JPH0799259B2 - Combustion control device - Google Patents
Combustion control deviceInfo
- Publication number
- JPH0799259B2 JPH0799259B2 JP61220102A JP22010286A JPH0799259B2 JP H0799259 B2 JPH0799259 B2 JP H0799259B2 JP 61220102 A JP61220102 A JP 61220102A JP 22010286 A JP22010286 A JP 22010286A JP H0799259 B2 JPH0799259 B2 JP H0799259B2
- Authority
- JP
- Japan
- Prior art keywords
- unit
- fuel
- air
- combustion
- burner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/20—Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays
- F23N5/203—Systems for controlling combustion with a time programme acting through electrical means, e.g. using time-delay relays using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/04—Memory
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/22—Timing network
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/08—Measuring temperature
- F23N2225/12—Measuring temperature room temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2225/00—Measuring
- F23N2225/08—Measuring temperature
- F23N2225/16—Measuring temperature burner temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2233/00—Ventilators
- F23N2233/06—Ventilators at the air intake
- F23N2233/08—Ventilators at the air intake with variable speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2235/00—Valves, nozzles or pumps
- F23N2235/30—Pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/10—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
- Control Of Combustion (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、ガスや石油を燃料とする燃焼機器において空
燃比制御をおこなう燃焼制御装置に関するものである。Description: TECHNICAL FIELD The present invention relates to a combustion control device for performing air-fuel ratio control in a combustion device using gas or petroleum as a fuel.
従来の技術 ガスや石油を燃料として燃焼させるとき、燃料と空気量
を最適な比率にして供給することにより逆火や失火、あ
るいは不完全燃焼の発生を防ぎ安定な燃焼を維持でき
る。この燃料と空気量の比を空燃比と呼び、従来より燃
焼状態を検知して常に最適な空燃比を保つように燃料、
あるいは空気量を制御する手段が考えられていた。2. Description of the Related Art When burning gas or petroleum as a fuel, it is possible to prevent the occurrence of flashback, misfire, or incomplete combustion and maintain stable combustion by supplying the fuel and air at an optimum ratio. The ratio of this fuel to the air amount is called the air-fuel ratio.
Alternatively, a means for controlling the amount of air has been considered.
空燃比制御の方式は、例えば特公昭61-6292号公報に記
載されているものがある。これは強制給排気型燃焼装置
において、給気温度と排気温度との差が予め定めた範囲
にはいるように空気量、あるいは燃料供給量を加減する
方式であり、そのシステムブロック図を第7図に、給気
温度と排気温度との差と排気ガス中のCO2濃度との特性
を第8図に示す。燃焼を開始すると給気温度と排気温度
は給気温度検出器1a、排気温度検出器1bによって検出さ
れ、差動増幅器2に入力されてその差が検出され、更に
その出力は演算器3によって最適温度差範囲である例え
ばT1、T2の値と比較され、その範囲に入っていればCO2
濃度がa1〜a2の範囲に入った良好な燃焼と判断されて、
燃料量、空気量の変動は強制的になされず、又その範囲
に入っていなければその範囲に入るように演算器3から
の出力がバーナモータ制御回路4、ポンプ制御回路5の
いずれか一方又は双方へ送られ、バーナモータ6、ポン
プ7のいずれか又は双方の駆動を変化させて最適燃焼範
囲で燃焼がなされるというものである。The air-fuel ratio control method is disclosed, for example, in Japanese Patent Publication No. 61-6292. This is a system in which the amount of air or the amount of fuel supply is adjusted so that the difference between the supply air temperature and the exhaust gas temperature is within a predetermined range in the forced supply / exhaust type combustion device. FIG. 8 shows the characteristics of the difference between the supply temperature and the exhaust temperature and the CO 2 concentration in the exhaust gas. When combustion is started, the supply air temperature and the exhaust gas temperature are detected by the supply air temperature detector 1a and the exhaust gas temperature detector 1b, input to the differential amplifier 2 and the difference therebetween is detected, and the output thereof is optimized by the calculator 3. It is compared with the temperature difference range, for example, the values of T 1 and T 2 , and if it is within that range, CO 2
It was determined that the combustion was good with the concentration falling within the range of a 1 to a 2 ,
Fluctuations in the fuel amount and the air amount are not forcibly made, and if it is not within the range, the output from the computing unit 3 is either one or both of the burner motor control circuit 4 and the pump control circuit 5. The burner motor 6, the pump 7 or both of them are driven to be changed to perform combustion in the optimum combustion range.
