JPS63169422A - Combustion control - Google Patents

Combustion control

Info

Publication number
JPS63169422A
JPS63169422A JP61311058A JP31105886A JPS63169422A JP S63169422 A JPS63169422 A JP S63169422A JP 61311058 A JP61311058 A JP 61311058A JP 31105886 A JP31105886 A JP 31105886A JP S63169422 A JPS63169422 A JP S63169422A
Authority
JP
Japan
Prior art keywords
combustion
air
amount
fuel
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61311058A
Other languages
Japanese (ja)
Inventor
Katsuzo Konakawa
勝蔵 粉川
Katsuhiko Yamamoto
克彦 山本
Yasushi Hirata
康 平田
Keiichi Mori
慶一 森
Hirohisa Imai
博久 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61311058A priority Critical patent/JPS63169422A/en
Publication of JPS63169422A publication Critical patent/JPS63169422A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/16Measuring temperature burner temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/30Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/14Controlling burners with gasification or vaporizer elements

Abstract

PURPOSE:To maintain stable combustion condition by adjusting the supply amount of air or fuel in response to the output of a temp. detector installed near a combustion part. CONSTITUTION:A temp. detector 8 measures the temp. caused by radiation from a combustion part 1 and feeds a detected value to a temp. detecting part 10. The amount of fuel supplied by a fuel pump 3 is set in response to a load and an output corresponding to the amount of fuel is sent out to an input part 11 for the amount of combustion. In an operational comparator 12 temp. values when the amount of combustion and an air ratio mu are changed are previously stored and by the input of the amount of combustion from the part 11 and the temp. from the part 10 the air ratio mu is able to be found. When this air ratio is different from a set value mu, the revolving speed of a blower 4 is adjusted by increasing or decreasing it by an air controlling part 13. Consequently, satisfactory combustion condition can be maintained by keeping the air ratio constant (for instance mu=1.5).

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガスや石油等の燃料を用いる燃焼機器における
空燃比の制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an air-fuel ratio control device for combustion equipment that uses fuel such as gas or oil.

従来の技術 ガスや石油を燃料として燃焼させるとき、燃料と空気量
を最適な比率にして供給することにより逆科や失火、あ
るいは不完全燃焼の発生を防ぎ安定な燃焼を維持できる
。この燃料と空気量の比を空燃比と呼び、従来から燃焼
状態を検知して常に最適な空燃比を保つように燃料、あ
るいは空気量を制御する手段が考えられていた。
Conventional technology When burning gas or oil as fuel, stable combustion can be maintained by supplying the fuel and air at an optimal ratio to prevent backfires, misfires, or incomplete combustion. This ratio of the amount of fuel and air is called the air-fuel ratio, and conventional methods have been devised to detect the combustion state and control the amount of fuel or air so as to always maintain an optimal air-fuel ratio.

石油燃焼機器における空燃比制御の方式は、例えば、特
開昭6.1−24917号公報に記載されているものが
ある。これは火炎に挿入したフレームロッドにより火炎
の炎イオン電流を検出し、このイオン電流が空燃比によ
り変化することを利用して空燃比を最適にするように燃
料供給ポンプの駆動周波数を調節する構成である。第3
図に炎イオン電流値Ifの一例を示す。横軸は一次空気
比μでここでは空燃比を一次空気比μで説明する。
An air-fuel ratio control system for oil-burning equipment is described, for example, in Japanese Patent Laid-Open No. 6.1-24917. This system detects the flame ion current of the flame with a flame rod inserted into the flame, and uses the fact that this ion current changes depending on the air-fuel ratio to adjust the driving frequency of the fuel supply pump to optimize the air-fuel ratio. It is. Third
The figure shows an example of the flame ion current value If. The horizontal axis is the primary air ratio μ, and here the air-fuel ratio will be explained in terms of the primary air ratio μ.

代表的なバーナへの入力範囲(3000〜1000ka
m+/h)において、炎イオン電流値Ifはほぼμ=0
.8−0.9でピークを持つ分布をしている。
Typical burner input range (3000 to 1000ka
m+/h), the flame ion current value If is approximately μ=0
.. The distribution has a peak at 8-0.9.

そこでポンプ駆動周波数を調節して、炎イオン電流値I
fが最大値になるように燃料供給量を決めることにより
空燃比制御を行い安定した燃焼状態を維持するものであ
る。
Therefore, by adjusting the pump drive frequency, the flame ion current value I
By determining the fuel supply amount so that f becomes the maximum value, air-fuel ratio control is performed to maintain a stable combustion state.

