EP1923634B1 - Adjustment of fuel gas/air mixture via the burner or flame temperature of a heating device - Google Patents

Adjustment of fuel gas/air mixture via the burner or flame temperature of a heating device Download PDF

Info

Publication number
EP1923634B1
EP1923634B1 EP07033545.0A EP07033545A EP1923634B1 EP 1923634 B1 EP1923634 B1 EP 1923634B1 EP 07033545 A EP07033545 A EP 07033545A EP 1923634 B1 EP1923634 B1 EP 1923634B1
Authority
EP
European Patent Office
Prior art keywords
burner
temperature
fuel gas
flame
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07033545.0A
Other languages
German (de)
French (fr)
Other versions
EP1923634A1 (en
Inventor
Stefan Lehminger
Heinz-Jörg Tomczak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AT0045207A external-priority patent/AT505064B8/en
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP1923634A1 publication Critical patent/EP1923634A1/en
Application granted granted Critical
Publication of EP1923634B1 publication Critical patent/EP1923634B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/60Devices for simultaneous control of gas and combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/022Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/16Measuring temperature burner temperature

Definitions

  • the invention relates to a method for controlling a fuel gas-air mixture via the measured at the burner, the burner flame or in the vicinity of the burner flame of a heater temperature.
  • the measurement of the burner or flame temperature can be used.
  • Basis of such a regulation is the setting of a fuel gas-air mixture to a target temperature, the z. B. is measured at the burner. It should be noted that larger deviations in a temperature difference (between a target and actual temperature) should be avoided, otherwise suffers by the increase in the resulting CO emissions combustion quality.
  • the WO 2006/000366 A1 discloses a method for controlling a fuel gas-air mixture of a burner, in which the flame temperature is detected and regulated in dependence on the desired burner load and air ratio to a target temperature in the steady state. For this purpose, characteristic curves are used which assign the burner load to a specific setpoint temperature. Depending on the air mass flow, a target temperature to be controlled is determined. If, for example, the load is increased, on the one hand the current temperature is measured and the setpoint temperature is determined. If the setpoint temperature is greater than the outlet temperature, the fuel quantity is enriched until the deviation of the actual value from the setpoint value no longer exists.
  • the measured temperature changes even in the dynamic state, if the fuel quantity is not changed. So while at Load change, the temperature in the dynamic state of a starting temperature to a higher set temperature increases continuously, teaches the WO 2006/000366 A1 to additionally grease the fuel quantity. As a result, the fuel gas-air mixture is first over-enriched; the temperature rises above the setpoint temperature, which is why the amount of fuel gas is emaciated, whereby it falls below the setpoint temperature. Ultimately, the temperature swings to the setpoint temperature.
  • the JP 63 075416 A describes a method for controlling a burner, wherein a faster adjustment of the burner is possible.
  • the invention has for its object to provide a method for controlling a fuel gas-air mixture on the burner or flame temperature available, in which to avoid pollutant emissions, the heating or cooling of the burner components, especially during the starting phase and the modulation phase in dynamic state is taken into account.
  • a PI controller For the regulation of the fuel gas-air mixture, a PI controller is preferred. With a PI controller, a control value is determined from a control deviation (difference between setpoint and actual temperature). For a PI controller, it is normal for the P-controller part to quickly compensate for an occurring system deviation, with the I-controller component subsequently eliminating the remaining system deviation. Thus, a PI controller operates quickly and accurately with the appropriate setting.
  • I-controller or P-controller
  • the control can regulate very quickly with a very large selected integral component (I component), but there is a large jump in the temperature profile or a strong CO emission.
  • I component integral component
  • CO emission When choosing a very small I component, the jump is very small, but the regulation time is very long.
  • the inertia of a temperature measurement system must be considered. This can be traced back both to the sensors used and to the system behavior itself.
  • the burner surface temperature T is low at a higher power and high at a low load because the flame lifts Q zuEnglish from the burner surface as the load increases .
  • FIG. 2 shows the system behavior during a load change (modulation jump) of the heater from 20 kW to 10 kW.
  • the diagram illustrates that during operation, the difference between a burner or flame target temperature T 2 , to which it is to be controlled, and an output temperature T 0 can be relatively large.
  • the system behaves during startup, because the heater (or the burner temperature) passes from the cold state in a modulation-dependent hot state.
  • Curve 3 in FIG. 2 represents the behavior of a heater at modulation jump from 20 kW to 10 kW under the condition that the air ratio lambda is kept constant.
  • the burner or flame temperature of the curve 3 follows as a function of the time t, which can be reproduced by means of an exponential function, up to a stationary final value.
  • T 1 t T 0 + T 2 - T 0 ⁇ e - ⁇ t
  • the method according to the invention makes it possible to modify a stationary setpoint temperature value T 2 of the control into a setpoint value T 1 (t) as a function of time, the time profile of the burner or setpoint flame temperature T 1 of an e-function (such as curve 3, FIG. FIG. 2 ) and depending on the output and burner or flame set temperature of the modulation or the load change is.
  • Indicators of a well-functioning control system are, in addition to the CO 2 emissions that result from the excess air, especially under safety aspects, the CO emissions.
  • FIG. 3 shows values of the CO emissions of the system at an exemplary modulation jump from 20 kW to 10 kW.
  • the curve 1 shows a CO curve in the event that a control would dose the amount of gas in such a way that it would be regulated to the temperature target value immediately after the burner start. In this case, due to the large temperature difference, the gas valve would open so much that the combustion would no longer be standard or "clean".
  • Curve 2 shows a CO trend, taking into account the procedure according to the invention at the same modulation jump (from 20 kW to 10 kW) sets.
  • the CO emissions according to the invention control shown as curve 2 in FIG. 3 , shows that CO emissions can be permanently kept at a low level.
  • the excessive pollutant emissions which occur during combustion, in particular during the heating phase at startup or during modulation jumps, which would occur if the procedure according to the invention were regulated directly to the target temperature, are prevented.
  • Another exemplary embodiment provides an approximation of the setpoint temperature T 1 to the heating behavior of the system (curve 6, FIG. FIG. 4 ) via linear sections within a characteristic before, z. B. via an approach with two (curve 5, FIG. 4 ) or with several sections (curve 4, FIG. 4 ) such that always a sufficient quality of combustion is guaranteed.
  • the heat demand of 20 kW corresponding step number (eg 280) is determined and set.
  • the moment of a modulation jump or a heat load change is kept fixed by setting the time t to the value 0.
  • the time profile of the burner or flame target temperature T 1 is determined according to equation 1 ( FIG. 7 ).
  • the burner or flame temperature is measured and compared with the calculated burner or flame setpoint temperature T 1 (t).
  • the control only intervenes when a deviation of the measured burner or flame temperature (actual temperature) from the calculated burner or desired flame temperature T 1 (t) (setpoint temperature) occurs.
  • This deviation between the actual and desired temperature is controlled by the stepper motor of the gas valve, so that when the measured burner or flame temperature is greater than the calculated burner or flame target temperature T 1 (t), the fuel gas flow is reduced or the amount of air is increased or if the measured burner or flame temperature is less than the calculated burner or flame target temperature T 1 (t), the fuel gas flow is increased or the amount of air is reduced.
  • the inventive method is terminated as soon as the measured burner or flame temperature of the burner or flame setpoint T 2 corresponds.
  • the control method according to the invention is intended to prevent the pollutant emissions which occur during combustion, in particular during the start or during modulation jumps during the modulation. It is not regulated directly to a predetermined end-desired temperature value, but by the natural heating or cooling behavior of the system is integrated into the scheme. Thus, larger jumps in the temperature difference between the target and actual temperature are avoided and achieved a good combustion quality.
  • An unclean system behavior eg. B. when heating the system after the burner start is avoided, in which the control after the burner start is always in operation and the quality of combustion is permanently tested and regulated.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Regelung eines Brenngas-Luft-Gemisches über die am Brenner, an der Brennerflamme oder in der näheren Umgebung der Brennerflamme eines Heizgerätes gemessene Temperatur.The invention relates to a method for controlling a fuel gas-air mixture via the measured at the burner, the burner flame or in the vicinity of the burner flame of a heater temperature.