発明が解決しようとする課題 しかしながら上記のような方式では、燃焼状態の変化を
温度の変化により検出するので応答が遅いために、不適
切な燃焼状態になっても給気温度と排気温度との差がT1
〜T2の範囲を外れるまでに時間がかかり、その間不完全
燃焼や逆火が起こる可能性があり、またT1〜T2の範囲を
外れている時にバーナモータ6やポンプ7の駆動を変化
して良好な燃焼状態になっても給気温度と排気温度との
差がT1〜T2の範囲に入るまで時間がかかるので、その間
更にバーナモータ6やポンプの駆動を変化させてしまい
ハンチングを起こす可能性があるなど、安全性を十分に
保証できないという問題点を有していた。However, in the above-mentioned method, since the change in the combustion state is detected by the change in the temperature, the response is slow. The difference is T 1
Takes time to outside the range of the through T 2, may occur during incomplete combustion and backfire, also vary the driving of Banamota 6 and pump 7 when they are out of the range of T 1 through T 2 It takes time for the difference between the supply air temperature and the exhaust temperature to fall within the range of T 1 to T 2 even if the combustion condition is good, and during that time, the drive of the burner motor 6 and the pump are further changed and hunting occurs. However, there was a problem that safety could not be fully guaranteed.
本発明はかかる従来の問題点を解消するもので、検知手
段の応答性に関わらず、素早い空燃比制御を行うことを
目的とする。The present invention solves such a conventional problem, and an object of the present invention is to perform quick air-fuel ratio control regardless of the response of the detection means.
問題点を解決するための手段 上記問題点を解決するために本発明の燃焼制御装置は、
燃料を燃焼するバーナと、前記バーナへの燃料の供給量
を制御する燃料制御手段と、燃焼空気を供給する給気手
段と、前記バーナの燃焼状態を検知する検知手段と、前
記燃料制御手段および前記給気手段を駆動制御するコン
トローラからなり、前記コントローラは、前記検知手段
の信号を記憶する記憶部と、記憶後一定時間経過後の前
記検知手段からの信号と前記記憶部の記憶内容を入力と
して検知手段からの信号の収束値を推定する演算部と、
前記演算部の出力と燃料供給量または給気量により定ま
る固定値との偏差に応じて前記給気手段の給気量あるい
は前記燃料制御手段の燃料供給量を制御する空燃比制御
部を有し、前記演算部は前記検知手段からの信号と前記
記憶部の記憶内容の偏差を増幅する差動増幅部と、前記
変動増幅部の出力と前記記憶部の記憶内容を加算し前記
空燃比制御部に出力する加算部を有する構成としたもの
である。Means for Solving the Problems In order to solve the above problems, the combustion control device of the present invention is
A burner that burns fuel, a fuel control unit that controls the supply amount of fuel to the burner, an air supply unit that supplies combustion air, a detection unit that detects the combustion state of the burner, the fuel control unit, and The controller includes a controller that drives and controls the air supply unit, and the controller inputs a signal from the detection unit after storing a signal from the detection unit, and a storage content of the storage unit after a lapse of a certain time after the storage. As a calculation unit for estimating the convergence value of the signal from the detection means,
An air-fuel ratio control unit for controlling the air supply amount of the air supply unit or the fuel supply amount of the fuel control unit according to the deviation between the output of the calculation unit and a fixed value determined by the fuel supply amount or the air supply amount. The arithmetic unit adds a differential amplification unit that amplifies a deviation between the signal from the detection unit and the storage content of the storage unit, and the output of the fluctuation amplification unit and the storage content of the storage unit to add the air-fuel ratio control unit. It is configured to have an adding section for outputting to.
