EP2405198B1 - Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner - Google Patents

Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner Download PDF

Info

Publication number
EP2405198B1
EP2405198B1 EP11005288A EP11005288A EP2405198B1 EP 2405198 B1 EP2405198 B1 EP 2405198B1 EP 11005288 A EP11005288 A EP 11005288A EP 11005288 A EP11005288 A EP 11005288A EP 2405198 B1 EP2405198 B1 EP 2405198B1
Authority
EP
European Patent Office
Prior art keywords
fuel gas
gas
signal
fuel
ionisation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11005288A
Other languages
German (de)
French (fr)
Other versions
EP2405198A1 (en
Inventor
Jochen Dr. Wriske
Hans-Josef Weiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP2405198A1 publication Critical patent/EP2405198A1/en
Application granted granted Critical
Publication of EP2405198B1 publication Critical patent/EP2405198B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/123Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05181Controlling air to fuel ratio by using a single differential pressure detector

Definitions

  • the invention relates to a method for calibrating a device for controlling the fuel gas-air ratio of a combustion gas-powered burner.
  • the air ratio is first increased until the flame lifts, which is detected by a flame sensor. Then the mixture is defined again enriched by reducing the air supply.
  • the invention has for its object to provide a method for calibrating a device for controlling the fuel gas-air ratio of a gas-powered burner with differential pressure sensor between the fuel gas and combustion air line without oxygen - or carbon dioxide measurement of the exhaust gas.
  • the object is achieved in that in a fuel gas burner with differential pressure, mass or flow sensor between fuel gas and combustion air line during operation of the burner, the fuel gas-air mixture is emaciated and in this case the ionization signal is measured continuously. From the ionization signal a gradient is formed during the change. If the gradient exceeds a certain value, or if the gradient rises disproportionately in comparison to the previous course, then the emaciation is ended and the fuel gas-air mixture is enriched in a defined manner. In this state, the signal of the differential pressure, mass or volume flow sensor is measured. In the case in which the sensor flows through or is subjected to a differential pressure, the control device must be readjusted. For this purpose, the fuel gas flow is changed by changing the diameter or any other change in the resistance of the throttle.
  • the change in diameter or other change in the resistance of the throttle can be carried out step by step, with ionization calibration again after each step.
  • the process is terminated as soon as after ionization calibration Measuring signal of the differential pressure sensor, flow sensor or mass flow sensor falls below a predetermined limit.
  • the method is terminated only after a lonisationskalibrierung the measurement signal of the differential pressure sensor, flow sensor or mass flow sensor falls below a predetermined limit and then a change in diameter or other change in the resistance of the throttle continuously until the measurement signal of the differential pressure sensor, flow sensor or mass flow sensor balanced pressure , or no volume or mass flow indicates.
  • the diameter change or other change in the resistance of the throttle takes place until the measuring signal of the differential pressure sensor, volume flow sensor or mass flow sensor indicates a balanced pressure or no volume or mass flow.
  • the measurement signal of the ionization signal measurement is highly dependent on deposits on the electrode as well as the position of the electrode. Therefore, it is not appropriate to use exceeding or falling below a certain absolute value as a relevant event.
  • the sharp increase in the gradient is a sure sign that the flame will soon lift off as the proportion of air increases further.
  • the gradient can be determined by dividing the difference signal of the ionization electrode with the differential speed of the fan motor. Alternatively, a division of the difference signal of the ionization with the difference position of the actuator of a gas valve or a differential time unit can be done.
  • the signal of the ionization electrode can be detected by serially connecting a constant voltage source to the flame of the burner and a resistor, and measuring the voltage drop across the resistor.
  • FIG. 1 shows a burner 1 with blower 8 with blower motor 9 in an air inlet 12.
  • air inlet 12 opens a gas line 13, in which a gas valve 10 with actuator 11 and a throttle 15 with actuator 16 is located.
  • the blower motor 9 and the actuator 11 of the gas valve 10 and the actuator 16 of the throttle 15 are connected to a controller 7.
  • a differential pressure sensor 14 Between the gas line 13 and the air inlet 12 is a differential pressure sensor 14, which is also connected to the controller 7.
  • the burner 1 is a flame 2, in which an ionization electrode 3 protrudes.
  • the ionization electrode 3 is connected to a voltage source 4. This is connected to its second electrode with a resistor 5, which in turn is connected to the burner 1. Parallel to the resistor 5, a voltmeter 6 is connected, which is connected to the controller 7.
  • the fan 8 sucks in combustion air via the air inlet 12.
  • the speed n of the fan 8 can be adjusted continuously.
  • the actuator 16 of the throttle 15, preferably a stepper motor, remains in a constant position, so that the throttle has a constant cross-section.
  • the gas valve 10 Via the gas valve 10, the amount of fuel gas supplied, which flows in via the gas line 13, can be changed continuously; In this case, the number of steps n s of the actuator 11 is detected.
  • fuel gas and air are mixed with each other and ignited at the outlet of the burner 1, so that a flame 2 is formed.
  • the controller 7 controls the blower motor 9. The controller 7 adjusts the actuator 11 of the gas valve 10 such that equal pressures are applied to both sides of the differential pressure sensor 14.
  • FIG. 2 shows the course of the measured at the resistor 5 voltage U on the air ratio ⁇ and the fan speed n.
  • a safety device e.g. the gas valve 10 locks the fuel gas supply.
  • the burner 1 first runs with a previously unknown excess of air.
  • the speed n of the blower 8 is increased.
  • the air ratio ⁇ increases.
  • the voltage drop U across the resistor 5 is measured continuously over the time t and passed on to the controller 7.
  • the gradient ⁇ U / ⁇ n is calculated.
  • the air ratio ⁇ is then about 1.6.
  • the speed n of the blower is now deliberately reduced in such a way that an air ratio ⁇ ⁇ 1.25 is established.
  • the air ratio is not measured in this case, but rather the speed is defined defined according blower characteristic, so that a corresponding reduction of the air mass flow is expected. This process is called ionization calibration.
  • the cross section of the throttle 15 is increased by adjusting the actuator 16, so that more fuel gas flows upon activation of the constant pressure control. If the pressure on the fuel gas side is lower than on the combustion air side, the cross section of the throttle 15 is reduced by adjusting the actuator 16 so that less fuel gas flows upon activation of the constant pressure control.
  • an ionization calibration is performed again.
  • an adjustment of the cross-section of the throttle 15 is optionally carried out again. Ionization calibration and adaptation of the cross section of the throttle 15 are repeated until the signal of the differential pressure sensor 14 falls below a predetermined limit value.
  • the cross-sectional change eg number of steps of the stepping motor of the actuator 16
  • the throttle cross-section be changed until equal pressures applied to both sides of the differential pressure sensor.
  • the throttle cross-section can be changed as long as the same pressures are present on both sides of the differential pressure sensor.
  • a gradient of differential voltage .DELTA.U to differential setting position of the actuator .DELTA.n s may be formed alternatively to the gradient determination by means of quotient difference signal to the differential speed .DELTA.U / .DELTA.n s , if instead of increasing the fan speed, a reduction of the fuel gas quantity is made.
  • a gradient of the time can also be formed with constant emaciation ( ⁇ U ⁇ ).
  • the operating state in which liftoff is imminent may be determined by comparing the current gradient to at least one previous gradient, and in the event that the current gradient exceeds the compare value (s) by a certain percentage, the expected state is present. For example, the lowest measured gradient can be used as comparison value. Alternatively, an absolute value can be specified.
  • the time difference or speed difference In order to eliminate the influence of signal noise (fluctuation of the measuring signal by a trend line), the time difference or speed difference must not be selected too small.
  • the voltage of the flame U flame can also be measured directly. In this case, however, the ionization voltage at stoichiometric combustion is maximum and the ionization voltage signal drops as the air ratio is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Kalibrierung einer Einrichtung zum Regeln des Brenngas-Luft-Verhältnisses eines brenngasbetriebenen Brenners.The invention relates to a method for calibrating a device for controlling the fuel gas-air ratio of a combustion gas-powered burner.