発明が解決しようとする問題点 上記従来例ではμ=0.8〜0.9で最も安定した燃焼
状態を維持できるように構成したバーナを使用したが、
μ=1.5付近で最も安定した燃焼状態を維持できるよ
うに構成したバーナ(以下、全−次燃焼バーナと記す)
もある。全−次燃焼バーナは一般に、火炎温度が低く、
排ガス中の有害成分である窒素酸化物(NOx)が極め
て少ないという特長を有し、クリーン燃焼のためには効
果の大きいバーナ構成であることが知られている。
Problems to be Solved by the Invention In the conventional example described above, a burner configured to maintain the most stable combustion state at μ=0.8 to 0.9 was used.
A burner configured to maintain the most stable combustion state near μ=1.5 (hereinafter referred to as a full-primary combustion burner)
There is also. Full combustion burners generally have low flame temperatures;
It is known that the burner configuration has a feature of extremely low levels of nitrogen oxides (NOx), which are harmful components in exhaust gas, and is highly effective for clean combustion.

しかしながら上記の様な従来の空燃比制御手段は、炎イ
オン電流値1fが最大値になるように燃料供給量を決め
るので、μ=0.8〜0.9に調節してしまい、μ=1
.5付近での安定した燃焼状態の維持ができなく、かつ
、バーナへの入力が小さく燃焼量が少ないときは、If
値が小さくかつ変化量は更に少な(検出が困難であると
いう問題点を有していた。
However, the conventional air-fuel ratio control means as described above determines the fuel supply amount so that the flame ion current value 1f becomes the maximum value, so it is adjusted to μ = 0.8 to 0.9, and μ = 1
.. If a stable combustion state cannot be maintained near 5 and the input to the burner is small and the combustion amount is small, the If
The value was small and the amount of change was even smaller (it had the problem of being difficult to detect).

本発明はかかる従来の問題を解消するもので、全−次燃
焼バーナで、μ=1.5付近に調節し安定した燃焼状態
を維持することを目的とする。
The present invention aims to solve such conventional problems, and aims to maintain a stable combustion state by adjusting μ to around 1.5 in a full-primary combustion burner.

問題点を解決するための手段。A means to solve a problem.

上記問題点を解決するために本発明の燃焼制御装置は、
燃料と空気を供給する手段と、前記燃前記供給手段に連
結した混合部と、前混合部に連通した燃焼部と、前記燃
焼部の近傍に設けた温度検知手段を備え、前記温度検知
手段の出力に応じて前記空気または燃料の供給する手段
の供給量を増減して調整する燃焼制御を有する構成とし
たものである。
In order to solve the above problems, the combustion control device of the present invention includes:
A fuel supplying means for supplying fuel and air, a mixing section connected to the fuel supplying means, a combustion section communicating with the pre-mixing section, and a temperature detection means provided near the combustion section; The combustion control is configured to increase or decrease the amount of air or fuel supplied by the means for supplying air or fuel in accordance with the output.

作  用 本発明は、上記した構成によって、温度検知手段により
空燃比により決まる燃焼部からの射熱による温度を測定
できるため、この出力を予め設定した値に空気または燃
料を供給する手段の供給量を増減して調節することによ
り空燃比を任意に設定でき、空燃比をμ=1.5付近で
安定した燃焼状態を維持するものである。
Effect of the Invention With the above-described configuration, the present invention allows the temperature detection means to measure the temperature due to radiation heat from the combustion section, which is determined by the air-fuel ratio. The air-fuel ratio can be arbitrarily set by increasing or decreasing the amount, and a stable combustion state is maintained at the air-fuel ratio near μ=1.5.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
。実施例では石油気化式バーナによる室内開放燃焼型温
風暖房器(ファンヒータ)を例にして説明する。第1図
は本発明のシステムブロック図を示す。1は燃焼部で多
数の小孔を有するパンチング板の外側に金網で炎孔を形
成した全−次燃焼バーナであり、燃料タンク2から燃料
ポンプ3により供給された燃料と送風機4により供給さ
れた空気を気化器5に供給される。気化器5には加熱ヒ
ータ6より高温に維持され前記供給燃料は気化し空気と
混合し燃焼部1に混合ガスとして供給し混合部7を通り
燃焼部1で燃焼する。8は温度検出する温度検知手段で
あり熱電対またはサーミスタで構成し、外周には受熱用
のフィン9を設け、燃焼部1からの射熱による温度を測
定し温度検出部1.0に出力する。燃料ポンプ3により
供給する燃料の量は、負荷に応じて設定されその供給量
に応じた出力を燃焼量入力部11へ出力する。
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings. In the embodiment, an indoor open combustion hot air heater (fan heater) using an oil vaporization burner will be described as an example. FIG. 1 shows a system block diagram of the present invention. Reference numeral 1 denotes a full-primary combustion burner in which flame holes are formed with a wire mesh on the outside of a punched plate having a large number of small holes in the combustion section, and fuel is supplied from a fuel tank 2 by a fuel pump 3 and by a blower 4. Air is supplied to the vaporizer 5. The vaporizer 5 is maintained at a high temperature by a heater 6, and the supplied fuel is vaporized, mixed with air, and supplied to the combustion section 1 as a mixed gas, passing through the mixing section 7 and combusted in the combustion section 1. Reference numeral 8 denotes a temperature detection means for detecting temperature, which is composed of a thermocouple or a thermistor, has heat receiving fins 9 on the outer periphery, measures the temperature due to radiation heat from the combustion section 1, and outputs it to the temperature detection section 1.0. . The amount of fuel supplied by the fuel pump 3 is set according to the load, and an output corresponding to the supplied amount is output to the combustion amount input section 11.