Zur Regelung eines Brenngas-Luft-Gemisches von Heizgeräten, insbesondere von Brennwertgeräten, kann die Messung der Brenner- oder Flammentemperatur genutzt werden. Grundlage einer solchen Regelung ist das Einstellen eines Brenngas-Luft-Gemisches auf eine Zieltemperatur, die z. B. am Brenner gemessen wird. Dabei ist zu beachten, dass größere Abweichungen in einer Temperaturdifferenz (zwischen einer Soll- und Ist-Temperatur) vermieden werden sollen, da ansonsten durch den Anstieg der entstehenden CO -Emissionen die Verbrennungsqualität leidet.To control a fuel gas-air mixture of heaters, especially condensing appliances, the measurement of the burner or flame temperature can be used. Basis of such a regulation is the setting of a fuel gas-air mixture to a target temperature, the z. B. is measured at the burner. It should be noted that larger deviations in a temperature difference (between a target and actual temperature) should be avoided, otherwise suffers by the increase in the resulting CO emissions combustion quality.

Die WO 2006/000366 A1 offenbart ein Verfahren zur Regelung eines Brenngas-Luft-Gemischs eines Brenners, bei dem die Flammentemperatur erfasst und in Abhängigkeit der gewünschten Brennerbelastung und Luftzahl auf eine Solltemperatur im stationären Zustand geregelt wird. Hierzu werden Kennlinien verwendet, welche der Brennerbelastung eine bestimmte Solltemperatur zuordnen. In Abhängigkeit des Luftmassenstroms wird eine Solltemperatur, auf die geregelt wird, ermittelt. Wird beispielsweise die Belastung erhöht, so wird einerseits die aktuelle Temperatur gemessen und die Solltemperatur bestimmt. Ist die Solltemperatur größer als die Ausgangstemperatur, so wird die Brennstoffmenge so lange angefettet, bis die Abweichung des Ist-Wertes vom Sollwert nicht mehr besteht. Da bei einem Lastwechsel aufgrund der Wärmekapazität des Brennersystems eine gewisse Trägheit zu erwarten ist, verändert sich die gemessene Temperatur auch dann im dynamischen Zustand, wenn die Brennstoffmenge nicht verändert wird. Während also beim Lastwechsel die Temperatur im dynamischen Zustand von einer Ausgangstemperatur auf eine höhere Solltemperatur kontinuierlich steigt, lehrt die WO 2006/000366 A1 , zusätzlich die Brennstoffmenge anzufetten. Hierdurch wird das Brenngas-Luft-Gemisch zunächst überfettet; die Temperatur steigt über die Solltemperatur, weshalb die Brenngasmenge abgemagert wird, wodurch es zu einem Unterschreiten der Solltemperatur kommt. Letztendlich schwingt sich die Temperatur auf die Solltemperatur ein. Die JP 63 075416 A beschreibt ein Verfahren zur Regelung eines Brenners, wobei ein schnelleres Einregeln des Brenners möglich ist.The WO 2006/000366 A1 discloses a method for controlling a fuel gas-air mixture of a burner, in which the flame temperature is detected and regulated in dependence on the desired burner load and air ratio to a target temperature in the steady state. For this purpose, characteristic curves are used which assign the burner load to a specific setpoint temperature. Depending on the air mass flow, a target temperature to be controlled is determined. If, for example, the load is increased, on the one hand the current temperature is measured and the setpoint temperature is determined. If the setpoint temperature is greater than the outlet temperature, the fuel quantity is enriched until the deviation of the actual value from the setpoint value no longer exists. Since a certain inertia is to be expected during a load change due to the heat capacity of the burner system, the measured temperature changes even in the dynamic state, if the fuel quantity is not changed. So while at Load change, the temperature in the dynamic state of a starting temperature to a higher set temperature increases continuously, teaches the WO 2006/000366 A1 to additionally grease the fuel quantity. As a result, the fuel gas-air mixture is first over-enriched; the temperature rises above the setpoint temperature, which is why the amount of fuel gas is emaciated, whereby it falls below the setpoint temperature. Ultimately, the temperature swings to the setpoint temperature. The JP 63 075416 A describes a method for controlling a burner, wherein a faster adjustment of the burner is possible.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Regelung eines Brenngas-Luft-Gemisches über die Brenner- oder Flammentemperatur zur Verfügung zu stellen, bei dem zur Vermeidung von Schadstoffemissionen die Erwärmung bzw. die Abkühlung der Brennerkomponenten insbesondere während der Startphase und der Modulationsphase im dynamischen Zustand berücksichtigt wird.The invention has for its object to provide a method for controlling a fuel gas-air mixture on the burner or flame temperature available, in which to avoid pollutant emissions, the heating or cooling of the burner components, especially during the starting phase and the modulation phase in dynamic state is taken into account.