Derartige Einrichtungen zum Regeln des Brenngas-Luft-Verhältnisses sind zum Beispiel aus EP 1 179 159 B1 , EP 1 084 369 B1 und EP 1 082 575 B1 bekannt. All diesen Systemen ist gemein, dass eine Brenngasleitung in eine Verbrennungsluftleitung über eine Drossel mündet. Zwischen der Brenngasleitung und der Verbrennungsluftleitung oder einem Referenzpunkt im Gerätegehäuse ist ein Differenzdrucksensor in Form eines Massenstromsensors angeordnet. Das System ist derart ausgelegt, dass in dem Fall, in dem der Sensor durchströmt wird, der Brenngas- oder Verbrennungsluftmassenstrom solange verändert wird, bis der Sensor nicht mehr durchströmt wird.Such means for controlling the fuel gas-air ratio are, for example EP 1 179 159 B1 . EP 1 084 369 B1 and EP 1 082 575 B1 known. All these systems have in common that a fuel gas line opens into a combustion air line via a throttle. Between the fuel gas line and the combustion air line or a reference point in the device housing, a differential pressure sensor is arranged in the form of a mass flow sensor. The system is designed so that in the case in which the sensor is flowed through, the fuel gas or combustion air mass flow is changed until the sensor is no longer flowed through.

Diese Systeme regeln bei bekannter, konstanter Brenngasqualität zuverlässig das Brenngas-Luft-Verhältnis. Bei der Installation eines Gerätes mit einer derartigen Regelung ist jedoch eine Erstkalibrierung auf das Brenngas notwendig. Verändert sich die Brenngaszusammensetzung, zum Beispiel durch Schwankungen der Erdgasqualität oder Flüssiggas-Luft-Zumischung, so verändert sich auch das Brenngas-Luft-Verhältnis, was die bekannten Einrichtungen weder feststellen, noch ausgleichen können. Daher wird gemäß dem Stand der Technik bei der Inbetriebnahme das Brenngas-Luft-Verhältnis durch Messung des Sauerstoff- oder Kohlendioxidanteils im Abgas gemessen und durch Änderung des Drosselquerschnitts kalibriert.These systems reliably control the fuel gas / air ratio with a known, constant fuel gas quality. When installing a device with such a regulation, however, a Erstkalibrierung on the fuel gas is necessary. If the fuel gas composition changes, for example as a result of variations in the quality of natural gas or liquefied petroleum gas, the fuel gas / air ratio also changes, which the known devices can neither detect nor compensate for. Therefore, according to the prior art at startup, the fuel gas-air ratio by Measurement of the oxygen or carbon dioxide content in the exhaust gas measured and calibrated by changing the throttle cross-section.

Aus EP 770 824 B1 ist bekannt, dass das Brenngas-Luft-Verhältnis eines brenngasbetriebenen Brenners mittels Messung der Ionisationsspannung oder des lonisationsstrom an einer Überwachungselektrode eingestellt werden kann. Ausgehend von einem überstöchiometrischen Brennerbetrieb wird der Luftüberschuss so lange reduziert, bis eine geringfügig unterstöchiometrische Verbrennung vorliegt. Hierbei wird die Ionisationsspannung zwischen einer Ionisationselektrode und dem Brenner gemessen. Bei stöchiometrischer Verbrennung (λ = 1,0) ist die Ionisationsspannung maximal. Demzufolge steigt die Ionisationsspannung, ausgehend von überstöchiometrischer Verbrennung, bei der Reduzierung des Luftüberschusses zunächst an, um bei stöchiometrischer Verbrennung ein Maximum zu erreichen. Fällt die Ionisationsspannung bei Weiterreduzierung des Luftanteils ab, so ist dies ein Indikator dafür, dass die Verbrennung unterstöchiometrisch ist. Das aus der EP 770 824 B1 bekannte Verfahren sieht nun vor, dass, ausgehend von der Luftmenge, welche bei maximaler Ionisationsspannung vorliegt, der Luftanteil um einen definierten Betrag erhöht wird, so dass die Soll-Luftzahl erreicht wird. Dies kann beispielsweise dadurch geschehen, dass die Drehzahl eines Verbrennungsluftgebläses, ausgehend von der stöchiometrischen Verbrennung, um 25% erhöht wird. Ausgestaltungen eines derartigen Regelverfahrens sind aus der DE 40 27 090 C2 , DE 196 18 573 C1 und US 5 971 745 A bekannt.Out EP 770 824 B1 It is known that the fuel gas-air ratio of a fuel gas burner can be adjusted by measuring the ionization voltage or the ionisationsstrom on a monitoring electrode. Starting from a superstoichiometric burner operation, the excess air is reduced until there is a slight substoichiometric combustion. Here, the ionization voltage is measured between an ionization electrode and the burner. At stoichiometric combustion (λ = 1.0) the ionization voltage is maximal. Consequently, the ionization voltage, starting from superstoichiometric combustion, initially increases in the reduction of the excess air to reach a maximum under stoichiometric combustion. If the ionization voltage drops on further reduction of the air content, this is an indicator that the combustion is substoichiometric. That from the EP 770 824 B1 known method now provides that, starting from the amount of air which is present at maximum ionization, the air fraction is increased by a defined amount, so that the desired air ratio is reached. This can be done, for example, by increasing the speed of a combustion air blower by 25%, based on the stoichiometric combustion. Embodiments of such a control method are known from DE 40 27 090 C2 . DE 196 18 573 C1 and US 5,971,745 A known.