12は演算比較部であり温度検出部10と燃焼量入力部
11より入力した値に応じて予め比較値を記憶している
値と比較し空気量制御部13に出力する。空気量制御部
13は演算比較部12からの入力に応じて送風器4の回
転数を制御し空気量を増減する。
Reference numeral 12 denotes an arithmetic comparison section, which compares a comparison value with a previously stored value according to the values input from the temperature detection section 10 and the combustion amount input section 11, and outputs the comparison value to the air amount control section 13. The air amount control section 13 controls the rotation speed of the blower 4 according to the input from the arithmetic comparison section 12 to increase or decrease the air amount.

第2図に全−次燃焼バーナにおいての温度検知部すなわ
ち混合部6の温度の特性を示す。前記温度はUが増加す
るにしたがい、又燃焼量が増大するに従い低くなる。
FIG. 2 shows the temperature characteristics of the temperature detection section, that is, the mixing section 6 in the full combustion burner. The temperature decreases as U increases and as the amount of combustion increases.

送風気4より供給した空気は一定温度にコントロールさ
れた気化器5内で加熱された後燃焼部1に送られこの温
度が温度1である。気化器5内での空気温度の上昇は、
送られる空気量と気化器の形状により決まる。同じ気化
器の場合は、燃料の蒸発、空気中の温度変化の影響は少
な(空気量による空気の気化器内での滞留時間と流れ分
布と気化器表面の温度低下のみにより決まる。そのため
、空気比μが大きい程、また燃焼量が多い程供給される
空気量が多(温度1が低(なる。そして、火炎からの温
度検出部8への対量は、空気比が小さくなると急激に増
大する。炎孔から燃料ガスの噴出速度は空気の増減と燃
焼量の変化に応じてその体積で決まる。燃焼速度は、空
気比が1近くで最大となり空気比が増大するにしたがっ
て減少する。
Air supplied from the blast air 4 is heated in a vaporizer 5 whose temperature is controlled at a constant temperature, and then sent to the combustion section 1, which has a temperature of 1. The increase in air temperature within the vaporizer 5 is
It depends on the amount of air being sent and the shape of the vaporizer. In the case of the same carburetor, the effects of fuel evaporation and temperature changes in the air are small (determined only by the residence time and flow distribution of air in the vaporizer depending on the amount of air, and the temperature drop on the surface of the vaporizer. The larger the ratio μ and the larger the combustion amount, the larger the amount of air supplied (the lower the temperature 1 becomes).Then, the amount of air supplied from the flame to the temperature detection unit 8 increases rapidly as the air ratio decreases. The ejection speed of fuel gas from the flame hole is determined by its volume according to the increase and decrease of air and the change in combustion amount.The combustion speed is maximum when the air ratio is close to 1 and decreases as the air ratio increases.