作用 本発明は上記した構成によって、検知手段からの信号を
記憶部に記憶し演算部は一定時間経過後の検知手段から
の信号と記憶部の記憶内容を入力として検知手段からの
信号の収束値を推定し、その推定結果により燃料供給手
段または給気手段を制御するので、素早い空燃比制御が
可能になるのである。The present invention has the above-described configuration, and stores the signal from the detection means in the storage unit, and the arithmetic unit inputs the signal from the detection unit and the storage content of the storage unit after a certain period of time as input, and the converged value of the signal from the detection unit. Is estimated and the fuel supply means or the air supply means is controlled according to the estimation result, so that quick air-fuel ratio control is possible.
実施例 以下、本発明の実施例を添付図面にもとづいて説明す
る。なお、実施例では灯油を燃料とする石油ファンヒー
タを例にして説明していく。Embodiments Embodiments of the present invention will be described below with reference to the accompanying drawings. In the embodiment, an oil fan heater using kerosene as fuel will be described as an example.
第1図で燃料油は燃料ポンプ7によりヒータ8で予熱さ
れた気化器9に供給され、バーナモータ6で供給された
空気と混合され、バーナ10で燃焼する。燃焼排ガスは送
風用ファンモータ11からの空気と混合して吹出口(図示
せず)から室内に放出して室内を暖房する。コントロー
ラ12はこれらバーナの燃焼制御をおこなう。室温センサ
13からの室温信号と室温設定値14を比較し、必要な燃焼
量に対応した燃焼係数Kを燃焼係数決定部15で求め、こ
の値Kに応じて燃焼量設定部16で燃焼量を決定し、燃料
ポンプ7を駆動するポンプ駆動部17へ信号を送る。燃料
ポンプ7はここではパルスポンプを使用しているため、
ポンプ駆動部17は、燃焼量に対応したパルス周波数を出
力する。また燃焼係数決定部15で決定した係数Kはファ
ンモータ回転数設定部18により対流ファンモータ11の回
転数を設定し、ファンモータ駆動部19に信号を出力す
る。これは燃焼量に適した風量として冷風感や熱風感を
使用者に感じさせることを防ぐ。1は燃焼状態を検知す
るためにバーナ10の内部に設けた温度センサ(ここでは
サーモカップルを使用)であり、サーモカップル1の温
度は記憶部20に記憶され、その記憶値は記憶後一定時間
経過後のサーモカップル1の温度信号とともに演算部21
に出力する。演算部21では差動増幅部22がサーモカップ
ル1の温度信号と記憶部20の記憶値の差を増幅して出力
し、更に加算部23が差動増幅部22の出力と記憶部20の記
憶値を加算することにより、サーモカップル1の推定収
束温度として出力する。空燃比制御部24は燃料係数Kよ
りサーモカップル1の温度をバーナ温度設定部25で決定
し、加算部23の出力がバーナ温度設定部25で定めた温度
を維持するようにバーナモータ回転数設定部26により回
転数を設定し、バーナモータ駆動部27でバーナモータ11
を駆動する。第2図はサーモカップル1で検知したバー
ナ温度TBが空燃比mに対してどの様に変化するかを示し
ている。図でH,M,Lの線は燃焼量の異なる場合を示す。
図から温度TBは空燃比mと一定の相関があることがわか
る。第2図の特性を横軸燃焼量QFで書き換えたものが第
3図である。ここで例えば温度TBを一定値TS1に制御す
れば、燃焼量QFがLの時には空燃比がm1、QFがMの時に
は空燃比がm2、QFがHの時にはm2とm3の中間となる破線
aが得られる。これは第1図でサーモカップル1の温度
がTS1になるようにバーナモータの回転数設定部26で制
御すればよい。また第3図で燃焼量QFがHの時はバーナ
温度TBがTS2、QFがLの時にはTS3になる破線bに制御す
れば燃焼量QFの値が変化しても空燃比はほぼm3一定に制
御可能である。これは第1図で燃焼係数決定部15により
決定した燃焼係数Kに応じてバーナ温度設定部25で設定
値TSを可変し、係数Kが一定の時には常にこの設定値に
保つようにバーナモータ回転数を制御することになる。
以上で空燃比mの制御が実現できるが、サーモカップル
1の温度変化は非常に緩慢であり、着火時から空燃比が
設定値を大きく外れていてもバーナ温度TBの変化を待っ
ている間に不完全燃焼発生の危険があり、また急激な空
燃比変化の場合も同様である。そこで第1図に示したよ
うに記憶部20と演算部21によりバーナ温度TBの収束温度
を推定するのである。第4図にバーナ10の着火時のバー
ナ温度TBの応答特性を示す。時刻t0のバーナ温度TB0を
サーモカップル1が検知し記憶部20に記憶する。一定時
間Δt経過後のバーナ温度TB1をサーモカップル1が検
知し差動増幅部22はTB1とTB0の偏差を適当な定数倍増幅
しp×(TB1−TB0)を演算する(pは定数)。更にこの
演算結果に記憶値TB0を加算部23で加算してTBの収束温
度 TBS=TB0+p×(TB1−TB0)を推定するここで定数pは
TBの応答時定数とΔtにより定まるものでバーナ固有の
定数である。例えば、p=1/{1−EXP(−Δt/tL)} の式で定めることができる。ここでtLは着火時の温度か
ら収束温度までの全変化量の63.2%変化するのに要する
時間である。この加算部の出力結果がバーナ温度設定部
25の設定値置TSとなるように制御することにより、バー
ナ温度TBの変化の応答に無関係に素早い空燃比制御が可
能になるのである。第5図は以上の制御をマイクロコン