Erfindungsgemäß wird dies gemäß den Merkmalen des Anspruchs 1 mit einem Verfahren zur Regelung eines Brenngas-Luft-Gemischs eines brenngasbetriebenen Brenners vorzugsweise eines Heizgerätes mit Hilfe eines Sensors zur Erfassung der Brenner- oder Flammentemperatur T und einer Regelung mit folgenden Verfahrensschritten realisiert:

  • mit dem Sensor wird eine Ausgangstemperatur gemessen,
  • bei Vorgabe einer Brennerbelastung werden der notwendige Brenngasvolumen- oder -massenstrom, unter Berücksichtigung der Verbrennungsluftzahl, des Verbrennungsluftvolumen- oder -massenstroms sowie aus einem Kennfeld oder einer Funktion die belastungsabhängige Brenner- oder Flammensolltemperatur bestimmt,
  • aus der Ausgangstemperatur und der Brenner- oder Flammensolltemperatur wird ein zeitlicher Verlauf der Brenner- oder Flammentemperatur errechnet,
  • gemäß des ermittelten Brenngasvolumen- oder -massenstroms und Verbrennungsluftvolumen- oder -massenstroms werden der Brenngas- und Verbrennungsluftstrom eingestellt,
  • die Brenner- oder Flammentemperatur wird gemessen und mit dem errechneten Verlauf der Brenner- oder Flammentemperatur verglichen,
  • ist die gemessene Brenner- oder Flammentemperatur zu einem bestimmten Zeitpunkt im dynamischen Verlauf ungleich der errechnete Brenner- oder Flammentemperatur zu diesem Zeitpunkt, so wird der Brenngasstrom oder die Luftmenge angepasst.
According to the invention this is realized according to the features of claim 1 with a method for controlling a fuel gas-air mixture of a fuel gas burner preferably a heater with the aid of a sensor for detecting the burner or flame temperature T and a control with the following method steps:
  • the sensor is used to measure a starting temperature
  • when a burner load is specified, the required fuel gas volume or mass flow, taking into account the combustion air number, the combustion air volume or mass flow as well as from a characteristic field or a function, determines the load-dependent burner or flame setpoint temperature,
  • a chronological progression of the burner or flame temperature is calculated from the starting temperature and the burner or flame set temperature,
  • in accordance with the determined fuel gas volume or mass flow and combustion air volume or mass flow, the fuel gas and combustion air flow are adjusted,
  • the burner or flame temperature is measured and compared with the calculated course of the burner or flame temperature,
  • If the measured burner or flame temperature at a certain time in the dynamic course is not equal to the calculated burner or flame temperature at this time, the fuel gas flow or the air quantity is adjusted.

Hierdurch wird das Einregeln wesentlich beschleunigt.This considerably accelerates the adjustment.

Bei kleineren Abweichungen gilt: Ist die gemessene Brenner- oder Flammentemperatur zu einem bestimmten Zeitpunkt im dynamischen Verlauf kleiner als die errechnete Brenner- oder Flammentemperatur zu diesem Zeitpunkt, so wird der Brenngasstrom erhöht oder die Luftmenge reduziert. Ist die gemessene Brenner- oder Flammentemperatur zu einem bestimmten Zeitpunkt im dynamischen Verlauf größer als die errechnete Brenner- oder Flammentemperatur zu diesem Zeitpunkt, so wird der Brenngasstrom reduziert oder die Luftmenge erhöht. Bei größeren Abweichungen kann es durch die Veränderung des Gemischs zu einer Verschiebung der Flammenposition kommen, so dass oben genannte Maßnahmen nicht zwingend zur Regelung auf den Sollwert beitragen. In der Mehrzahl der Fälle ist jedoch aufgrund der stetigen Regelung und der deshalb relativ kleinen zu erwartenden Abweichungen davon auszugehen, dass bei einer zu kalten Flamme eine Anfettung zu einer Temperaturerhöhung führt und eine Abmagerung zu einem Temperaturabfall.For smaller deviations applies: If the measured burner or flame temperature at a certain time in the dynamic course smaller than the calculated burner or flame temperature at this time, the fuel gas flow is increased or the amount of air reduced. If the measured burner or flame temperature at a certain time in the dynamic course greater than the calculated burner or flame temperature at this time, the fuel gas flow is reduced or increased the amount of air. In the case of larger deviations, changing the mixture may result in a shift of the flame position, so that the measures mentioned above do not necessarily contribute to the regulation to the setpoint. In the majority of cases, however, due to the continuous control and the therefore relatively small expected deviations, it can be assumed that enrichment with too cold a flame leads to an increase in temperature and a decrease to a decrease in temperature.

