JPH07117234B2 - Combustion control device - Google Patents

Combustion control device

Info

Publication number
JPH07117234B2
JPH07117234B2 JP63133301A JP13330188A JPH07117234B2 JP H07117234 B2 JPH07117234 B2 JP H07117234B2 JP 63133301 A JP63133301 A JP 63133301A JP 13330188 A JP13330188 A JP 13330188A JP H07117234 B2 JPH07117234 B2 JP H07117234B2
Authority
JP
Japan
Prior art keywords
unit
air
combustion
amount
combustion amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63133301A
Other languages
Japanese (ja)
Other versions
JPH01302023A (en
Inventor
博久 今井
慶一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63133301A priority Critical patent/JPH07117234B2/en
Publication of JPH01302023A publication Critical patent/JPH01302023A/en
Publication of JPH07117234B2 publication Critical patent/JPH07117234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/04Memory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/10Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガスや石油等を使用した燃焼機器における空燃
比の制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device in a combustion device that uses gas, oil, or the like.

従来の技術 ガスや石油を燃料として燃焼させる時、燃料と空気量を
最適な比率にして供給する事により逆火や失火、あるい
は不完全燃焼の発生を防ぎ安定な燃焼を維持できる。こ
の燃料と空気量の比を空燃比と呼び、従来より燃焼状態
を検知して常に最適な空燃比を保つように燃料、あるい
は空気量を制御する手段が考えられていた。
2. Description of the Related Art When burning gas or oil as a fuel, by supplying the fuel and air in an optimal ratio, it is possible to prevent backfire, misfire, or incomplete combustion and maintain stable combustion. The ratio of this fuel to the air amount is called the air-fuel ratio, and conventionally there has been considered a means for detecting the combustion state and controlling the fuel or the air amount so as to always maintain the optimum air-fuel ratio.

石油燃焼機器における空燃比制御の方式は、例えば特開
昭61−24917号公報に記載されているものがよく考えら
れる。これは火炎に挿入したフレームロッドにより火炎
の炎イオン電流を検出し、この炎イオン電流が空燃比に
より変化することを利用して空燃比を最適にするように
燃料供給用ポンプの駆動周波数を調節する構成である。
第5図に炎イオン電流値Ifの一例を示す。横軸は一次空
気比μでここでは空燃比を一次空気比μで説明する。代
表的な入力範囲(3000〜1000kcal/h)では、炎イオン電
流値Ifはほぼμ=0.8〜0.9でピークを持つ分布をしてい
る。そこでポンプ駆動周波数を調節して、炎イオン電流
値Ifが最大値になるように灯油供給量を決めることによ
り空燃比制御を行ない安定した燃焼状態を維持するもの
である。
As an air-fuel ratio control system for oil burning equipment, for example, the one described in Japanese Patent Laid-Open No. 61-24917 is often considered. This is to detect the flame ion current of the flame by the flame rod inserted into the flame and utilize the fact that this flame ion current changes depending on the air-fuel ratio to adjust the drive frequency of the fuel supply pump to optimize the air-fuel ratio. This is the configuration.
FIG. 5 shows an example of the flame ion current value If. The horizontal axis represents the primary air ratio μ, and the air-fuel ratio will be described herein by the primary air ratio μ. In a typical input range (3000 to 1000 kcal / h), the flame ion current value If has a distribution with a peak at approximately μ = 0.8 to 0.9. Therefore, the pump drive frequency is adjusted to determine the kerosene supply amount so that the flame ion current value If becomes the maximum value, thereby performing the air-fuel ratio control and maintaining a stable combustion state.