Aus der Patentanmeldung AT 505 442 A1 / EP 2 014 985 ist ein Kalibrierungsverfahren bekannt, bei dem während des Betriebs des Brenners beispielsweise durch Erhöhen der Drehzahl eines Verbrennungsluftgebläses das Brenngas-Luft-Gemisch abgemagert und dabei das Signal der Ionisationselektrode kontinuierlich gemessen und hierbei der Gradient des Signals der Ionisationselektrode gebildet wird. Bei Überschreitung eines bestimmten Gradienten oder beim überproportionalen Anstieg des Gradienten wird die Abmagerung des Brenngas-Luft-Gemischs beendet und das Brenngas-Luft-Gemisch definiert angefettet. Dies kann beispielsweise dadurch geschehen, dass die Drehzahl eines Verbrennungsluftgebläses, ausgehend von der Drehzahl bei Beendigung der Abmagerung um 25% verringert wird.From the patent application AT 505 442 A1 / EP 2 014 985 a calibration method is known in which during the operation of the burner, for example, by increasing the rotational speed of a combustion air blower, the fuel gas-air mixture emaciated while continuously measuring the signal of the ionization and in this case the gradient of the signal of the ionization electrode is formed. If a certain gradient is exceeded or the gradient rises disproportionately, the emaciation of the Fuel gas-air mixture ends and the fuel gas-air mixture defined enriched. This can be done, for example, by reducing the rotational speed of a combustion air blower by 25%, based on the rotational speed at the end of the leaning.

Bei dem aus EP 833 106 A2 bekannten Verfahren zur Einstellung des Brenngas-Luft-Gemischs wird zunächst die Luftzahl erhöht bis die Flamme abhebt, was mittels eines Flammenfühlers erkannt wird. Anschließend wird das Gemisch definiert wieder durch Reduzierung der Luftzufuhr angefettet.At the EP 833 106 A2 known method for adjusting the fuel gas-air mixture, the air ratio is first increased until the flame lifts, which is detected by a flame sensor. Then the mixture is defined again enriched by reducing the air supply.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Kalibrierung einer Einrichtung zum Regeln des Brenngas-Luft-Verhältnisses eines brenngasbetriebenen Brenners mit Differenzdrucksensor zwischen Brenngas- und Verbrennungsluftleitung ohne Sauerstoff - oder Kohlendioxidmessung des Abgases zu schaffen.The invention has for its object to provide a method for calibrating a device for controlling the fuel gas-air ratio of a gas-powered burner with differential pressure sensor between the fuel gas and combustion air line without oxygen - or carbon dioxide measurement of the exhaust gas.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass bei einem brenngasbetriebenen Brenner mit Differenzdruck-, Massen- oder Volumenstromsensor zwischen Brenngas- und Verbrennungsluftleitung während des Betriebs des Brenners das Brenngas-Luft-Gemisch abgemagert wird und hierbei das Ionisationssignal kontinuierlich gemessen wird. Aus dem Ionisationssignal wird bei der Veränderung ein Gradient gebildet. Überschreitet der Gradient einen bestimmten Wert, bzw. steigt der Gradient im Vergleich zum bisherigen Verlauf überproportional an, so wird die Abmagerung beendet und das Brenngas-Luft-Gemisch definiert angefettet. In diesem Zustand wird das Signal des Differenzdruck-, Massen- oder Volumenstromsensors gemessen. In dem Fall, in dem der Sensor durchströmt oder mit einem Differenzdruck beaufschlagt wird, muss die Regeleinrichtung nachjustiert werden. Hierzu wird der Brenngasstrom durch Veränderung des Durchmessers oder einer sonstigen Veränderung des Widerstandes der Drossel verändert.The object is achieved in that in a fuel gas burner with differential pressure, mass or flow sensor between fuel gas and combustion air line during operation of the burner, the fuel gas-air mixture is emaciated and in this case the ionization signal is measured continuously. From the ionization signal a gradient is formed during the change. If the gradient exceeds a certain value, or if the gradient rises disproportionately in comparison to the previous course, then the emaciation is ended and the fuel gas-air mixture is enriched in a defined manner. In this state, the signal of the differential pressure, mass or volume flow sensor is measured. In the case in which the sensor flows through or is subjected to a differential pressure, the control device must be readjusted. For this purpose, the fuel gas flow is changed by changing the diameter or any other change in the resistance of the throttle.

Vorteilhafte Ausgestaltungen ergeben sich gemäß den Merkmalen der abhängigen Ansprüche.Advantageous embodiments will become apparent according to the features of the dependent claims.