Für die Regelung des Brenngas-Luft-Gemischs wird ein PI-Regler bevorzugt. Mit einem PI-Regler wird ein Stellwert aus einer Regelabweichung (Differenz zwischen Soll- und Ist-Temperatur) bestimmt. Für einen PI-Regler gilt normalerweise, dass der P-Reglerteil eine auftretende Regeldifferenz schnell auszugleichen versucht, wobei die I-Reglerkomponente anschließend die restliche Regeldifferenz beseitigt. Somit arbeitet ein PI-Regler bei entsprechender Einstellung schnell und präzise.For the regulation of the fuel gas-air mixture, a PI controller is preferred. With a PI controller, a control value is determined from a control deviation (difference between setpoint and actual temperature). For a PI controller, it is normal for the P-controller part to quickly compensate for an occurring system deviation, with the I-controller component subsequently eliminating the remaining system deviation. Thus, a PI controller operates quickly and accurately with the appropriate setting.

Die Wahl eines I-Reglers bzw. P-Reglers könnte hingegen nachteilig sein. Abhängig vom System, kann die Regelung bei einem sehr groß gewählten Integralen Anteil (I-Anteil) zwar sehr schnell regeln, allerdings ist ein großer Sprung im Temperaturverlauf bzw. ein starker CO-Ausstoß zu verzeichnen. Bei der Wahl eines sehr kleinen I-Anteils ist der Sprung sehr klein, die Regelungszeit jedoch ist sehr lang.The choice of an I-controller or P-controller, however, could be disadvantageous. Depending on the system, the control can regulate very quickly with a very large selected integral component (I component), but there is a large jump in the temperature profile or a strong CO emission. When choosing a very small I component, the jump is very small, but the regulation time is very long.

Für ein zuverlässiges Messergebnis muss die Trägheit eines Temperaturmesssystems berücksichtigt werden. Diese kann sowohl auf den verwendeten Messfühlern, als auch auf das Systemverhalten selbst, zurückgeführt werden.For a reliable measurement result, the inertia of a temperature measurement system must be considered. This can be traced back both to the sensors used and to the system behavior itself.

Die Erfindung wird nun anhand der Figuren detailliert erläutert. Hierbei zeigen

Figur 1
einen Verlauf der Brennertemperatur T in Abhängigkeit der Belastung nach dem Stand der Technik,
Figur 2
einen Verlauf der Brennertemperatur T in Abhängigkeit der Zeit t während eines Modulationssprungs von 20 kW auf 10 kW,
Figur 3
einen Verlauf der CO-Emissionswerte in Abhängigkeit der Zeit t während eines Modulationssprungs von 20 kW auf 10 kW,
Figur 4
einen Verlauf der Brennertemperatur T in Abhängigkeit der Zeit t während eines Aufheizvorgangs über lineare Kennlinien,
Figuren 5 bis 7
eine Regelung der Modulation auf einer höheren Leistung nach dem erfindungsgemäßen Verfahren und
Figuren 8 bis 10
eine Regelung der Modulation auf einer niedrigen Leistung nach dem erfindungsgemäßen Verfahren.
The invention will now be explained in detail with reference to FIGS. Show here
FIG. 1
a profile of the burner temperature T as a function of the load according to the prior art,
FIG. 2
a curve of the burner temperature T as a function of the time t during a modulation jump from 20 kW to 10 kW,
FIG. 3
a course of the CO emission values as a function of the time t during a modulation jump from 20 kW to 10 kW,
FIG. 4
a profile of the burner temperature T as a function of time t during a heating process via linear characteristics,
FIGS. 5 to 7
a modulation of the modulation at a higher power according to the inventive method and
FIGS. 8 to 10
a regulation of the modulation at a low power according to the inventive method.

Wie der Figur 1 zu entnehmen ist, ist die Brenneroberflächentemperatur T bei einer höheren Leistung niedrig und bei einer niedrigen Belastung hoch, da die Flamme mit zunehmender Belastung von der Brenneroberfläche abhebt.Again FIG. 1 As can be seen, the burner surface temperature T is low at a higher power and high at a low load because the flame lifts Q zunehm from the burner surface as the load increases .

Figur 2 zeigt das Systemverhalten während eines Belastungswechsels (Modulationssprungs) des Heizgerätes von 20 kW auf 10 kW. Das Diagramm verdeutlicht, dass im Betrieb der Unterschied zwischen einer Brenner- oder Flammensolltemperatur T2, auf welche geregelt werden soll, und einer Ausgangstemperatur T0 verhältnismäßig groß sein kann. Ähnlich verhält sich das System beim Startvorgang, denn das Heizgerät (bzw. die Brennertemperatur) gelangt hier vom kalten Zustand in einen modulationsabhängigen heißen Zustand. FIG. 2 shows the system behavior during a load change (modulation jump) of the heater from 20 kW to 10 kW. The diagram illustrates that during operation, the difference between a burner or flame target temperature T 2 , to which it is to be controlled, and an output temperature T 0 can be relatively large. Similarly, the system behaves during startup, because the heater (or the burner temperature) passes from the cold state in a modulation-dependent hot state.