発明が解決しようとする課題 しかしながら上記のような構成では、一定の空気量を供
給しながら灯油供給量を変化させることによりμ=0.8
〜0.9を維持するので、ほこりづまり等により著しく供
給空気量が低下するとμ=0.8〜0.9を維持するために灯
油供給量(即ち燃焼量)が低下しバーナの能力を下回っ
て失火やCOの発生を起こす可能性があり、逆に送風系の
異常により著しく供給空気量が増加すると燃焼量が増加
しバーナの能力を越えて逆火やバーナの変形を起こす可
能性があるなど、安全性を十分に保証できないという問
題点を有していた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the configuration as described above, μ = 0.8 by changing the kerosene supply amount while supplying a constant air amount.
-0.9 is maintained, so if the amount of supplied air drops significantly due to dust clogging, etc., the amount of kerosene supply (that is, the amount of combustion) decreases to maintain μ = 0.8-0.9, which falls below the burner's capacity and causes misfires and CO emissions. On the contrary, if the supply air amount increases remarkably due to an abnormality in the air blow system, the combustion amount will increase and the burner capacity may be exceeded, resulting in flashback or deformation of the burner. It had a problem that it could not be guaranteed.

本発明はかかる従来の問題を解消するもので、バーナの
能力範囲を越えることなく安全性を確保して空燃比制御
を行なうことを目的とする。
The present invention solves such a conventional problem, and an object of the present invention is to ensure safety and perform air-fuel ratio control without exceeding the burner capacity range.

課題を解決するための手段 上記問題点を解決するために本発明の燃焼制御装置は、
バーナと、前記バーナへ燃料を供給する燃料供給手段
と、燃焼空気を供給する送風機と、前記バーナの燃焼状
態を検出する検出手段と、前記燃料供給手段および前記
送風機を制御する制御回路を有し、前記制御回路は前記
燃料供給手段を制御して燃焼量を可変する燃焼量可変部
と、前記送風機を制御して空気量を可変する空気量可変
部と、空燃比制御部を有し、前記空燃比制御部は前記検
出手段の出力により燃焼量を演算する燃焼量演算部と、
燃焼量の限界値を記憶する限界値記憶部と、前記燃焼量
演算部と前記限界値記憶部の記憶内容を比較する比較部
と、前記比較部の出力により前記燃焼量演算部の演算結
果が前記限界値記憶内容の範囲内であれば前記燃焼量可
変部への出力信号経路を前記燃焼量演算部にして範囲外
であれば前記限界値記憶部にする切替部と、前記燃焼量
可変部への出力信号経路が前記限界値記憶部である時に
だけ動作し前記検出手段の出力により空気量を演算して
前記空気量可変部に信号を出力する空気量を有する構成
としたものである。
Means for Solving the Problems In order to solve the above problems, the combustion control device of the present invention,
A burner, a fuel supply unit that supplies fuel to the burner, a blower that supplies combustion air, a detection unit that detects a combustion state of the burner, and a control circuit that controls the fuel supply unit and the blower. The control circuit includes a combustion amount changing unit that controls the fuel supply unit to change a combustion amount, an air amount changing unit that controls the blower to change an air amount, and an air-fuel ratio control unit, The air-fuel ratio control unit is a combustion amount calculation unit that calculates the combustion amount based on the output of the detection means,
A limit value storage unit that stores the limit value of the combustion amount, a comparison unit that compares the storage contents of the combustion amount calculation unit and the limit value storage unit, and the calculation result of the combustion amount calculation unit by the output of the comparison unit. If it is within the range of the stored content of the limit value, the output signal path to the combustion amount variable unit is set to the combustion amount calculation unit, and if it is out of the range, the switching unit is set to the limit value storage unit; It operates only when the output signal path to the limit value storage section is operated, and calculates the air quantity by the output of the detecting means, and outputs the signal to the air quantity changing section.

作用 本発明は上記した構成によって、燃焼量演算部が検出手
段の出力より燃焼量を演算しその演算結果が演算値記憶
部の記憶している限界値の範囲外であれば、燃焼量の限
界値を出力して空気量演算部が供給空気量を変更するこ
とにより能力範囲を越えることなく安全性を確保して空
燃比制御を行なうことが可能になるのである。
The present invention has the above-described configuration, and the combustion amount calculation unit calculates the combustion amount from the output of the detection means, and if the calculation result is outside the range of the limit value stored in the calculation value storage unit, the combustion amount limit is reached. By outputting the value and changing the supplied air amount by the air amount calculation unit, it becomes possible to perform safety and air-fuel ratio control without exceeding the capacity range.