この対量は対抗する燃焼部1の温度と相関して変化し、
燃焼部1の温度は火炎からの受熱により決まる。火炎の
温度は空気比の増大に応じて低下し、又、火炎と燃焼部
1との距離は燃焼速度と噴出速度の釣合で決まる。その
ため、空気比が減少すると、噴出速度は下がり、燃焼速
度が太き(なるため火炎が燃焼部1に近ずき、燃焼部1
の温度が上昇する。そのため、温度検知部8の温度は上
昇する。温度検知部8の温度は混合ガスの気化器5内で
の上昇と燃焼部1からの射熱により上昇した値である。
This amount changes in correlation with the temperature of the opposing combustion section 1,
The temperature of the combustion section 1 is determined by heat received from the flame. The temperature of the flame decreases as the air ratio increases, and the distance between the flame and the combustion section 1 is determined by the balance between the combustion speed and the jetting speed. Therefore, when the air ratio decreases, the ejection speed decreases and the combustion speed increases (as a result, the flame approaches the combustion section 1,
temperature increases. Therefore, the temperature of the temperature detection section 8 increases. The temperature of the temperature detection section 8 is a value increased by the rise of the mixed gas in the vaporizer 5 and the radiation heat from the combustion section 1.

演算比較部12には、予め燃焼量と空気比μを変化させ
たときの温度の値を記憶させである。燃焼量入力部11
より燃焼量を、また、温度検出部8より温度を入力する
ことにより、前記値と比較することにより空気比μが判
る。そして、設定したμと比較し、設定値のμと異なる
時は空気制御部13より送風器4の回転数を増減させて
調整する。このため空気比は自由に最適値設定が可能で
あるためμ=1.5の様な全−法域においても設定でき
る。また、炎イオン電流は、室内の酸素濃度、煙草等信
のガスの影響を受けるのに対し、供給空気の温度上昇を
測る本発明は、温度上昇が空気の質量流量と相関するた
め上記の影響を受けることがない。本実施例では、全−
次燃焼バーナについて述べたが部分予混合燃焼バーナの
場合も同じ様にμを検知制御できる。
The arithmetic comparison unit 12 is stored in advance with temperature values when the combustion amount and the air ratio μ are changed. Combustion amount input section 11
By inputting the combustion amount and the temperature from the temperature detection section 8, the air ratio μ can be determined by comparing with the above values. Then, it is compared with the set value μ, and if it is different from the set value μ, the air control unit 13 adjusts the rotation speed of the blower 4 by increasing or decreasing it. Therefore, since the air ratio can be freely set to an optimum value, it can also be set in an all-legal range such as μ=1.5. In addition, flame ion current is affected by the oxygen concentration in the room and gases such as cigarettes, whereas the present invention, which measures the temperature rise of the supplied air, does not have the above effects because the temperature rise is correlated with the mass flow rate of the air. I never receive it. In this example, all
Although we have described the secondary combustion burner, μ can be similarly detected and controlled in the case of a partially premixed combustion burner.

上記構成に於て、設定した空気比μと燃焼量に応じた値
と、温度検出部8の値が同じになるように送風機4を調
節して供給空気量を制御するように作用して空気比を一
定(例えばμ=1.5 )に保ち良好な燃焼状態を維持
できる。本実施例では石油ファンヒータで説明したが、
ファンヒータ以外の燃焼機器やガス燃焼であっても同様
の効果が有り、一定温度を保つ気化器の代わりに加熱器
と加熱温度を検知する手段を設けても同様である。
In the above configuration, the blower 4 is adjusted so that the value corresponding to the set air ratio μ and combustion amount is the same as the value of the temperature detection unit 8, and the amount of air supplied is controlled. Good combustion conditions can be maintained by keeping the ratio constant (for example, μ=1.5). In this example, the oil fan heater was explained.
Similar effects can be obtained with combustion devices other than fan heaters or with gas combustion, and the same effect can be obtained even if a heater and means for detecting the heating temperature are provided in place of the vaporizer that maintains a constant temperature.

発明の効果 以上のように本発明の燃焼制御装置によれば次の効果が
得られる。
Effects of the Invention As described above, the combustion control device of the present invention provides the following effects.

(1)空燃比を最適点に自動設定できるため、手動の調
整手段が不要で常に安定した燃焼状態を維持できる。
(1) Since the air-fuel ratio can be automatically set to the optimal point, a stable combustion state can be maintained at all times without the need for manual adjustment.

(2)燃焼量に応じて空燃比を設定できるため良好な燃
焼で可変でき燃焼量可変幅が拡大し、負荷に応じて燃焼
量をコントロールできる。
(2) Since the air-fuel ratio can be set according to the amount of combustion, it can be varied with good combustion, and the range of variable combustion amount can be expanded, making it possible to control the amount of combustion according to the load.

(3)  μ=1.4〜1.8で調整できるためNOx
の低い全−次燃焼バーナでの燃焼制御に応用できる。
(3) Since it can be adjusted with μ=1.4 to 1.8, NOx
It can be applied to combustion control in full combustion burners with low combustion.

(4)炎イオン電流のように燃焼状態によらず、供給空
気の質量流量値に応じた温度で制御するため、室温度、
燃焼状態の影響を受けることなく、正確な空気比制御が
可能である。
(4) The room temperature,
Accurate air ratio control is possible without being affected by combustion conditions.

(5)供給空気の温度差に応じて供給空気手段を制御す
るため応答速度が早く、また空気フィルタがごみ等によ
り半閉塞の場合も空気比がずれても瞬時に調整できる。
(5) Since the supply air means is controlled according to the temperature difference of the supply air, the response speed is fast, and even if the air filter is partially clogged due to dust or the like, even if the air ratio deviates, it can be adjusted instantly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の燃焼制御装置の制御ブロッ
ク図、第2図は一次空気比と第1の温度検出部の温度の
特性図、第3図は従来の空燃比制御方式の特性図である
。 1・・・・・・燃焼部、3・・・・・・燃料ポンプ、4
.・、・9.送風機、5・・・・・・気化器、7・・・
・・・混合部、8・・・・・・温度検知手段、10・・
・・・・温度検出部、11・・・・・・燃焼量入力部、
12・・・・・・比較演算部、13−・・・・・空気量
制御部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 一浅空気比(μ) 鵠3図 一医!気史ひ)
Fig. 1 is a control block diagram of a combustion control device according to an embodiment of the present invention, Fig. 2 is a characteristic diagram of the primary air ratio and the temperature of the first temperature detection section, and Fig. 3 is a diagram of a conventional air-fuel ratio control system. It is a characteristic diagram. 1... Combustion part, 3... Fuel pump, 4
..・・・9. Blower, 5... Carburizer, 7...
...Mixing section, 8...Temperature detection means, 10...
... Temperature detection section, 11... Combustion amount input section,
12--Comparison calculation section, 13--.Air amount control section. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 1 Shallow Air Ratio (μ) Moe 3 Figure 1 Doctor! Kishihi)

Claims (1)

【特許請求の範囲】[Claims] 燃料と空気を供給する手段と、前記供給手段に連結した
混合部と、前混合部に連通した燃焼部と、前記燃焼部の
近傍に設けた温度検知手段を備え、前記温度検知手段の
出力に応じて前記燃料または前記空気を供給する手段の
供給量を増減した燃焼制御装置。
comprising means for supplying fuel and air, a mixing section connected to the supply means, a combustion section communicating with the pre-mixing section, and a temperature detection means provided near the combustion section; A combustion control device that increases or decreases the supply amount of the means for supplying the fuel or the air accordingly.
JP61311058A 1986-12-29 1986-12-29 Combustion control Pending JPS63169422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61311058A JPS63169422A (en) 1986-12-29 1986-12-29 Combustion control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61311058A JPS63169422A (en) 1986-12-29 1986-12-29 Combustion control

Publications (1)

Publication Number Publication Date
JPS63169422A true JPS63169422A (en) 1988-07-13

Family

ID=18012604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61311058A Pending JPS63169422A (en) 1986-12-29 1986-12-29 Combustion control

Country Status (1)

Country Link
JP (1) JPS63169422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389330B1 (en) 1997-12-18 2002-05-14 Reuter-Stokes, Inc. Combustion diagnostics method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389330B1 (en) 1997-12-18 2002-05-14 Reuter-Stokes, Inc. Combustion diagnostics method and system

Similar Documents

Publication Publication Date Title
JPS5966616A (en) Gas combustion apparatus
JPS63169422A (en) Combustion control
JPS6332218A (en) Burning control device
JP2002162028A (en) Combustion control method and combustion apparatus
JP2003042444A (en) Water heater
JPS63105318A (en) Combustion control apparatus
JPS6349619A (en) Combustion control device
JPS63105319A (en) Combustion control apparatus
JPS6349622A (en) Combustion device
JPS62258928A (en) Combustion control device
JPS63156915A (en) Controller of space heating burner
JPS6349624A (en) Combustion device
JPS6349623A (en) Combustion device
JP2642274B2 (en) Forced air combustion equipment
JPS63153316A (en) Combustion control device
JPS63254308A (en) Burner
JP3468940B2 (en) Gas combustion equipment
JPH06117628A (en) Burner
JPS63290321A (en) Combustion device
JPH07117234B2 (en) Combustion control device
JPS63279008A (en) Burning equipment
JPH07107444B2 (en) Combustion device
JPH0435646B2 (en)
JPH06100335B2 (en) Combustion control device
JPS6044728A (en) Premixing combustion device