Kurve 3 in Figur 2 stellt das Verhalten eines Heizgerätes bei Modulationssprung von 20 kW auf 10 kW unter der Bedingung, dass die Luftzahl Lambda konstant gehalten wird, dar.Curve 3 in FIG. 2 represents the behavior of a heater at modulation jump from 20 kW to 10 kW under the condition that the air ratio lambda is kept constant.

Dabei folgt die Brenner- oder Flammentemperatur der Kurve 3 in Abhängigkeit der Zeit t, die mittels einer Exponential-Funktion wiedergegeben werden kann, bis zu einem stationären Endwert.In this case, the burner or flame temperature of the curve 3 follows as a function of the time t, which can be reproduced by means of an exponential function, up to a stationary final value.

Die bei Modulationssprüngen während der Modulation stattfindende Aufheiz- bzw. Abkühlvorgänge können durch folgende Funktion beschrieben werden: T 1 t = T 0 + T 2 T 0 e τ t

Figure imgb0001
The heating or cooling processes taking place during modulation jumps during the modulation can be described by the following function: T 1 t = T 0 + T 2 - T 0 e - τ t
Figure imgb0001

In der Gleichung 1 bedeuten

  • T0- die Ausgangsbrenner- oder -flammentemperatur,
  • T2- die Brenner- oder Flammensolltemperatur,
  • T1 (t) - der zeitliche Verlauf der Brenner- oder Flammensolltemperatur,
  • t - die Zeit und
  • τ - ein Regelungsparameter, der vorgegeben wird und Einfluss auf den Gradienten hat.
In the equation 1 mean
  • T 0 - the output burner or flame temperature,
  • T 2 - the burner or flame set temperature,
  • T 1 (t) - the time course of the burner or flame set temperature,
  • t - the time and
  • τ - a control parameter that is specified and has an influence on the gradient.

Das erfindungsgemäße Verfahren ermöglicht die Abwandlung eines stationären Soll-Temperaturwertes T2 der Regelung in einen Soll-Wert T1 (t) in Abhängigkeit der Zeit, wobei der zeitliche Verlauf der Brenner- oder Flammensolltemperatur T1 einer e-Funktion (wie Kurve 3, Figur 2) folgt und abhängig von der Ausgangs- und Brenner- oder Flammensolltemperatur der Modulation bzw. des Belastungswechsels ist.The method according to the invention makes it possible to modify a stationary setpoint temperature value T 2 of the control into a setpoint value T 1 (t) as a function of time, the time profile of the burner or setpoint flame temperature T 1 of an e-function (such as curve 3, FIG. FIG. 2 ) and depending on the output and burner or flame set temperature of the modulation or the load change is.

Indikator für ein gut funktionierendes Regelungssystem sind neben den CO2 Emissionen, die aus dem Luftüberschuss resultieren, besonders unter Sicherheitsaspekten, die CO-Emissionen. Figur 3 zeigt Werte der CO-Emissionen des Systems bei einem exemplarischen Modulationssprungs von 20 kW auf 10 kW.Indicators of a well-functioning control system are, in addition to the CO 2 emissions that result from the excess air, especially under safety aspects, the CO emissions. FIG. 3 shows values of the CO emissions of the system at an exemplary modulation jump from 20 kW to 10 kW.

Die Kurve 1 zeigt einen CO-Verlauf für den Fall, dass eine Regelung die Gasmenge derart dosieren würde, dass sofort nach dem Brennerstart auf den Temperaturzielwert geregelt werden würde. In diesem Fall würde aufgrund der großen Temperaturdifferenz die Gasarmatur so stark geöffnet, dass die Verbrennung nicht mehr standardmäßig bzw. normkonform "sauber" wäre. Man erkennt am Anfang einen deutlich überhöhten CO-Ausstoß, der mit zunehmender Zeit sinkt. Kurve 2 zeigt einen CO-Verlauf, der sich unter Berücksichtigung des erfindungsgemäßen Vorgehens bei dem gleichen Modulationssprung (von 20 kW auf 10 kW) einstellt.The curve 1 shows a CO curve in the event that a control would dose the amount of gas in such a way that it would be regulated to the temperature target value immediately after the burner start. In this case, due to the large temperature difference, the gas valve would open so much that the combustion would no longer be standard or "clean". One recognizes at the beginning a clearly excessive CO-emission, which decreases with increasing time. Curve 2 shows a CO trend, taking into account the procedure according to the invention at the same modulation jump (from 20 kW to 10 kW) sets.

Der CO-Ausstoß nach der erfindungsgemäßen Regelung, dargestellt als Kurve 2 in Figur 3, zeigt dass die CO-Emissionen permanent auf einem niedrigen Niveau gehalten werden können. Somit werden die bei der Verbrennung, insbesondere während der Aufheizphase bei Start oder bei Modulationssprüngen entstehenden überhöhten Schadstoffemissionen verhindert, die sich einstellen würden, wenn ohne das erfindungsgemäße Vorgehen direkt auf die Zieltemperatur geregelt würde.The CO emissions according to the invention control, shown as curve 2 in FIG. 3 , shows that CO emissions can be permanently kept at a low level. Thus, the excessive pollutant emissions which occur during combustion, in particular during the heating phase at startup or during modulation jumps, which would occur if the procedure according to the invention were regulated directly to the target temperature, are prevented.

Während des Startvorgangs selbst kommt es in der Regel zu einer unvollständigen Verbrennung, insbesondere aufgrund einer systembedingten Gemischanfettung. Dieser Effekt hat einen für den Gerätestart charakteristischen, hohen CO-Ausstoß zur Folge. Dieser CO-Anstieg wird als systembedingt bei der erfindungsgemäßen Regelung vorausgesetzt und ist von den dargestellten CO-Verläufen zu differenzieren.During the starting process itself, incomplete combustion usually occurs, in particular due to system-induced mixture enrichment. This effect results in a high CO emission characteristic for the start of the device. This increase in CO is assumed to be systemic in the control according to the invention and is to be differentiated from the illustrated CO courses.