実施例 以下、本発明の実施例を添付図面にもとづいて説明す
る。尚、実施例では灯油を燃料とする石油ファンヒータ
を例にして説明していく。
Embodiments Embodiments of the present invention will be described below with reference to the accompanying drawings. In the embodiment, an oil fan heater using kerosene as fuel will be described as an example.

第1図で燃料油は燃料ポンプ1によりヒータ2で予熱さ
れた気化器3に供給され、バーナモータ4で供給された
空気と混合され、バーナ5の表面で燃焼する。燃焼排ガ
スは送風用ファンモータ6からの空気と混合して吹出口
(図示せず)から室内に放出して室内を暖房する。制御
回路7はこれ等バーナの燃焼制御を行なう。室温センサ
8からの室温信号により必要な燃焼量と燃焼量に応じた
空気量を設定し、設定した燃焼量となうように燃焼量可
変部9が燃料ポンプ1を制御し、また同時に設定した空
気量となるように空気量可変部10がバーナモータ4を制
御する。11は燃焼状態を検知するためにバーナ5の内部
に設けた温度センサ(ここではサーモカップルを使用)
であり、空燃比制御部12はサーモカップル11の信号によ
り燃焼量可変部9と空気量可変部10に適切な信号を送信
し、最適な燃焼状態を維持するように制御する。第2図
にサーモカップル11で検知したバーナの温度TBが空燃比
mに対してどの様に変化するかを示す。図から温度TB
空燃比m>1の領域でm増加に対してTB減少の一定の相
関があることがわかる。ここで例えば温度TBがTBaであ
ることを検知すれば空燃比mがmaであることを検出で
き、また温度TBを一定値TBaに制御すれば空燃比を一定
値maに制御できる。これは第1図でサーモカップル11の
温度がTBaになるように燃焼量を補正して燃焼量可変部
9が燃料ポンプ1を制御すればよい。制御回路7は初め
室温センサ8により設定燃焼量QFSと設定空気量QASを決
定し、燃焼量可変部9と空気量可変部10が出力する。こ
こでサーモカップル11がバーナ温度TBを検出し、空燃比
制御部12に信号を送る。燃焼量演算部13は燃焼量を補正
するためにQF=QFS+kF(TB−TBa)(kFは定数)を演算
する。ここで限界値記憶部14はバーナの安全のために燃
焼量の限界値としてQFmaxとQFminを記憶している。比較
部15は燃焼量演算部13の演算結果と限界値記憶部14の記
憶内容を比較し切替部16に信号を送る。燃焼量演算部13
の演算結果QFがQFmin<QF<QFmaxであれば切替部16は燃
焼量演算部13の演算結果QFを燃焼量可変部9に出力し、
燃焼量可変部9が燃焼量QFとなるように燃料ポンプ1を
制御する。燃焼量演算部13の演算結果QFがQF>QFmax
あれば切替部16は限界値記憶部14の記憶内容であるQ
Fmaxを燃焼量可変部9に出力し、燃焼量可変部9が燃焼
量QFmaxとなるように燃料ポンプ1を制御する。燃焼量
演算部13の演算結果QFがQF<QFminであれば切替部16は
限界値記憶部の記憶内容であるQFminを燃焼量可変部9
に出力し、燃焼量可変部9が燃焼量QFminとなるように
燃焼ポンプ1を制御する。ここで切替部16が燃焼量演算
部13の演算結果QFではなく限界値記憶部14の記憶内容Q
Fmax又はQFminを出力している時、即ち燃焼量演算部13
の演算結果QFがQFmin<QF<QFmaxである時、切替部16と
同期して空気量演算部17が空気量を補正するためにQA
QAS+kA(TB−TBa)(kAは定数)を演算し、空気量可変
部10に出力し、空気量可変部10は空気量QAとなるように
バーナモータ4を制御する。
In FIG. 1, the fuel oil is supplied to the carburetor 3 preheated by the heater 2 by the fuel pump 1, mixed with the air supplied by the burner motor 4, and burned on the surface of the burner 5. The combustion exhaust gas is mixed with the air from the blower fan motor 6 and discharged into the room through a blowout port (not shown) to heat the room. The control circuit 7 controls combustion of these burners. The required combustion amount and the amount of air corresponding to the combustion amount are set by the room temperature signal from the room temperature sensor 8, and the combustion amount changing unit 9 controls the fuel pump 1 so that the set combustion amount is achieved, and is also set at the same time. The air amount changing unit 10 controls the burner motor 4 so that the air amount is obtained. 11 is a temperature sensor provided inside the burner 5 to detect the combustion state (here, a thermocouple is used)
Therefore, the air-fuel ratio control unit 12 sends appropriate signals to the combustion amount varying unit 9 and the air amount varying unit 10 in response to the signal from the thermocouple 11, and controls so as to maintain an optimum combustion state. FIG. 2 shows how the burner temperature T B detected by the thermocouple 11 changes with respect to the air-fuel ratio m. From the figure, it can be seen that the temperature T B has a constant correlation with T B decrease with respect to m increase in