode (3)
- Spannungsquelle (4)
- Widerstand (5)
- Spannungsmesser (6)
- Regelung (7)
- Gebläse (8)
- Gebläsemotor (9)
- Gasventil (10)
- Stellantrieb (11)
- Lufteintritt (12)
- Gasleitung (13)
- Differenzdrucksensor (14)
- Drossel (15)
- Stellantrieb (16)
- Burner (1)
- Flame (2)
- Ionization electrode (3)
- Voltage source (4)
- Resistor (5)
- Voltmeter (6)
- Regulation (7)
- Blower (8)
- Blower Motor (9)
- Gas valve (10)
- Actuator (11)
- Air intake (12)
- Gas pipe (13)
- Differential pressure sensor (14)
- Throttle (15)
- Actuator (16)
Claims (7)
- Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1), having a combustion air pipe (12) and a fuel gas pipe (13), which ends via a restrictor (15) in the combustion air pipe (12), wherein the resistance or internal cross section of the restrictor (15) can be altered, and a differential pressure sensor (14), volume flow sensor or mass flow sensor between the fuel gas pipe (13) and the combustion air pipe (12), or a reference point at which a pressure dependent on the combustion air flow prevails, and an ionisation electrode (3), by means of which an ionisation flow or an ionisation striking voltage between the flame (2) and a reference, preferably mass, is measured, wherein, during the operation of the burner (1), ionisation calibration takes places, wherein the fuel gas/air mixture is diminished and thus the signal of the ionisation electrode (3) is continuously measured, whereupon the gradient of the signal of the ionisation electrode (3) is formed, the diminution of the fuel gas/air mixture is ended when a specific gradient is exceeded or when there is disproportionately high increase in the gradient, and the fuel gas/air mixture is enriched selectively,
then the signal of the differential pressure sensor (14), volume flow sensor or mass flow sensor is measured,
should the sensor (14) be passed through or acted upon in the direction of the combustion air pipe (12), the fuel gas flow increases by increasing the diameter or by another reduction in the resistance of the restrictor (15) and,
should the sensor (14) be passed through or acted upon in the direction of the fuel gas pipe (13), the fuel gas flow decreases by reducing the diameter or by another increase in the resistance of the restrictor (15). - Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1) according to claim 1, characterised in that the alteration to the diameter or other alteration to the resistance of the restrictor (15) takes place in steps,
after each step, a further ionisation calibration takes place and, after an ionisation calibration, as soon as the measuring signal of the differential pressure sensor (14), volume flow sensor or mass flow sensor exceeds a predetermined limit, the method is ended or
an alteration to the diameter or other alteration to the resistance of the restrictor (15) takes place continuously until the measuring signal of the differential pressure sensor (14), volume flow sensor or mass flow sensor displays even pressure or no volume or mass flow. - Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1) according to claim 1, characterised in that the alteration to the diameter or other alteration to the resistance of the restrictor (15) takes place until the measuring signal of the differential pressure sensor (14), volume flow sensor or mass flow sensor displays even pressure or no volume or mass flow.
- Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1) according to one of claims 1 to 3, characterised in that the air is conveyed via a blower (8) with a blower motor (9) and the gradient of the signal of the ionisation electrode (3) is determined by dividing the differential signal of the ionisation electrode (3) by the differential rotational speed of the blower motor (9).
- Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1) according to one of claims 1 to 4, characterised in that the fuel gas is conveyed via a gas valve (10) with an actuator (11) and the gradient of the signal of the ionisation electrode (3) is determined by dividing the differential signal of the ionisation electrode (3) by the differential control position of the actuator (11).
- Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1) according to one of claims 1 to 5, characterised in that the gradient of the signal of the ionisation electrode (3) is determined by dividing the differential signal of the ionisation electrode (3) by the differential time.
- Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1) according to one of claims 1 to 6, characterised in that a constant voltage source (4) or constant flow source is connected in series to the flame (2) of the burner (1) and a resistor (5) and the voltage drop-off is measured as the signal of the ionisation electrode (3) at the resistor (5).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA1155/2010A AT510075B1 (en) | 2010-07-08 | 2010-07-08 | METHOD FOR CALIBRATING A DEVICE FOR CONTROLLING THE COMBUSTION AIR-AIR CONDITION OF A FUEL-DRIVEN BURNER |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2405198A1 EP2405198A1 (en) | 2012-01-11 |
EP2405198B1 true EP2405198B1 (en) | 2013-02-20 |
Family
ID=44851529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11005288A Active EP2405198B1 (en) | 2010-07-08 | 2011-06-29 | Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2405198B1 (en) |
AT (1) | AT510075B1 (en) |
ES (1) | ES2403338T3 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4119846A1 (en) | 2021-07-14 | 2023-01-18 | Pittway Sarl | Method and controller for operating a gas burner appliance |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2682679B1 (en) * | 2012-07-04 | 2017-08-30 | Vaillant GmbH | Method for monitoring a gas fuelled burner |
US9528712B2 (en) * | 2012-11-05 | 2016-12-27 | Pat Caruso | Modulating burner system |
DE102019110977A1 (en) * | 2019-04-29 | 2020-10-29 | Ebm-Papst Landshut Gmbh | Method for checking a gas mixture sensor in a fuel gas operated heater |
IT202100032360A1 (en) * | 2021-12-23 | 2023-06-23 | Sit Spa | METHOD AND APPARATUS FOR MONITORING AND CONTROL OF COMBUSTION IN FUEL GAS BURNERS |
DE102022101305A1 (en) * | 2022-01-20 | 2023-07-20 | Ebm-Papst Landshut Gmbh | Procedure for failsafe and lean ignition of a combustible gas-air mixture on a gas burner |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4027090C2 (en) | 1990-08-28 | 1998-07-23 | Kromschroeder Ag G | Arrangement for monitoring a burner flame |