Ein anderes Ausführungsbeispiel sieht eine Annäherung der Soll-Temperatur T1 dem Aufheizverhalten des Systems (Kurve 6, Figur 4) über lineare Teilabschnitte innerhalb einer Kennlinie vor, z. B. über einen Ansatz mit zwei (Kurve 5, Figur 4) oder mit mehreren Abschnitten (Kurve 4, Figur 4) derartig, dass stets eine ausreichende Verbrennungsqualität gewährleistet ist.Another exemplary embodiment provides an approximation of the setpoint temperature T 1 to the heating behavior of the system (curve 6, FIG. FIG. 4 ) via linear sections within a characteristic before, z. B. via an approach with two (curve 5, FIG. 4 ) or with several sections (curve 4, FIG. 4 ) such that always a sufficient quality of combustion is guaranteed.

Zunächst wird das Verfahren für eine Regelung der Modulation auf einer höheren Brennerleistung beschrieben. Hier ist von einem ausgeschalteten Brenner und von einem Heizgerät, das sich in einem Standby - Zustand befindet, auszugehen. Mit einem Temperatursensor, vorzugsweise mit einem PTC-Sensor, wird eine Ausgangstemperatur T0 am Brenner, z. B. T0 = 25°C gemessen.First, the method for controlling the modulation on a higher burner power will be described. It is assumed that the burner is switched off and the heater is in a standby state. With a temperature sensor, preferably with a PTC sensor, an output temperature T 0 at the burner, z. B. T 0 = 25 ° C measured.

Bei einer Wärmeanforderung, z.B. =20 kW, wird am Gebläse ein entsprechender Luftmassenstrom (z.B. für Lambda = 1,3 und =20 kW) über einen Massenstromsensor eingestellt. Aus einer hinterlegten Gasarmatur-Kennlinie, wie in Figur 5 dargestellt, wird die der Wärmeanforderung von 20 kW entsprechende Schrittzahl (z.B. 280) bestimmt und eingestellt. Aus einer hinterlegten Temperatur-Kennlinie wird die der Wärmeanforderung von 20 kW entsprechende belastungsabhängige Brenner- oder Flammensolltemperatur T2 ermittelt, z.B. T2 = 350 °C (s. Figur 6).For a heat demand, eg = 20 kW, a corresponding air mass flow (eg for lambda = 1.3 and = 20 kW) is set on the blower via a mass flow sensor . From a stored gas valve characteristic, as in FIG. 5 shown, the heat demand of 20 kW corresponding step number (eg 280) is determined and set. From a stored temperature characteristic is the heat demand of 20 kW corresponding load-dependent burner or flame target temperature T 2 determined, eg T 2 = 350 ° C (s. FIG. 6 ).

Der Zeitpunkt eines Modulationssprungs bzw. einer Wärmebelastungsänderung wird fest gehalten, indem die Zeit t auf den Wert 0 gesetzt wird. Zu jedem nachfolgenden Zeitpunkt t1 bis tx, wird der zeitliche Verlauf der Brenner- oder Flammensolltemperatur T1 nach der Gleichung 1 bestimmt (Figur 7). Die Brenner- oder Flammentemperatur wird gemessen und mit der errechneten Brenner- oder Flammensolltemperatur T1 (t) verglichen.The moment of a modulation jump or a heat load change is kept fixed by setting the time t to the value 0. At each subsequent time t 1 to t x , the time profile of the burner or flame target temperature T 1 is determined according to equation 1 ( FIG. 7 ). The burner or flame temperature is measured and compared with the calculated burner or flame setpoint temperature T 1 (t).

Die Regelung greift nur dann ein, wenn eine Abweichung der gemessenen Brenner- oder Flammentemperatur (Ist-Temperatur) von der errechneten Brenner- oder Flammensolltemperatur T1 (t) (Soll-Temperatur) auftritt. Diese Abweichung zwischen der Ist- und Soll-Temperatur wird über den Schrittmotor der Gasarmatur geregelt, so dass wenn die gemessene Brenner- oder Flammentemperatur größer als die errechneten Brenner- oder Flammensolltemperatur T1 (t) ist, der Brenngasstrom reduziert oder die Luftmenge erhöht wird oder wenn die gemessene Brenner- oder Flammentemperatur kleiner ist als die errechneten Brenner- oder Flammensolltemperatur T1 (t), der Brenngasstrom erhöht oder die Luftmenge reduziert wird.The control only intervenes when a deviation of the measured burner or flame temperature (actual temperature) from the calculated burner or desired flame temperature T 1 (t) (setpoint temperature) occurs. This deviation between the actual and desired temperature is controlled by the stepper motor of the gas valve, so that when the measured burner or flame temperature is greater than the calculated burner or flame target temperature T 1 (t), the fuel gas flow is reduced or the amount of air is increased or if the measured burner or flame temperature is less than the calculated burner or flame target temperature T 1 (t), the fuel gas flow is increased or the amount of air is reduced.

Das erfindungsgemäße Verfahren wird beendet, sobald die gemessene Brenner- oder Flammentemperatur der Brenner- oder Flammensolltemperatur T2 entspricht.The inventive method is terminated as soon as the measured burner or flame temperature of the burner or flame setpoint T 2 corresponds.