ピュータ等で実現する場合の要部流れ図を示し、第1図
に対応した番号を付す。In FIG. 1, the fuel oil is supplied to the carburetor 9 preheated by the heater 8 by the fuel pump 7, mixed with the air supplied by the burner motor 6, and burned by the burner 10. The combustion exhaust gas is mixed with the air from the blower fan motor 11 and is discharged into the room from a blowout port (not shown) to heat the room. The controller 12 controls combustion of these burners. Room temperature sensor
The room temperature signal from 13 and the room temperature set value 14 are compared, the combustion coefficient K corresponding to the required combustion amount is obtained by the combustion coefficient determination unit 15, and the combustion amount setting unit 16 determines the combustion amount according to this value K. , Sends a signal to the pump drive unit 17 that drives the fuel pump 7. Since the fuel pump 7 uses a pulse pump here,
The pump drive unit 17 outputs a pulse frequency corresponding to the combustion amount. Further, the coefficient K determined by the combustion coefficient determination unit 15 sets the rotation speed of the convection fan motor 11 by the fan motor rotation speed setting unit 18, and outputs a signal to the fan motor drive unit 19. This prevents the user from feeling a feeling of cold air or a feeling of hot air as an air volume suitable for the amount of combustion. Reference numeral 1 is a temperature sensor (a thermocouple is used here) provided inside the burner 10 to detect the combustion state. The temperature of the thermocouple 1 is stored in the storage unit 20, and the stored value is stored for a certain time after storage. Calculation unit 21 together with the temperature signal of thermocouple 1 after the passage
Output to. In the calculation unit 21, the differential amplification unit 22 amplifies and outputs the difference between the temperature signal of the thermocouple 1 and the stored value of the storage unit 20, and the addition unit 23 further outputs the output of the differential amplification unit 22 and the storage unit 20. By adding the values, it is output as the estimated convergence temperature of the thermocouple 1. The air-fuel ratio control unit 24 determines the temperature of the thermocouple 1 from the fuel coefficient K in the burner temperature setting unit 25, and the burner motor speed setting unit 25 maintains the output of the addition unit 23 at the temperature determined in the burner temperature setting unit 25. The rotation speed is set by 26 and the burner motor drive unit 27 is used to set the burner motor 11
To drive. FIG. 2 shows how the burner temperature T B detected by the thermocouple 1 changes with respect to the air-fuel ratio m. In the figure, the lines H, M, and L show the case where the combustion amount is different.