Die Durchmesserveränderung oder sonstige Veränderung des Widerstandes der Drossel kann schrittweise erfolgt, wobei nach jedem Schritt wieder eine lonisationskalibrierung erfolgt. Das Verfahren wird beendet, sobald nach einer lonisationskalibrierung das Messsignal des Differenzdrucksensors, Volumenstromsensors oder Massenstromsensors einen vorgegebenen Grenzwert unterschreitet. Alternativ wird das Verfahren erst dann beendet, wenn nach einer lonisationskalibrierung das Messsignal des Differenzdrucksensors, Volumenstromsensors oder Massenstromsensors einen vorgegebenen Grenzwert unterschreitet und dann eine Durchmesserveränderung oder sonstige Veränderung des Widerstandes der Drossel kontinuierlich erfolgt, bis das Messsignal des Differenzdrucksensors, Volumenstromsensors oder Massenstromsensors einen ausgeglichen Druck, beziehungsweise keinen Volumen- oder Massenstrom, anzeigt.The change in diameter or other change in the resistance of the throttle can be carried out step by step, with ionization calibration again after each step. The process is terminated as soon as after ionization calibration Measuring signal of the differential pressure sensor, flow sensor or mass flow sensor falls below a predetermined limit. Alternatively, the method is terminated only after a lonisationskalibrierung the measurement signal of the differential pressure sensor, flow sensor or mass flow sensor falls below a predetermined limit and then a change in diameter or other change in the resistance of the throttle continuously until the measurement signal of the differential pressure sensor, flow sensor or mass flow sensor balanced pressure , or no volume or mass flow indicates.

Gemäß einer anderen Option erfolgt die Durchmesserveränderung oder sonstige Veränderung des Widerstandes der Drossel, bis das Messsignal des Differenzdrucksensors, Volumenstromsensors oder Massenstromsensors einen ausgeglichen Druck beziehungsweise keinen Volumen- oder Massenstrom anzeigt.According to another option, the diameter change or other change in the resistance of the throttle takes place until the measuring signal of the differential pressure sensor, volume flow sensor or mass flow sensor indicates a balanced pressure or no volume or mass flow.

Das Messsignal der Ionisationssignalmessung ist stark von Ablagerungen an der Elektrode sowie der Position der Elektrode abhängig. Daher ist es nicht zielführend, das Über- oder Unterschreiten eines bestimmten Absolutwertes als relevantes Ereignis zu verwenden. Der starke Anstieg des Gradienten hingegen ist ein sicheres Indiz für das baldige Abheben der Flamme bei weiterem Anstieg des Luftanteils.The measurement signal of the ionization signal measurement is highly dependent on deposits on the electrode as well as the position of the electrode. Therefore, it is not appropriate to use exceeding or falling below a certain absolute value as a relevant event. The sharp increase in the gradient, on the other hand, is a sure sign that the flame will soon lift off as the proportion of air increases further.

Der Gradient kann durch die Division des Differenzsignals der Ionisationselektrode mit der Differenzdrehzahl des Gebläsemotors ermittelt werden. Alternativ hierzu kann eine Division des Differenzsignals der Ionisationselektrode mit der Differenzstellposition des Stellantriebs eines Gasventils oder einer Differenzzeiteinheit erfolgen.The gradient can be determined by dividing the difference signal of the ionization electrode with the differential speed of the fan motor. Alternatively, a division of the difference signal of the ionization with the difference position of the actuator of a gas valve or a differential time unit can be done.

Das Signal der Ionisationselektrode kann dadurch ermittelt werden, dass eine Konstantspannungsquelle mit der Flamme des Brenners und einem Widerstand seriell verschaltet ist und der Spannungsabfall am Widerstand gemessen wird.The signal of the ionization electrode can be detected by serially connecting a constant voltage source to the flame of the burner and a resistor, and measuring the voltage drop across the resistor.

Die Erfindung wird nun anhand der Figuren detailliert erläutert. Hierbei zeigen

  • Figur 1 einen Aufbau zur Durchführung des erfindungsgemäßen Verfahrens und
  • Figur 2 den Verlauf des Ionisationssignals als Funktion des Luftüberschusses beziehungsweise der Gebläsedrehzahl.
The invention will now be explained in detail with reference to FIGS. Show here
  • FIG. 1 a structure for carrying out the method according to the invention and
  • FIG. 2 the course of the ionization signal as a function of the excess air or the fan speed.

Figur 1 zeigt einen Brenner 1 mit Gebläse 8 mit Gebläsemotor 9 in einem Lufteintritt 12. In den Lufteintritt 12 mündet eine Gasleitung 13, in der sich ein Gasventil 10 mit Stellantrieb 11 sowie eine Drossel 15 mit Stellantrieb 16 befindet. Der Gebläsemotor 9 und der Stellantrieb 11 des Gasventils 10 sowie der Stellantrieb 16 der Drossel 15 sind mit einer Regelung 7 verbunden. Zwischen der Gasleitung 13 und dem Lufteintritt 12 befindet sich ein Differenzdrucksensor 14, der ebenfalls mit der Regelung 7 verbunden ist. Am Brenner 1 befindet sich eine Flamme 2, in welche eine Ionisationselektrode 3 hineinragt. Die Ionisationselektrode 3 ist mit einer Spannungsquelle 4 verbunden. Diese ist mit ihrer zweiten Elektrode mit einem Widerstand 5 verbunden, der wiederum an den Brenner 1 angeschlossen ist. Parallel zum Widerstand 5 ist ein Spannungsmesser 6 angeschlossen, welcher mit der Regelung 7 verbunden ist. FIG. 1 shows a burner 1 with blower 8 with blower motor 9 in an air inlet 12. In the air inlet 12 opens a gas line 13, in which a gas valve 10 with actuator 11 and a throttle 15 with actuator 16 is located. The blower motor 9 and the actuator 11 of the gas valve 10 and the actuator 16 of the throttle 15 are connected to a controller 7. Between the gas line 13 and the air inlet 12 is a differential pressure sensor 14, which is also connected to the controller 7. The burner 1 is a flame 2, in which an ionization electrode 3 protrudes. The ionization electrode 3 is connected to a voltage source 4. This is connected to its second electrode with a resistor 5, which in turn is connected to the burner 1. Parallel to the resistor 5, a voltmeter 6 is connected, which is connected to the controller 7.