Eine Regelung der Modulation auf einer niedrigen Belastung erfolgt ähnlich der oben beschriebenen Regelung und ist den Figuren 8 bis 10 zu entnehmen. Dabei wird von der bereits oben erwähnten aktuellen Belastung, z.B. Q=20 kW und von der am Brenner gemessenen Ausgangstemperatur T0, z.B. T0=350°C ausgegangen. Nach der Modulationsänderung von Q=20 kW auf Q=10 kW regelt das Gebläse die entsprechende Luftmenge und die Gasarmatur wird abhängig von dem gemessenen Luftmassenstrom auf die zu erwartende Schrittzahl (in diesem Fall 150 Steps) eingestellt. Die notwendige Schrittzahl wird aus der hinterlegten Gasarmaturen-Kennlinie ermittelt.A modulation of the modulation on a low load is similar to the scheme described above and is the FIGS. 8 to 10 refer to. It is assumed that the above-mentioned current load, for example Q = 20 kW and from the measured at the burner output temperature T 0 , for example, T 0 = 350 ° C. After changing the modulation from Q = 20 kW to Q = 10 kW, the blower regulates the corresponding amount of air and the gas fitting is set to the expected number of steps (in this case 150 steps) depending on the measured air mass flow. The necessary number of steps is determined from the stored gas valve characteristic.

Die Temperatur steigt mit reduzierter Belastung und der Anstieg folgt der dargestellten Kurve. Aus der hinterlegten Temperatur-Kennlinie wird die für Q=10 kW entsprechende Brenner- oder Flammensoll-Temperatur T2, z.B. T2 = 550°C ermittelt. Der Zeitpunkt des Modulationssprungs wird fest gehalten, indem die Zeit t auf den Wert 0 gesetzt wird. Zu jedem Zeitpunkt t1 bis tx der jetzt laufenden Zeit, wird der zeitliche Verlauf der Brenner- oder Flammensolltemperatur T1 nach der Gleichung 1 bestimmt und mit der aktuellen, gemessenen Brenner- oder Flammentemperatur verglichen. Abweichungen zwischen der gemessenen und errechneten Temperatur werden ebenfalls über eine Verstellung des Schrittmotors der Gasarmatur ausgeglichen.The temperature increases with reduced load and the rise follows the curve shown. From the stored temperature characteristic, the corresponding for Q = 10 kW Burner or flame set temperature T 2 , eg T 2 = 550 ° C determined. The timing of the modulation jump is held fixed by setting the time t to the value 0. At each time t 1 to t x of the current time, the time profile of the burner or flame target temperature T 1 is determined according to equation 1 and compared with the current measured burner or flame temperature. Deviations between the measured and calculated temperature are also compensated by an adjustment of the stepper motor of the gas valve.

Mit dem erfindungsgemäßen Regelungsverfahren sollen die bei der Verbrennung, insbesondere beim Start oder bei Modulationssprüngen während der Modulation, entstehenden Schadstoffemissionen verhindert werden. Dabei wird nicht direkt auf einen vorgegebenen End-Soll-Temperaturwert geregelt, sondern indem das natürliche Aufheizverhalten bzw. Abkühlverhalten des Systems in die Regelung integriert wird. Somit werden größere Sprünge in der Temperaturdifferenz zwischen der Soll- und Ist-Temperatur vermieden und eine gute Verbrennungsqualität erreicht.The control method according to the invention is intended to prevent the pollutant emissions which occur during combustion, in particular during the start or during modulation jumps during the modulation. It is not regulated directly to a predetermined end-desired temperature value, but by the natural heating or cooling behavior of the system is integrated into the scheme. Thus, larger jumps in the temperature difference between the target and actual temperature are avoided and achieved a good combustion quality.

Mit Hilfe des erfindungsgemäßen Verfahrens ist es möglich, eine Regelung ausgerichtet auf die Messung der Brenner- oder Flammentemperatur für Modulationssprünge anzupassen.With the aid of the method according to the invention, it is possible to adapt a regulation oriented to the measurement of the burner or flame temperature for modulation jumps.

Ein unsauberes Systemverhalten, z. B. beim Aufheizen des Systems nach dem Brennerstart, wird vermieden, in dem die Regelung nach dem Brennerstart immer im Betrieb ist und die Verbrennungsqualität permanent geprüft und geregelt wird.An unclean system behavior, eg. B. when heating the system after the burner start is avoided, in which the control after the burner start is always in operation and the quality of combustion is permanently tested and regulated.

Claims (4)

  1. Method for controlling a fuel gas/air mixture of a fuel gas operated burner, preferably a heating device, by means of a sensor for detecting the burner or flame temperature (T) and a control comprising the following method steps:
    - an initial temperature T0 is measured by the sensor,
    - for a given burner load (), the required fuel gas volume flow (B ) or fuel gas mass flow (B ), the combustion air volume flow (L ) or combustion air mass flow (L ) taking into account the combustion air value (λ), as well as the load dependent burner or flame target temperature T 2 = f(Q̇) from a characteristic map or a function are determined,
    - from the initial temperature T0 and the burner or flame target temperature T2 the burner or flame target temperature over time T 1 (t) = f(T 0, T 2 , t) is calculated,
    - according to the determined fuel gas volume flow (B ) or fuel gas mass flow (B ) and combustion air volume flow (L ) or combustion air mass flow (L ) the fuel gas flow and combustion air flow are adjusted,
    - the burner or flame temperature is measured and compared with the calculated burner or flame target temperature T1(t),
    - if the measured burner or flame temperature at a specific time t in the dynamic running is higher than the calculated burner or flame temperature T1(t) at that time t, the fuel gas flow is reduced or the air volume increased,
    - if the measured burner or flame temperature at a specific time t in the dynamic running is lower than the calculated burner or flame temperature T1(t) at that time t, the fuel gas flow is increased or the air volume reduced.
  2. Method for controlling a fuel gas/air mixture according to claim 1, characterized in that the burner or flame target temperature over time is calculated according to a formula T 1 t = T 0 + T 2 T 0 e τ t ,
    Figure imgb0003
    wherein τ is a control parameter.
  3. Method for controlling a fuel gas/air mixture according to any of claims 1 or 2, characterized in that the method is terminated if the measured burner or flame temperature corresponds to the burner or flame target temperature T2.
  4. Method for controlling a fuel gas/air mixture according to claim 3, characterized in that controlling the fuel gas/air mixture is carried out according to a conventional PI control when the flame target temperature T2 has been reached.
EP07033545.0A 2006-11-15 2007-11-09 Adjustment of fuel gas/air mixture via the burner or flame temperature of a heating device Active EP1923634B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006054106 2006-11-15
AT0045207A AT505064B8 (en) 2007-03-22 2007-03-22 CONTROL OF THE COMBUSTION GAS-AIR MIXTURE ABOUT THE BURNER OR FLAME TEMPERATURE OF A HEATER