From the figure, it can be seen that the temperature T B has a certain correlation with the air-fuel ratio m. FIG. 3 is a graph in which the characteristics of FIG. 2 are rewritten with the combustion amount Q F on the horizontal axis. By controlling the Here, for example a temperature T B at a constant value T S1, combustion rate Q F is the air-fuel ratio when the L is m 1, Q F air-fuel ratio when the M is m 2, Q F is at the H is m 2 And a broken line a intermediate between m 3 and m 3 is obtained. This may be controlled by the rotation number setting unit 26 of the burner motor so that the temperature of the thermocouple 1 becomes T S1 in FIG. The Figure 3 in combustion rate Q F is empty even if the value of the burner the temperature T B is T S2, Q F is combustion rate Q F is controlled by the dashed line b to become T S3 is at the L changes when the H The fuel ratio can be controlled to be almost constant at m 3 . This is because the burner temperature setting unit 25 changes the set value T S according to the combustion coefficient K determined by the combustion coefficient determination unit 15 in FIG. 1, and when the coefficient K is constant, the burner motor rotation is always kept at this set value. Will control the number.
Although the control of the air-fuel ratio m can be realized by the above, the temperature change of the thermocouple 1 is very slow, and while waiting for the change of the burner temperature T B even if the air-fuel ratio greatly deviates from the set value after ignition. There is a danger of incomplete combustion occurring at the same time, and the same is true when there is a sudden change in the air-fuel ratio. Therefore, as shown in FIG. 1, the convergence temperature of the burner temperature T B is estimated by the storage unit 20 and the calculation unit 21. FIG. 4 shows the response characteristics of the burner temperature T B at the time of ignition of the burner 10. The thermocouple 1 detects the burner temperature T B0 at time t 0 and stores it in the storage unit 20. The thermocouple 1 detects the burner temperature T B1 after the elapse of a certain time Δt, and the differential amplifier 22 amplifies the deviation between T B1 and T B0 by an appropriate constant to calculate p × (T B1 −T B0 ). p is a constant). Further where the constant p for estimating the convergence temperature T BS = T B0 + p × (T B1 -T B0) of T B by adding the stored value T B0 by an adder 23 to the calculation result
It is a constant unique to the burner, which is determined by the response time constant of T B and Δt. For example, it can be defined by the equation of p = 1 / {1-EXP (-Δt / t L )}. Where t L is the time required to change 63.2% of the total change from the temperature at ignition to the convergence temperature. The output result of this addition section is the burner temperature setting section.
By controlling so that the set value location T S 25, it become possible to independently quick air-fuel ratio control in response changes in burner temperature T B. FIG. 5 shows a flow chart of the main parts when the above control is realized by a microcomputer or the like, and the numbers corresponding to those of FIG. 1 are attached.
上記構成は、燃料を一定にして空気量を制御する燃料基
準式空燃比制御をおこなっているので、製品製造時に燃
料ポンプを単体で検査すれば製品の燃焼量は決定でき、
製造工程を簡略化できる効果がある。In the above configuration, since the fuel reference type air-fuel ratio control is performed to control the air amount while keeping the fuel constant, the combustion amount of the product can be determined by inspecting the fuel pump alone when manufacturing the product,
This has the effect of simplifying the manufacturing process.
次に本発明の他の実施例を第6図を用いて説明する。第
6図において前記実施例と異なる点は、空燃比制御部24
が演算部21の出力に応じて燃焼量Qを制御する構成であ
り、前記実施例が燃料基準式空燃比制御であるのに対し
て第6図は空気量つまりバーナモータ回転数を一定にし
て燃焼量を制御する空気量基準式空燃比制御の例であ
る。この構成によればポンプを制御するので応答が早
く、突発的な異常で空燃比がずれてもすぐに調整できる
という効果がある。Next, another embodiment of the present invention will be described with reference to FIG. In FIG. 6, the difference from the above embodiment is that the air-fuel ratio control unit 24
Is a configuration in which the combustion amount Q is controlled according to the output of the calculation unit 21. In the above embodiment, the fuel reference type air-fuel ratio control is performed, whereas in FIG. It is an example of air amount reference type air-fuel ratio control for controlling the amount. According to this configuration, the pump is controlled, so that the response is quick, and even if the air-fuel ratio shifts due to a sudden abnormality, there is an effect that it can be adjusted immediately.