EP0770824B1 (en) * | 1995-10-25 | 2000-01-26 | STIEBEL ELTRON GmbH & Co. KG | Method and circuit for controlling a gas burner |
DE19618573C1 (en) | 1996-05-09 | 1997-06-26 | Stiebel Eltron Gmbh & Co Kg | Gas burner regulating method controlled by ionisation electrode signal |
US5971745A (en) | 1995-11-13 | 1999-10-26 | Gas Research Institute | Flame ionization control apparatus and method |
DE19639487A1 (en) * | 1996-09-26 | 1998-04-09 | Honeywell Bv | Method and device for optimizing the operation of a gas burner |
DE19824524C2 (en) * | 1998-06-02 | 2002-08-08 | Honeywell Bv | Control device for gas burners |
DE19824521B4 (en) | 1998-06-02 | 2004-12-23 | Honeywell B.V. | Control device for gas burners |
DE19922226C1 (en) | 1999-05-14 | 2000-11-30 | Honeywell Bv | Control device for gas burners |
DE10319835A1 (en) * | 2003-01-10 | 2004-11-11 | Vaillant Gmbh | Control method for fuel-driven burner, involves performing calibrating procedure during start of burner operation by increasing the fuel-air mixture until an exhaust sensor outputs a signal equivalent to an established threshold value |
DE10236979C1 (en) * | 2002-08-13 | 2003-08-14 | Stiebel Eltron Gmbh & Co Kg | Combustion regulation method for IC engine employs switching function for providing calibration phase, regulation phase and engine cold-starting phase |
AT504887B1 (en) * | 2007-04-02 | 2008-09-15 | Vaillant Austria Gmbh | METHOD FOR FILLING LEVEL MONITORING OF A LIQUID GAS TANK |
AT505442B1 (en) | 2007-07-13 | 2009-07-15 | Vaillant Austria Gmbh | METHOD FOR FUEL GAS AIR ADJUSTMENT FOR A FUEL-DRIVEN BURNER |
-
2010
- 2010-07-08 AT ATA1155/2010A patent/AT510075B1/en not_active IP Right Cessation
-
2011
- 2011-06-29 EP EP11005288A patent/EP2405198B1/en active Active
- 2011-06-29 ES ES11005288T patent/ES2403338T3/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4119846A1 (en) | 2021-07-14 | 2023-01-18 | Pittway Sarl | Method and controller for operating a gas burner appliance |
WO2023285352A1 (en) | 2021-07-14 | 2023-01-19 | Pittway Sarl | Method and controller for operating a gas burner appliance |
Also Published As
Publication number | Publication date |
---|---|
ES2403338T3 (en) | 2013-05-17 |
AT510075B1 (en) | 2012-05-15 |
EP2405198A1 (en) | 2012-01-11 |
AT510075A1 (en) | 2012-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2014985B1 (en) | Method of adjusting the air/fuel ratio for a gas fired burner | |
EP2405198B1 (en) | Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner | |
EP1370806B1 (en) | Method and device for adjusting air/fuel ratio | |
EP1154202B1 (en) | Control device for a burner | |
EP2589868B1 (en) | Method for operating a gas burner | |
EP2466202B1 (en) | Method for regulating a gas/air mixture | |
DE19539568C1 (en) | Gas burner regulation system | |
DE202019100263U1 (en) | Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor | |
WO2020148110A1 (en) | Method for the closed-loop control of a gas mixture using a gas sensor, a combustion-gas sensor and a gas-mixture sensor | |
EP3499124A1 (en) | Heating device components and method for adjusting a fuel flow | |
EP3690318A2 (en) | Method and device for regulating a fuel-air mixture in a heating device | |
EP3029375B1 (en) | Heater appliance and method for operating a heater appliance | |
EP2017531A2 (en) | Method for monitoring an ionisation electrode signal in burners | |
DE19839160B4 (en) | Method and circuit for regulating a gas burner | |
DE202019100261U1 (en) | Heater with regulation of a gas mixture | |
EP3182007B1 (en) | Heating device system and method with a heating device system | |
EP3870899B1 (en) | Method for checking a gas mixture sensor and ionization sensor in a fuel-gas-powered heating device | |
EP1519113A2 (en) | Method for adapting the heating power of a blower-supported heater to the individual pressure losses of a fresh air/exhaust gas pipe system | |
EP1923634B1 (en) | Adjustment of fuel gas/air mixture via the burner or flame temperature of a heating device | |
EP3173699B1 (en) | Heating device, in particular gas and/or oil burner device, and method for operating a heating device | |
EP2354657B1 (en) | Method for operating a gas burner | |
DE102012023606B4 (en) | Method for controlling combustion in a gas or oil burner | |
EP3825610B1 (en) | Method and device for measuring the lambda value in a fossil-fired burner, in particular for a heating and / or water system | |
DE102019101189A1 (en) | Process for regulating a gas mixture | |
DE102017126138A1 (en) | Method for controlling a fuel gas operated heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120618 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 597721 Country of ref document: AT Kind code of ref document: T Effective date: 20130315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011000412 Country of ref document: DE Effective date: 20130418 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2403338 Country of ref document: ES Kind code of ref document: T3 Effective date: 20130517 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130220 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130520 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130520 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130521 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130620 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20131121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011000412 Country of ref document: DE Effective date: 20131121 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130629 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110629 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130220 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230703 Year of fee payment: 13 Ref country code: CH Payment date: 20230702 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240423 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240527 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240520 Year of fee payment: 14 Ref country code: AT Payment date: 20240423 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240626 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240604 Year of fee payment: 14 Ref country code: BE Payment date: 20240422 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240627 Year of fee payment: 14 |