Publications (2)

Publication Number Publication Date
EP1923634A1 EP1923634A1 (en) 2008-05-21
EP1923634B1 true EP1923634B1 (en) 2017-06-28

Family

ID=38988407

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07033545.0A Active EP1923634B1 (en) 2006-11-15 2007-11-09 Adjustment of fuel gas/air mixture via the burner or flame temperature of a heating device

Country Status (2)

Country Link
EP (1) EP1923634B1 (en)
PT (1) PT1923634T (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170234A1 (en) 2021-10-19 2023-04-26 BDR Thermea Group B.V. Method for controlling a burner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2843214B1 (en) 2013-05-29 2021-06-23 Mems Ag Method, sensor and control device for controlling gas-powered energy conversion systems
DE102020205449A1 (en) * 2020-04-29 2021-11-04 Viessmann Werke Gmbh & Co Kg Device and method for controlling combustion for a fuel gas with a proportionate amount of additional gas
CN111649356A (en) * 2020-06-10 2020-09-11 绍兴市升博厨房电器有限公司 Gas stove working method and gas stove

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202417A (en) * 1981-06-04 1982-12-11 Nippon Denso Co Ltd Temperature controlling method of evaporator in liquid fuel combustion device
JPH0799259B2 (en) * 1986-09-18 1995-10-25 松下電器産業株式会社 Combustion control device
DE102004055716C5 (en) * 2004-06-23 2010-02-11 Ebm-Papst Landshut Gmbh Method for controlling a firing device and firing device (electronic composite I)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170234A1 (en) 2021-10-19 2023-04-26 BDR Thermea Group B.V. Method for controlling a burner
WO2023066812A1 (en) 2021-10-19 2023-04-27 Bdr Thermea Group B.V. Method for controlling a burner

Also Published As

Publication number Publication date
PT1923634T (en) 2017-09-01
EP1923634A1 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
DE19739565B4 (en) Method and device for controlling the torque of a drive unit of a motor vehicle
EP2014985B1 (en) Method of adjusting the air/fuel ratio for a gas fired burner
EP3824366B1 (en) Method for the closed-loop control of a gas mixture using a gas sensor, a combustion-gas sensor and a gas-mixture sensor
EP3683500B1 (en) Method for regulating a gas mixture using a gas sensor and a gas mixture sensor
EP3596391B1 (en) Method for controlling a combustion-gas operated heating device
EP1495219A1 (en) Device for determining fuel quality and corresponding method
DE202019100263U1 (en) Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor
EP1331444B1 (en) Method for regulating a gas burner
DE102006060632A1 (en) Method for regulating the temperature of a glow plug of an internal combustion engine
EP3690318B1 (en) Method for regulating a fuel-air mixture in a heating device
EP3301365A1 (en) Method for controlling an ignition of a heating system and a control unit and a heating system
EP1923634B1 (en) Adjustment of fuel gas/air mixture via the burner or flame temperature of a heating device
EP2405198B1 (en) Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner
AT505064B1 (en) REGULATION OF THE FUEL GAS AIR MIXTURE ON THE BURNER OR FLAME TEMPERATURE OF A HEATER
DE202019100261U1 (en) Heater with regulation of a gas mixture
DE102011004514A1 (en) Method and control unit for setting a temperature of a glow plug
EP1519113A2 (en) Method for adapting the heating power of a blower-supported heater to the individual pressure losses of a fresh air/exhaust gas pipe system
EP1510758A1 (en) Method for regulating and/or controlling a burner
EP3290797B1 (en) Method for detecting a state of ageing of a heating system as well as a control unit and a heating system
DE102007053484A1 (en) Fuel gas air mixture regulating method for fuel gas operated burner e.g. thermal value equipment, involves comparing measured burner or flame temperature with calculated burner or flame temperature
EP2354657B1 (en) Method for operating a gas burner
DE102017126138A1 (en) Method for controlling a fuel gas operated heater
WO2009016097A1 (en) Method for heating a gas sensor
EP1248044B1 (en) Method for starting a heater
DE202019100264U1 (en) Heater with control of a gas mixture using a gas sensor and a gas mixture sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20080612

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 905212

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007015725

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 1923634

Country of ref document: PT

Date of ref document: 20170901

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20170825

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170628

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170928

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 25185

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171028

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007015725

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171109

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20221027

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221201

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231025

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231026

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231124

Year of fee payment: 17

Ref country code: PT

Payment date: 20231024

Year of fee payment: 17

Ref country code: FR

Payment date: 20231127

Year of fee payment: 17

Ref country code: DE

Payment date: 20231026

Year of fee payment: 17