本実施例では石油ファンヒータを例に説明したが、給湯
機器その他の燃焼機器にも応用可能である。またガス燃
料であっても燃料ポンプにかえてガス比例弁制御等を利
用することにより容易に実現可能である。Although the oil fan heater is described as an example in the present embodiment, the present invention can be applied to hot water supply equipment and other combustion equipment. Further, even gas fuel can be easily realized by using gas proportional valve control or the like instead of the fuel pump.
発明の効果 以上のように本発明の燃焼制御装置によれば次の効果が
得られる。Effects of the Invention As described above, the combustion control device of the present invention has the following effects.
(1)空燃比最適点に自動設定されるため、手動の調整
手段が不要で安定した燃焼状態を維持できる。(1) Since the air-fuel ratio is automatically set to the optimum point, a manual adjustment means is unnecessary and a stable combustion state can be maintained.
(2)検知手段の信号の時間的変化より演算により信号
の収束値を推定し、その収束値で燃焼状態の推定を行う
ので、検知手段の応答性に無関係に素早い空燃比制御を
おこなうことができ異常燃焼を継続しない安全な燃焼機
器を提供できる。(2) The convergence value of the signal is estimated by calculation from the temporal change of the signal of the detection means, and the combustion state is estimated by the convergence value. Therefore, quick air-fuel ratio control can be performed regardless of the response of the detection means. It is possible to provide a safe combustion device that does not continue abnormal combustion.
(3)検知手段の応答性に無関係に素早い空燃比制御を
おこなえるので、検知手段の選択範囲を広げる他、応答
性を意識しない容易なバーナ設計が可能になる。(3) Since the air-fuel ratio control can be performed quickly regardless of the responsiveness of the detecting means, the range of selection of the detecting means can be widened and the burner can be easily designed without being conscious of the responsiveness.
第1図は本発明の一実施例を示す燃焼制御装置のブロッ
ク図、第2図はバーナ温度特性図、第3図は空燃比制御
特性図、第4図はバーナ温度の応答を示す特性図、第5
図は第1図を実現するための流れ図、第6図は同他の実
施例を示すブロック図、第7図は従来の燃焼制御装置の
ブロック図、第8図は従来例を説明する特性図である。 1……サーモカップル(検知手段)、7……燃料ポンプ
(燃料制御手段)、10……バーナ、6……バーナモータ
(給気手段)、12……コントローラ、20……記憶部、21
……演算部、24……空燃比制御部。FIG. 1 is a block diagram of a combustion control device showing an embodiment of the present invention, FIG. 2 is a burner temperature characteristic diagram, FIG. 3 is an air-fuel ratio control characteristic diagram, and FIG. 4 is a characteristic diagram showing burner temperature response. , Fifth
1 is a flow chart for realizing FIG. 1, FIG. 6 is a block diagram showing another embodiment, FIG. 7 is a block diagram of a conventional combustion control device, and FIG. 8 is a characteristic diagram for explaining a conventional example. Is. 1 ... Thermocouple (detection means), 7 ... Fuel pump (fuel control means), 10 ... Burner, 6 ... Burner motor (air supply means), 12 ... Controller, 20 ... Storage section, 21
…… Calculator, 24 …… Air-fuel ratio controller.
フロントページの続き (72)発明者 粉川 勝蔵 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 平田 康 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭57−87531(JP,A) 特開 昭58−28922(JP,A) 特開 昭60−103223(JP,A)Front page continuation (72) Inventor Shozo Kogawa 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Yasushi Hirata 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (56) Reference References JP-A-57-87531 (JP, A) JP-A-58-28922 (JP, A) JP-A-60-103223 (JP, A)
Claims (1)
燃料の供給量を制御する燃料制御手段と、燃焼空気を供
給する給気手段と、前記バーナの燃焼状態を検知する検
知手段と、前記燃料制御手段および前記給気手段を駆動
制御するコントローラからなり、前記コントローラは、
前記検知手段の信号を記憶する記憶部と、記憶後一定時
間経過後の前記検知手段からの信号と前記記憶部の記憶
内容を入力として検知手段からの信号の収束値を推定す
る演算部と、前記演算部の出力と燃料供給量または給気
量により定まる固定値との偏差に応じて前記給気手段の
給気量あるいは前記燃料制御手段の燃料供給量を制御す
る空燃比制御部を有し、前記演算部は前記検知手段から
の信号と前記記憶部の記憶内容の偏差を増幅する差動増
幅部と、前記差動増幅部の出力と前記記憶部の記憶内容
を加算し前記空燃比制御部に出力する加算部を有する燃
焼制御装置。1. A burner for burning fuel, a fuel control means for controlling the amount of fuel supplied to the burner, an air supply means for supplying combustion air, and a detection means for detecting a combustion state of the burner. The controller comprises a controller for driving and controlling the fuel control means and the air supply means.
A storage unit that stores the signal of the detection unit, a calculation unit that estimates the convergence value of the signal from the detection unit by inputting the signal from the detection unit after a certain period of time after storage and the storage content of the storage unit, An air-fuel ratio control unit for controlling the air supply amount of the air supply unit or the fuel supply amount of the fuel control unit according to the deviation between the output of the calculation unit and a fixed value determined by the fuel supply amount or the air supply amount. The arithmetic unit adds the output of the differential amplifying unit and the stored content of the storage unit to a differential amplifying unit that amplifies a deviation between the signal from the detection unit and the stored content of the storage unit, and controls the air-fuel ratio. Combustion control device having an addition unit for outputting to the unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61220102A JPH0799259B2 (en) | 1986-09-18 | 1986-09-18 | Combustion control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61220102A JPH0799259B2 (en) | 1986-09-18 | 1986-09-18 | Combustion control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6375416A JPS6375416A (en) | 1988-04-05 |
JPH0799259B2 true JPH0799259B2 (en) | 1995-10-25 |
Family
ID=16745947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61220102A Expired - Lifetime JPH0799259B2 (en) | 1986-09-18 | 1986-09-18 | Combustion control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0799259B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0614048A1 (en) * | 1993-03-05 | 1994-09-07 | Landis & Gyr Technology Innovation AG | Device with automatic burner |
EP1923634B1 (en) * | 2006-11-15 | 2017-06-28 | Vaillant GmbH | Adjustment of fuel gas/air mixture via the burner or flame temperature of a heating device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5828922A (en) * | 1981-08-17 | 1983-02-21 | Matsushita Electric Ind Co Ltd | Controlling device of combustion apparatus |
JPS60103223A (en) * | 1983-11-10 | 1985-06-07 | Kaneko Agricult Mach Co Ltd | Method and device for controlling combustion in burner |
-
1986
- 1986-09-18 JP JP61220102A patent/JPH0799259B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6375416A (en) | 1988-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4994959A (en) | Fuel burner apparatus and a method of control | |
EP0812408B1 (en) | Apparatus for providing an air/fuel mixture to a fully premixed burner | |
JPH0799259B2 (en) | Combustion control device | |
JP2857321B2 (en) | Combustion equipment | |
JP2664007B2 (en) | Control device for combustion equipment | |
JP3077717B2 (en) | Water heater control device | |
JPH0749855B2 (en) | Combustion control device | |
JPS63169424A (en) | Combustion controller | |
JP3181142B2 (en) | Gas burner equipment | |
JP3185504B2 (en) | Combustion control device | |
JP2939135B2 (en) | Gas combustion equipment | |
JP2000310417A (en) | Controlling method of combustion of water heater | |
JP3289515B2 (en) | How to determine the combustion state of a water heater | |
JP3018811B2 (en) | Combustion control device | |
JP2958550B2 (en) | Combustion equipment | |
JP3060730B2 (en) | Combustion equipment | |
JPS6370023A (en) | Controlling device for combustion | |
JP2952988B2 (en) | Ignition gas pressure control method at capacity switching | |
JPH07117234B2 (en) | Combustion control device | |
JP2645448B2 (en) | Temperature control method and temperature control device for hot water supply means using temperature detection element | |
JPH08303760A (en) | Hot water feeding device | |
JPS63129219A (en) | Combustion controller | |
JP2002039528A (en) | Combustion device | |
JP3589687B2 (en) | Combustion control method at the time of re-watering of water heater | |
JPH07127852A (en) | Control method of combustion for combustion device and device therefor |