the region where the air-fuel ratio m> 1. Here, for example a temperature T air m if detecting that B is T Ba can detect that is ma, also control the air-fuel ratio by controlling the temperature T B to a constant value T Ba at a constant value m a it can. This can be achieved by correcting the combustion amount so that the temperature of the thermocouple 11 becomes T Ba in FIG. 1 and controlling the fuel pump 1 by the combustion amount varying unit 9. The control circuit 7 first determines the set combustion amount Q FS and the set air amount Q AS by the room temperature sensor 8, and outputs the combustion amount changing unit 9 and the air amount changing unit 10. Here, the thermocouple 11 detects the burner temperature T B and sends a signal to the air-fuel ratio control unit 12. The combustion amount calculation unit 13 Q F = Q FS + k F (T B -T Ba) in order to correct the firing rate (k F is a constant) is calculated. Here, the limit value storage unit 14 stores Q Fmax and Q Fmin as limit values of the combustion amount for the safety of the burner. The comparison unit 15 compares the calculation result of the combustion amount calculation unit 13 with the storage content of the limit value storage unit 14 and sends a signal to the switching unit 16. Combustion amount calculator 13
If the calculation result Q F of Q Fmin <Q F <Q Fmax , the switching unit 16 outputs the calculation result Q F of the combustion amount calculation unit 13 to the combustion amount changing unit 9,
The fuel amount changing unit 9 controls the fuel pump 1 so that the combustion amount Q F is obtained. If the calculation result Q F of the combustion amount calculation unit 13 is Q F > Q Fmax , the switching unit 16 stores the Q content stored in the limit value storage unit 14.
Fmax is output to the combustion amount varying unit 9, and the fuel amount varying unit 9 controls the fuel pump 1 so that the combustion amount becomes Q Fmax . If the calculation result Q F of the combustion amount calculation unit 13 is Q F <Q Fmin , the switching unit 16 sets Q Fmin , which is the content stored in the limit value storage unit, to the combustion amount changing unit 9
Then, the combustion amount varying unit 9 controls the combustion pump 1 so that the combustion amount becomes Q Fmin . Here, the switching unit 16 is not the calculation result Q F of the combustion amount calculation unit 13 but the storage content Q of the limit value storage unit 14.
When Fmax or Q Fmin is output, that is, the combustion amount calculation unit 13
When the calculation result Q F of Q Fmin <Q F <Q Fmax , Q A = in order to correct the air amount by the air amount calculation unit 17 in synchronization with the switching unit 16.
Q AS + k A (T B −T Ba ) (k A is a constant) is calculated and output to the air amount varying unit 10, and the air amount varying unit 10 controls the burner motor 4 so that the air amount becomes Q A.

第3図は以上の制御をマイクロコンピュータ等で実現す
る場合の要部流れ図を示し、第1図に対応した番号を示
す。
FIG. 3 shows a flow chart of the main parts when the above control is realized by a microcomputer or the like, and shows the numbers corresponding to FIG.