Beim Betrieb des Brenners saugt das Gebläse 8 über den Lufteintritt 12 Verbrennungsluft an. Die Drehzahl n des Gebläses 8 kann hierbei kontinuierlich verstellt werden. Der Stellantrieb 16 der Drossel 15, vorzugsweise ein Schrittmotor, verharrt in einer konstanten Position, so dass die Drossel einen konstanten Querschnitt aufweist. Über das Gasventil 10 kann die zugeführte Brenngasmenge, welche über die Gasleitung 13 einströmt, kontinuierlich verändert werden; hierbei wird die Schrittzahl ns des Stellantriebs 11 erfasst. Im Gebläse 8 werden Brenngas und Luft miteinander vermischt und am Austritt des Brenners 1 gezündet, so dass sich eine Flamme 2 bildet.During operation of the burner, the fan 8 sucks in combustion air via the air inlet 12. The speed n of the fan 8 can be adjusted continuously. The actuator 16 of the throttle 15, preferably a stepper motor, remains in a constant position, so that the throttle has a constant cross-section. Via the gas valve 10, the amount of fuel gas supplied, which flows in via the gas line 13, can be changed continuously; In this case, the number of steps n s of the actuator 11 is detected. In the fan 8, fuel gas and air are mixed with each other and ignited at the outlet of the burner 1, so that a flame 2 is formed.

Während des normalen Brennerbetriebs soll auf beiden Seiten des Differenzdrucksensors 14 gleiche Drücke anliegen. Je nach Leistungsanforderung steuert die Regelung 7 den Gebläsemotor 9 an. Die Regelung 7 stellt den Stellantrieb 11 des Gasventils 10 derartig ein, dass an beiden Seiten des Differenzdrucksensors 14 gleiche Drücke anliegen.During normal burner operation, equal pressures should be present on both sides of the differential pressure sensor 14. Depending on the power requirement, the controller 7 controls the blower motor 9. The controller 7 adjusts the actuator 11 of the gas valve 10 such that equal pressures are applied to both sides of the differential pressure sensor 14.

Da die Ionen der Flamme 2 elektrisch leitend sind, kann zwischen der Ionisationselektrode 3 und dem Brenner 1 ein Strom fließen. Hieraus folgt, dass eine elektrische Spannung UFlamme anliegt. Der Ionenfluss durch die Flamme 2 sorgt dafür, dass der elektrische Kreislauf (Brenner 1, Ionisationselektrode 3, Spannungsquelle 4, Widerstand 5) geschlossen ist.Since the ions of the flame 2 are electrically conductive, a current can flow between the ionization electrode 3 and the burner 1. It follows that an electrical voltage U Flame is applied. The flow of ions through the flame 2 ensures that the electrical circuit (burner 1, ionization electrode 3, voltage source 4, resistor 5) is closed.

Figur 2 zeigt den Verlauf der am Widerstand 5 gemessenen Spannung U über die Luftzahl λ und die Gebläsedrehzahl n. U0 ist die Spannung der Spannungsquelle 4. Es gilt: U = U 0 - U Flamme

Figure imgb0001
FIG. 2 shows the course of the measured at the resistor 5 voltage U on the air ratio λ and the fan speed n. U 0 is the voltage of the voltage source 4. It holds: U = U 0 - U flame
Figure imgb0001

Es ist zu erkennen, dass die am Widerstand 5 gemessene Spannung U bei stöchiometrischer Verbrennung (λ = 1,0) minimal ist. Mit Erhöhen des Luftüberschusses steigt die Spannung U kontinuierlich an. Bei einer Luftzahl von etwa 1,6 steigt die Spannung U deutlich stärker als bisher an. Bei einem Luftüberschuss von etwa λ = 1,7 hebt die Flamme ab. Es kann kein Ionisationssignal mehr gemessen werden; über eine Sicherheitseinrichtung, z.B. das Gasventil 10 wird die Brenngaszufuhr verriegelt.It can be seen that the voltage U measured at the resistor 5 is minimal at stoichiometric combustion (λ = 1.0). As the excess air increases, the voltage U increases continuously. With an air ratio of about 1.6, the voltage U increases significantly more than before. At an air excess of about λ = 1.7, the flame rises. It is no longer possible to measure an ionization signal; via a safety device, e.g. the gas valve 10 locks the fuel gas supply.