次に本発明の他の実施例を第4図を用いて説明する。第
4図において第1図と同一機能に同一番号を付す。第4
図において前記実施例と異なる点は燃焼状態を検出する
検出手段としてサーモカップル11ではなくフレームロッ
ド18を取り付け、炎のイオン電流により空燃比制御を行
なうものであり、温度センサよりも検知応答が早いとい
う効果がある。
Next, another embodiment of the present invention will be described with reference to FIG. In FIG. 4, the same numbers are attached to the same functions as in FIG. Fourth
In the figure, the point different from the above embodiment is that the thermocouple 11 is not mounted as the detection means for detecting the combustion state, but the frame rod 18 is attached, and the air-fuel ratio is controlled by the ion current of the flame, and the detection response is faster than the temperature sensor. There is an effect.

本実施例では石油ファンヒータを例に説明したが、給湯
機器その他の燃焼機器にも応用可能である。またガス燃
料であっても燃料ポンプにかえてガス比例弁制御等を利
用することにより容易に実現可能である。
Although the oil fan heater is described as an example in the present embodiment, the present invention can be applied to hot water supply equipment and other combustion equipment. Further, even gas fuel can be easily realized by using gas proportional valve control or the like instead of the fuel pump.

発明の効果 以上のように本発明の燃焼制御装置によれば次の効果が
得られる。
Effects of the Invention As described above, the combustion control device of the present invention has the following effects.

(1)燃焼量は設定範囲内で補正するのでバーナの安全
性を保証できる。
(1) Since the combustion amount is corrected within the set range, the safety of the burner can be guaranteed.

(2)燃焼量が設定範囲内であれば空気量を基準にして
燃焼量を補正して空燃比を調整するので素早い制御を可
能にする。
(2) If the combustion amount is within the set range, the air amount is used as a reference to correct the combustion amount and adjust the air-fuel ratio, thereby enabling quick control.

(3)燃焼量が補正により設定範囲外になる時は燃焼量
を基準にして空気量を補正して空燃比を調整するので、
補正可能な領域を広くとることができ容易なバーナ設計
が可能になる。
(3) When the combustion amount is out of the setting range due to the correction, the air amount is corrected based on the combustion amount to adjust the air-fuel ratio.
A wide correctable region can be set, and an easy burner design is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す燃焼制御装置のブロッ
ク図、第2図はバーナ温度特性図、第3図は第1図を実
現するための流れ図、第4図は同他の実施例を示すブロ
ック図、第5図は従来の空燃比制御方式の特性図であ
る。 1……燃料ポンプ(燃料供給手段)、4……バーナモー
タ(送風機)、7……制御回路、9……燃焼量可変部、
10……空気量可変部、11……サーモカップル(検出手
段)、12……空燃比制御部、13……燃焼量演算部、14…
…限界値記憶部、15……比較部、16……切替部、17……
空気量演算部。
FIG. 1 is a block diagram of a combustion control device showing an embodiment of the present invention, FIG. 2 is a burner temperature characteristic diagram, FIG. 3 is a flow chart for realizing FIG. 1, and FIG. 4 is another embodiment. FIG. 5 is a block diagram showing an example, and FIG. 5 is a characteristic diagram of a conventional air-fuel ratio control system. 1 ... Fuel pump (fuel supply means), 4 ... Burner motor (blower), 7 ... Control circuit, 9 ... Combustion amount variable section,
10 ... Air amount variable part, 11 ... Thermocouple (detection means), 12 ... Air-fuel ratio control part, 13 ... Combustion amount calculation part, 14 ...
… Limit value storage, 15 …… Comparison, 16 …… Switching, 17 ……
Air volume calculator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】バーナと、前記バーナへ燃料を供給する燃
料供給手段と、燃焼空気を供給する送風機と、前記バー
ナの燃焼状態を検出する検出手段と、前記燃料供給手段
および前記送風機を制御する制御回路を有し、前記制御
回路は前記燃料供給手段を制御して燃焼量を可変する燃
焼量可変部と、前記送風機を制御して空気量を可変する
空気量可変部と、空燃比制御部を有し、前記空燃比制御
部は前記検出手段の出力により燃焼量を演算する燃焼量
演算部と、燃焼量の限界値を記憶する限界値記憶部と、
前記燃焼量演算部と前記限界値記憶部の記憶内容を比較
する比較部と、前記比較部の出力により前記燃焼量演算
部の演算結果が前記限界値記憶内容の範囲内であれば前
記燃焼量可変部への出力信号経路を前記燃焼量演算部に
して範囲外であれば前記限界値記憶部にする切替部と、
前記燃焼量可変部への出力信号経路が前記限界値記憶部
である時にだけ動作し前記検出手段の出力により空気量
を演算して前記空気量可変部に信号を出力する空気量演
算部を有する燃焼制御装置。
1. A burner, a fuel supply means for supplying fuel to the burner, a blower for supplying combustion air, a detection means for detecting a combustion state of the burner, and a control means for the fuel supply means and the blower. A control circuit, wherein the control circuit controls the fuel supply unit to change the combustion amount, a combustion amount changing unit, an air amount changing unit to control the blower to change the air amount, and an air-fuel ratio control unit. The air-fuel ratio control unit, a combustion amount calculation unit that calculates the combustion amount by the output of the detection means, a limit value storage unit that stores the limit value of the combustion amount,
If the calculation result of the combustion amount calculation unit by the output of the comparison unit and the comparison unit that compares the storage contents of the combustion amount calculation unit and the limit value storage unit is within the range of the limit value storage content, the combustion amount A switching unit that sets the output signal path to the variable unit to the limit value storage unit if the combustion amount calculation unit is out of range,
It has an air amount calculation unit that operates only when the output signal path to the combustion amount variable unit is the limit value storage unit, calculates the air amount by the output of the detection unit, and outputs a signal to the air amount variable unit. Combustion control device.
JP63133301A 1988-05-31 1988-05-31 Combustion control device Expired - Fee Related JPH07117234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63133301A JPH07117234B2 (en) 1988-05-31 1988-05-31 Combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63133301A JPH07117234B2 (en) 1988-05-31 1988-05-31 Combustion control device