Beim erfindungsgemäßen Kalibrierverfahren läuft zunächst der Brenner 1 mit einem bisher nicht bekannten Luftüberschuss. Bei konstant geöffnetem Gasventil 10 wird die Drehzahl n des Gebläses 8 erhöht. Hierdurch steigt die Luftzahl λ an. Der Spannungsabfall U am Widerstand 5 wird kontinuierlich über der Zeit t gemessen und an die Regelung 7 weitergegeben. In der Regelung 7 wird der Gradient ΔU/Δn berechnet. Steigt der Gradient ΔU/Δn ab einem bestimmten Punkt übermäßig an, so ist dies ein Indiz dafür, dass demnächst die Flamme abhebt und somit abreißt. Die Luftzahl λ beträgt dann etwa 1,6. Ausgehend von diesem Punkt wird nun die Drehzahl n des Gebläses gezielt derartig reduziert, dass sich eine Luftzahl λ ≈1,25 einstellt. Die Luftzahl wird hierbei nicht gemessen, sondern vielmehr wird die Drehzahl gemäß Gebläsekennlinie definiert reduziert, so dass eine entsprechende Reduzierung des Luftmassenstroms zu erwarten ist. Dieser Vorgang wird als lonisationskalibrierung bezeichnet. Bei der so reduzierten Luftmenge wird nun das Signal des Differenzdrucksensors 14 in der Regelung 7 ausgewertet. Zeigt das Sensorsignal, dass der Differenzdrucksensor 14 auf beiden Seiten einen gleichen Druck vorfindet, so ist die Drossel 15 optimal eingestellt. Zeigt sich jedoch, dass der Druck auf der Brenngasseite höher ist als auf der Verbrennungsluftseite, so bedeutet dies, dass dem Brenner zur Einstellung der gewünschten Soll-Luftzahl von λ=1,25 mehr Gas zugeführt werden muss, als dies bei Aktivierung der Gleichdruckregelung über den Differenzdrucksensor der Fall ist. Daher wird der Querschnitt der Drossel 15 durch Verstellen des Stellantriebs 16 vergrößert, so dass bei Aktivierung der Gleichdruckregelung mehr Brenngas strömt. Ist der Druck auf der Brenngasseite niedriger ist als auf der Verbrennungsluftseite, so wird der Querschnitt der Drossel 15 durch Verstellen des Stellantriebs 16 reduziert, so dass bei Aktivierung der Gleichdruckregelung weniger Brenngas strömt.In the calibration method according to the invention, the burner 1 first runs with a previously unknown excess of air. At constantly open gas valve 10, the speed n of the blower 8 is increased. As a result, the air ratio λ increases. The voltage drop U across the resistor 5 is measured continuously over the time t and passed on to the controller 7. In the control 7, the gradient ΔU / Δn is calculated. The gradient rises ΔU / Δn excessively above a certain point, this is an indication that the flame will soon lift off and thus break off. The air ratio λ is then about 1.6. Starting from this point, the speed n of the blower is now deliberately reduced in such a way that an air ratio λ ≈1.25 is established. The air ratio is not measured in this case, but rather the speed is defined defined according blower characteristic, so that a corresponding reduction of the air mass flow is expected. This process is called ionization calibration. In the case of the quantity of air reduced in this way, the signal of the differential pressure sensor 14 in the control unit 7 is now evaluated. If the sensor signal shows that the differential pressure sensor 14 is at the same pressure on both sides, the throttle 15 is set optimally. However, if it shows that the pressure on the fuel gas side is higher than on the combustion air side, this means that the burner for setting the desired target air ratio of λ = 1.25 more gas must be supplied, as with the activation of the constant pressure control over the differential pressure sensor is the case. Therefore, the cross section of the throttle 15 is increased by adjusting the actuator 16, so that more fuel gas flows upon activation of the constant pressure control. If the pressure on the fuel gas side is lower than on the combustion air side, the cross section of the throttle 15 is reduced by adjusting the actuator 16 so that less fuel gas flows upon activation of the constant pressure control.

Nach einer definierten Querschnittsveränderung (z.B. 10 Schritte des Schrittmotors des Stellantriebs 16 oder Anzahl der Schritte als Funktion der Druckdifferenz) wird wieder eine lonisationskalibrierung durchgeführt. Nach dieser lonisationskalibrierung erfolgt gegebenenfalls wieder eine Anpassung des Querschnitts der Drossel 15. lonisationskalibrierung und Anpassung des Querschnitts der Drossel 15 werden solange wiederholt, bis das Signal des Differenzdrucksensors 14 einen vorgegebenen Grenzwert unterschreitet. Hierbei kann optional die Querschnittsveränderung (z.B. Anzahl der Schritte des Schrittmotors des Stellantriebs 16) immer kleiner werden, damit die Anpassung erst grob und dann immer exakter erfolgt. Ebenfalls optional kann in dem Fall, in dem das Signal des Differenzdrucksensors 14 einen vorgegebenen Grenzwert unterschreitet, der Drosselquerschnitt solange verändert werden, bis auf beiden Seiten des Differenzdrucksensors gleiche Drücke anliegen.After a defined change in cross section (eg 10 steps of the stepper motor of the actuator 16 or number of steps as a function of the pressure difference), an ionization calibration is performed again. After this ionization calibration, an adjustment of the cross-section of the throttle 15 is optionally carried out again. Ionization calibration and adaptation of the cross section of the throttle 15 are repeated until the signal of the differential pressure sensor 14 falls below a predetermined limit value. Here, optionally, the cross-sectional change (eg number of steps of the stepping motor of the actuator 16) are getting smaller, so that the adjustment only rough and then more accurate. Also optionally, in the case in which the signal of the differential pressure sensor 14 falls below a predetermined limit, the throttle cross-section be changed until equal pressures applied to both sides of the differential pressure sensor.

Alternativ kann nach der ersten lonisationskalibrierung gleich der Drosselquerschnitt solange verändert werden, bis auf beiden Seiten des Differenzdrucksensors gleiche Drücke anliegen.Alternatively, after the first ionization calibration, the throttle cross-section can be changed as long as the same pressures are present on both sides of the differential pressure sensor.

Bei der ionisationskalibrierung kann alternativ zur Gradientenermittlung mittels Quotienten aus Differenzsignal zur Differenzdrehzahl ΔU/Δn auch ein Gradient aus Differenzspannung ΔU zu Differenzstellposition des Stellantriebs Δns gebildet werden, wenn anstelle einer Erhöhung der Gebläsedrehzahl eine Reduzierung der Brenngasmenge vorgenommen wird. Als weitere Variante kann bei konstanter Abmagerung auch ein Gradient aus der Zeit gebildet werden (Δ).In the ionization calibration, a gradient of differential voltage .DELTA.U to differential setting position of the actuator .DELTA.n s may be formed alternatively to the gradient determination by means of quotient difference signal to the differential speed .DELTA.U / .DELTA.n s , if instead of increasing the fan speed, a reduction of the fuel gas quantity is made. As a further variant, a gradient of the time can also be formed with constant emaciation ( ΔU̇ ).

Der Betriebszustand, bei dem ein Abheben bevorsteht, kann dadurch bestimmt werden, dass der aktuelle Gradient mit mindestens einem früheren Gradienten verglichen wird und in dem Fall, dass der aktuelle Gradient den oder die Vergleichswerte um einen bestimmten Prozentsatz überschreitet, der erwartete Zustand vorliegt. Als Vergleichswert kann zum Beispiel der geringste gemessene Gradient verwendet werden. Alternativ kann ein Absolutwert vorgegeben werden.The operating state in which liftoff is imminent may be determined by comparing the current gradient to at least one previous gradient, and in the event that the current gradient exceeds the compare value (s) by a certain percentage, the expected state is present. For example, the lowest measured gradient can be used as comparison value. Alternatively, an absolute value can be specified.

Um den Einfluss von Signalrauschen (Schwanken des Messsignals um eine Trendlinie) zu eliminieren, darf die Zeitdifferenz beziehungsweise Drehzahldifferenz nicht zu klein gewählt werden.In order to eliminate the influence of signal noise (fluctuation of the measuring signal by a trend line), the time difference or speed difference must not be selected too small.

Anstelle des Spannungsabfalls U am Widerstand 5 kann auch direkt die Spannung der Flamme UFlamme gemessen werden. In diesem Fall ist jedoch die Ionisationsspannung bei stöchiometrischer Verbrennung maximal und das Ionisationsspannungssignal fällt bei Erhöhung der Luftzahl ab.Instead of the voltage drop U at the resistor 5, the voltage of the flame U flame can also be measured directly. In this case, however, the ionization voltage at stoichiometric combustion is maximum and the ionization voltage signal drops as the air ratio is increased.

Anstelle einer konstanten Spannung U0 kann auch eine Konstantstromquelle mit einem konstanten Strom I0 an die Serienschaltung des Widerstandes 5 mit der Flamme 2 geschaltet werden. In Abhängigkeit des Flammenwiderstandes stellt sich eine bestimmte Spannung ein.

  • Brenner (1)
  • Flamme (2)
  • Ionisationselektrode (3)
  • Spannungsquelle (4)
  • Widerstand (5)
  • Spannungsmesser (6)
  • Regelung (7)
  • Gebläse (8)
  • Gebläsemotor (9)
  • Gasventil (10)
  • Stellantrieb (11)
  • Lufteintritt (12)
  • Gasleitung (13)
  • Differenzdrucksensor (14)
  • Drossel (15)
  • Stellantrieb (16)
Instead of a constant voltage U 0 and a constant current source with a constant current I 0 can be connected to the series circuit of the resistor 5 with the flame. 2 Depending on the flame resistance, a certain voltage sets.
  • Burner (1)
  • Flame (2)
  • Ionization electrode (3)
  • Voltage source (4)
  • Resistor (5)
  • Voltmeter (6)
  • Regulation (7)
  • Blower (8)
  • Blower Motor (9)
  • Gas valve (10)
  • Actuator (11)
  • Air intake (12)
  • Gas pipe (13)
  • Differential pressure sensor (14)
  • Throttle (15)
  • Actuator (16)

Claims (7)

  1. Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1), having a combustion air pipe (12) and a fuel gas pipe (13), which ends via a restrictor (15) in the combustion air pipe (12), wherein the resistance or internal cross section of the restrictor (15) can be altered, and a differential pressure sensor (14), volume flow sensor or mass flow sensor between the fuel gas pipe (13) and the combustion air pipe (12), or a reference point at which a pressure dependent on the combustion air flow prevails, and an ionisation electrode (3), by means of which an ionisation flow or an ionisation striking voltage between the flame (2) and a reference, preferably mass, is measured, wherein, during the operation of the burner (1), ionisation calibration takes places, wherein the fuel gas/air mixture is diminished and thus the signal of the ionisation electrode (3) is continuously measured, whereupon the gradient of the signal of the ionisation electrode (3) is formed, the diminution of the fuel gas/air mixture is ended when a specific gradient is exceeded or when there is disproportionately high increase in the gradient, and the fuel gas/air mixture is enriched selectively,
    then the signal of the differential pressure sensor (14), volume flow sensor or mass flow sensor is measured,
    should the sensor (14) be passed through or acted upon in the direction of the combustion air pipe (12), the fuel gas flow increases by increasing the diameter or by another reduction in the resistance of the restrictor (15) and,
    should the sensor (14) be passed through or acted upon in the direction of the fuel gas pipe (13), the fuel gas flow decreases by reducing the diameter or by another increase in the resistance of the restrictor (15).
  2. Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1) according to claim 1, characterised in that the alteration to the diameter or other alteration to the resistance of the restrictor (15) takes place in steps,
    after each step, a further ionisation calibration takes place and, after an ionisation calibration, as soon as the measuring signal of the differential pressure sensor (14), volume flow sensor or mass flow sensor exceeds a predetermined limit, the method is ended or
    an alteration to the diameter or other alteration to the resistance of the restrictor (15) takes place continuously until the measuring signal of the differential pressure sensor (14), volume flow sensor or mass flow sensor displays even pressure or no volume or mass flow.
  3. Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1) according to claim 1, characterised in that the alteration to the diameter or other alteration to the resistance of the restrictor (15) takes place until the measuring signal of the differential pressure sensor (14), volume flow sensor or mass flow sensor displays even pressure or no volume or mass flow.
  4. Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1) according to one of claims 1 to 3, characterised in that the air is conveyed via a blower (8) with a blower motor (9) and the gradient of the signal of the ionisation electrode (3) is determined by dividing the differential signal of the ionisation electrode (3) by the differential rotational speed of the blower motor (9).
  5. Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1) according to one of claims 1 to 4, characterised in that the fuel gas is conveyed via a gas valve (10) with an actuator (11) and the gradient of the signal of the ionisation electrode (3) is determined by dividing the differential signal of the ionisation electrode (3) by the differential control position of the actuator (11).
  6. Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1) according to one of claims 1 to 5, characterised in that the gradient of the signal of the ionisation electrode (3) is determined by dividing the differential signal of the ionisation electrode (3) by the differential time.
  7. Method for calibrating a device for regulating the fuel gas/air ratio of a fuel-gas-operated burner (1) according to one of claims 1 to 6, characterised in that a constant voltage source (4) or constant flow source is connected in series to the flame (2) of the burner (1) and a resistor (5) and the voltage drop-off is measured as the signal of the ionisation electrode (3) at the resistor (5).
EP11005288A 2010-07-08 2011-06-29 Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner Active EP2405198B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA1155/2010A AT510075B1 (en) 2010-07-08 2010-07-08 METHOD FOR CALIBRATING A DEVICE FOR CONTROLLING THE COMBUSTION AIR-AIR CONDITION OF A FUEL-DRIVEN BURNER

Publications (2)

Publication Number Publication Date
EP2405198A1 EP2405198A1 (en) 2012-01-11
EP2405198B1 true EP2405198B1 (en) 2013-02-20

Family

ID=44851529

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11005288A Active EP2405198B1 (en) 2010-07-08 2011-06-29 Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner

Country Status (3)

Country Link
EP (1) EP2405198B1 (en)
AT (1) AT510075B1 (en)
ES (1) ES2403338T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4119846A1 (en) 2021-07-14 2023-01-18 Pittway Sarl Method and controller for operating a gas burner appliance

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682679B1 (en) * 2012-07-04 2017-08-30 Vaillant GmbH Method for monitoring a gas fuelled burner
US9528712B2 (en) * 2012-11-05 2016-12-27 Pat Caruso Modulating burner system
DE102019110977A1 (en) * 2019-04-29 2020-10-29 Ebm-Papst Landshut Gmbh Method for checking a gas mixture sensor in a fuel gas operated heater
IT202100032360A1 (en) * 2021-12-23 2023-06-23 Sit Spa METHOD AND APPARATUS FOR MONITORING AND CONTROL OF COMBUSTION IN FUEL GAS BURNERS
DE102022101305A1 (en) * 2022-01-20 2023-07-20 Ebm-Papst Landshut Gmbh Procedure for failsafe and lean ignition of a combustible gas-air mixture on a gas burner

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4027090C2 (en) 1990-08-28 1998-07-23 Kromschroeder Ag G Arrangement for monitoring a burner flame
EP0770824B1 (en) * 1995-10-25 2000-01-26 STIEBEL ELTRON GmbH & Co. KG Method and circuit for controlling a gas burner
DE19618573C1 (en) 1996-05-09 1997-06-26 Stiebel Eltron Gmbh & Co Kg Gas burner regulating method controlled by ionisation electrode signal
US5971745A (en) 1995-11-13 1999-10-26 Gas Research Institute Flame ionization control apparatus and method
DE19639487A1 (en) * 1996-09-26 1998-04-09 Honeywell Bv Method and device for optimizing the operation of a gas burner
DE19824524C2 (en) * 1998-06-02 2002-08-08 Honeywell Bv Control device for gas burners
DE19824521B4 (en) 1998-06-02 2004-12-23 Honeywell B.V. Control device for gas burners
DE19922226C1 (en) 1999-05-14 2000-11-30 Honeywell Bv Control device for gas burners
DE10319835A1 (en) * 2003-01-10 2004-11-11 Vaillant Gmbh Control method for fuel-driven burner, involves performing calibrating procedure during start of burner operation by increasing the fuel-air mixture until an exhaust sensor outputs a signal equivalent to an established threshold value
DE10236979C1 (en) * 2002-08-13 2003-08-14 Stiebel Eltron Gmbh & Co Kg Combustion regulation method for IC engine employs switching function for providing calibration phase, regulation phase and engine cold-starting phase
AT504887B1 (en) * 2007-04-02 2008-09-15 Vaillant Austria Gmbh METHOD FOR FILLING LEVEL MONITORING OF A LIQUID GAS TANK
AT505442B1 (en) 2007-07-13 2009-07-15 Vaillant Austria Gmbh METHOD FOR FUEL GAS AIR ADJUSTMENT FOR A FUEL-DRIVEN BURNER

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4119846A1 (en) 2021-07-14 2023-01-18 Pittway Sarl Method and controller for operating a gas burner appliance
WO2023285352A1 (en) 2021-07-14 2023-01-19 Pittway Sarl Method and controller for operating a gas burner appliance

Also Published As

Publication number Publication date
ES2403338T3 (en) 2013-05-17
AT510075B1 (en) 2012-05-15
EP2405198A1 (en) 2012-01-11
AT510075A1 (en) 2012-01-15

Similar Documents

Publication Publication Date Title
EP2014985B1 (en) Method of adjusting the air/fuel ratio for a gas fired burner
EP2405198B1 (en) Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner
EP1370806B1 (en) Method and device for adjusting air/fuel ratio
EP1154202B1 (en) Control device for a burner
EP2589868B1 (en) Method for operating a gas burner
EP2466202B1 (en) Method for regulating a gas/air mixture
DE19539568C1 (en) Gas burner regulation system
DE202019100263U1 (en) Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor
WO2020148110A1 (en) Method for the closed-loop control of a gas mixture using a gas sensor, a combustion-gas sensor and a gas-mixture sensor
EP3499124A1 (en) Heating device components and method for adjusting a fuel flow
EP3690318A2 (en) Method and device for regulating a fuel-air mixture in a heating device
EP3029375B1 (en) Heater appliance and method for operating a heater appliance
EP2017531A2 (en) Method for monitoring an ionisation electrode signal in burners
DE19839160B4 (en) Method and circuit for regulating a gas burner
DE202019100261U1 (en) Heater with regulation of a gas mixture
EP3182007B1 (en) Heating device system and method with a heating device system
EP3870899B1 (en) Method for checking a gas mixture sensor and ionization sensor in a fuel-gas-powered heating device
EP1519113A2 (en) Method for adapting the heating power of a blower-supported heater to the individual pressure losses of a fresh air/exhaust gas pipe system
EP1923634B1 (en) Adjustment of fuel gas/air mixture via the burner or flame temperature of a heating device
EP3173699B1 (en) Heating device, in particular gas and/or oil burner device, and method for operating a heating device
EP2354657B1 (en) Method for operating a gas burner
DE102012023606B4 (en) Method for controlling combustion in a gas or oil burner
EP3825610B1 (en) Method and device for measuring the lambda value in a fossil-fired burner, in particular for a heating and / or water system
DE102019101189A1 (en) Process for regulating a gas mixture
DE102017126138A1 (en) Method for controlling a fuel gas operated heater

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120618

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 597721

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011000412

Country of ref document: DE

Effective date: 20130418

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2403338

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130517

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130520

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130520

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130521

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130620

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011000412

Country of ref document: DE

Effective date: 20131121

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130629

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110629

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230703

Year of fee payment: 13

Ref country code: CH

Payment date: 20230702

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240527

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240520

Year of fee payment: 14

Ref country code: AT

Payment date: 20240423

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240626

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240604

Year of fee payment: 14

Ref country code: BE

Payment date: 20240422

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240627

Year of fee payment: 14