Publications (2)

Publication Number Publication Date
JPH01302023A JPH01302023A (en) 1989-12-06
JPH07117234B2 true JPH07117234B2 (en) 1995-12-18

Family

ID=15101461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63133301A Expired - Fee Related JPH07117234B2 (en) 1988-05-31 1988-05-31 Combustion control device

Country Status (1)

Country Link
JP (1) JPH07117234B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPD20130186A1 (en) * 2013-07-02 2015-01-03 Sit La Precisa S P A Con Socio Uni Co METHOD OF MONITORING THE OPERATION OF A BURNER

Also Published As

Publication number Publication date
JPH01302023A (en) 1989-12-06

Similar Documents

Publication Publication Date Title
EP0104586B1 (en) Gas burner control system
US4852797A (en) Process for operating a fuel-operated heater and control arrangement for performing the process
JPH07117234B2 (en) Combustion control device
JP2003042444A (en) Water heater
JPH0712331A (en) Method and device for controlling combustion of combustor
KR930006170B1 (en) Control device for combustion apparatus
JPH04136611A (en) Combustion control
JPH03291411A (en) Burner
US12098867B1 (en) Water heating system and method of operating the same
JP3077717B2 (en) Water heater control device
JP3018811B2 (en) Combustion control device
JPH0378528B2 (en)
JP2837508B2 (en) Hot water heater combustion control method
KR0170170B1 (en) Combustion system
JP2669662B2 (en) Water heater control device
JPS6332218A (en) Burning control device
JP2642274B2 (en) Forced air combustion equipment
JPH073284B2 (en) Combustion control device
JPH0727333A (en) Combustion control device
JPS63169422A (en) Combustion control
JPH02287013A (en) Combustion controller
JPH06100335B2 (en) Combustion control device
JPS63169424A (en) Combustion controller
JPH07190343A (en) Combustion device
JPS61101745A (en) Tap-controlled gas water heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees